N\ F

UNT Robocamp

SumoBot
Instruction
\YEY N

\)

Table of Contents

Chapter 1 — SUMOBOL Parts.......cciiiiiiiiiieiiiiiiiiiniieneienienneieseenessesnesnessessenssssessenssssssssnssssssens 1
Chapter 2 — SUMOBOt ASSEMDBIY....cccuuiiiiiieiiiiiiicrrrrcn et rrenee e s sesnessessensssssssensssessens 8
lL oo E 2 U=To LU T = o F RS 8
StEP DY StEP INSEIUCTIONS ... e e et e e e e e e e reree e e e e e e eeanes 8
Chapter 3 — Intro to Coding the SUMOBOLcccccceiiieeieriteenieereeeenieeteeneneeeeennsceeeenssessennsseseeens 13
COMMON COAING TEIMSuviiiiiiee e e ettt e e e e e e ectrrr e e e e e e seearareeeeeesesastaaseeeeeeseanstaeeaeeassennnsesnnnes 13
PUNCIURTION 1S KBY coiiiiiiiiic e 14
REMEMbBEr the STAMIPS .. et e e e e e e e et re e e e e e e e nraeeeeas 14
o Y0 o1 J P UPPPPRPNE 14
Chapter 4 — SUMOBOt LOCOMOTIONiieeeniiiriennnieeieennierteenneeeeerenseesennssesssnsssessessssessssnsssessenns 15
SEBIVOS wevvvvtvrirrertrerrerrrereeeree ettt tetetetetetettteteteteteteteteeteteeeteteteteteeteeteeeeetteeeeeteteteteeessrereseseessrerererernnes 15
WHheel AlIZNMENT PrOZIamuuveeiiiieiiciiiieeiee e eecctitee e e e e eeseibrreeeeeeesesesabsrereeesessessssraneeeeesssnnnnes 15
1Y/ o} o] I =TSy o oY ={] o [P RPPPNt 16
Chapter 5 — Line Sensors and Border Detectionc.cceiveeeeeeiieeeenccriennnecernennneeseennsseeseennsesseens 17
LT INY =T o o] g =T PP PPPPPPPRt 17
Chapter 6 — Infrared Headlights and Object Detection..........cccceeeciiiereicirieeccirreneceeneennneeneens 19
[N T a=Te I =T A o = - | o SRR 20
Chapter 7 — LEDS and SPeakers.......cccccciiieeeiiiiiimeiiiiiinniieiienniieiieneienienmsissssnsssesssnssssssssnssssssens 24
LE DS aettiee e ettee ettt e e e e e —— e e e e e ———e e e e ———eeeat—teeeaa——eaeeataaeeeaartreeeeabaeeeeanaenrareeennrees 24
Ta T =1 11T T =4 T o T X 1 SR 24
Y o L=E (] R 25
INSTAIlING @ SPEAKET ... ettt e e e e e e e e e e s bbb b e e e e e e s e eararaneeeas 25
Chapter 8 — ComPetition COde.....ccccriiirieeniiiieeenieeieenneerteenseereennseessennsseessenssscssssnssessssnnsssseeens 26
(6 T o LT Il 101 o Lo 3 AV o SO OIS 32
D= YV o ¥ - U 32
SONES ettt ettt ettt ettt ettt ettt e et tet et et et et et et et e e e e e e e et et et e e e e et et aaaaaaaaaaaaaaaeaeaeaaaaaaaaaaaaan srnrnrnranene 33
Chapter 10 — Additional EXErCiS@S......ccuuuuuiiiiiiiiirennnniiiiiiiniimenmssiiiiiiiiimemmsssimmsssssssn 35
[T Tl o] | Uo L Y UUUPR Nt 35
(0] oY =Tot A==] SR 37

© 2015 University of North Texas | Computer Science & Engineering

Chapter 1

SumoBot Parts

Here is an overview of all the parts included in each SumoBot kit. Please take a moment to
make sure you have all the right parts to build your SumoBot. You can also refer to this
chapter when you are not sure which part the assembly instructions are talking about.

a) Sumo circuit board

b) (2) Servos

© Vo

PARALLAX PARALLAX
antuas oo

www.parallax

1

© 2015 University of North Texas | Computer Science & Engineering

c) (2) Servo extension cables

d) (2) QTI circuit boards

e) (2) Wheels

2

© 2015 University of North Texas | Computer Science & Engineering

f) (2) Rubber bands

g) Battery holder

3

© 2015 University of North Texas | Computer Science & Engineering

i) Sumo front scoop

j) (12) 3/8” 4/40 pan head machine screws

-

UL ELRLRE
R ALY

L CCLELE L

-
=
2
-

"HHIH ki
"Mm“

4

© 2015 University of North Texas | Computer Science & Engineering

m) (2) 1” 4/40 pan head machine screws

n) (4) 1/4” 4/40 pan head machine screws

0) (2) Nylon washers

9 ¢

p) (2) 1.25” 4/40 standoffs

5

© 2015 University of North Texas | Computer Science & Engineering

q) (4) 1/4" round 5/8” 4/40 standoffs

r) (2) Infrared LEDs with shield covers

A

s) (2) Infrared receivers

t) 470 ohm resistor

—_——

6

© 2015 University of North Texas | Computer Science & Engineering

u) Red LED

v) (2) Jumper wires

w) Speaker attachment

7

© 2015 University of North Texas | Computer Science & Engineering

Chapter 2

SumoBot Assembly

First things first, let’s build your SumoBot. Remember that robotics, even on a small scale,
is a serious endeavor and shouldn’t be taken lightly. Patience is a virtue. Take the time to
follow the construction steps carefully and you’ll have your SumoBot running in no time.

Tools Required

All you will need for your robot is a screwdriver that a counselor will give you with your
robot parts. All the parts needed for each step are listed below.

Step #1 — Install the Battery Box

Battery box

(2) 4/40 3/8” flat-head countersunk machine screws
(2) 4/40 nuts

SumoBot frame

Step #2 — Install the Servo Motors
(2) Parallax servos

(8) 4/40 3/8” pan-head machine screws
(8) 4/40 nuts

SumoBot frame

8

© 2015 University of North Texas | Computer Science & Engineering

Step #3 — Intall the Rear SumoBot PCB

Standoffs

e (2)5/8” round standoffs
e (2)4/403/8” pan-head machine screws
e SumoBot frame

Step #4 — Install the Front SumoBot PCB

Standoffs
e (2)5/8” round standoffs

e (2)4/401” pan-head screws
e SumoBot PCB

Step #5 — Mount the PCB

SumoBot PCB

(2) 4/40 3/8” pan-head machine screws
(2) 1-1/4” round stand-offs

(2) Nylon washers

SumoBot frame

9

© 2015 University of North Texas | Computer Science & Engineering

Step #6 — Prepare the Wheels

e (2) SumoBot wheels
e (2) SumoBot rubber tires

NOTE: Ifyou can’t get the rubber bands on the tires, feel free to ask a
camp counselor.

Step #7 — Mount the Wheels
e (2) Prepared wheels
e (2) Black servo-horn screws
e SumoBot frame

Step #8 — Mount the Scoop
SumoBot scoop

(2) 4/40 1/4” pan-head machine screws
(2) 4/40 nuts

SumoBot frame

10

© 2015 University of North Texas | Computer Science & Engineering

Step #9 — Install Line Sensor Wires

e (2) 10” 3-pin extension cables
e SumoBot frame

Step #10 — Install the QTI Line Sensors
e (2) QTIline sensors

e (2)4/401/4” pan-head machine screws

e SumoBot frame

NOTE: When you connect the wires, make sure the pins are oriented so
that the Black wire goes into the pin labeled “B”. If not done right, your
line sensors will not work correctly.

Step #11 — Make the Connections

Plug into the servo motors and QTI sensors into the SumoBot PCB
connectors as indicated below:

X7 = Left Servo Motor

X6= Right Servo Motor

X5 - Left QTI Line Sensor
X4 = Right QTI Line Sensor

Connect the battery pack wires to the SumoBot PCB connector X1.

The battery pack’s white-striped lead connects to the + terminal

NOTE: When plugging in your wires, make sure that you plug in the black
wire to the pin that has a “B” above it; your robot won’t work right if you
don’t do this correctly.

11

© 2015 University of North Texas | Computer Science & Engineering

ooooooooooooo
u]

|

Step #12 — Power the SumoBot

The SumoBot PCB has a three-position power switch.
The state of each position is shown below. The three-
position switch has a middle position that powers the
entire circuit except the servos.

Position 0 - No Power
Position 1 - Power PCB
Position 2 - Power PCB and Servos

12

© 2015 University of North Texas | Computer Science & Engineering

Chapter 3

Intro to Coding the SumoBot

When you get to writing a program for your SumoBot, you will find that things are a lot
easier if you follow the proper rules and syntax to make your program run. This section
will go over some simple rules and terms on programming your SumoBot correctly.

Common Coding Terms

DEBUG - DEBUG is a method of writing output to the debug console in the BASIC Stamp
Editor. It can output variables to show their values, or text inside sets of quotation marks
“like this”. You will see plenty of examples of how to use this command in the following
programs.

Definitions - These are usually put at the beginning of your program to define names to
parts of your SumoBot, or variables to perform other talks in your program, such as
counting. If one of these is forgotten or mistyped, the program will create an error. In the
chapters ahead, you will see the definitions split up into three sections for easy recognition:
/0 Definitions, Constants, and Variables. I/0 Definitions define a PIN number location of
a part of your SumoBot to a name. Constants are assigned numbers that can be used
instead of writing a number out in the program. It may seem like a waste of time, but it
makes your code easier to read when you are trying to debug something. Variables are like
constants but their number can be changed in the program dynamically, such as a counter.

END - You always need this at the end of your programs, but before the subroutines. The
function of this is quite obvious, END tells the program when it is done.

Equals (=) - Equal signs can be used in two very different ways: as an assignment or as a
conditional check. An equal sign is used as a conditional check only when it is used inside
of an if/then block statement. You can check if a variable is equal to a constant value or
another variable (ex: if(bob = 16) then... or if(bob = driving_age) then...). When the equal
sign is used not used in an if/then block, it is used as an assignment. This means that you
are storing a value into a variable (ex: life = 42).

GOTO - GOTO jumps to a part of the code defined by a name followed by a colon (like_so:).
These are often used for subroutines.

PAUSE - PAUSE is a command to stop your program for an specific amount of time
assigned in milliseconds. For example, PAUSE 1000 would pause for one second.

PULSOUT - PULSOUT is a command to run the servo motors. This command is followed by
a pin number, then a pulse amount for it to use. These amounts will be further elaborated

in the following chapters.

Stamp Definition - These two lines at the top of every program indicate which coding
terms and the program will use. These definitions go at the beginning of your program

13

© 2015 University of North Texas | Computer Science & Engineering

before anything else. Without these, your code won’t be able to get interpreted by the
Stamp editor.

Punctuation is Key

When programming in any programming language, it is very important to write your code
exactly as it is shown, comments not included, or else you will get errors and your program
will not run. So when you write your code, pay attention to every capitalization, every
space, every comma, don’t leave anything out that isn’t a comment. Please see the following
examples:

‘LMotor PIN 13’ is not the same as ‘Imotor pin 13’

‘Reset: ‘is not the same as ‘Reset; *

Remember the Stamps

If you do not have these two statements at the beginning of your program, your code will
not run:

‘{$STAMP BS2}

“{$PBASIC 2.5}

If you have any questions or issues with your programs, feel free to ask one of the
counselors for help.

Loops
DO Loops constantly repeat whatever is inside the loop without stopping; however, you
could stop these by making a condition to jump into another part of your code. DO Loops
begin by writing DO, and end by writing LOOP.
Example:
DO
DEBUG ““Stop hitting yourself!”, CLREOL
PAUSE 1000
LOOP

FOR Loops are like DO Loops, except that they repeat the inside of their loops according to
a set amount of times that you assign to an integer range. FOR Loops begin by starting with
FOR, and ending the loop with NEXT.
Example:
DEBUG “l1 can count this high!”, CLREOL
FOR count = 1 TO 25
DEBUG VAR count, CLREOL
PAUSE 1000
NEXT

14

© 2015 University of North Texas | Computer Science & Engineering

Chapter 4

SumoBot Locomotion

The first thing we want our SumoBots to do is to move. We will be using two Parallax
Continuous Rotation servo motors.

Servos
When both motors are moving in the same direction, the SumoBot will move in that
direction. When the SumoBot servo motors turn in different directions, the SumoBot will
rotate. The rate of movement is determined by each motor’s speed. The BASIC Stamp 2’s
PULSOUT command sends a pulse to the servo motor instructing it to move. The length of
the pulse sent determines which direction and how fast the motor moves. We will be using
three different PULSOUT numbers for all of our motor speeds:

e 650 makes the assigned servo go in reverse

e 750 puts the assigned servo in neutral

e 850 makes the assigned servo go forward
After sending the pulse, the servo expects a pause of about 20 milliseconds before the next
pulse is sent, hence the PAUSE 20 command you will see in the short wheel alignment
program below.

Wheel Alignment Program

To make sure your SumoBot moves correctly, we need to make sure the servo motors are
centered. Open up the BASIC Stamp Editor and write the following program that will be
used to align the SumoBot motors:

“ SumoBot 2.1 Motor_ Align.BS2
“ {$STAMP BS2}
“ {$PBASIC 2.5}

£ {1/0 Definitions}---—-————————————————
LMotor PIN 13 “ left servo motor
RMotor PIN 12 “ right servo motor
e {Constants}------——— - - - -
LStop CON 750 “ left motor stop
RStop CON 750 “ right motor stop
£ {Initialization}------—\ - ——— - ——— ——
Reset: “ initialize motor outputs
LOW LMotor
LOW RMotor
¢ {Program Code}------—---——-——— e
Main:
DO

PULSOUT LMotor, LStop “ stop left

15

© 2015 University of North Texas | Computer Science & Engineering

PULSOUT RMotor, RStop “ stop right
PAUSE 20
LOOP
END

Move the SumoBot power switch to position 1, and then
download the code using the Run command from the Run
menu, or by pressing the > button on the toolbar. As soon
as the program is downloaded, disconnect the SumoBot
from the computer and switch it into position 2. If either
motor turns, use your small screwdriver and adjust the
centering potentiometer (Figure 2.1) until the motor stops.

Don’t worry how the program works right now; that will
become clear in due time.

Figure 2.1

SumoBot Motion Test

With the motors aligned, we can now make a program to get your SumoBot moving and
show you how the servos work when properly aligned. Write the following program into
your BASIC Stamp Editor and download it to your SumoBot:

“ SumoBot_2.2 Motor_Test.BS2
“ {$STAMP BS2}
“ {$PBASIC 2.5}

£ {1/0 Definitions}---———————————————
LMotor PIN 13 “ left servo motor
RMotor PIN 12 “ right servo motor
- {Constants}------- -\ - — - — - -
LFwd CON 850 “ left motor fwd
LStop CON 750 “ left motor stop
LRev CON 650 “ left motor reverse
RFwd CON 650 “ right motor fwd
RStop CON 750 “ right motor stop
RRev CON 850 “ right motor reverse
£ e {variables}-------- - - - - - oo o -
pulses VAR Byte “ servo pulses counter
‘e {Initialization}-—-——— ===
Reset: “ initialize motor outputs
LOW LMotor
LOW RMotor
PAUSE 2000 “ pauses for 2 seconds
‘e {Program Code}-—-—-———————— o
Main:
FOR pulses = 1 TO 65 “ move fwd

16

© 2015 University of North Texas | Computer Science & Engineering

After the program is downloaded, remove the cable from the SumoBot and flip the switch
to position 2 on your SumoBot. This program will run the robot though all of the key
motions it can perform and then stops. Be sure to switch it to position 0 (off) when it is

17

© 2015 University of North Texas | Computer Science & Engineering

finished. If it doesn’t move at all, you may have set the power to position 1 or it didn’t have
the program uploaded onto it properly. If you are having trouble, flag down a counselor.

18

© 2015 University of North Texas | Computer Science & Engineering

Chapter 5

Line Sensors and Border Detection

Now that we have the SumoBot moving, the next task is to program the line sensors, called
QTIs, to scan the playing surface so that it doesn’t drive itself out of the ring. The QTI uses a
reflective infrared sensor to allow the SumoBot to scan for the ring’s border.

Line Sensor Test

We need to make a program to test our line sensors. This program shows output from the
SumoBot that will display the changes in the values for the infrared sensors. These values
will determine if the SumoBot is about to be out of the ring, and will attempt to fix this if it
happens in your competition program. Write and run this program to test and evaluate the
QTI sensors:

“ SumoBot_3.1 Line_Sensor_Test.BS2
“ {$STAMP BS2}
“ {$PBASIC 2.5}

- {1/0 Definitions}-----—————————————
LLinePwr PIN 10 “ left line sensor power
LLineln PIN 9 “ left line sensor input
RLinePwr PIN 7 “ right line sensor power
RLineln PIN 8 “ right line sensor input

e {variables}----------------»»-\ o . }f. oo o . ' \: (i (i i i i i i i i
ILine VAR Word “ left sensor raw reading
rLine VAR Word “ right sensor raw reading

€ - {Program Code}------—--—— -
Main:

DO

GOSUB Read_Left
GOSUB Read_Right

DEBUG HOME,
“Left “, TAB, “Right”, CR,

- “ TAB, “c——em “ CR.
DEC ILine, CLREOL, TAB, DEC rLine, CLREOL

PAUSE 100

LOOP

END
‘e {Subroutines}--------—— -
Read Left:

HIGH LLinePwr “ activate sensor

HIGH LLineln “ discharge QTI cap

PAUSE 1

RCTIME LLineln, 1, ILine “ read sensor value

19

© 2015 University of North Texas | Computer Science & Engineering

LOW LLinePwr “ deactivate sensor

RETURN

Read Right:
HIGH RLinePwr “ activate sensor
HIGH RLineln “ discharge QTI cap
PAUSE 1
RCTIME RLineln, 1, rLine “ read sensor value
LOW RLEnePwr “ deactivate sensor
RETURN

This program includes the first occurrence of a subroutine. Subroutines are easy ways to
repeat pieces of code many times without having to write it again each time. Subroutines
are written after the end of the code and start with the name of the subroutine followed by
a colon (:) and ended with a RETURN statement.

After uploading your code to your SumoBot, keep the cable in and run the code. You will
see an output window pop up. The window will display your “Left” and “Right” sensors
along with a value ranging between high and low numbers. These numbers are the
frequency ranges for the infrared sensors. Move the SumoBot between a white surface and
a black surface, the numbers for each sensor should move up and down respectfully. If they
don’t both function properly, make sure your cables for the sensors are in the correct pins.
If you are still having trouble, ask one of the counselors for help.

20

© 2015 University of North Texas | Computer Science & Engineering

Chapter 6

Infrared Headlights and Object Detection

The BASIC Stamp can use infrared LEDs and detectors to detect objects to the front and
side of your SumoBot. This is accomplished by the SumoBot shining an invisible path of
infrared light ahead of it and determining when the light reflects off an object. These will be
like your SumoBot’s headlights, letting it see and react accordingly to its surroundings.

Figure 4.1 shows the assembly for the IR LEDs into their protective shells. The shells are
important because they prevent stray IR light from falling directly onto the detector and
causing false input.

Figure 4.1: IR LED, Standoff, and Shield Assembly

= tel

IR LED will snap in.

—a—

After assembly, bend the wires downward at a 90 degree angle so that when looking at the
back side of the shield, the positive (longer) wire is on the right. Figure 4.2 shows the IR
detector; make sure the ball on the IR detector is pointing the same way as the IR LED or
else it will not gather the proper input.

Figure 4.2: IR Detector Trimming

21

© 2015 University of North Texas | Computer Science & Engineering

Your IR assembly should look something like this when done:

Infared Test Program

The purpose of this program is to use your IR assembly to detect and react to objects that
you put in front of it. Write this and download it into your SumoBot:

“ SumoBot_4.1 Infrared_Test Program.BS2
“ {$STAMP BS2}
“ {$PBASIC 2.5}

£ {1/0 Definitions}---———————————————
LFIrOut PIN 4 “ left IR LED output

LfIrin PIN 11 “ left IR sensor input
RtlrOut PIN 15 “ right IR LED output

Rtirin PIN 14 “ right IR sensor input
‘e {variables}------—-——-----n e b -
irBits VAR Nib “ storage for IR target data
irLeft VAR 1rBits.BIT1

irRight VAR irBits.BITO

FREQOUT LF¥IrOut, 1, 38500
irLeft = ~LfiIrin

22

© 2015 University of North Texas | Computer Science & Engineering

Keep the cable in your robot and place your hand in front of each sensor to check if the
numbers change. If either of them is not reacting, check your IR assembly to make sure the
LED is correctly installed. If you need any further help, ask a counselor for assistance. Now
that we have made sure all the parts of your SumoBot are working properly, we can finally
get your robot competing against other robots!

23

© 2015 University of North Texas | Computer Science & Engineering

Chapter 7

LEDs and Speakers

There are two accessories you can add to your SumoBot light emitting diodes, LEDs, and
speakers. LEDs are mostly just for fun, but you can play notes with a speaker.

LEDs

LEDs can be added onto your SumoBot for a little extra zazz. They really don’t have too
much application but to look pretty, but you can add them as a visual countdown to starting
your robot, or to flash when they react to something. Installation is pretty easy, here is
how:

Installing an LED
e LED

e 470 ohm resistor
e Jumper wire

After you install the LED, you can test it by adding the LED’s pin number location (PO in this
case, according to the picture) to your code and writing an on/off command for it. Here is
the definition you will need to add, and a small example for a

five second delay counter.

- {1/0 Definitions}-----—————————————
LED PIN O
¢ - {variables}--——-——--——

pulses VAR Byte
Main:

Start_Delay:
FOR pulses = 1 TO 5
HIGH LED
PAUSE 500
LOW LED
PAUSE 500
NEXT
END

Some of the programs we will do later use a second LED. Try to install a second one by
yourself. Use the example above to connect up the first LED on the left and a second one on
the right. Connect the second LED to pin P2.

24

© 2015 University of North Texas | Computer Science & Engineering

Speakers

The speaker outputs an assigned frequency for a set amount of time. Unfortunately, you
can’t make two speakers play at the same time. However, you can make simple songs or
warning noises for your SumoBot.

Installing a Speaker
e Speaker
e (2) Jumper wires

After you install the speaker, you can test it by adding the speaker’s pin number location
(P1 in this case, according to the picture) to your code and writing a FREQOUT command
for it. The format for a FREQOUT command is as follows:

‘e {1/0 Definitions}--—-—-—————— -~
Speaker PIN 1

“ FREQOUT (definition name), (length in millisecs), (Frequency)

FREQOUT Speaker, 500, 344

25

© 2015 University of North Texas | Computer Science & Engineering

Chapter 8

Competition Code

It's time to get your robot ready to rumble! The program in this chapter brings all the parts
together, and adds some intelligence for fighting against your opponents. This program is
technically correct, but the behavior of your robot will be slightly “off”. There are some
logic problems that give your robot a low IQ, but everyone else’s robots will have the same

program.

HINT: Once you are done typing, look through the code and find where to change the
robot’s behavior. Think of what you would do as a sumo wrestler in certain situations and
change the code accordingly to make a more appropriate behavior. This will dramatically
boost your robot’s IQ - after all, you are much smarter than it.

Sorry, but there’s plenty of typing ahead.

" SumoBot_5.1 Competition_Code 1.0.BS2

" {$STAMP BS2}

* {$PBASIC 2.5}

e {1/0 Definitions}
LMotor PIN 13
RMotor PIN 12
LLinePwr PIN 10
LLineln PIN 9
RLinePwr PIN 7
RLineln PIN 8
LfIrOut PIN 4
LfIrin PIN 11
RtlrOut PIN 15
Rtirin PIN 14
StartLED PIN O
SpeakerPin PIN 1
e {Constants}
SlowCon CON 30
FastCon CON 250
StopCon CON 750
LFwdFast CON StopCon
LFwdSlow CON StopCon
LStop CON StopCon
LRevSlow CON StopCon
LRevFast CON StopCon
RFwdFast CON StopCon
RFwdSlow CON StopCon
RStop CON StopCon
RRevSlow CON StopCon
RRevFast CON StopCon

FastCon
SlowCon

SlowCon
FastCon
FastCon
SlowCon

SlowCon
FastCon

26

© 2015 University of North Texas | Computer Science & Engineering

27

© 2015 University of North Texas | Computer Science & Engineering

28

© 2015 University of North Texas | Computer Science & Engineering

29

© 2015 University of North Texas | Computer Science & Engineering

There you have it, after you upload your code onto your SumoBot; your robot will be ready
to fight in the ring! Just no cheating of any kind, and try not to kick them around or drop
them - keep those battle rings on the floor! You have learned everything necessary to fight;

30

© 2015 University of North Texas | Computer Science & Engineering

however, there are additional activities in the next few chapters, such as adding lights onto
your bot, if you are interested in making your robot cooler.

31

© 2015 University of North Texas | Computer Science & Engineering

Chapter 9

Robo Art

There are plenty of artistic things you can do with your SumoBot. If you want to win one of
our fabulous prizes though, you may want to think outside of the box and be a little bit
more creative. Instead of drawing some simple spirals, try spelling a word. Or if you want
to draw something a bit more complex, try drawing a character or maybe some kind of
scene, like the kind you used to draw in kindergarten to get hung up on the refrigerator
door. Unfortunately for the songs, you cannot play more than one note at a time, but maybe
you can combine both a song and drawing? Or if we have the resources, you could use two
SumoBots and do a song in harmony! The only limit is you.

Drawing

There are plenty of artistic things you can do with your SumoBot. Remember though, if you
want to win, be creative. Drawing with your SumoBot is very simple; tape a marker to a
side of the bot so that the tip is touching the ground. Make sure that the marker isn’t
pressing too hard on the ground, because this can make your SumoBot’s movements slower
or impaired. When you want to program what your bot will draw, consider making
subroutines for each kind of movement you would need so that you can easily map out the
pattern your SumoBot will draw. Subroutines could be things like make a circle, rotate left
180 degrees, move forward one second, or hold position for 5 seconds. Refer to the
competition code in Chapter 5 for subroutine examples. Here’s a simple Spirograph
example to try out:

“ SumoBot_7.1 Drawing.BS2
“ {$STAMP BS2}
“ {$PBASIC 2.5}

£ {1/0 Definitions}---———————————————
LMotor PIN 13 “ left servo motor
RMotor PIN 12 “ right servo motor
£ {Constants}------- - - -\ - — - — - -
LFwd CON 850 ¢ left motor fwd
LStop CON 750 “ left motor stop
LRev CON 650 “ left motor reverse
RFwd CON 650 “ right motor fwd
RStop CON 750 “ right motor stop
RRev CON 850 “ right motor reverse
- {vartables}------------- ---- - £ ... i . i i i
pulses VAR Byte “ servo pulses counter
- {Initialization}---------- - - - - - - -\ -\ - -\ - -\ = -
Reset: “ initialize motor outputs

LOW LMotor

LOW RMotor

32

© 2015 University of North Texas | Computer Science & Engineering

Songs

Songs are quite amusing to program on SumoBots. To do this, you will need to install a
speaker, as explained in Chapter 6. These programs can be quite tedious, but very fun. It is
very easy to think up a song to imitate, but programming it can be a little bit more difficult.
You will have to use the FREQOUT command, again, described in Chapter 6, to program
every single note. Remember that the speakers can only play one note at a time, so
harmony is very hard to do. Songs take a lot of patience but are very rewarding. You could
consider writing subroutines for repeating parts of songs to slim the contents of your
program down a bit. Here is an example of a two note song:

33

© 2015 University of North Texas | Computer Science & Engineering

DO

FREQOUT Speaker, 2000, 1047 “‘Play C in the 6 octave
PAUSE 20

FREQOUT Speaker, 500, 3520 “‘Play A in the 7™ octave
PAUSE 1000

LOOP
END

Note Frequency Note Frequency
Cs 1047 C, 2093

C*s/DP 1109 c*, /D", 2217
Ds 1175 D, 2349

D*¢/E 1245 D" IE®, 2489
Es 1319 E, 2637
Fe 1397 Fs 2794

F#s/G 1480 FIG, 2960
Gs 1568 G, 3136

G*s/ Al 1661 G*IAY 3322
Aq 1760 A, 3520

A#IB% 1865 A% B, 3729
B 1976 B, 3951

The tables above are a conversion chart that shows the frequency that corresponds to a
note in a particular octave. The higher the frequency, the higher pitch the note will be. For
more note conversions or more on the science and math of how we got these numbers, visit
the following website:

http://www.phy.mtu.edu/~suits/notefregs.html

34

© 2015 University of North Texas | Computer Science & Engineering

Chapter 10

Additional Exercises

Here are some additional exercises to try out if you have extra time on your hands. The The
Line Follow exercise helps you understand how to program the line sensors and the Object
Seeker exercise can help you with some more advanced strategies for the SumoBot
Competition.

Line Follow

Now that you have a little programming experience under your belt, this program has some
subroutine calls left out. Itis up to you to decide how your robot should move to properly
follow a line. This exercise is for using the QTI sensors on the bottom of your SumoBot to
detect the colors of the SumoBot ring and move within its borders. Subroutines that move
your robot are already defined, you just need to call them properly to get your robot to
follow that line.

“ SumoBot_Line Follow.BS2
" {$STAMP BS2}
" {$PBASIC 2.5}

LMotor PIN 13
RMotor PIN 12
LLinePwr PIN 1
LLineln PIN 9
RLinePwr PIN 7
RLineln PIN 8

0

ILine VAR Word
rLine VAR Word
lineBits VAR Nib
IbLeft VAR lineBits.BIT1
IbRight VAR lineBits.BITO

LFwdFast CON 1000
LStop CON 750
LRevFast CON 500
RFwdFast CON 500
RStop CON 750
RRevFast CON 1000

counter VAR Byte
Reset:
LOW LMotor
LOW RMotor
Main:
35

© 2015 University of North Texas | Computer Science & Engineering

36

© 2015 University of North Texas | Computer Science & Engineering

Object Seeker

This program will use the infrared LEDs on the front of the robot to detect things ahead of
it and try to ram into them. If it detects an object to the left, it will move left. To the right, it
will move right. It will be on a never-ending search till the end of time, or until you turn it
off. This program is similar to that of the line following exercise. | have removed the
subroutine calls to get the robot to move towards an object. It is up to you to decide how
your robot should move when it sees something in front of it with the front IR sensors.

37

© 2015 University of North Texas | Computer Science & Engineering

38

© 2015 University of North Texas | Computer Science & Engineering

39

© 2015 University of North Texas | Computer Science & Engineering

40

© 2015 University of North Texas | Computer Science & Engineering

