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Identified Problem and Opportunity

During the 2005 hurricane season, Hurricane Katrina inflicted severe damage on the
Gulf of Mexico (GOM) coastal region and deposited huge amounts of debris over
large areas of the Gulf coast. Submerged marine debris poses a hazard to vessel
traffic, can cause snags and hang-ups during fishing and can adversely affect viable
fishing grounds. To address the submerged debris problem, Congress appropriated
funds to survey areas potentially affected by submerged marine debris, tasking the
National Oceanic and Atmospheric (NOAA) Office of Coast Survey and Office of
Response and Restoration to conduct the surveys, compile and disseminate data to
the public and stakeholders in an effective and useable format, carry out outreach
activities, and otherwise coordinate for removal of marine debris, identifying both
present and future needs. This project, lasting over three and a half years, came to
be known as the Gulf of Mexico Marine Debris Project (GOMMDP).

One of the most pressing needs when addressing marine debris dispersion caused
by a major storm is to assess and verify debris locations. Knowing where high
densities of marine debris are likely to be found could greatly assist in developing
survey priorities and in planning for debris removal. Moreover, a simple,
inexpensive, rapid, and verifiable model to predict marine debris densities could be
very useful to Federal and State managers dealing with marine debris. The data
collected by this project comprise one of the largest systematically collected, post-
storm investigations of marine debris in existence, and provide the building blocks
for assembling such a model. This document describes model construction and
performance.

Goal

The purpose of the model is to characterize spatial differences in the distribution of
relatively large, storm-mobilized and deposited, anthropogenic marine debris
objects across the nearshore seafloor so as to help prioritize these areas for survey.
The guidance for developing the model was that it should be conceptually and
statistically robust and based upon the data collected by the GOMMDP. In addition,
the model should be as applicable as possible to a generic storm event, or a storm
event to occur in the future.

Previous Efforts

Previous efforts at quantitatively modeling debris generated by hurricanes have
largely focused on terrestrial debris. Notable efforts include the HAZUS-MH family
of models maintained by the Federal Emergency Management Agency (FEMA,
2008). The commercially developed HurDET model (Umpierre and Margolies,
2005) is another example. These efforts, while robust and based upon actual data
derived from multiple storm events, are limited to the spatial support of existing
terrestrial boundaries - municipalities, census blocks, or traffic analysis zones. As



such, they are incompatible with the goal of estimating spatial differences in the
distribution of marine debris.

Model Overview and Limitations

This effort models gross relative differences in the spatial distribution of all types of
non-floating anthropogenic marine debris objects across the nearshore seafloor by
statistical correlations via logistic regression. The model focus is limited to debris
objects generated from coastal inhabited areas, and mobilized and deposited during
a hurricane-level storm event. This model does not attempt to mechanistically
describe the sources, movement, and deposition of marine debris, nor will it be able
to predict actual concentrations or volumes of debris. Instead, the model attempts
to relate spatial data describing the relative densities of observed marine debris to
spatial data describing potential influencing factors, and to identify potential
hotspots based upon actual data.

The data used to construct the model are the locations of marine debris items
related to Hurricanes Katrina and Rita identified via side scan sonar in surveys
conducted in 2006 by the GOMMDP. These data do not distinguish between natural
or anthropogenic debris, or between storm-generated and non-storm-generated
debris. The model, however, will be confined to predicting concentrations of post-
storm, anthropogenic debris, which is usually of greatest concern. It is assumed that
the data collected by this project represent a realistic picture of storm-mobilized
and deposited subsurface anthropogenic marine debris objects.

It is difficult to quantify the time and length scales of the model in the sense used for
physical deterministic models. The model itself examines correlations only, and has
no inherent time scale, however some generalizations are possible. This model
examines trends in the essentially static distribution of marine debris objects at
timescales of months to years after the originating storm event. As such, itis
intended to provide a snapshot of this distribution after a storm, but before another
event capable of mobilizing substantial amounts of debris. All predictor data have
been discretized to a common grid of 100 meter (m) by 100m square cells. This can
be considered the minimum length scale of the model. The model was constructed
using data from a raster grid at this resolution that spans approximately 250
kilometers (km). As such, the maximum length scale of the model can be considered
to be hundreds of kilometers. The output of the model is an estimated probability
of encountering one or more debris items within that grid cell, given the values of
the predictor data in that cell.

Predictor Data

The factors influencing the distribution of anthropogenic marine debris following a
storm event are largely intuitive. In general, higher storm energy in the form of
wind, waves, and storm surge in the vicinity of concentrations of human structures
leads to larger amounts of anthropogenic debris. If these debris sources are close to
open water, then there is a higher potential for mobilization of debris from sources
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and deposition in the nearby marine environment. Thus, selecting candidate
predictor data sets for marine debris seems equally intuitive. The critical part in
building a model that will be useful in the future, however, is selecting and
evaluating candidate predictor data sets that one might reasonably anticipate being
available in a consistent format soon after a storm event. Here, we evaluate only
data that are spatial in nature and that either exist for the entire country or would
be produced in a consistent format after a storm event. Table 1 lists the evaluated
predictor data sets.

Storm surge, wind speed, and bathymetric data were evaluated as proxies for
debris-generating storm energy. Distance to shoreline, distance to waterways, and
nearby onshore structure damage, and offshore oil and gas infrastructure density
were measured as proxies for relative potential debris sources. Note that all spatial
data analysis, including processing of the predictor data, was carried out using the
ArcGIS 9.2 software package (ESRI, 2007a).

TABLE 1. Evaluated debris probability predictor raw data sets.

Source | Title Format
NOAA H*Wind Surface Wind Analysis data ESRI shapefile
NOAA ngaerimental probabilistic hurricane storm surge GRIB2 grid
NOAA NGDC 3-Arc second coastal relief model data ASCII grid
ESRI Shoreline data ESRI shapefile
USACE | National waterways network data BTS text file
LOSCO | Navigated waterways of Louisiana ESRI Shapefile
FEMA Remote sensing data ESRI shapefile
MMS Oil and gas platforms in federal waters ESRI Shapefile
GSA Oil and gas platforms in Alabama State Waters ESRI Shapefile
MARIS | Oil and gas platforms in Mississippi State Waters ESRI Shapefile
LDNR Oil and gas platforms in Louisiana State Waters ESRI Shapefile

NOAA'’s H* Wind Surface Wind Analysis products (NOAA, 2007b) describe hurricane
surface wind fields by summarizing data from a variety of observation platforms.
Powell et al. (1998) provide more background on these data products. While
multiple datasets representing snapshots representing various time intervals are
available, a single dataset consisting of a lattice of vector points representing the
peak surficial wind speed was obtained. These data were imported to ArcGIS and
interpolated to the project grid spacing of 100 m by 100 m using an inverse distance
weighting method. Figure 1 depicts the final maximum wind speed grid.
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FIGURE 1. 100 m grid of maximum surface wind speeds in meters per second for hurricane
Katrina. Dotted line indicates storm eye track.

NOAA'’s Experimental Probabilistic Hurricane Storm Surge data (NOAA, 2007a)
describe the 10 percent chance storm surge exceedance height above normal high
tide based upon an ensemble of Sea, Lake, and Overland Surge from Hurricanes
(SLOSH) model runs using the last posted National Hurricane Center (NHC) official
hurricane advisory. These data were converted from the GRIB2 format to vector
points, imported to ArcGIS, and interpolated to the project grid spacing using an
inverse distance weighting method. Figure 2 depicts the final storm surge height
grid for hurricane Katrina.

We will later note that wind speed as described above and the predicted
probabilistic storm surge data are strongly correlated, largely because the SLOSH
model ensembles used to generate surge estimates rely mainly upon wind speed as
an input. True, independent measures of storm surge (from post-landfall ground
surveys; USGS sensors; or remote sensing techniques) or hindcast SLOSH model
output from after storm landfall would be better variables to include a part of this
model. Currently, however, such products are not generated in consistent or timely
manner after all storm events, and so, are not proposed as candidates for inclusion
in this effort, which is intended to produce a “nowcast” product.

NOAA NGDC’s 3-Arc Second Coastal Relief Model data (Divins and Metzger, 2007)
describe integrated bathymetric and topographic information for the coastal zone
derived from all of applicable data sources, including topographic maps,
hydrographic soundings, and sonar and LIDAR data. These data were converted
from the ASCII format to a raster in ArcGIS and resampled to the project grid
spacing using a cubic convolution method. Figure 3 depicts the final bathymetric-
topographic grid.
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FIGURE 2. 100 m grid of 10 percent chance storm surge exceedance heights in meters for
hurricane Katrina.
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FIGURE 3. 100 m grid of bathymetric/topographic elevation in meters.

The Environmental Systems Research Institute (ESRI) high resolution shoreline
(ESRI, 2007b) was converted to a land-water grid using the project grid cell spacing.
These same grid dimensions were used for all predictor grids. For each cell,
Euclidean distance to land was calculated in meters in ArcGIS. Figure 4 depicts the
final distance to land grid.

The United States Army Corps of Engineers (USACE) National Waterways Network
Data (USACE, 2007) and Louisiana waterway data (LOSCO, 1999) describe linear
waterway routes for the intra-coastal and near-coastal waters of the nation. These
data were obtained, imported into ArcGIS and merged to a single dataset of vector
lines. For each cell, Euclidean distance to linear waterway was calculated in meters.
Figure 5 depicts the final distance to waterway grid.
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FIGURE 4. 100 m grid of Euclidean distance to shoreline in meters.
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FIGURE 5. 100 m grid of Euclidean distance to waterways in meters.

FEMA damage assessment polygons (FEMA, 2007) describe areas damaged by
storm events and are generated by interpretation of remote sensing data after a
storm. Polygons are digitized by analysts and assigned one of several damage
descriptors. These damage descriptors are qualitative. To assist in using such
descriptors in a quantitative model, these descriptors were converted to a set of
damage indices ranging from 10 to 80. These indices are an estimate of the
percentage of destroyed structures within areas with that descriptor, as per Table 2.

These polygon data were imported to ArcGIS and converted to a damage index grid
at the project grid spacing. It is anticipated that marine debris will be more likely to
be located proximal to areas with significant storm damage, but it is not known
what degree of proximity will be significant. A series of derivative grids were
generated to represent local damage indices at three different spatial scales. These
derivative grids represent summations of the damage index values at each location
within four different distances - 10 km, 5 km, 2.5 km, and 1 km - from that location.
These sums serve as proxy variables for the potential amount of debris derived from
nearby onshore structures. These three distances were selected as representative
of what “nearby” means, in the context of debris mobilization and deposition.
Figure 6 depicts the damage index grid and three focal sum grids.
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TABLE 2. FEMA hurricane damage descriptors, definitions and assigned damage index values.
Descriptor Definition Damage
Index

No explicit definition of damage; assumed similar to the

Flood Area Limited Damage category defined below.

10

Generally superficial damage to solid structures (e.g., loss
Limited Damage of tiles or roof shingles); some mobile homes and light 10
structures are damaged or displaced.

Solid structures sustain exterior damage (e.g., missing
Moderate Damage roofs or roof segments); some mobile homes and light 25
structures are destroyed, many are damaged or displaced.

Some solid structures are destroyed; most sustain exterior
and interior damage (e.g., roofs missing, interior walls

Extensive Damage exposed), most mobile homes and light structures are >0
destroyed.
Catastrophic Damage | Most solid and all light or mobile structures destroyed. 80

Multiple datasets exist that describe the locations of offshore oil and gas
infrastructure in the Gulf of Mexico. Data describing wells and oil and gas platforms
in federal waters (MMS, 1998) as well as state waters (GSA, 2008; LDNR, 2007;
MARIS, 2004) were obtained and merged into a single dataset of vector points. Itis
anticipated that marine debris will be more likely to be located proximal to oil and
gas infrastructure, but, similar to the onshore damage data, it is not known what
degree of proximity will be significant. Again, derivative grids were created at
different spatial scales to explore these relationships. These derivative grids
represent point densities in counts per square kilometer of oil and gas
infrastructure at each location within four different distances - 10 km, 5 km, 2.5 km
and 1 km - from that location. These densities serve as proxy variables for the
potential amount of debris derived from nearby oil and gas infrastructure. Figure 7
depicts the three density grids.

89°30'W 89°0'W 89°30'W 89°0'W 88730'W 88°0'W 87°30'W
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FIGURE 6. 100 m grid of 5 km focal sum of damage index derived from FEMA damage
polygons.
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FIGURE 7. 100 m grid of oil and gas infrastructure density evaluated at 5 km kernel size in
counts per square km.

Methodology

The goal of the model is to relate some measure of marine debris density or
likelihood after a storm event to spatially distributed predictor variables. Maps of
these predictor variables can be used in the future to estimate the locations of
debris concentration areas for survey prioritization. There are a number of
statistical methodologies that might be used to construct such a model. The logistic
regression variant of Generalized Linear Modeling (GLM) was selected because it is
arelatively simple, robust modeling strategy implementable in a number of
software packages that yields a relatively easily understandable output. Venables
and Ripley (2003) provide a review of modern logistic regression techniques. The
coupling of logistic regression models with spatially distributed predictors derived
from data sets stored in Geographical Information System (GIS) is widespread
across a number of disciplines, including ecology and hazard modeling.

The model development was based upon the known locations of 5,137 items
identified via side scan sonar as potential debris items, as in Figure 8. Of these,
roughly 10 percent were located in the eastern portion of the study area and were
thought to have been possibly generated by Hurricane Ivan in 2004. These items
were removed from the data set, leaving 4,549 debris locations. Logistic regression
models the binary probability of a given event - in this case, the probability of an
identified item occurring at a given location. The modeling procedure requires a set
of locations where items did not occur. These locations are termed pseudo-
absences. Accordingly, a set of 4,549 random locations were generated. The model
seeks to find differences in the average values of the predictor variables between
the actual debris item locations and the average values of the entirety of the
surveyed area - as represented by the pseudo-absence locations. Note that, while
there are almost identical numbers of actual and random locations, the actual
locations appear strongly clustered in certain locations, while the random locations
are evenly distributed across the study area.
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All statistical modeling was conducted using the open-source statistical computing
language R (R Development Core Team, 2007). The predictor variable grids were
sampled at each actual and randomly generated location. These data were imported
from the ArcGIS environment to the R environment for exploratory analysis and
statistical modeling. After construction of the final model in the R environment, the
model was implemented as a raster algebra equation in the ArcGIS environment to
yield a final prediction grid. The following sections describe the results of the
exploratory analysis and the details of model construction and results.
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FIGURE 8. Identified items (A) and randomly generated pseudo-locations (B). The project
study area boundaries outlined. Debris locations inside the Hurricane Ivan impact
area in orange. Note the clustered nature of the actual locations versus the even
distribution of random locations.

Exploratory Data Analysis

Model construction began with exploratory analysis of the relationships between
the investigated predictor variables. Table 3 contains summary statistics for the
predictor variables at all sampled locations - both debris and pseudo-absence.
Figure 9 contains pairs plots for all the predictor variables below the diagonal, and
absolute correlation coefficients in the upper diagonal. Note the strong correlations
between maximum wind speed and maximum storm surge, as well as between the
damage indices and infrastructure density metrics.

All potential predictor variables were evaluated for ability to predict the
distribution of marine debris in several ways. Figure 10 shows histograms of

9



predictor variable values at all locations by presence/absence of an identified
marine debris object. Univariate logistic regression models were constructed for
each continuous variable. Parameter significance results via X? tests are reported in
Table 4. We note that all the variables are significantly related to the presence of
debris. While the strength of these relationships is statistically robust, in some
cases this is an artifact of the very large sample size. Often, the effects sizes are not
very large, implying that there is strong evidence for a relationship, but that
relationship itself is weak.

TABLE 3. Summary statistics and codes for predictor variables

Variable Code Min 1stQ Med Avg 3rd Q Max.
Max. Wind Speed (m/s) | WSMAX M | 225 | 344 | 420 40.8 46.9 50.4
Max. Storm Surge (m) SURGE_M 1.1 3.0 5.0 4.3 5.4 6.3
Elevation (m) BATHY_M -17.6 | -3.6 -2.7 -3.8 -2.1 3.0
Dist. to Land (m) DLAND_M 0 1000 | 2341 2842 4272 10782
Dist. To Waterway (m) | DWWAY M |0 781 2138 2842 4327 14227
Damage Index (10 km) | DAM10 0 50 11410 | 55136 | 100975 | 282145
Damage Index (5 km) DAM25 0 0 100 18514 | 21715 112210
Damage Index (2.5 km) | DAM50 0 0 0 4385 2651 47920
Damage Index (1 km) DAM100 0 0 0 417 0 11520
Infr. Dens. (10 km) DEN10 0.0 0.0 0.0 0.2 0.1 4.9
Infr. Dens. (5 km) DEN25 0.0 0.0 0.0 0.1 0.1 4.2
Infr. Dens. (2.5 km) DEN50 0.0 0.0 0.0 0.2 0.1 8.8
Infr. Dens.(1 km) DEN100 0.0 0.0 0.0 0.2 0.0 16.0

Note that debris items tend to be located closer to land and waterways in areas with

higher wind speeds and storm surges, and in areas with higher damage indices.
These results are consistent with intuition. We also note that storm surge

exceedance and wind speed seem to have different coefficient signs, and that all the

infrastructure density variables have negative coefficients

regressions of binary debris item presence versus candidate model variables.

TABLE 4. Univariate model coefficient estimates and parameter p-values for logistic
Code Coefficient Parameter
p-value
WSPMAX_MS -0.03774 <0.0001
SURGE_M 0.5596 <0.0001
BATHY_M 0.3202 <0.0001
DLAND_M -0.0004684 <0.0001
DWWAY_M -0.0002258 <0.0001
DAM10 0.001428 <0.0001
DAM25 0.0001556 <0.0001
DAMS50 0.00003891 <0.0001
DAM100 0.00001257 <0.0001
DEN10 -0.10679 <0.0001
DEN25 -0.54238 <0.0001
DEN50 -1.1999 <0.0001
DEN100 -2.0856 <0.0001

10
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Model Construction

The strong correlations between some of the candidate predictors were noted
above. Strong correlations between predictor variables can be problematic with
some modeling strategies. In this application, there is no need to be overly
concerned with this multicollinearity, because pure prediction is the goal. However,
care should be used in evaluating the sign and significance of individual model
coefficients. An initial multivariate logistic regression model was constructed with
the glm procedure in R. The multivariate model was then constructed via stepwise
forward variable selection as implemented via the stepAIC function in R (Venables
and Ripley, 2003)

Bayesian Model Averaging (BMA) was also evaluated as a candidate for final model
construction. BMA accounts for the uncertainty inherent in the model selection
process by averaging over many different competing models, rather than attempting
to select the unique group of variables that make the best model. BMA incorporates
model uncertainty into conclusions about parameters and prediction and avoids the
potentially statistically hazardous process of selection from a set of multiple
variables. Hoeting et al. (1996, 2002) and Raferty et al. (1997) provide a review of
BMA and its implementation in the R environment. The BMA derived multivariate
model was derived via model averaging as implemented by the bic.glm function in R.

The performance of the classifier model against can be evaluated by examining the
Receiver Operator Characteristic (ROC) curve. The estimated probability of a debris
item occurring at each location - both the item locations and the random locations -
is calculated using the model coefficients. The ROC curve then plots the false
positive rate versus the true positive rate. The area under this curve (AUC) ranges
from O to 1 and indicates the overall performance of the model. Model ROC curves
(Figure 11) and performance statistics were calculated in R using the ROCR package
(Sing et al,, 2005).

Initial trials indicated that the inclusion of the infrastructure density variables in the
model yields surprisingly unstable results—particularly when extrapolating to
prediction areas in southern Louisiana where infrastructure densities are many
orders of magnitude higher than the coasts of Alabama and Mississippi. A version of
the model using the same stepwise procedure but with no infrastructure variables
was also evaluated. Table 5 lists model coefficients and AUC statistics for the BMA
derived, stepwise logistic and stepwise logistic with no infrastructure density
variables regression models.

With the exception of maximum wind speed, the same predictor variables were
retained in each model. Specifically, wind speed is assigned a negative coefficient
indicating higher wind speeds are associated with lesser debris probabilities. This
is somewhat counterintuitive. Distance to waterway was retained by the stepwise
procedure operating on the full model, but was dropped by the stepwise procedure
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when the infrastructure variables were removed. It was also not included in any of

the BMA model ensembles.

TABLE 5. Model coefficients and ROC area under the curve AUC statistics for stepwise,
stepwise without infrastructure variables, and BMA derived logistic models.
Coefficient Stepwise Model Stepv;rlllsf.e‘x ::;l (Lo BMA Model
Intercept 3.317925209 2.857604815 3.4354686055
Max. Wind Speed (m/s) -0.122662103 -0.098712904 -0.1383307294
Max. Storm Surge (m) 0.380548628 0.273156107 0.4805729010
Dist. to Land (m) -0.000113435 -0.000119084 -0.0001046976

Dist. to Waterway (m)

-0.000020349

Elevation (m) 0.072490502 0.078413039 0.0726930590
Damage Index (1 km) 0.000295082 0.000310402 0.0003309315
Damage Index (2.5 km) 0.000295082 0.000041568 0.0000260500
Damage Index (5 km) 0.000011030 0.000012413 0.0000191179
Damage Index (10 km) 0.000002470 0.000001969 0.0000004563
Infrastructure Density (1 km) 0.619554410 NA 0.5790855283
Infrastructure Density (2.5 -1.165087074 NA -0.9312981047
Infrastructure Density (5 km) 1.317550611 NA 0.8113536116
Infrastructure Density (10 -0.457476689 NA -
ROC Area Under the Curve 0.82 0.81 0.82
N SN S
0‘.0 012 0‘.4 O‘.6 018 l‘.O i O‘.O 0‘.2 0‘.4 016 0‘.8 110 i 010 O‘.2 O‘A O‘.6 O‘.S l‘.O
False positive rate False positive rate False positive rate
A. B. C.

FIGURE 11. Receiver operator characteristic (ROC) curves for stepwise (A), stepwise with no

infrastructure variables, and BMA derived (B) logistic models.

The performance of all three models is good and essentially identical as evaluated
via the AUC statistic and ROC curves. The benefits of the BMA method are largely
lost in this particular application, as there seems to be small uncertainty about
model selection. Also, the inclusion of the variables yields essentially no improved
predictive power as measured by AUC (Table 5). As such, the stepwise model
without infrastructure density variables was selected as the final model.
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Results

The final model can be expressed as an equation that calculates the logit of the
debris item encounter probability as a linear function of the predictor variables.
Table 6 lists estimated coefficients and standard errors of those coefficients for the
final model. Figure 12 displays the final model as implemented in ArcGIS via map
algebra. The coefficients were used to calculate the logit, which was then converted
into a probability ranging from 0 to 1 for each grid cell. In general, notice that,
unsurprisingly, the highest predicted probabilities correspond with areas from
Figure 7 with large amounts of debris, and also with areas that sustained high storm
energies and resultant damage. Thus, the model corresponds well with the intuitive
and actual knowledge of marine debris distributions in the Gulf of Mexico following
the passage of Hurricane Katrina.

TABLE 6. Final model estimated coefficient values and standard errors.
Coefficient Coefficient Std. Error
Intercept 2.857604815 0.220188877
Dist. to Land (m) -0.000119084 0.000015887
Max. Wind Speed (m/s) -0.098712904 0.006942386
Max. Storm Surge (m) 0.273156107 0.042173799
Elevation (m) 0.078413039 0.016030242
Damage Index (1 km) 0.000310401 0.000055248
Damage Index (2.5 km) 0.000041568 0.000041568
Damage Index (5 km) 0.000012413 0.000003820
Damage Index (10 km) 0.000001969 0.000000945

It is in this map form that model output following a future storm event will be most
useful. This grid of continuous marine debris item encounter probabilities could be
sliced at some arbitrary value to derive hotspot areas of an arbitrary size.
Alternatively, if only a fixed amount of survey effort was available after an event,
such data could be used to ensure that the highest probability areas were included
in available survey effort - maximizing survey efficiency.
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Final model prediction map. Reds indicate areas of higher predicted likelihood of marine debris concentrations.
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Uncertainty

Sources of uncertainty in this modeling process are manifold. The initial data
collection of each predictor data set involves unique assumptions and uncertainty,
both spatial and measurement. Additionally, the way these data are spatially
referenced - vector points, grids of various resolutions, etc. - was modified as
described, resulting in statistical change-of-support issues. Finally, many of the
predictors used here are indices (densities or focal sums) based upon other
datasets, and were derived based upon logical but unexamined assumptions. All of
these issues should be kept in mind when evaluating this model or constructing a
similar one. The procedure of logistic regression, however, yields as its result a
probability as well as confidence intervals around that probability, rather than a
discrete outcome. As such, the model inherently accounts for a large portion of the
uncertainty of the relationships used to construct it.

Finally, note that the model output for physical settings very different from the
areas where data was collected, in particular inland water bodies such as lakes and
reservoirs, is likely to be extreme and not reflective of reality. Model output should
only be used in areas similar to those in which these data were collected -
nearshore marine and estuarine zones.

Model Validation

Initially, the data from the southern portion of the study area in Plaquemines parish
which were collected somewhat later in the process were held aside to conduct an
external model validation with independent data. However, there were few debris
points in this area, and the area was both remote and homogenous with respect to
predictor data. As such, this external validation was less than useful.

Instead, we conducted an internal validation—specifically, a 10-fold cross validation
of model accuracy. In this procedure, the data were divided into 10 parts. The
stepwise model procedure was carried out 10 times, each time using 9/10%s of the
data. The model, derived in each iteration, is tested using the 1/10t of the data held
out. Summary statistics are then generated. The 10-fold cross-validated ROC AUC is
depicted in Figure 13. The average AUC of these cross-validated runs is 0.81
(95%CI: 0.80, 0.82). This tight grouping indicates that the model is well-calibrated
and not overfit. Nonetheless, validation with data from another storm event would
be preferable.

17



Average true positive rate

00 02 04 06 08 10

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate
FIGURE 13. Vertical average of 10-fold cross-validated ROC curves with box plots for final
logistic model.

Generalization

It is the goal of this effort, as stated above, to construct a model that will be useful in
future applications. The key to this process is the ability of the model to generalize
well to future unknown storm events. Obviously, the data that were used to
construct this model represent a distribution of marine debris from one particular
storm in one particular region: Hurricane Katrina in the northern Gulf of Mexico. As
such, the model summarizes trends and correlations particular to this event.

The only way to either test or improve the generalization of the model is with
quantitative data from other storm events in other locations. No information could
be found for other actual quantitative data describing marine debris distributions
post-storm that could be used to directly test the ability of this model to generalize
at the current time. However, it is believed that the general trends captured by the
model - debris tends to be located close to debris sources and in areas of high
storm energy - are intuitive and will hold true in other circumstances. Appendix A
contains model output products for Hurricane Ivan in 2004 and Hurricane Ike in
2008. Efforts are currently underway to collect marine debris data in the western
portion of Louisiana’s coast in the impact area of Hurricane Rita. These data may
provide valuable insights into how well this model performs for other storm events,
as well as the raw materials with which to improve its performance.
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Appendix A - Additional Model Results

The model described above was used to generate marine debris predictions for
coastal areas impacted by the following additional storms:

e Hurricane Ivan on September 16, 2004
e Hurricane Ike on September 13, 2008

The following maps depict the model output for those storms. Model output is also
available as a raster layer for use with GIS software in ESRI® GRID format. Contact
the NOAA Marine Debris Program at www.MarineDebris.noaa.gov or 301.713.2989
for data or information requests.
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