

University of North Texas at Dallas

Strategic Analysis & Reporting

A Predictive Model for Student Retention Using Logistic Regression

1. Abstract

The percentage of students in a university or college who return to the institution after one year's study (called retention) is crucial for decision makers since it is one of the performance measures of higher education institutions. The decision makers would know how well the institution supports students who have academic, financial, and/or other challenges. It provides a window into different aspects of the institution. In addition, College-to-be students use retention to make college choice decisions. Hence, retention is an important measurement for decision makers to decide on recruitment policies.

With the purpose to know which variables influence the students' retention at UNT Dallas, we created a model using logistic regression to compare impacts of variables on the retention. In particular, we focused on how the selected variables influence the retention as well as the relationships between retention and these variables.

2. Theoretical framework

Data preparation

We selected the students, only undergraduate, who attended UNT Dallas in 2014 fall as our sample dataset. Then we eliminated the students who graduated between 2014 fall and 2015 fall and all senior students. Lastly, we compared this dataset with the students who attended UNT Dallas in 2015 fall. We marked a student as 1 if the student returned to UNT Dallas in 2015 fall and 0 for those who did not.

As the graph shows above, there were a total of 2127 undergraduate students (senior excluded). More students stayed than those who dropped, 1068 compared with 1059.

Chart 2 School or College

As chart two shows, the sample dataset covers all the colleges exclude the College of Law. The remarkable phenomenon that draws our attention is the retention rate of undetermined students, which is extremely low compared to other colleges. Further research will be done in order to identify the impacts of Undetermined. However, we removed the Undetermined from the model for outliner consideration.

Also, the distribution of the students among colleges in the sample dataset is very similar to the distribution that we have in population.

Chart 3 Admit Type

As the chart three shows, less student returned to UNT Dallas if they have been classified as continuing students.

The chart above shows different dimensions of the students in our dataset.

Model Building

The software that we used in the model building is SPSS Modeler and SPSS Statistics. The algorithm used in this predictive model is Logistic Regression, sometimes called Binary Logistic. CHAID, and NN. In the modeling, the target column is Retain, a categorical variable. And we select 22 independent variables.

Predictors Recommended for Use in Analysis Predictive Power

Data Audit of [23 fields]	and the second	States in case of		_				_		
違 Eile 🛛 📄 Edit 🛛 🕙 Generate										
Audit Quality Annotations										
Field	Graph	Measurement	Min	Max	Mean	Std. Dev	Skewness	Unique	Valid	
retain_FA15		🖁 Flag	0.000	1.000				2	1966	
SCH_TOT_transformed		n Continuous	-1.617	2.446	0.000	1.000	0.242	-	1966	
fte_15_CB_transformed		Continuous	-1.617	2.446	-0.000	1.000	0.242	-	1966	
TOT_TAKEN_PRGRSS_transf		🛷 Continuous	-2.073	4.607	0.000	1.000	-0.056	-	1966	
UNT_TAKEN_PRGRSS_transf		🛷 Continuous	-2.593	2.715	0.000	1.000	-0.350		1966	
age_transformed		Continuous	-1.241	4.735	-0.000	1.000	1.438	-	1966	
CUM_GPA_transformed		P Continuous	-1.325	1.401	-0.000	1.000	-0.306	-	1966	
TOTALSCHDAL_transformed		🛷 Continuous	-1.615	2.431	-0.000	1.000	0.249		1966	
sex_transformed		🔓 Flag	-	-	-	-	-	2	1966	
class_transformed		🗞 Nominal	-	-	-	-	-	5	1966	
A tuitstat_transformed		🕹 Nominal	-	-	-	-	-	6	1966	
Ethnicity_IPEDS_transformed		🗞 Nominal	0.000	8.000	-	-	-	9	1966	
A										

3. Results and Conclusions

📎 retain_FA15				<u> </u>
🙀 🔓 Eile 👋 <u>G</u> er	nerate 🖋 <u>V</u> iew []]	Preview 🖶		
Model Graph Summary	Settings Annotations			
Sort by: Use	💌 🖲 Ascending 🔘 Des	scending	× Delete Unused Models	View: Training set 🔻
Use?	Graph	Model	Overall Accuracy (%)	Area Under Curve
		Logistic regressi	82.401	0.894
		CHAID 1	82.045	0.897
		Neural Net 1	74.822	0.827
OK Cancel				Apply Reset

As the charts shows above. Both three models generate decent accuracy rate, Logistic Regression is the highest, 82.4%, followed by CHAID, 82%, and Neural Net, 74.8%.

In the future usage of the model, we could predict whether a student will retain. We could also interpret the result of Logistic Regression and understand which variables is important for us. In the following chart, we selected the most significant variables.

Variable	Category	В	Р	Exp(B)
PLAN_DESCR_DAL	Non-Degree	-2	0.001	0.13
	Criminal Justice	1.1	0	3
	Interdisciplinary Studies	1.3	0	4
	Business	1	0	3
CLASS	Freshmen	-1.3	0.003	0.3
	Sophomore	-0.6	0.013	0.5
TOT_TAKEN_PRGRSS		-0.6	0	0.5
AGE		0.5	0.48	1.7
CUM_GPA		0.5	0.001	1.6
ONLINE_STATUS	Both	-1.3	0.46	0.3

As the results show, students who have been categorized as Non-Degree have less chance to retain. And students who have major of Criminal Justice, Interdisciplinary Studies, and Business have higher chance to retain. Freshmen and Sophomore students are less likely to retain. And the more SCH a student takes during that semester, the more likely he/she will drop. Age indicates the older the student is, the more likely he/she will retain. Cumulative GPA has a positive relationship with retention, the higher the cumulative GPA is, the more likely the student will retain. Another interesting finding is Online status, compare to students who only take online classes and those who only take on-campus classes, students who take both online and on-campus classes have lower chance to retain.

Hence, the model is appropriate to predict students' retention by using all the variables.

4. Usage of the results and Future Research

With a predictive model of 82.4% accuracy rate, we can use it in the first semester to predict who will be most likely to drop in the next semester. By the possibility index the system generates, we can rank the students from highest possibility of dropping to lowest. With the list, we can contact those students who are most likely to drop and offer some help or intervention to help them to come back next semester.

Identify predicted leaving students								
Filter	So	rt Leaving Students						
	EMPLID	\$LP-0						
1	10578844	1 000						
2	10796709	1 000						
3	10953307	1.000						
4	10885715	1.000						
5	10890892	1.000						
6	10956116	1.000						
7	10917726	1.000						
8	10423011	1.000						
9	10826935	1.000						
10	11049815	1.000						
11	11029257	1.000						
12	10958194	1.000						
13	10979915	1.000						
14	10909027	1.000						
15	11045788	0.999						
16	10796238	0.999						
17	10975531	0.999						
18	11008441	0.999						
19	10935178	0.998						
20	10971468	0.998						

The second usage of the model could be a structural decision tree of all the predictors (full decision tree in appendix). Hence the decision makers can better understand each significant variable and the relationship and hierarchy of the predictors.

A remarkable variable that draw our attention is the Undetermined under college. As the result of the model indicates, the chance of a student that is not retained will increase significantly if he or she is assigned as undetermined. Future research will be done to find out more information about the correlation between undetermined and retention.

We would like to separate the students that did not return to UNT Dallas as drop out of college or transfer to other institutions in the future project to better understand students' retention.

Appendix

Result from SPSS

Omnibus Tests of Model Coefficients

		Chi-square	df	Sig.
Step 1	Step	1232.363	76	.000
	Block	1232.363	76	.000
	Model	1232.363	76	.000

Model Summary

Step	-2 Log	Cox & Snell R	Nagelkerke R
	likelihood	Square	Square
1	1490.599 ^a	.466	.621

a. Estimation terminated at iteration number 20 because maximum iterations has been reached. Final solution cannot be found.

Classification Table

			Predicted				
			retain_	FA15	Percentage		
Observed		0.0	1.0	Correct			
Step 1	retain_FA15	0.0	746	272	73.3		
		1.0	74	874	92.2		
-	Overall Perce	ntage			82.4		

Variables in the Equation								
		В	S.E.	Wald	df	Sig.	Exp(B)	
Step 1ª	SCH_TOT_transformed	.026	.858	.001	1	.976	1.026	
	TOT_TAKEN_PRGRSS_tr ansformed	599	.139	18.446	1	.000	.549	
	UNT_TAKEN_PRGRSS_t ransformed	324	.145	5.007	1	.025	.723	
	HSRANK9_transformed	125	.149	.702	1	.402	.883	
	age_transformed	.544	.276	3.896	1	.048	1.723	
	CUM_GPA_transformed	.499	.155	10.377	1	.001	1.646	
	TOTALSCHDAL_transfor med	1.069	.862	1.537	1	.215	2.913	
	sex_transformed(1)	188	.153	1.500	1	.221	.829	
	class_transformed			27.810	4	.000		
	class_transformed(1)	.234	.927	.064	1	.800	1.264	
	class_transformed(2)	-1.281	.424	9.114	1	.003	.278	
	class_transformed(3)	673	.272	6.131	1	.013	.510	
	class_transformed(4)	.254	.197	1.661	1	.197	1.289	
	tuitstat_transformed			5.987	5	.308		
	tuitstat_transformed(1)	-1.724	1.375	1.574	1	.210	.178	
	tuitstat_transformed(2)	-20.006	11804.185	.000	1	.999	.000	
	tuitstat_transformed(3)	993	.719	1.907	1	.167	.371	
	tuitstat_transformed(4)	.113	.362	.097	1	.756	1.119	
	tuitstat_transformed(5)	611	.332	3.385	1	.066	.543	
	Ethnicity_IPEDS_transfor med			11.982	8	.152		