Histograms in StatCrunch

Hello! In this video I will be discussing two different ways of making histograms in StatCrunch. In the first example, we are given a table of raw data and asked to construct a histogram by finding the best values for our classes (also known as bins). In the second example, we are given a frequency table and asked to create a histogram from pre-established class sizes.

For our first example, let's say we are given this table of 25 data values. Our problem wants us to find the optimal class sizes for this data set. StatCrunch's histogram function will automatically format your histogram so that it looks "nice" by creating bins of automatic length. However, some homework problems require you to find your own class sizes using predefined rules, which means we can't always use the histograms SC gives us automatically. Luckily, if we can find those class sizes by hand, StatCrunch will still create a histogram for us very quickly.

FIND CLASS WIDTH

Number of Classes = k,
where $2^k \ge the number of observations$ 25 = number of observations $2^4 < 25 \times 2^5 \ge 25 \checkmark$ $2^5 \ge 25 \checkmark$ $2^5 \ge 25 \checkmark$ \Rightarrow number of classes = 5Class Width $\approx \frac{Max \ Value - Min \ Value}{Number \ of \ Classes}$ Class Width $\approx \frac{52440 - 30165}{5}$
Class Width ≈ 4455

Our first step is finding the number of classes that we need. There is a general rule that says that the number of classes, k, should be such that the value of 2^k is just slightly greater than or equal to the number of observations in our data set. So for example, we have 25 data values in our list. That means that we need to find a k such that 2^k is be greater than or equal to 25. So for example if we chose 4 for k, 2^k is less than 25. In other words, 2⁴ is less than 25. But if we choose 5 for k, 2⁵ is greater than 25. That means that instead of choosing 4 for our class size (or some other number) we would choose the value for k that makes 2^k just greater than our number of observations (25). In other words, our number of classes will be 5.

The next thing we need it to figure out our class width: how big are our bins going to be? The formula for this is found by taking the Max value in our data set subtracting the Minimum value in our data set and then dividing by the number of classes that we just found. To find our max and min values in stat crunch, there are two methods we can use.

First, we can just go to StatCrunch and order the data values by clicking on the tab next to the column name and clicking on "sort values ascending". This puts our smallest data values at the top and our max at the bottom. From here we can easily see that the max value is 52440 and min value is 30165. From here we can plug those two numbers into our formula, divide by our number of class sizes, and find our class width.

The second method for finding the max and min is a little more labor intensive, but it is useful if you have a very large data set. First go to "Data," then "Compute," then "Expression." Scroll down in the functions tab until you find the "max" function and then double click. Next double click on the variable name, here "var1." This is just the name of the column you have your data in. Now hit "Okay." Then compute. Notice that a new column has been created with the max value of our data set. The same process can be used to find the min. Go to "Data", "Compute", "Expression." Again we go to "Build", but this time instead of doing "max" we look for the "min" function. Again, double click on our column name, "var1." Click "Compute." And again, it will sort through and find our minimum value for us.

From here, (no matter what method you use) we can plug these values into our class width formula to find the size of our bins. We get 52440 minus the min of 30165. Divide this by our number of classes (which was 5), and this gives us a class width of 4455.

Row varl 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3	min(var1) max(var1) va 101 Insert 1 left 40 105 Insert 1 right 40 108 Delete column 40 121 Clear column 40 130 Move column 40 137 Rename column 40 138 Resize column 40
1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3	301 Insert 1 left 40 305 Insert 1 right 100 308 Delete column 100 309 Move column 100 301 Rename column 100 302 Resize column 100
2 33 3 33 4 33 5 33 6 33 7 33 8 33	305 Insert 1 right 308 Delete column 309 Clear column 301 Move column 303 Rename column 304 Resize column
3 33 4 33 5 33 6 33 7 33 8 33	308 Delete column 321 Clear column 330 Move column 337 Rename column 38 Resize column
4 33 5 33 6 33 7 33 8 33	321 Clear column 330 Move column 337 Rename column 38 Resize column
5 3 6 3 7 3 8 3	330 Move column 337 Rename column 38 Resize column
6 3 7 3 8 3	337 Rename column 38 Resize column
7 3	38 Resize column
8 3	
0	42 Sort table ascending
9 3	47 Sort table descending
10 3	14980
11 3	15130
12 3	15512
13 3	15833
14 3	16029
15 3	16962
16 3	17321
17 3	17713
18 3	/8417
19 3	18643
0.0	18904
20 3	9821
	14 3 15 3 16 3 17 3 18 3 19 3 20 3 21 3

Next we need to choose a starting point for our histogram. To find this, we look at our minimum value (30165) and round down to the nearest "nice" number. It's important to round it down, not up. This can vary depending on the numbers you are working with, but here our minimum value rounds down easily to 30000. The important thing when choosing a starting value is to check after you have made your histogram and make sure that all your data values are represented somewhere in your histogram.

HISTOGRAM

Row	var1	min(var1)	max(var1)	var4	Bar Plot	V
1	30165	30165	52440		Rie Chart	
2	30533					
3	30852				Chart	
4	32195				Histogram	
5	33019				Stem and Leaf	
6	33756				Boxplot	
7	33862				Detalet	
8	34247				Docpioc	
9	34782				Means Plot	
10	34980				Scatter Plot	
11	35130				Bubble Plot	
12	35512				Multi Plot	
13	35833				OO Plat	
14	36029				QQ FIOL	
15	26062				Index/Time Plot	

Class Width ≈ 4455

Starting Value = 30000

Now we are all ready to build our histogram. Go to "Graph", then "Histogram". Select the name of the column containing your data values. (Here "var1") Next under "Bins", enter your starting value in the "Start At:" box. So for our example we enter 30000.

Now enter your class length in "Width:" So we will enter our width of 4455. Leave everything else alone, and then hit "Compute!"

This will create our histogram. Notice that our bins start at 30000 and all have a width of 4455. Also, the upper limit on the last data set, 56730 is bigger than the maximum value in our data set. Because of this, we know that all of our values are somewhere in our bins.

Also notice that you can hover your cursor over the bars and it will give you information about the frequency of cases in each bin and the length of the bin itself.

Also, be sure to check that our max value (52440) is in fact in one of these bins. We can do that by saying "Ok, our upper limit on the biggest bin (56730) is in fact bigger than our maximum, which means our max must be in here, which means all of our data values must be in here. In other words, we are just checking to make sure we chose our classes correctly.

HISTOGRAM FROM FREQUENCY TABLE

Class/Bin	Frequency
30000-34455	8
34455-38910	12
38910-43365	4
43365-47820	0
47820-52275	0
52275-56730	1

Next, for our second example, instead of being given raw data, we are instead given a frequency table. We are already given the bins, frequency, and class sizes, and they want us to create a histogram just using this. This one is a little bit simpler, we don't have to actually figure out any of the values by hand.

Class/Bin l	Frequency	Bar Plot	With Data		Frequency	
0000-34455		Pie Chart	With Summary		Where:	Doit
8010-43365	1	Chart 🕨	,		- opiioniii	
3365-47820		Histogram		1	Type: Frequency	
7820-52275	1	Stem and Leaf			Order by:	
2275-56730		Boxplot			Value Ascending	
		Detplot			"Other*" if percent less than:	
		Dotplot			optional	
		Means Plot			Display:	
		Scatter Plot			i valle adove bar	
	1	Bubble Plot			Color scheme: Basic - 7 colors	
		Multi Plot			X-axis label:optional	
		QQ Plot			Y-axis label:optional	
	_	Index/Time Plot			Title:optional	
		Pairs Plot			Horizontal lines: 🗷	
		Parallel Coordinates			Vertical lines:	
		Stars Plot			For multiple graphs:	
		2D Deteting Plat			Rows per page: 1	
		SD Rotating Flot			Columns per page: 1	
		word wall			Use same X-axis:	
	1	Map 🕨			Use same Y-axis:	

We can just go to straight to StatCrunch. Go to "Graph", then "Bar Plot", "With Summary". This will open up a new window. In the "Categories in:" section, select the name of the column containing your Classes/Bins. Next, in the "Counts in:" section, select the column name containing your frequencies (here it's called Frequency). Leave everything else alone, and select "Compute!"

StatCrunch will give us this bar plot. Notice that it doesn't look the same as the histogram we got before. This isn't a traditional histogram because the bars themselves don't touch each other. But it still gives us all the information we need, and we can get a good sense of the distribution of the data. Again, if you hover your cursor it will give you the frequency values and the bin sizes.

And that is all there is to it. I hope you found this video helpful. If you are UNT student, you will find some links to other services and resources in the description of this video. Thanks for watching!