Alice 3.0

Copyright 2015 University of North Texas | Computer Science & Engineering

INTRODUCTION

Welcome to Alice 3.0! In this section of SuperCamp we will build animations
(and maybe even a Game or two) using this very versatile environment. You
can download it yourself at www.alice.org at home as well.

As you become more proficient at programming, you can transition from using
the Alice point and click language to using Java and the NetBeans
environment. Some of the labs contained in this booklet mention using this
environment. We will skip these parts for now, but you may want to come
back to them at home later. Remember yo will be able to down load all of the
manuals we use at camp from our website at robocamp.cse.unt.edu.

Copyright 2015 University of North Texas | Computer Science & Engineering

Manipulating the Alice Environment

1. Open up Alice3. You will need to find the installed Alice3 folder and double click on the
Alice3.bat batch file (alice3.sh for the Mac). A black window with command line will
appear on your screen and should remain open (can be minimized) while Alice3 software
IS running.

2. We are going to add a few objects to the Alice environment so that we can manipulate the
objects and scene to get a better idea of how Alice works.

3. When you open the Alice program, you will be prompted to select a template. You also
have the choice of selecting an old project. We will use this option at the end of this
exercise. Make sure that the Templates tab is selected. Scroll down and select Dirt.
Click OK.

SEA_FLOOR

SNOW ROOM WONDERLAND SEA_SURFACE

;
¥

LAGOON_FLOOR SWAMP DESERT

Copyright 2015 University of North Texas | Computer Science & Engineering

4. Your screen should look similar to the following. Before we can write any code, we need
to add some objects to our scene. You will need to click on Setup Scene to add objects.

2 Alice 3.1

Eile Edit Project Run Window Help

myFirstiethod
(woid) myFirstMethod ()

do in order

I drop statement here

[
« « Setup Scene

group by category | ¥

position £
. Ccamerdmove(direction: | amount =599)]} L)
moveToward(target i emcunt'@)]
i moveAwayFrom(target: . amount: @
. CcamerdmoveTof target:)] - - -
2 place(aoerrefRe!anon:@ Wtarger) &5: doin nrder} E::cnunt _]E;:whwle _}E::fnreach in _] i

EE;EvariabIe..]{ i assign] Eiiﬂcommem]

f -do togeth er]E: -eachin _ together]

5. The scene setup area will look similar to the following. You currently have 2 objects in
this scene: the camera and ground. You can see the objects in your scene by looking at
the object tree. You can add objects to your scene by using the gallery options.

& Ali b =L
A e e e @RS PO R S e el o=
File Edit Project Run Window Help

4 undo Redo
B Starting Camera View ¥ P> Bun..

camera handle style: g_' @ % 'gl A

| DEFAULT ROTATION TRANSLATION RESIZE
: L use snap b Snap cetlls
Object Tree gl

| B cameral v,

one shots ¥

v I this.camera's Froperﬁés
scamera) camera

Vehicle = [nis|

* Editcoge il | POSition = (‘WJ‘F‘- Z?) L
) %
Browse Gallery By Class Hierarchy | @ 0
all classes I; : Ga' |e ry
| al — i
Biped classes Flyer classes Prop classes Quadruped classes Swimmer classes j

Copyright 2015 University of North Texas | Computer Science & Engineering

6. There are several choices for selecting objects from the gallery. Please take a moment to
explore the possibilities.

I —

‘all themes IV

amazon fantasy far east household

TS OEEECEEE |

all groups |V

animals characters scenery

7. Please click back on the Browse Gallery by Class Hierarchy. Then select Prop Classes
and scroll until you find Cauldron (they are in alphabetical order). We are going to add
this to our scene. Go ahead and click on it. You should be prompted to give this new
object a name. We are going to leave the default name cauldron and click OK. Please
leave the default names for this exercise.

a “
< Add Scene Property From Galle et |
preview: | Cauldron) cauldron < (new! Cauldron)

yalue type: | Cauldron)
name: c:auldrnn

s s r L
initializer: new | Cauldron)

Cancel

Copyright 2015 University of North Texas | Computer Science & Engineering

8. You will notice that the cauldron appears in the center of the scene by default. It is also
added to your object tree. The properties for the object are listed on the right pane as
shown below. You can change the location, orientation, color, opacity, size, etc.

B Starting Camera View | ¥|

‘) DEFAULT R

Object Tree

¥ this.cauldron’s Pro

9. Let’s change the color of the cauldron to blue. Click the drop down next to Paint and
select Color.BLUE. You cauldron should change color.

R Starting Camera View | ¥

" Edit Code

Copyright 2015 University of North Texas | Computer Science & Engineering

10. Next, we want to move the cauldron to the left side of the scene. The ring around the
cauldron indicates that you can rotate the cauldron 360 degrees (this is the default
option). | do not want to rotate the cauldron since it would look the same all the way
around. | want to move it. To move an object, make sure that the object is selected from

the object tree or from the drop down on the properties pane as shown below and select
Translation.

B Starting Camera View | ¥

_| use.
& cauldron ¥
| one shats ¥

ﬂ this.cauldron’s Properties

{ Cauidron) cauldron = (new(Gauiiron))
Paint= [MColorBLUE| |

Opacity = =10

Vehicle = [ins

Position = (x 000 .y -0.00 1z 0.00)!

‘Width: | 1.79

Size = Height 1.29 Reset
iy A

Depth: 1.80

Lo

5

11. You will notice that the handle style changes to arrows. The arrow on top of the cauldron
will move the cauldron up and down if you hold down your left mouse button on the
arrow and drag up or down. The arrow to the right of the cauldron, will move the
cauldron to the right or left. The front arrow will move the cauldron forwards and
backwards. Try moving the cauldron to the left and forward.

Undo | Redo
| | :
ese 8/ JEN & |s

" DEFAULT ROTATION TRANSLATION |RESIZE
|| use snap P Snap details

@ cauldron ¥
oneshots ¥
1 I?!‘"t'i'uis. cauldron’s J'I"lroperﬁes
cauldfon new! cauon)
Paint= [MColor8LUE]
Opacity = ,\'
Vehicle = [t

—— | —,
Position = (x 178 ¥ 000 ,Z 0.00)

N
- 8
Size = Height 129 | | Reset
" EditCode ¢ =
-

Copyright 2015 University of North Texas | Computer Science & Engineering

12. If you move the cauldron up or down, it will be off the ground. Go ahead and try it. You
don’t have to worry about messing up the environment because you can undo. If your
cauldron is in the ground or floating in the air, click the undo button as shown below.

B Starting Camera View v | N

ON' TRANSLATION |RESIZE

@ cauldron v
~ new Cauron)

13. Do not resize the cauldron. We are going to add the cauldron lid and if we resize the
cauldon, it won’t fit and we will have to resize the cauldron lid to fit. We will practice
with rotating and resizing in the next exercise.

14. Next, let’s add the cauldron lid. See if you can find it. You can try using the search since

we know the object that we want to add. Click on the CauldronL.id to add a cauldron lid
to your scene. Leave the default name for the object.

cauldron

new Cauldron() new CauldronLid()

Copyright 2015 University of North Texas | Computer Science & Engineering

15. The cauldron lid is added to our scene, but it is on the ground. We could move the
cauldron up, to the left, and forward to get it on top of the cauldron, but there is an easier
way. There is a One Shot drop down that will allow us to move the cauldron lid onto the
cauldron without having to move it ourselves. Make sure the cauldron lid is selected and
right click on the cauldron lid from the object tree. Choose procedures, place, above,
and select cauldron. Be careful with the cascading menus when you are selecting
options. You can think of procedures as actions.

‘ Starting Camera View ¥

cauldronLid

poccincs cauldan\dmm.E@)‘ }
cauldronLidmoveToward(5277, 52972)); }
;f(cauldronL\dmweAwayFrom(@‘@}i]
e qum a7, <77
oo qrolE) ST
" CrauldronLigmoveTo(2 777));]
(o auldan\dmuveAndOrientTn(};
plat:e b B
CeauldronLidturnToFace(C ?22));

auldan\dpuirllAt();]

* CcauldronLidjorientToUpright0;]

Z | _——————————— .}

- CcauldronLidstraightenOutJoints(; } e ——

= SpatialRelation.IN_FRONT_O

Delete
Revert original state

Cauldr]

spatialRelation:

SpatialRelation.LEFT_OF|
patialRelation RIGH

DN I8

¥y YFEaEavY ¥ ¥V ¥ ¥V ¥ ¥

= __F
 CcauidronLigsetPaint(=277))] * | rSpatiaiRelation BEHIND

Browse Gallery By Class Hierarchy

all classes a

[CcauldronLid selOPacim(@).]

v

cauldron|

Tcauldrontd

16. The cauldron lid should now be on top of the cauldron, but if we move the cauldron the
lid will not move with it. To make the lid move with the cauldron, we need to change the
vehicle property of the lid to the cauldron. Make sure that the cauldron lid is selected and
change the vehicle property to cauldron as shown below. Try moving the cauldron,
does the lid move with it?

A
T N

@ cauldronLig

one shots ¥
'V @ this.cauldronLid
{ Caunrontia) cauldronLid|

" Edit Code

Copyright 2015 University of North Texas | Computer Science & Engineering

17. We are going to save our project and exit Alice. To save the project, you should click on
File, Save As. Name the project PracticeWithAlice. Please get in the habit of
capitalizing the first letter of every word in your filename and do not use space when
naming your files. Click File, Exit to close out of the Alice program.

dit Project Run Window Help

New... Ctrl+N

Open.. Ctri+0 | Starting Camera ViewB
Recent Projects

Save Ctrl+S
Save As... Ctrl+Shift+S

Revert

Print
Screen Capture

* EditCode

Copyright 2015 University of North Texas | Computer Science & Engineering

1. Open up Alice3. You will need to find the installed Alice3 folder and double click on the
Alice3.bat batch file (alice3.sh for the Mac). A black window with command line will
appear on your screen and should remain open (can be minimized) while Alice3 software
IS running.

2. Click on the File System tab and choose browse... You will need to locate your
PracticeWithAlice file and click OK. (Note: Alice files have an .a3p extension. If you
double click on this file, it will not open in Alice. Unless you create a file association, you
will need to open all of your Alice projects from the Alice software.)

| %] Select Project L= |

File System

3. You should have a cauldron and a cauldron lid in your scene from exercise 1. Click
Scene Setup so that we can practice some more with manipulating objects.

File Edit Project Run Window Help

myFirstMethod
(vid) myFirstMethod (1

do in arder

[drop statement here

L]
« w Setup Scene

@ cauldronLid

Procedures

| group by category | ¥ (|

Copyright 2015 University of North Texas | Computer Science & Engineering

4. Let’s add a witch to the scene. There are multiple ways to find her. You can search for
her, click on hierarchy and biped class, click on theme and fantasy, or click on group and
characters. Instead of clicking on the witch to add her to the scene, hold down your left
mouse button on the new Witch() and drag onto the scene and release where you want
her. You will notice a yellow bounding box on the screen indicating where she is going to
appear. Leave the default name for her. If this method of adding objects does not work

for you, then you can add the object by clicking on it and then moving it once it is added
to the scene.

Browse Gallery By Class Hierarchy a

d)

newQueenOfHearts() || new StuffedTiger() : new Tortoise() ; new Troll() &

|all dlasses J;j l 4 Biped classes bj

new WhiteRabDbit()

Make sure that the witch is selected on your scene and then click on resize. You should
notice an arrow above the witch’s head. This will resize the witch proportionally if you

hold down your left mouse button and drag up or down. Make her bigger. Whatever you
think looks good.

|
: Run. | undo || ¢ Resg
e B €l | g
style:

" DEFAULT ROTATION TRANSLATION RESIZE
_| use snap P Snap details

AR witch| ¥

one shots V|
s 4 R this.witch's Properties
o) wich, o)

Paint= |Color. WHITE]
Opacity = =1.0
Vehicle = [iis|

Position = (xi.'-1.34 ¥ -0.00 [z 1.02)

Width: | 1.37
® EditCode Ti'i
4 40 |

Copyright 2015 University of North Texas | Computer Science & Engineering

6. Now, let’s rotate her. Click on rotation. The up and down yellow lines will rotate the
witch forwards and backwards if you hold down your left mouse button and drag. The
yellow circle on the bottom of the witch will rotate the witch 360 degrees. Hold down
your left mouse button on the bottom circle and drag to the left. Rotate the witch so that
she is facing the cauldron.

S
‘ Starting Camera View ¥

Witch 4 e wicn)
int= [[|Color WHITE

" EditCode

7. Now, we are going to practice with the camera movements. The first set of arrows on the
left will move the scene up, down, left, and right. The second set of arrows will move the
witch forwards and backwards. The last set of arrows will adjust the scene up and down
(more or less sky). Please try out each of the camera arrows.

& Starting Camera View ¥

" Edit Code

8. Please take some time to add more objects and manipulate those objects. Practicing with
the environemnt is the best way to get acquainted with it. Save your work.

Copyright 2015 University of North Texas | Computer Science & Engineering

Alice in Wonderland Mad Tea Party Scene Setup

1. Open up Alice3. You will need to find the installed Alice3 folder and double click on the
Alice3.bat batch file (alice3.sh for the Mac). A black window with command line will
appear on your screen and should remain open (can be minimized) while Alice3 software
IS running.

2. The first step in programming is understanding the problem. We would like to create a
trimmed version of the Alice in Wonderland unbirthday tea party. Once you understand
the problem, you setup the scene and create a storyboard for animating the scene.

3. Our goal for the scene setup is to have the following characters: Alice, Mad Hatter, and
the March Hare. We will also add some objects to make the scene more interesting: a
table, chairs, a tea pot, tea cups, and a birthday cake. When we are finished it should look
similar to the following:

@ Starting Camera View | ¥

* EditCode

Copyright 2015 University of North Texas | Computer Science & Engineering

4. Select the wonderland template:

|%] Select Project LB

Templates

GRASS SEA_FLOOR MOON MARS

-
SNOW ROOM WONDERLAND SEA_SURFACE
LAGOON_FLOOR SWAMP DESERT DIRT

Cancel

5. Select File from the menu, then Save As. Save this file as TeaParty. Please get in the
habit of capitalizing the first letter of every word in your filename and do not use spaces
when naming your files. You should save your work often. You can click Save from the
File menu from this point on.

6. Click on Setup Scene button.

File Edit Project Run Window Help

myFirstMethod

(void) myFirstM ethod ()

do in order

l drop statement here

: : Setup Scene

& this.camera v

group by category | ¥
position

e— — —

Copyright 2015 University of North Texas | Computer Science & Engineering

7. We are going to add a table to the scene for the characters to gather around. There is a tea
table specifically designed for Alice in Wonderland. Click on the tab called Browse
Gallery By Class Hierarchy.

Browse Gallery By Class Hierarchy

all classeg¥

ﬁ

Prop classes B Quadruped classes B Swimmer classes

Biped classes Flyer classes

8. Click on the Prop classes category. Scroll to the end (they are in alphabetical order) until

you see the TeaTable class. You could have used the Search Gallery tab to find the table
as well.

Browse Gallery By Class Hierarchy
all classesY)| @mgProp classegV|

Q. o

new Teacup(_) new Teapot() new TeaTable() 5 new TeaTray() new Tent()

9. Click onthe TeaTable class to add a tea table to your world or hold down your left
mouse button and drag this object to wherever you would like to place it in your scene. If

you choose to click on the TeaTable class, the new object will be placed automatically in
the center of the scene.

Copyright 2015 University of North Texas | Computer Science & Engineering

10. When you click on the class it will ask you for a name for the object. You can leave the
name teaTable or rename if you want. Do not put spaces in your object name and the first

letter of your object name should begin with a lowercase letter and the first letter of the
second word should be a capital letter.

[TEA TABLE ==

preview: teaTable <= C:constructnew{:TeaTable}]

value type: | TeaTahle |
name: | —— -

initializer: <construct new{TeaTable }]

[OK]l Cancel J

11. Next, we are going to add a chair. Now we can test out the search feature in Alice by

typing chair into the search box. You will have a list of all the chair models. Please
choose the chair that you like.

(") search Gallery
IIen|cnair1

Lo Chain

2 Chall A2 T NOUVEAL DARIC OO0

eReuChaicl ART NOUVEAL WOOR L gew Chairl OB DARK GREE

Copyright 2015 University of North Texas | Computer Science & Engineering

12. Drag the chair that you want onto the scene where you want it by holding down the left
mouse button and dragging from the class that you are choosing to add. You will see a
yellow bounding box that shows you were your new object will be placed. When you get
the object where you want it, release and it will ask you for a name for the object.

5| Add Scene Proj &l

preview: (Chair) chair - Lnew(Chair ([ChairResource.FANCY_COLONIAL_BLUE])

value type: | Chair)
name: |m

initializer: [hew Chair .(E: [N CnairResource.FANCY_COLONIAL_BLUE!)i

OK Cancel

You should name this object something simple. Let’s call it chair.

13. We should resize the chair so that it matches the size of the table. To do this, you will
need to select the chair and then click on the resize button from the handle style choices.
When you click on the button, an arrow will appear above the chair. Holding down your
left mouse button on the arrow and move your mouse up and down to resize the chair.

Undo B
handle style: g @j g‘} E} -

DEFAULT ROTATION TRANSLATION RESIZE
W | usesnap P Snap details

Withis.chair ¥

‘ Starting Camera View ¥

one shots ¥

¥ § this.chair's Properties

Paint= (| ColorWHITE|

Vehicle = [this|

Position = (x 236 ¥ 000 ,z 007)

N

Width: 0.40 ﬂg

e D s I

Copyright 2015 University of North Texas | Computer Science & Engineering

14. To rotate the chair, click on the rotation button from the handle style choices. If you hold
down the left mouse button on the bottom ring and drag to the right and left, it will spin
the chair around so that you can have it faces the table.

handle style: g L@J g‘l E‘ 7

DEFAULT ROTATION TRANSLATION RESIZE
e |_| use snap P Snap details

Wthis.chaif ¥,

one shots ¥

||¥ & this.chair's Properties

{Chair) chair - [new/{ Chair)([k ChairResource FANI

Paint= [Color WHITE!
Opacity = =1.0)
Vehicle = [this|
Position = (x -236 ,y 000 ,z 007)

Width: 0.40 ﬂ?

ke s I

" Edit Code

15. To move the chair, click on the translation button from the handle style choices. If you
hold down your left mouse button on the arrow on top of the chair and drag up and down,
the chair will move up and down. The arrow in the front will move the chair forward and
backward. The arrow to the right will move the chair left and right.

Undo :
S Starting Camera View | ¥
handle style: g‘J g[% E_:] 5
DEFAULT ROTATION TRANSLATION RESIZE
|| use snap » Snap details
W this.chair ¥
one shots ¥
Y § this.chair's Properties
[chair) chair rinew Chair)([& ChairResource.FAN(
Paint= (| Color WHITE|

Opacity =)

Vehicle = [this|

Position = (x -2.36 Ly 0.00 Lz 0.07)
Width: 0.40 2

< e I

" Edit Code

Copyright 2015 University of North Texas | Computer Science & Engineering

16. Add 3 more chairs to the scene around the table. Be careful not to give the chairs the
same name. You will see the following error if you try to name your objects the same
name. You can call the other chairs: chair2, chair3, and chair4. Do not put spaces in your
names. The Alice software will not allow you to name your objects with spaces and this
is because the Java language does not allow you to have spaces when naming.

[.| FANCY_COLONIAL CHAIR T

preview: chair <= (constructnew { Chair)[_ & FANCY_COLONIAL_CHAIR_DINING_COLOMIAL2_BLUESILK]

value type:

name: | chaif

initializer: <c0nstruc1 new | Chair) k FANCY_COLOMIAL_CHAIR_DINING_COLONIAL2_BLUESILK]|

Ll o "chair" is not available..

l . OK - Cancel

17. 1t should look similar to the following:

‘ Starting Camera View | ¥

" EditCode

Copyright 2015 University of North Texas | Computer Science & Engineering

18. Next, we need to add some teacups and a teapot onto the table. If you search for tea in
the gallery, you will be given the teapot, teacups, saucers, etc. | would like to start with
the teapot. When you create the teapot, you can use the default name. We can play with
trying to get this teapot onto the table, but this would take a while and there is an easier
way. If you right click on the teapot, select procedures, teapot place..., above, and
teaTable, it will place the teapot on top of the table for you.

fa..

p(QUEEN_OF_HEARTS) | new Teacup(WHITE_RABBIT) |- new Teapot() B new TeaTable() ; new TeaTray()

procedures >

Rename... X .
Delete (tnis teapoimoveToward(€277), £222)); |

Revestodginal stis | Cthis teapotmoveAwayFrom(222), £227)); |
[Cinis teapotturn(©272), 5272)); |
{7 Cinis teapotiroll(£.722), £272)); |

" (this teapotmoveTo(£222)); |

' (fhisteapotmove (T 227), £222));]

is teapotmoveAndOrientTo(7272)); |

Cinis teapotplace 197%), €779))

| (thisteapotturnToFace(<2727)); |

¥y YEeEgvy vV vV vV VvV v v

' Cthis teapotipointAt(£222); \

Cihis teapotorientToUpright0; |

(this teapotstraightenOutJoints(; [S Cthis)
£ (this teapotsetPaint(®, ?2?)); \ e (this.ground

" (this teapotsetOpacity (= 222)); \

& Cinis teapot

19. Add a few teacups onto the table and adjust them how you want them. Be careful not to
give 2 teacups the same name.

Copyright 2015 University of North Texas | Computer Science & Engineering

20. Add a birthday cake onto the table and readjust the items on the table. It should look
similar to the following.

‘ Starting Camera View ¥

.

-

* EditCode

21. Next, we are going to add the characters. The characters can be found in the biped folder
in the gallery. Let’s add the March Hare first. Place him directly in front of one of the
chairs. It doesn’t matter which chair you choose. You will need to rotate him so that he
lined up with the chair. We are going to make him sit in the chair.

‘ Starting Camera View | ¥

* EditCode

Copyright 2015 University of North Texas | Computer Science & Engineering

22. To move the marchHare’s joints, we will need to select the marchHare and drop down his
subparts as shown below. Choose the hare’s right hip.

W Object Properties

.

selected: |} (this.marchHare

Class: -
Show Joints:

this.ground

W More propertieg

Paint= [[| ‘
Opacity= =1 _om
Vehicle = [if m
|Position= (x 1
Mg ’
i
@ chiseacup) ne... H
@ inder... H S Axes..

|
|

= Markers

A Text Model...

[Billboard...

o here... ©) Torus..
}I ('this.marchHare > F

SBiped

°® ((:tms.marchHare] getSpineBase |
o
o
o

O ((ihis.marchHare| 0etRightEye|
O ((ihis.marchHare| getLefiEye |
©3® ((this.marchHare| getRightHip
©3# ((ihis.marchHare] getRightAnkle |
o5 ((:this.marchHare
b ((:this.marchHare
o5 ((:this.marchHare
o5 ((:this.marchHare
o5 ((:this.marchHare
o5 ((:this.marchHare
o5 ((:this.marchHare
o5 ((:this.marchHare
b (Cthis.marchHare
o5 ((:this.marchHare

getLeftHip]

getleftkne e]

getleftdn kle]

getRightCIa\ricIe]

getRightShouIder]

getRightEIbow]

getRigmwnst]

getRightMiddIeFinger]

getLeftCIa\rlcle]

getLeﬂShouIder]

Now, we need to select ONE SHOT, procedures, marchHare.getRightHip.turn...,
BACKWARD, and 0.25

Copyright 2015 University of North Texas | Computer Science & Engineering

‘ Undo Redc
handle style: gj gl %

DEFAULT ROTATION TRANSLATION R

|_| use snap P Snap details

{ & 'jj;'ihis.marchHareigemigmmp(

| oneshots ¥ |

ightHip's Proj

 (Cnis.marchHarg getRightHipQroll(<292), 5222)); | | [TumDirection LEFT) >
[TurnDirection.RIGHT] >
) CTurnDirection.FORWARD) >

(_(this.marchHare|getRightHip 0|y

umDirection.BACKWARD-

 ((this.marchHare]getRightHip0jo

{:' I:’i :Ihis,marchHarg\getRighIHip().]thnToFaCe("::m]); ‘ 'S

Custom DecimalNumber...

23. Repeat this for the leftHip.

24. Select the marchHare’s rightKnee, then select one shots, procedures, turn, forward,
and 0.25.

25. Repeat this for the leftknee. You may need to move the entire marchHare back and up
to get him onto the chair.

26. Now, let’s add the madHatter to the scene. Place him next to the marchHare. It doesn’t
matter which side he is on. You may need to resize, rotate, and move him to get the scene
to look the way you want.

Copyright 2015 University of North Texas | Computer Science & Engineering

27. Finally, we are going to add Alice to the scene. We will need to create Alice using the
Child class in the biped classes. The Child class allows you to select male or female, the
skin tone, the attire, the hair color, eye color, and shape of the person. Create a girl that
looks like Alice and name her alice. Normally you would capitalize a name, but when we
name objects, we don’t capitalize the object names.

28. Place alice off to the side of the animation window looking at the tea party as shown
below.

@ Starting Camera View | ¥

* EditCode

29. We are finished with the scene setup. If you want to add some wonderland trees or other
objects to your scene, feel free.

30. Save this program and exit Alice.

Copyright 2015 University of North Texas | Computer Science & Engineering

Making an Alien Walk in Alice

We are going to using a variable to make an alien walk in Alice.

1.

2.

Get into Alice. Choose the mars template.

Choose Setup Scene. Add an alien object from the Biped folder. You may want to rotate
the alien to the side so that you can see the leg movements easier.

Save this program as AlienWalk.
Click on Edit Code. Select the alien and drag the move method to the editor. Choose

forward and 1 meter (these choices are known as arguments) to fullfill the direction and
amount questions. Click the run button to test your program.

| Callen move CFORWARD , 510 _ adacetal |

Now select the alien’s right hip, by clicking on the object drop down, selecting the arrow
to the right of the alien object, and then choosing getRightHip()

SRR (2l aetRightHip()

i, o getRightKneeO

— o
|5
O5® (CalisngetieftHing

oz CaiangeLatiinesd
QR | oo Camnettemie
§ o [o CmsrcR
i Clai .

I VRPN = YISO T D DR 1

Next, drag the turn method for the right hip onto the editor under the move method.
Choose backward and 0.25 as your arguments. Think of the directions for turning a
subpart of an object as clockwise for forward motion and counterclockwise for backward
motion. The 0.25 represents the amount that the subpart will turn (1 would be 1 full
revolution, therefore 0.25 would ¥4th of the way around). Click the run button to test
your program.

- move (S10 add detail |
[(Calien] getRightrip| turn , add detail

Copyright 2015 University of North Texas | Computer Science & Engineering

7. Now let’s have the right knee turn forward 0.25. Remember to think closewise for
forward motions and counterclockwise for backwards motions.

: move - add detail |
[(Calien] getRightHip| turn , add detail]
[(Calien getRightknee| turn , add detail]

8. Click the run button to test your program. This walk looks akward. We need to fix the
timing of these movements. Drag the do together block underneath the move method
and then drag the right hip and right knee turn methods in the do together block so that it
happen simultaneously. Run your animation again. This should look smoother.

do in order

o ———

| Calien’ move [FORWARD ', 51.0' add detail \

&

together

getRightHip| turn [BACKWARD) ', 50.25 add detail I

{ (Callen gefRightines| tun (FORWARD) ', 5025 adddetail |

doin order| | count _ | while _ | foreachin _| [if _ ||l dotogether | eachin _ together| | variable...|
b assign | [icomment | —

Copyright 2015 University of North Texas | Computer Science & Engineering

9. Since this leg is raised up, we need to put it back down to create a walking motion. We
are going to practice copying the do together block that we already have written to the
clipboard. Hold down the ctrl button (command button on the Mac) and drag the do
together block to the clipboard in the right hand corner and release. You should now see
a white piece of paper on the clipboard (this indicates that you copied code to the
clipboard). If you hover your mouse over the clipboard, you can see the code. (Note: if
you do not hold the ctrl button down when you added code to the clipboard, it will cut
instead of copying. Click Edit > Undo from the menu if you did a cut.)

myFirstMethod | do together

(wit) myFirstMethod () ((alien getRigntHip| turn [BACKWARD), =025 |

do in order . (Calien| getRightknee | turn CFORWARD),]

| Calier]’ move [FORWARD| , 51.0/ add detail]

do together

getRightHip| turn [BACKWARD| , 0.25) add detail]
getRightknee | turn [FORWARD| , 50.25 add detail }

i

10. Hold down the Control key (Command key on Mac) and drag the piece of paper from
the clipboard to underneath your first do together block to create a second do together
block. Make sure that the second do together block is not inside of the other block.
Change the second do together block right hip turn to forward and the right knee turn
to backward (click the drop down next to the direction) as shown below:

| do in order
| Calien move [FORWARD , 51.0 add detail

. dotogether
"Calien getRightriip| " turn [BACKWARD) , 5025 adddetail’ |

(Calien’” getRightknee| turn (FORWARD] , 50.25 add detail |

B boshe
. (Calien getRightHip| turn ('.?ORWA_R& <028 add detail ’

[Calien getRightinee| turn CBACKWARD " 025 add detail

3
E
f
$

Copyright 2015 University of North Texas | Computer Science & Engineering

11. It looks silly that the alien moves forward before his right leg bends. We need him to
move forward at the same time that he moves his legs. This is a bit challenging because if
we add the move to the first do together, then he will be done moving forward before he
puts his leg back down. If we combine the 2 do togethers, then he won’t bend his leg at
all because the forward and backwards motions will cancel each other out. We need to
move the 2 do together blocks into a do in order block and then have the do in order
block happening at the same time as the move method. This may take some practice. If
you make a mistake click Edit on the menu bar and then Undo.

do in order
| do together
?
| | doin order
| [dotogether

_L3lien

i

~ Calien
| dotogether
‘ b Bt (Calien
50 G :

~Calien

‘alien move [FORWARD) | :

1.0 add detail

getRightHip | * turn [BACKWARD ', 50.25
getRightknee | turn [FORWARD ' , 50.29
getRightHip | turn [FORWARD 30.25
getRightKnee:‘ turn [BACKWARD ', £0.25

add detail

add detail

add detail

add detail

12. You may want to change the duration of the move to be 2 seconds instead of 1 second
(default). Since the first do together block will take 1 second and the second do together
block will take 1 second, it would be nice if the move took the same amount of time as
both do together blocks added together (which would be 2 seconds).

|

Custom DacimalNumber. ..

0.25
05
1.0

10.0

| do in order

| dotogether

i | Calien move [FORWARD , =10 [HEaeEg
| doin order asSeenBy >
| [dotogether | animationStyle »
o _ alien getRightHip | turn
“Calienl getRightknee | turn [FORWARD| , £0.24
1§ = - -
{ |
[dotogeter
{1 b (Calien” getRightHip| turn [FORWARD ', 50.24)
{ Calien’ getRightknee |* turn [BACKWARD) ' , 50.24
(.

add detail

Copyright 2015 University of North Texas | Computer Science & Engineering

13. Repeat the code for the left hip and left knee to create a walking motion. Hint: use the
clipboard to copy the code that you already have and then change the body part to be left
hip and left knee. The code is shown below if you need some help.

P -

;do in order

 do together

© Calien)’ move [FORWARD| ', 1.0 , duration 520/ add detail]
| do in order

| dotogether
| (Calien getRightHip|' turn [BACKWARD ', 5025 add detail]

~ (Calien getRightknee| turn [FORWARD] , 5025 add detail]

-

 do together
o —
| (Calien” getRightHip|" turn [FORWARD) ', 50.25' add detail]

| (Catien getRightknee | turn [BACKWARD] ', 50.25 add detail]

R S R R R R R S R R S S R R R s

do together

move , , duration add detail]

“do together

[< getLefiHip| turn . 50.25 add detail]
[(Calien getLeftknee | turn 5029 add detail]

[q getLefiHip| turn [FORWARD] , 5025 add detail]
[< geﬂ_eﬂj{nee] turn , add detail]

Copyright 2015 University of North Texas | Computer Science & Engineering

14. Run your animation. It looks good for now, but what if we decided that we wanted to
adjust the amount that the alien bends his hip and knees? Let’s try changing the amount
to be 0.24 instead of 0.25. Select Custom DecimalNumber... and type 0.24. You will
need to do this for all 8 movements.

add detail | £| Custom Dec'lmil_l'&.lmber M
i amount |I preview:
| {current valug) : I
f 024 || <
-
: 7| 8] 9
I 4) 6
I 1| 2| 3
I
| Random > 0 -
| Wath
@ Cancel

15. Hmmm....now let’s say we want 0.23. It is such a pain to keep changing all 8 movements
to test what looks good. It would be nice if there was an easier way to change this. Well
you are in luck. If we create a variable to replace the 0.24, then we can just change the
value of the variable instead of changing all the values every time. Drag the variable
block to the top of your code editor.

do in order 4 Al
- do togdther

dlien| move : , duration add detail] p
0 in order y
' do together

:::: [(Calien] gewRightHip| turn , add detail]
[(Calienl getRightknee | turn , add detail]
B

- doin .rder | count _ | while _ || foreachin _ | [if _| | dotogether | eachin _ together|
“variable... | “assign | | /comment |

16. Let’s choose DecimalNumber as the type, amount as the variable name, and 0.23 as the
intializer (value). Click OK. The DecimalNumber is an Alice variable type, if you switch

Copyright 2015 University of North Texas | Computer Science & Engineering

your preferences to Java mode it will show as a Double variable type instead. To change
your preferences, you would need to select Window from the menu, Preferences,
Programming Language, Java (Note: using Java view in Alice will make Do Together
blocks of code look more challenging).

preview: DecimalNumber J=#amount <= 50.23)

(®) variable

isvariable: =
) constant

{

value type: { DecimalMumber)] is array
name: aI'T'IGL.II"I
initializer:

@ Cancel .

17. Now we will need to change the 0.24 to the amount variable for all 8 turn movements.
- { DecimallNumber J= amounf <<=]

do together

[move [FORWARD| , 510, duration S2.0 add detail]
“do in order
- do together
(Calien] getRighttip| turn [BACKWARD) [F0240 add cetail |
tRightk turn CFORWARD) | 4™
i < S nee] urm [FORWARD]Y, fcurrent value)
o together
(Calien] getRightHip| turn CFORWARD) |,
< getRightKnee] turn [BACKWARD)
do together
| Glled move (FORWARD) | 540 , walon £20) | Rancom
o in order Math
- do together Custorn DecimalNumber. ..

o e (e
il 1 1 —

18. From this point on, we can change the value in the amount variable and it will update the
value everywhere we used the amount variable. Save and close this program.

Copyright 2015 University of North Texas | Computer Science & Engineering

Making a Dog’s Tail Wag in Alice

1.

2.

Get into Alice3.

Choose the Grass template.
Save the file as DogWag.
Click on Setup Scene button.

Add a Dalmatian to the scene. Name the dog spot. Then click on the Edit Code button.

_this b
o Run...

* EditCode

We would like to make the dog’s tail wag, but instead of writing the code in
myFirstMethod, we should add the code to the class that the dog belongs to. Since our
dog object was created from the Dalmatian class, we would need to add our wag
procedural method to the Dalmatian class. Click on the drop down arrow as shown
below. Select the Dalmatian class and then select Add Dalmatian Procedure...

m

AL A ;tM ethod
| Program | (3
| Scene | (8

| Quadruped |

Dalmatian

i# Add Dalmatian Procedure...

i# Add Dalmatian Function...
i#® Add Dalmatian Property...

Copyright 2015 University of North Texas | Computer Science & Engineering

7. Name this new procedure wag.

| £ Add Dalmatian Procedure h

preview. declare procedure wagd

name: | 1B

[oK ” Cancel J

8. Select the subpart tail for the Dalmatian object. Click the drop down next to this in your
object tree. Then click on the arrow to the right of the word this and select this.getTail.
The word “this” represents the current class which is Dalmatian.

selected type:| Dalmatian | D> Run

SQuadruped Joints: >

| o

e s

W oackto: [op
o
L2 o
o
¥ o
e (: getFrontLeﬂCIa\ricle]
- Cihig] turn direct om (getFrontLeﬂShoulder]

oll S op
turnToF
e ot oge (s ooy
15/ orenti o
ontroul % ((Cthis) getFrontRightClavicle|
orientl o
5 e (: getFrontRightShoulder]
getFrontRightknes
o (linis)
getFrontRightAnkle
°

getTail

Copyright 2015 University of North Texas | Computer Science & Engineering

9. Now that the tail subpart for the Dalmatian class selected, let’s drag the turn method onto
the editor for the wag method. Select LEFT as the direction argument and 0.125 as the

amount argument.

selected type:| Dalmatian)
oo
I

[> Run

[%backto: -(Scene) J

STED

Procedures

- ([(inis| getTail | turn | direction: £29%] , amount =297]

(tnis getTail| roll direction: 222) , amount =222)]
- [(this getTail | turnToFace target:]

(this) getTail| orientTo target]

declare procedure Wa(J | Add Parameter j

wag £2

do in order

add detail

10. Next, let’s make the tail wag to the RIGHT. Instead of choosing 0.125 again as our
amount, we would need to choose 0.25. The tail has to move double the amount that it
moved to the left; otherwise it would end up back at the original starting position. Drag
the turn method onto the editor choosing a direction argument of RIGHT and an amount

argument of 0.25.
(O

declare procedure wag l Add Parameter... J

wag k2

doin order

[turn , 50.128 add detail]

. 50.28 add detail]

Copyright 2015 University of North Texas | Computer Science & Engineering

11. Finally, let’s add the turn method with LEFT as the direction argument and 0.125 as the
amount argument.

()Y

declare procedure wad [Add Parameter... J
do in order

[turn , add detail]
[turn , add detail
[turn , add detail]

12. Click the Run button to play the animation. You should notice that nothing happens.
Although we create a new wag procedural method for all Dalmatian objects, we did not
call (invoke) this method.

13. Click on the myFirstMethod tab. Select spot from the object tree. Drag the wag method
into the editor.

(v

declare procedure myFirstM ethod

do in order

j_ Cspot wag J

myFirstMethod

14. Click the Run button to play the animation. The dog should wag its tail.

Copyright 2015 University of North Texas | Computer Science & Engineering

15. What if we want to have the dog wag its tail at different speeds? Let’s click back on the
wag method to take a look at our code. Click on add detail, then duration, select 0.5.

—
wag £2

declare procedure wag l Add Parameter... J
do in order

[getTail| turn :
[getTail| turn . 50.29
[o oetial]! tum =T | animationStyle

T

asSeenBy
duration >

o2 [EEGEEEN |
=025
0.12

Custom DecimalMumber...

16. Adjust the two turn methods to be 0.5.

—
{) v

declare procedure wag l Add Parameter... J
'do in order

[turn ! , duration add detail]
[turn ! , duration add detail]
[turn : . duration add detail]

Copyright 2015 University of North Texas | Computer Science & Engineering

17. Click Setup Scene button and add another Dalmatian object to your scene. Name this
object spike.

@ Run...

Cthis)

& Starting Camera View | ¥

VAl " Edit Code

18. Click back on the myFirstMethod tab, select the Dalmatian object spike, and drag the
wag method for spike to the editor. Run your animation. Spot should wag its tail and then

spike should wag its tail.

myFirstMethod

(v
declare procedure MyFirstM ethod

doin order

 ono wag |

Copyright 2015 University of North Texas | Computer Science & Engineering

19. If you accidently close the wag method, or closed down the Alice environment and
restarted, you will need to reopen the wag method. You can do this by select an object
from the Dalmatian class (spot or spike) and clicking edit next to the method name as

shown below:

declare procedure mYyFirstMethod

'do in order

[

Cspot wag }

| Cspikd wag |

group by category | 'l

A

Dalmatian) 's Editable Procedures (1)
| edit || Cspot wag

20. What if we wanted to have spot wag his tail at a different speed than spike? The way we
have the program currently written, this would not be possible. Click back on the wag
method and click on the Add Parameter... button to add a parameter to our wag method.

A wag £

declare procedure wag [Add Parameter...]
do in order

[turn ! , duration add detail]
[turn , . duration add detail
[turn ! , duration add detail]

Copyright 2015 University of North Texas | Computer Science & Engineering

21. Select DecimalNumber as the type (this is an Alice type, but would be a double in Java),
name the variable duration, and check the box for understanding the need for updating
invocations to this procedure.

DecimalMumber &:-

Decimalbumber) ||

22. We will need to put the parameter that we just created into our turn statements. Put the
new duration parameter as an argument for the duration for each statement.

(do in order
(s getmai] wrn (LEFT , 50125 [, curaton Sourston) | asacetsn
(g getrail] turn CRIGHT] , 50.25/ |, auration Sauration) | add etail

[(Cihis) gefTail| turn CLEFT , 50.125 |, duration Sguration) | add detail]

Copyright 2015 University of North Texas | Computer Science & Engineering

23. Now, we need to change the invocations to the wag procedure. Click back on
myFirstMethod tab and pick a different duration for the wag for each dog.

" Soene AEGHEERET) . -v.:.: Damatan)

aeclars procedurs MYyFirstM ethod
do In order
| _:Sl':ﬂl:: waq durafion. ; lI] g

spie wag [raion MY

=0.25

24. Run the animation. Spot and Spike are both able to do the wag method since they are
both Dalmatians and the wag method was written for the Dalmatian class. Any Dalmatian
object that you add to your scene will be able to wag their tail.

25. Save and exit Alice.

1. Now, let’s transfer our Alice project into NetBeans and see what the Java code looks like.
Open NetBeans. Click File, New Project, and select Java Project from Existing Alice
Project and click the Next button.

2. Browse for the DogWag.a3p Alice file and then be sure to change the location of where
you are saving the new NetBeans project. Click Finish.

3. If you look at the Java code for this Alice project, you will notice that myFirstMethod in
the Scene.java file calls the wag method for both dogs.

public void myFirstMethod() {
this.spot.wag(0.5);
this.spike.wag(2.0):

Copyright 2015 University of North Texas | Computer Science & Engineering

4. Double click on the Dalmatian.java file in the Projects tab. The wag procedural method
is located in the Dalmatian class since the wag method belongs with the Dalmatian. Note:
the some of the methods in this file are collapsed in the screenshot below. You can click
the plus and minus sign to the left of the method to collapse or expand the code.

[€]2 Scene.java ﬂ“@]@' Dalmatian.java ElJ

Source Hisbaryl RE vlﬂ%@;l@%DD|EEE|U |:||=EEE

1

12N import org.lgna.story.resources.guadruped.DalmatianResource;

3 import org.lgna.story.®;

G import org.lgna.common.EachTnTogetherRunnable;

=N import static org.lgna.common.ThreadUtilities.doTogether;

=N import static org.lgna.common.ThreadUtilities.eachInTogether;

7

8 public class Dalmatian extends QOuadruped {

9

10 public Dalmatian ()

13

14 & public SJoint getlLeftEarMiddle ()

17

18 & public SJoint getRightEarMiddle ()

21

22 1 public SJoint getTails ()

25

26 public void wag(final Double duration) {)
27 this.getTail () .turn(TurnDirection.LEFT, 0.125, Turn.duraticon (duration)):
28 this.getTail () .turn(TurnDirection.RIGHT, 0.25, Turn.dnration (duratiom)) ;
29 this.getTail () .turn (TurnDirection.LEFT, 0.125, Turn.doration (duration)) ;
30

21 >

5. Run your project and then close it.

Copyright 2015 University of North Texas | Computer Science & Engineering

Creating a Hokey Pokey Method in Alice

1. Getinto Alice3.

2. Choose the Grass Template and then click on the Setup Scene button.

3. Add a tortoise to your world from the biped folder. Name the object tortoise.

4. Resize the tortoise so that you can clearly see him. Go back to the code editor.

5. Name your project HokeyPokey.

6. We are going to have this tortoise do the hokey pokey. Let’s add the Hockey Pokey song
so that our tortoise could have some music. Please download the HokeyPokey.wav file
and place in same folder where you are placing your Alice projects.

7. Choose the Scene by clicking on .this. Scroll down to the playAudio procedure

(method). Drag this method to myFirstMethod and then choose Import Audio. Then find
the HokeyPokey.wav file. Your statement should look as follows:

myFirstMethod

declare procedure myFirstM ethod

do in order

[playAudio [:new { AudioSource) CHokeyPokey.way|]

(]
« w Setup Scene

group by category | ¥
| Scene) 's Editable Procedures (3)
| edit performCustom Setup]
| edit | initializeEventListeners]
|| edit | Cinis| myFirstMethod

latmosphere

 Cthis| setAtmosphereColor color: 29%)]
(this| setFromAboveL ightColor color: {797]
& setFromBelowLightColor color:

§§§§setFogDensily density: =799] /

playAudio audr'oSource:EW]

Copyright 2015 University of North Texas | Computer Science & Engineering

8. Instead of putting all of our code in our run method as we have been doing in previous
chapters, we are going to break the code down into separate methods. The first method
that we are going to create is going to be the hokeyPokeyVerse. Method names always
start with a lowercase letter. Method naming follows the same rules as variable naming.
To create this new procedure method for the tortoise, we will click on the Tortoise class

and then Add Tortoise Procedure...

- myFirstMethod

l.“..-'aaaes | hod ()
| Scene | () >
Biped'} » [new (AudioSource)([HokeyPokey.wav))]

Tortoise

Add Tortoise Procedure..

Add Tortoise Function...
Add Tortoise Property...

9. Name the new procedure method hokeyPokeyVerse.

10. We will add the statements to have the tortoise put his right hip in and right hip out.
Select the RightHip body part. Choose the turn method and then fill in the
BACKWARD and 0.25 as arguments. Add a turn with FORWARD and 0.25 as
arguments. (Note: you can copy the first turn method and make adjustments by holding
down the control key, command key on the Mac, dragging it down and releasing or by

using the clipboard.)

LY hokeyPokeyVerse &2
declare procedure hoKeyP okeyV erse | Add Parameter..
do in order

| (dng gemigntp| tum CBACKWARD) , 025 adddetail |
| (dng getigntip| tum CFORWARD ', 5025 ava et |

Copyright 2015 University of North Texas | Computer Science & Engineering

11.

12.

13.

14.

15.

If you click on the Run button, you will notice that nothing happens. We need to call the
hokeyPokeyVerse procedure method from myFirstMethod. Click on the myFirstMethod
tab.

Click the tortoise from drop down list. Drag the hokeyPokeyVerse onto myFirstMethod.

f \
{ P

myFirstMethod

deciare procedure MYy FirstM ethod

do in order
[playAudio [:new-’ AudioSource) CHokeyPokeywav (30 74s) |]
E hokeyPokeyVerse]

| edit E hokeyPokey\ferse]

Click the Run button. What happens? The song is playing to the end and then the
tortoise turns his leg. This is a problem. The song and the tortoise hokeyPokeyVerse
should be playing at the same time. You can use the DoTogether to have the song play at
the same time as the leg movements:

declare procedure myFirstM ethod

doin order

- do together

: playAudio I:new { AudioSource) CHokeyPokey.wav (30.745) |]

[hokeyPokeyVerse]

The shake is going to be 6 lines of code. We will have the tortoise turn his right leg to the
right, then left, then right, and then left. Instead of adding these 6 lines to our
hokeyPokeyVerse method, we want to separate this code into a new procedure method
called shake that we call from the hokeyPokeyVerse method.

To create this new procedure method for the tortoise, we will click on the Tortoise class,
then Add Tortoise Procedure...

4

- myFirstMethod

classes . tM eth od

\ Program) (3 >

| Scene) (8 > ot T i]
— new { AudioSource [HokeyPokeywav (30 74s)

| Biped >

Tortoise Tortoise

constructor

[hokeyPokeyVerse

@ Add Tortoise Procedure...

@ Add Tortoise Function...

Copyright 2015 University of North Texas | Computer Science & Engineering

16. Name the new procedure method shake.

| £| Add Tortoise Procedure | 2|

preview: declare procedure shake

name: | SETR

Cancel

17. We need to add the following lines of code to have the tortoise shake his right hip. We
need to turn his right hip backward to get the hip ready for the shake. Then, the right hip
should turn 0.125 to the right to begin the shake. To turn his right hip to the left, the
tortoise will need to turn his hip 0.25 to right to make up for the 0.125 that his hip has
already turned to the right. Then, we repeat this again for the right and left motions
except that the left turn should only be 0.125 so that it ends up back at its original
position. After, the shaking, we will put the hip back to standing position by turning it
forward. Please see the code below.

O] sare

declare procedure Shake | AddParameter... |
doin order

[getRightHip| turn , add detail]
[getRightHip | turn , 50125 add detail]

[getRightHip | turn , 50.25 add detail]

[getRightHip | turn ! add detail]
getRightHip | turn , add detail]

[getRightHip |~ turn ! add detail]

18. Before playing your animation, you need to call the new shake method from the
hokeyPokeyVerse method. To get to the hokeyPokey verse method, click on the
hokeyPokeyVerse tab.

Copyright 2015 University of North Texas | Computer Science & Engineering

19. Then, click on this (this refers to the current object which is the tortoise). Drag the shake
method into the hokeyPokeyVerse method as shown below:

selected type(Tortoise) "R
" = roerpoieyverse

deciare procedure hokeyPokeyVerse l Add Parameter. J
do in order

[Cihis| getRightHip| turn CBACKWARD| , 50.25/ add detail }

| () geRiontip) i (FORWARD 925 soagetal |
[@ backto: “{ Scene) J shake

20. Now we are going to have the tortoise put his arms up in the air and turn around. We will
create a new method named turnAround. Click on the Tortoise class, then Add

Tortoise Procedure...Give the new procedure method the name turnAround. Add the
following code for the new turnAround method.

turnAround £2

declare procedure turnAround | Add Parameter... |
do in order

Chig) tumn [{EFT 510 addcetail |

21. Now, we need to call the turnAround method from the hokeyPokeyVerse method in order
for it to play.

selected type:{ Tortoise) '
el d P> Run.. A hokeyPokeyVerse 52

deciare procedure hokeyPokeyV erse [m]
do in order

getRightHip| turn [BACKWARD| , 50.25 add detail]

((thisl" getRightHip| turn [FORWARD| , 50.25 add detail]
shake

4 (i v
Procedures
lgmupbycategury |V g
{ Tortoise) 's Editable Procedures (3) %

 edit hokeyPokeyVerse
[edit shake
 edit turnAround

22. Play your animation. This looks pretty good so far, but wouldn’t it be nice if this worked
for the left leg, right arm, etc.? You are half way done with this exercise. This is a good
stopping point if you want to take a break. Please save and exit Alice.

Copyright 2015 University of North Texas | Computer Science & Engineering

23. Continue: If you took a break, please open Alice, open your HokeyPokey program, and
open all your method tabs for the Hokey Pokey (click on the Tortoise class and then click
on each method to open the tab for that method).

- myFirstMethod

classes . tMethod
\Program; & »

(Scene) ® >
[Biped) >

[:new { AudioSource) CHokeyPokey wav (30 745) |]

Tortoise Tortoise [getRightHip

constructor

procedures.

M hokeyPokeyVerse

[shake

[turnAround

@ Add Tortoise Procedure. .

® Add Tortoise Function. .
® Add Tortoise Property...

24. We already programmed the tortoise to do the hokey pokey with his right leg, but if we
wanted to switch body parts, we shouldn’t have to rewrite the same methods over and
over again for every body part. Since the only thing that will be changing will be the
body part, we can set up a parameter to pass the body part into the methods that we
already created. Let’s click on the hokeyPokeyVerse method tab to open up the code for
this method.

25. We are going to add a parameter to this method. You can do this by clicking on the Add
Parameter... button.

T holkeyFokeywerse i3

dectare proceaure hokeyP okeyV ersel_adparameter..]| on ciass Taroise

'do in order
[((ihis] getRightrip| turn . 5025 add detail]
[((inisl getRightrip| turn . 50.25 add detail]
shake |
[turnAround]

Copyright 2015 University of North Texas | Computer Science & Engineering

26. This parameter should have a type of Other Types... SJoint, name it bodyPart, and
check the box that reads I understand....

i

o)]
opa |

27. Now we are going to replace the right hip with the new bodyPart variable. Drag the
bodyPart parameter onto the this.getRightHip as shown below. You can also click the
drop down next to this.getRightHip to select the bodyPart variable.

turn CBACKWARD| , 5025 adddetail |

turn [FORWARD| , 5025 acddetail |

(this/ turnAround

Copyright 2015 University of North Texas | Computer Science & Engineering

28. Now we have to go back to myFirstMethod. We need to pass a bodyPart as an argument
to the hokeyPokeyVerse method. Click the drop-down next to hokeyPokeyVerse and
choose the getRightHip. If you do not change the bodyPart from unset to a body part,

Alice will crash (it cannot do the verse without a body part).

declare procedure myFirstM ethod

myFirstMethod

doin order

- dotogether

%)

m

iped Joints:

playAudio [new (AudioSauree) [HakeyPo (lortoiss) getPelvis

-

(tortoise| aetNeck
getHead

getMauth
getRightEye

getleftEye
getRightHip
aetRightknes

tortoise| 0etSpineBase

29. Play your animation. It should still look the same since we are using the right leg.

30. Now, we need to fix the shake method the same way. We should add a parameter and we
can name it bodyPart. Go to the shake method tab. We are going to add a parameter to
this method. You can do this by clicking on the Add Parameter... button. This
parameter should be type of OtherTypes.... SJoint, name it bodyPart, and check the |
understand.... box.

31. We are going to replace the this.getRightLeg with the bodyPart (parameter) as shown

below.

declare procedure shalke with parameter | SJoint)

Add Parameter...

dojn.order

- ChodyPari

turn [BACKWARD| , 50.25]" add detail]

wm (RIGHT , 50125

add detail]

turn 5028 adddetail |

turn CRIGHT) |, 5025

add detail]

=1
=
e
-

turn (50125 add cetail |

CbodyParf

turn CFORWARD| , 50.25 add detail]

Copyright 2015 University of North Texas | Computer Science & Engineering

32. Now we need to go back to the place where we called this method. Click on the
hokeyPokeyVerse method tab. Select bodyPart from the drop-down next to the shake

method bodyPart parameter. We are actually using the bodyPart that was passed in to

the hokeyPokeyVerse (the right leg in this case) and passing that into our shake method.

hokeyPokeyVerse ¢

dectare procedure hokeyP okeyV erse with parameter: | SJoint)
do in order

:- CbodyParf turn CBACKWARD| , 50.25 add detail]
. 5029 addgetail |

Add Parameter...

i CbodyParf turn CFORWARD)

o turnAr

l)

33. Now play your animation. It should still work for the right leg. We don’t need to worry

about adding a parameter for the turnAround method since the tortoise will be raising his
arms and turning around exactly the same way each time.

34. Let’s go back to the myFirstMethod and call the hokeyPokeyVerse method again this
time with the left leg.

myFirstMethod
declare procedure MYFirstM ethod

do in order

~do together

- Cthisl playAudio [new (AudioSouree) [HokeyPakey.wav (30.745)|

]

hokeyPokeyVerse bodyPart: ((tortoisel getRightHip]

: : Setup Scene

4 tortoise 1R
|Procedures
group by category | ¥
| Toroiss | 's Editable Procedures (3) Al

[edit | hokeyPokeyVerse bodyP? |
[edit fshake bodyPart:]
| edit turnAround

hokeyPokeyVerse bodyPart getLefiHip]

35. You will notice that the right hip and left hip move at the same time. You will need to
add a DolInOrder to fix this issue as shown below:

myFirstMethod

declare procedure myFirstM ethod
do in order

o together

playAudio [:new { AudioSource) [HokeyPokey.wav (30.74s) |

doin order |

: hokeyPokeyVerse bodyPart: getRightHip]

hokeyPokeyVerse bodyPan: getl_eftHip]

Copyright 2015 University of North Texas | Computer Science & Engineering

36. Everything works fine except the timing with the song may be off by 2 seconds. We need
a delay at the end of the turnAround so that it doesn’t start the next leg too soon. Click on
the turnAround method and adjust it to have the delay of 2 seconds.

f IS
A/ turnAround £2

declare procedure tUrnAround | AddParameter.. |
do in order

[((ihig getRightShoulder| turn ! add detail]
[turn , add detail]

[turn (510 add detail |

[('Chis getRightShoulder| turn , add detail]
[turn , add detail]

delay

37. We need to have one method called hokeyPokey which calls the hokeyPokeyVerse which
calls the shake and turnaround methods. Create the hokeyPokey method for the Tortoise.

38. Drag the DO IN ORDER block from myFirstMethod onto the clipboard (if you hold
down the ctrl key while you drag to the clip board it will copy and if you just drag to the
clip board it will cut). Since we want to remove this code from myFirstMethod, we
should use cut instead of copy.

O SRR x
dectare procedure myFirstM ethod

doin order

--do together
[EE playAudio [new { AudioSource) [HokeyPokey.wav (30.745) |]
{ o in order

b hokeyPokeyVerse bedyPart: getRightHip]
é [hokeyPokeyVerse bodyPart. getleftHip]

39. Click on the hokeyPokey method tab and drag the code from the clipboard to the
hokeyPokey method (the white piece of paper on the clipboard represents your code).

declars procedure hOKeyPokey | AddParamster... |

do in order

I drop staterment hﬂr“f

Copyright 2015 University of North Texas | Computer Science & Engineering

40. DO NOT run your program yet. You will notice some red in you the code that you pasted
(red indicates errors in code). You still have a reference to a particular tortoise and it
should be referencing the current object (this) instead of a particular object. Change the
reference to the tortoise object named “tortoise” to be the word this to represent any
tortoise object. The concept of “this” will make more sense as we progress through the

course.

declare procedure hoKeyP ley[Add Parameter... |

doin order
“-doin order

FE #BlBEE nhokeyPokeyVerse bodyPart:C:- getRightHip]]
[#BBEE nhokeyPokeyVerse bodyPart:C:- getLeﬂHip]]

declare procedure hqkeyngey[Add Parameter... J

doin arder
“'do in order

[hokeyPokeyVerse bod}rF'“aﬂ:q getRightHip]]
[hokeyPokeyVerse bod}rF'art:< getLeﬂHip]]

41. Invoke (call) the hokeyPokey method for the tortoise in myFirstMethod (make sure that
you select the tortoise object and click on the procedures tab).

myFirstMethod

declare procedure myFirstMethod
doin order
o together

his| playAudio [new{ AudioSource [HokeyPokey.way (30 74s)
(L= /
hokeyPokey l

Copyright 2015 University of North Texas | Computer Science & Engineering

42. You may need to add a delay before your DoTogether block to give the animation a
chance to load the sound file. Make sure that you are in myFirstMethod and you have the
scene selected “this”. Drag the delay statement above the DoTogether block and choose 2

seconds as the argument.

dectare procedure mYyFirstM ethod

doin order

delay 520]

together

playAudio [:new { AudioSource) [HokeyPokey.wav (30.74s) |]

5 hokeyPokey]

group by category | ¥

| Scene >§5mvameﬁmadmes{3)
performCustom Setup]

setAtmosphereColor color E@]
setFromAbovelightColor coﬁr: s
setFromBelowLightColor cﬁor.‘ c77

E;EsetFogDensily densr’ty:éﬂ]]

audio

[playAudio audﬁoSource:EE]]

2 Lthis| delay duration.

43. Add another tortoise called tortoise2 to the scene. Have that tortoise do the Hokey Pokey

also.

{ ¥

myFirstMethod

declare procedure myFirstM ethod

LR}
« » Setup Scene

do in order

‘this| playAudio [“new { AudioSource)[‘HokeyPokey.wav (20

25| J

tortoise) hokeyPokey ‘

(tortoise2 hokeyPokey

44. Run your animation. Both tortoises should do the Hokey Pokey dance.

Copyright 2015 University of North Texas | Computer Science & Engineering

45. Let’s add the right and left shoulder to the hokeyPokey method as shown below. This
verse doesn’t work for all of the body parts, since some body parts need to turn forward
and some need to turn backward.

- hokeyPokey £2
deciare procedure hokeyP okey l Add Parameter... J

doin order

“:doin order

hokeyPokeyVerse bodyPan: getRightHip]
hokeyPokeyVerse bodyPar: getleftHip
hokeyPokeyVerse bodyPart: E: getRightShouIder]

hokeyPokeyVerse bodyF‘arf.‘E: getLeﬂShouIder]]

46. Run your animation. You should notice that the song stops after 2 body parts. We need
the song to play twice. Copy the playAudio statement so it looks as follows:

declare procedure myFirstM ethod

do in order

[o9 delay 291 |

o together

playAudio [new (AudioSource) [HokeyPokey.wav (30 745) |]
: playAudio [new (AudioSource) [HokeyPokey.wav (30.745) |]
hokeyPokey]

nokeyPokey |

Copyright 2015 University of North Texas | Computer Science & Engineering

47. Run the animation.You should notice that the song isn’t any longer than it was before.
Even though we have the line of code twice, it is inside a DoTogether block and so it
happens at the same time, therefore canceling the second playAudio line out. We need to
put these 2 lines in a do in order to keep them from playing at the same time.

declare procedure MYy FirstM ethod

doin order
 (nig| delay 520 |

" do together

playAudio EﬂeW(ﬂudioSource}I::HokeyF'okey.wav.-'SD 7if"]]]

playAudio [new AudioSource) HokeyPokey.wav (30 745) |]

hokeyPokey]
B nokeyPokey |

48. Run the animation. Looks pretty good. Now we are going to add some more characters to
your environment.

49. Add an alien and a baby yeti to the environment to do the Hokey Pokey.

(i

| % Starting Camera Viewd M

* EditCode

Copyright 2015 University of North Texas | Computer Science & Engineering

50. Why isn’t there a hokeyPokey method for the alien? The hokeyPokey is a method that
belongs to the Tortoise class and therefore the alien and baby yeti do not have access to

this method.

Procedures

[grnup by category | ']

{Alien ! 5 Editable Procedures (0) L':l
{Biped ‘s Editable Procedures (0)

say, think
| Calen) say text (779 |
 Calien think text {299 | v

51. Save your Alice project and close the Alice environment.

52. Now, let’s transfer our Alice project into NetBeans and see what the Java code looks like.
Open NetBeans. Click File, New Project, and select Java Project from Existing Alice

Project. Click the Next button.

53. Browse for the HokeyPokey Alice file and then be sure to change the location of where

you are saving the new NetBeans project. Click Finish.

54. Open the Scene.java file. The code in myFirstMethod should look familiar. Please ignore

the DoTogether code and just focus on the highlight lines.

Scene.this=s.playiudio (new AudioSource (Resources.HokeyFPok

@& Scene.java =
Source History|wvmv|ﬁ%.§?:i|{?@%>|<§f§|o |:||
83 public void myFirstMethod() {
24 % doTogether (new Runmable () {
@= public void run() {
ge {
g7 Scene.this.playhudic (new AudioScurce (Resources.HoksyFPoksy
ge
29 }
90| - }
91% }, new Runnable() {
@ public void ran() {
93 [Scene.thls.tortolse.nokeyPokey () !]
94 - }
95 |- }, new Runnable() {
@E public void ron() {
97 [Scene.this.tortolse: . hokeyPokey () :]
98| - }
99| - e
100 - H
101 }

Copyright 2015 University of North Texas | Computer Science & Engineering

55. Open the Tortoise.java file. You should see the hokeyPokeyVerse, shake, turnAround,
and newly added hokeyPokey methods. Notice how none of the methods that we created
are static? Static methods are methods that are not called on an object and since most of
the methods that we will write in Alice will be using objects, they will not be static.

E]E’ Scene.java $|E|anmise.java $|

i
%
g
=
1

.
s
.
I
d
7
2
¢
g

Cri| @ O | &

14
15
16
17
1a
15
20
21
22
23
24
23
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

B

puklic vold hokeyPokeyVerse (final S5Joint bodyPart) {
bodyPart.turn (TurnDirection. BACEFARD, 0.25);
bodyPart.turn (TurnDirection. FORFARD, 0.25);
this.shake (bodyPart) ;
this.turnfAround () ;
this.delay(2.0):

public woid shake (final S5Joint bodvyPart) {
bodyPart.
bodyPart.
bodyPart.
bodyPart.
bodyPart.
bodyPart.

turn (TurnDirection. BACEFARD, 0.253);
0.125):
0.25);

turn (TurnDirection.RIGHT, 0.25);

- T =TT

turn (TurnDirection. RIGHT,
turn (TurnDirection. LEFT,

turn (TurnDirection.LEFT, 0.1235);

turn (TurnDirection. FORFARD, 0.25);

pukblic woid taornAround() {

this.getREightShoulder () .turn (TurnDirection. BACEKEFARD, 0.25);
this.getLeftShoulder () .turn (TurnDirection. BACKFARD, 0.25);
this.turn(TurnDirection.LEFT, 1.0);
this.getLeftShoulder () .turn (TurnDirection. FORFARD, 0.2 H
this.getRightShoulder () .turn (TurnDirection. FORFARD, 0.25);

public wvoid hokeyPokev () {

this.hokeyPokeyVerse (this.
JhokeyPokeyVerse (this.
JhokevPokeyVerse (this.

this=
this
this

JhokevPokeyVerse (this.

getRightHip()) :
getLeftHip()):
getRightShouldexr ()) ;
getLeftShoulder ()) :

Run your animation to ensure that it still works. Close your NetBeans project.

Copyright 2015 University of North Texas | Computer Science & Engineering

Using Alice Built-in Functional Methods

Our goal is to have a walrus hop onto an ice floe by using built in Alice functional methods. You
can use the built in functions answer questions you have about your objects. For example, the
getDistanceTo function will return the distance from one object to another.

1. Get into Alice.

2. Choose the Sea_Surface template.

3. Click on the Setup Scene button and add a walrus, an iceberg, and an ice floe to your
world. You can leave the default names for the objects, or create your own names. Just be
sure to follow the naming rules if you are going to name them yourself. Place the walrus
into the water with his head sticking out as shown below (you will need to click on the
Translation button and use the arrow above the walrus to move the walrus so that just his

head is out of the water).

/ - S Starting Camera View | ¥

" EditCode

Undo @ Redo
handle style: _gl _@] %—] _@

DEFAULT ROTAT TRANSLATION) RESIZE
|| use snap P Snap details

Wwalrus| v
oneshots ¥
-V-‘ this.walrus's Properties
{ Walrus) Walrus = (new (Walrus)|
Paint= [[[WHITE|
Opacity = =10
Vehicle = [this|

Position = (x -1.58 ¥ -051 .z -211)

4. Save your project as WalrusTolceFloe. Go back to the code editor.

5. Select the walrus and then drag the turnToFace method onto the editor and select the

iceFloe object as the argument.

Copyright 2015 University of North Texas | Computer Science & Engineering

6. Next, drag the moveToward method onto the editor selecting the iceFloe as the first
argument and 10 meters as the second argument as shown below.

deciare procedure mYyFirstM ethod
doin order

[turnToFace add detail]
moveToward , 5100 add detail]

7. Click the run button to watch the animation. The walrus bypasses the iceFloe object and
is floating in the air. This tells us that 10 meters is too large of a number, but I still don’t
know how far the iceFloe truly is. We would need to keep guessing and running the
animation to see if we choose the right number. This trial and error process can be very
frustrating and is unneccessary. Alice has a built in function called getDistanceTo that
will measure the distance from one object to another and return the result.

8. Let’s use the getDistanceTo function (function tab) to find the actual distance between
the walrus and the iceFloe object. You will need to select the walrus, click on the
functions tab, and then drag the getDistanceTo function to replace the 10 meters
argument. Select iceFloe as the argument.

~

myFirstMethod

declare procedure myFirstM ethod

doin order

[turnToFace add detail]
[Cwalrus| . moveToward CiceFlog) ,é_valrus getDistanceTo CiceFlog)] add detail]

e A o

[
« » Setup Scene

Functions

group by categeff

olhe 2

- (walrus| getDistanceTo other:
getVantagePoint entity:
getVehicle

i isCollidingWith other: 323 |
I:__isFacing other:]

2 |

toString

9. Click run to view the animation. The walrus ends up inside the iceFloe object. This is
okay because we are going to add a move up method that fixes this to look like he is
jumping onto the iceFloe object.

Copyright 2015 University of North Texas | Computer Science & Engineering

10. Go ahead and drag the move method onto the editor and select up as the first argument
and 2 meters as the second argument. The 2 meters is just a guess.

declare procedure mYyFirstM ethod

do in order

[turnToFace add detail]
[moveToward ! é getDistanceTo] add detail
[move ! add detail]

11. Click run. The 2 meters is too far. Again, we don’t want to spend time playing this
guessing game of how far objects are and how tall they are; there are built in Alice
functions that will give you this information so that we don’t have to guess. Click on the
iceFloe object, then click on the functions tab, and then drag the getHeight function
(function tab) for the iceFloe to replace the 2 meters for the distance on the move method.

myFirstMethod

declare procedure mYyFirstM ethod
doin order

E turnToFace add detail]
[moveToward 5 getDistanceTo] add detail

[move [UF| | getHeight| add detail]

12. Click run to view the animation. The walrus ends up on the ice floe, but he goes right
through it and this doesn’t look very natural. If we change the moveToward and move
method so that they happen at the same time, this will fix it so that he moves at a diagonal
and doesn’t end up inside the ice floe. Drag the do together block onto the editor and

lace the moveToward and move methods inside of this block.

declare procedure My FirstM ethod

do in order
ff:f turnToFace add detail]

do together

[moveToward CiceFlog , 5 (walrus| getDistanceTo CiceFlog | add detail]

{idoinorder| | count _ | while _ | foreachin _ | i - do togetner [each in _ together | | ivariable... | assign| |ii/comment|

13. Click run to view the animation. The walrus should now jump onto the ice floe and not
through it. Save and close this project.

Copyright 2015 University of North Texas | Computer Science & Engineering

Determining the Tallest Object

Our goal is to use conditionals to determine the tallest object.

1.

2.

Open Alice3.

Scene setup: Begin with a grass template. Add 3 adult female objects from the Biped
classes (change the characteristics of each person to make them unique). Give them the
names of sue, betty, and kelly respectively. Move them away from each other.

Name this project TallestPerson.

Switch your preferences to Java view instead of Alice view. Click on Window from the
menu, then Preferences, Programming Language, and select Java.

Declare a variable to represent sue’s height. Call it sueHeight, make it a Double and set
the initializer to 0.0 as follow:

Note: If your version is saying DecimalNumber instead of Double, click on Window
menu, select Preferences, then Programming Language and then JAVA.

| £ Insert Variable ﬁ
S, v I
preview: [{ Double = sueHeight =50.0/;]
; .
is variable: U vaniable
) constant I

value type: | Double) [is array

name: | ETEIERD
initializer:

l oK Jl Cancel J

|[{ Double = sueHeight =

Copyright 2015 University of North Texas | Computer Science & Engineering

6. Click on the Functions tab for sue and drag sue.getHeight to replace 0.0 in your variable
statement for sueHeight as shown below:

! b L 3
(- myFirstMethod

vid) myFirstMethod ¢

do in arder

[(Double = ‘sueHeight = g gEtHEiEIhTIIﬂ i]

7. Repeat this for betty and kelly. (Make sure you are clicked on the correct girl when doing
her height). You should have 3 variables (sueHeight, bettyHeight, and kellyHeight) with
each of the object’s height saved accordingly.

'l %

Y myFirstMethod

void) myFirstM ethod ()
do in order
{ Double)= sueHeighf = g getHeightl{ﬂ ;]
E;{DuuhleﬁﬁiibemﬂHeighﬂ = = (hetty getHeight() ;]

. (Doubls)="kellyHeighi = = Ckelly ~ getHeight()

8. Now we need to figure out which of the girls is the tallest. This would be easy if we only
had 2 girls, but since we have 3 it is going to be a bit more complex. Let’s start with sue
and see if she is the tallest. We need to figure out if sue is taller than betty first. Drag up
the if... block statement and release and set to true as follows:

i)

drop statement here

}else{

drop statement here

Copyright 2015 University of North Texas | Computer Science & Engineering

9. You should change the true by choosing Relational Decimal Number, then ???> ??7?
then sueHeight and then bettyHeight as follows

7 |
(current value)
TRandomUtilities.nextBoalean()
']
w297 >
BOTH [rue| AND 7727 >
ITHER Tjrug OR T 277] >
TBOTH T 777 AND T 777 | >
TEITHER T 777 | OR T 777 >
Relational (WholeNumber) { ==, |=, <, <= == =} > — < o g
Relational (SThing) {==, =} | 2 5@ = ﬂ >
TextString Comparison > _ R
T > S0, >
27 == =272 » >
S .) » >
>
Custom DecimalMumber. >
>
>
sLeHeight >
Custom DecimalMumber...

10. So that your if statement should look as follows:

([SoueHeign} > SbetyHeight |]

drop statement here

e {

drop statement here

Copyright 2015 University of North Texas | Computer Science & Engineering

11. Just because sue is taller than betty doesn’t necessarily mean that she is taller than kelly.
We need to add another condition (compound condition) to ensure that sue is taller than
both of betty and kelly. You need to have both conditions be true so you will click on the
down arrow farthest to the right, select BOTH sueHeight>bettyHeight AND ??? then
select true.

“SueHeghl > SoelyHeignt

):?sueHeighﬂ - E:bett'ngeighﬂ] (current value)

TRandomUtilities.nextBoolean()

ﬂ@sueHeighﬂ - E:bemrHeighﬂ]

7777 8

[2
] F'THERi Esuenghi = ShettyHeight| OR - >
TBOTHI 777 | AND I 777
TEITHER I 777 | OR T, 777 >
Relational (DecimalMumber) { ==, |=, =, ==, == =} >
Relational (WholeMumber) {==, =, =, == == =} (2
Relational (SThing) { ==, =} >

>

Text5tring Comparison

You should have the following code:

i [BOTH > CheltyHeightl | AND Lrug
drop statement here

} else {

drop statement here

Copyright 2015 University of North Texas | Computer Science & Engineering

12. Click on the down arrow next to the “true” that is next to the “AND”. Then select
Relational DecimalNumber, then ???> ???, then sueHeight, and then kellyHeight.
Your if statement should now look as follows:

in [[amu I'SsueHeight > SbeityHeight ' | AND |
drop statement here (current value)

Jelse{

drop statement here

i TRandomUtilitiss. 0
L/Tiue]

=27

»
OTH AND >
ITHER ORI 777 [

BOTH 777 AND 1727 >

TEITHER 777 OR T 277 | >

Relational (WholeMumber) { ==, I=, = == == =} >
Relational (SThing) { ==, 1=} >
TextString Comparison >

kellyHeighi
bettyHeigl
sueHeight

¥ ¥ ¥ vvvwvvwyw

TR

=t

iuu%

Custom DecimalMumber..

kellyHeight
bettyHeigh

i

13. You should now have the following if statement:

i [BOTH [SsueHeighi > EbetyHeignt | AND | SsueHeigni > SkelbHeiont | |)¢

drop statement here

lelse{

drop statement here

14. We can now say that sue is the tallest if she is taller than betty and taller than kelly. Have
sue say that she is the tallest as shown below:

iff | BOTH > ShettyHeight | AND > SkellyHeight)
| (sudl say(Sflamthetallest] adddetail); |

Copyright 2015 University of North Texas | Computer Science & Engineering

15. In the “else” block of this if statement, we know that sue must not be the tallest or we
would have never gotten to the else block. However, we don’t know which of the other
two, betty or kelly, is the tallest. We need a nested if statement to determine that. We
only need to compare betty and kelly. Drag an if tag into the else block and set it to true

as follows:
~iff T BOTH > SheltyHeight | AND » SkellyHeight)
| (sug say(/flamthetallest] add detail); |

drop statement here

se{

drop statement here

16. Now, on your own, have the computer compare betty and kelly’s height. If betty’s height
is greater than kelly’s height, then betty should say she is tallest, else kelly should say she
is tallest. You should also add some comments and your final version of the program

should look as follows:

(wvoid) myFirstMethod ()

do in order
EEfEIIThis program compares the height of 3 females and has the tallest female say that she is the tallest.]

= getHeight(;]
= getHeight(;]

- (Double) = getHeight(;]
E@E@HThis first if statement compares sue’s height to both belty's and kelly's heights and if sue is tallest of three, she says she is the tallest

():[BDTH I[ﬁsueHeighﬂ » SheftyHeight] AHD):[ﬁsueHeighﬂ » SkellyHeight]] W

N This nested if statement compares belty's and kelly's heights but only gets executed if sue is not the tallest.]

i [ShetyHeight > SkellyHeighi |)

[say(fflamthetallest add detail);]
lelse{

. Chelly say(Jflamthetallest] add detail) |

Copyright 2015 University of North Texas | Computer Science & Engineering

17. Run your program. Does it tell you who is the tallest? Try resizing each of the girls and
see if the results change. Make sure that you try all possibilities to truly test your
program. Save your program. Note: you may have to resize the animation window to see
the speech bubbles and/or change the duration of the say method to have enough time to
read the text in the speech bubbles.

18. Get into NetBeans and start a new project based on the TallestPerson.a3p file and then
you should scroll down in the Scene.java file until you can see the myFirstMethod
method as follows:

public void myFirstMethod() 1
Double sueHeight = this.sus.getHeight () :

Double bettvHeight = this.betty.getHeight ()
Double kellvHeight = this.kelly.getHeight():
if ((sueHeight > bettvHeight) && (sueHeight > kellvyHeight)) {
thi=s.=zue.=say ("I am the tallest."});
¥} else {
if (bettyHeight > kellyHeight) {
this.bettv.=say ("I am tallest.");
else {
thizs.kelly.say ("I am tallest.™):

19. To test the program, let’s make sue be the tallest by inserting a statement at the beginning
of the myFirstMethod that will adjust sue’s height to be 2.0 meters as follows:

pukblic wvolid myFirstMethod() {
[this.sue.setHeight {2.0) ;|
Double sueHeight = this.sue.getHeight ()
Double bettyHeight = thi=.kbetty.getHeight () !
Double kellyHeight = this.kellvy.getHeight ()

20. Run your program. Unless you have made your females very tall, this should be enough
to make sue the tallest. If not, make the number larger than 2.0. Once it works for sue
being the tallest, adjust that first line to set the height for betty to be a large number and
see if it works for her. Last of all, do a test by adjusting kelly’s height and see if it works
for her.

21. Close your project.

Copyright 2015 University of North Texas | Computer Science & Engineering

Exploring Alice on your own

O\Now that you have learned how to do many interesting things in Alice 3.0 itis
time to work on your own creations!

First you should create a story on paper, or at least an outline. Then you can start
selecting characters and building scenes. Then make your characters move and talk,

and create your transitions. Don’t forget the title screen and the credits at the end!

At the end of this sections we will watch the animations that you have made.

Copyright 2015 University of North Texas | Computer Science & Engineering

Acknowledgements

Thanks to Dr. Tebring Daly at Collin College for the use of this material. These
materials were developed through a National Science Foundation - Advanced
Technological Education (ATE) Grant #0835036.

Copyright 2015 University of North Texas | Computer Science & Engineering

