
Alice	
 3.0	

Copyright 2015 University of North Texas | Computer Science & Engineering

INTRODUCTION	

Welcome	
 to	
 Alice	
 3.0!	
 	
 In	
 this	
 section	
 of	
 SuperCamp	
 we	
 will	
 build	
 animations	

(and	
 maybe	
 even	
 a	
 Game	
 or	
 two)	
 using	
 this	
 very	
 versatile	
 environment.	
 You	

can	
 download	
 it	
 yourself	
 at	
 www.alice.org	
 at	
 home	
 as	
 well.	

As	
 you	
 become	
 more	
 proficient	
 at	
 programming,	
 you	
 can	
 transition	
 from	
 using	

the	
 Alice	
 point	
 and	
 click	
 language	
 to	
 using	
 Java	
 and	
 the	
 NetBeans	

environment.	
 Some	
 of	
 the	
 labs	
 contained	
 in	
 this	
 booklet	
 mention	
 using	
 this	

environment.	
 We	
 will	
 skip	
 these	
 parts	
 for	
 now,	
 but	
 you	
 may	
 want	
 to	
 come	

back	
 to	
 them	
 at	
 home	
 later.	
 Remember	
 yo	
 will	
 be	
 able	
 to	
 down	
 load	
 all	
 of	
 the	

manuals	
 we	
 use	
 at	
 camp	
 from	
 our	
 website	
 at	
 robocamp.cse.unt.edu.	

Copyright 2015 University of North Texas | Computer Science & Engineering

Manipulating the Alice Environment

1. Open up Alice3. You will need to find the installed Alice3 folder and double click on the

Alice3.bat batch file (alice3.sh for the Mac). A black window with command line will

appear on your screen and should remain open (can be minimized) while Alice3 software

is running.

2. We are going to add a few objects to the Alice environment so that we can manipulate the

objects and scene to get a better idea of how Alice works.

3. When you open the Alice program, you will be prompted to select a template. You also

have the choice of selecting an old project. We will use this option at the end of this

exercise. Make sure that the Templates tab is selected. Scroll down and select Dirt.

Click OK.

Copyright 2015 University of North Texas | Computer Science & Engineering

4. Your screen should look similar to the following. Before we can write any code, we need

to add some objects to our scene. You will need to click on Setup Scene to add objects.

5. The scene setup area will look similar to the following. You currently have 2 objects in

this scene: the camera and ground. You can see the objects in your scene by looking at

the object tree. You can add objects to your scene by using the gallery options.

Object Tree

Gallery

Copyright 2015 University of North Texas | Computer Science & Engineering

6. There are several choices for selecting objects from the gallery. Please take a moment to

explore the possibilities.

7. Please click back on the Browse Gallery by Class Hierarchy. Then select Prop Classes

and scroll until you find Cauldron (they are in alphabetical order). We are going to add

this to our scene. Go ahead and click on it. You should be prompted to give this new

object a name. We are going to leave the default name cauldron and click OK. Please

leave the default names for this exercise.

Copyright 2015 University of North Texas | Computer Science & Engineering

8. You will notice that the cauldron appears in the center of the scene by default. It is also

added to your object tree. The properties for the object are listed on the right pane as

shown below. You can change the location, orientation, color, opacity, size, etc.

9. Let’s change the color of the cauldron to blue. Click the drop down next to Paint and

select Color.BLUE. You cauldron should change color.

Properties Object Tree

Copyright 2015 University of North Texas | Computer Science & Engineering

10. Next, we want to move the cauldron to the left side of the scene. The ring around the

cauldron indicates that you can rotate the cauldron 360 degrees (this is the default

option). I do not want to rotate the cauldron since it would look the same all the way

around. I want to move it. To move an object, make sure that the object is selected from

the object tree or from the drop down on the properties pane as shown below and select

Translation.

11. You will notice that the handle style changes to arrows. The arrow on top of the cauldron

will move the cauldron up and down if you hold down your left mouse button on the

arrow and drag up or down. The arrow to the right of the cauldron, will move the

cauldron to the right or left. The front arrow will move the cauldron forwards and

backwards. Try moving the cauldron to the left and forward.

Copyright 2015 University of North Texas | Computer Science & Engineering

12. If you move the cauldron up or down, it will be off the ground. Go ahead and try it. You

don’t have to worry about messing up the environment because you can undo. If your

cauldron is in the ground or floating in the air, click the undo button as shown below.

13. Do not resize the cauldron. We are going to add the cauldron lid and if we resize the

cauldon, it won’t fit and we will have to resize the cauldron lid to fit. We will practice

with rotating and resizing in the next exercise.

14. Next, let’s add the cauldron lid. See if you can find it. You can try using the search since

we know the object that we want to add. Click on the CauldronLid to add a cauldron lid

to your scene. Leave the default name for the object.

Copyright 2015 University of North Texas | Computer Science & Engineering

15. The cauldron lid is added to our scene, but it is on the ground. We could move the

cauldron up, to the left, and forward to get it on top of the cauldron, but there is an easier

way. There is a One Shot drop down that will allow us to move the cauldron lid onto the

cauldron without having to move it ourselves. Make sure the cauldron lid is selected and

right click on the cauldron lid from the object tree. Choose procedures, place, above,

and select cauldron. Be careful with the cascading menus when you are selecting

options. You can think of procedures as actions.

16. The cauldron lid should now be on top of the cauldron, but if we move the cauldron the

lid will not move with it. To make the lid move with the cauldron, we need to change the

vehicle property of the lid to the cauldron. Make sure that the cauldron lid is selected and

change the vehicle property to cauldron as shown below. Try moving the cauldron,

does the lid move with it?

Copyright 2015 University of North Texas | Computer Science & Engineering

17. We are going to save our project and exit Alice. To save the project, you should click on

File, Save As. Name the project PracticeWithAlice. Please get in the habit of

capitalizing the first letter of every word in your filename and do not use space when

naming your files. Click File, Exit to close out of the Alice program.

Copyright 2015 University of North Texas | Computer Science & Engineering

1. Open up Alice3. You will need to find the installed Alice3 folder and double click on the

Alice3.bat batch file (alice3.sh for the Mac). A black window with command line will

appear on your screen and should remain open (can be minimized) while Alice3 software

is running.

2. Click on the File System tab and choose browse… You will need to locate your

PracticeWithAlice file and click OK. (Note: Alice files have an .a3p extension. If you

double click on this file, it will not open in Alice. Unless you create a file association, you

will need to open all of your Alice projects from the Alice software.)

3. You should have a cauldron and a cauldron lid in your scene from exercise 1. Click

Scene Setup so that we can practice some more with manipulating objects.

Copyright 2015 University of North Texas | Computer Science & Engineering

4. Let’s add a witch to the scene. There are multiple ways to find her. You can search for

her, click on hierarchy and biped class, click on theme and fantasy, or click on group and

characters. Instead of clicking on the witch to add her to the scene, hold down your left

mouse button on the new Witch() and drag onto the scene and release where you want

her. You will notice a yellow bounding box on the screen indicating where she is going to

appear. Leave the default name for her. If this method of adding objects does not work

for you, then you can add the object by clicking on it and then moving it once it is added

to the scene.

5. Make sure that the witch is selected on your scene and then click on resize. You should

notice an arrow above the witch’s head. This will resize the witch proportionally if you

hold down your left mouse button and drag up or down. Make her bigger. Whatever you

think looks good.

Copyright 2015 University of North Texas | Computer Science & Engineering

6. Now, let’s rotate her. Click on rotation. The up and down yellow lines will rotate the

witch forwards and backwards if you hold down your left mouse button and drag. The

yellow circle on the bottom of the witch will rotate the witch 360 degrees. Hold down

your left mouse button on the bottom circle and drag to the left. Rotate the witch so that

she is facing the cauldron.

7. Now, we are going to practice with the camera movements. The first set of arrows on the

left will move the scene up, down, left, and right. The second set of arrows will move the

witch forwards and backwards. The last set of arrows will adjust the scene up and down

(more or less sky). Please try out each of the camera arrows.

8. Please take some time to add more objects and manipulate those objects. Practicing with

the environemnt is the best way to get acquainted with it. Save your work.

Copyright 2015 University of North Texas | Computer Science & Engineering

Alice in Wonderland Mad Tea Party Scene Setup

1. Open up Alice3. You will need to find the installed Alice3 folder and double click on the

Alice3.bat batch file (alice3.sh for the Mac). A black window with command line will

appear on your screen and should remain open (can be minimized) while Alice3 software

is running.

2. The first step in programming is understanding the problem. We would like to create a

trimmed version of the Alice in Wonderland unbirthday tea party. Once you understand

the problem, you setup the scene and create a storyboard for animating the scene.

3. Our goal for the scene setup is to have the following characters: Alice, Mad Hatter, and

the March Hare. We will also add some objects to make the scene more interesting: a

table, chairs, a tea pot, tea cups, and a birthday cake. When we are finished it should look

similar to the following:

Copyright 2015 University of North Texas | Computer Science & Engineering

4. Select the wonderland template:

5. Select File from the menu, then Save As. Save this file as TeaParty. Please get in the

habit of capitalizing the first letter of every word in your filename and do not use spaces

when naming your files. You should save your work often. You can click Save from the

File menu from this point on.

6. Click on Setup Scene button.

Copyright 2015 University of North Texas | Computer Science & Engineering

7. We are going to add a table to the scene for the characters to gather around. There is a tea

table specifically designed for Alice in Wonderland. Click on the tab called Browse

Gallery By Class Hierarchy.

8. Click on the Prop classes category. Scroll to the end (they are in alphabetical order) until

you see the TeaTable class. You could have used the Search Gallery tab to find the table

as well.

9. Click on the TeaTable class to add a tea table to your world or hold down your left

mouse button and drag this object to wherever you would like to place it in your scene. If

you choose to click on the TeaTable class, the new object will be placed automatically in

the center of the scene.

Copyright 2015 University of North Texas | Computer Science & Engineering

10. When you click on the class it will ask you for a name for the object. You can leave the

name teaTable or rename if you want. Do not put spaces in your object name and the first

letter of your object name should begin with a lowercase letter and the first letter of the

second word should be a capital letter.

11. Next, we are going to add a chair. Now we can test out the search feature in Alice by

typing chair into the search box. You will have a list of all the chair models. Please

choose the chair that you like.

Copyright 2015 University of North Texas | Computer Science & Engineering

12. Drag the chair that you want onto the scene where you want it by holding down the left

mouse button and dragging from the class that you are choosing to add. You will see a

yellow bounding box that shows you were your new object will be placed. When you get

the object where you want it, release and it will ask you for a name for the object.

You should name this object something simple. Let’s call it chair.

13. We should resize the chair so that it matches the size of the table. To do this, you will

need to select the chair and then click on the resize button from the handle style choices.

When you click on the button, an arrow will appear above the chair. Holding down your

left mouse button on the arrow and move your mouse up and down to resize the chair.

Copyright 2015 University of North Texas | Computer Science & Engineering

14. To rotate the chair, click on the rotation button from the handle style choices. If you hold

down the left mouse button on the bottom ring and drag to the right and left, it will spin

the chair around so that you can have it faces the table.

15. To move the chair, click on the translation button from the handle style choices. If you

hold down your left mouse button on the arrow on top of the chair and drag up and down,

the chair will move up and down. The arrow in the front will move the chair forward and

backward. The arrow to the right will move the chair left and right.

Copyright 2015 University of North Texas | Computer Science & Engineering

16. Add 3 more chairs to the scene around the table. Be careful not to give the chairs the

same name. You will see the following error if you try to name your objects the same

name. You can call the other chairs: chair2, chair3, and chair4. Do not put spaces in your

names. The Alice software will not allow you to name your objects with spaces and this

is because the Java language does not allow you to have spaces when naming.

17. It should look similar to the following:

Copyright 2015 University of North Texas | Computer Science & Engineering

18. Next, we need to add some teacups and a teapot onto the table. If you search for tea in

the gallery, you will be given the teapot, teacups, saucers, etc. I would like to start with

the teapot. When you create the teapot, you can use the default name. We can play with

trying to get this teapot onto the table, but this would take a while and there is an easier

way. If you right click on the teapot, select procedures, teapot place…, above, and

teaTable, it will place the teapot on top of the table for you.

19. Add a few teacups onto the table and adjust them how you want them. Be careful not to

give 2 teacups the same name.

Copyright 2015 University of North Texas | Computer Science & Engineering

20. Add a birthday cake onto the table and readjust the items on the table. It should look

similar to the following.

21. Next, we are going to add the characters. The characters can be found in the biped folder

in the gallery. Let’s add the March Hare first. Place him directly in front of one of the

chairs. It doesn’t matter which chair you choose. You will need to rotate him so that he

lined up with the chair. We are going to make him sit in the chair.

Copyright 2015 University of North Texas | Computer Science & Engineering

22. To move the marchHare’s joints, we will need to select the marchHare and drop down his

subparts as shown below. Choose the hare’s right hip.

Now, we need to select ONE SHOT, procedures, marchHare.getRightHip.turn…,

BACKWARD, and 0.25

Copyright 2015 University of North Texas | Computer Science & Engineering

23. Repeat this for the leftHip.

24. Select the marchHare’s rightKnee, then select one shots, procedures, turn, forward,

and 0.25.

25. Repeat this for the leftKnee. You may need to move the entire marchHare back and up

to get him onto the chair.

26. Now, let’s add the madHatter to the scene. Place him next to the marchHare. It doesn’t

matter which side he is on. You may need to resize, rotate, and move him to get the scene

to look the way you want.

Copyright 2015 University of North Texas | Computer Science & Engineering

27. Finally, we are going to add Alice to the scene. We will need to create Alice using the

Child class in the biped classes. The Child class allows you to select male or female, the

skin tone, the attire, the hair color, eye color, and shape of the person. Create a girl that

looks like Alice and name her alice. Normally you would capitalize a name, but when we

name objects, we don’t capitalize the object names.

28. Place alice off to the side of the animation window looking at the tea party as shown

below.

29. We are finished with the scene setup. If you want to add some wonderland trees or other

objects to your scene, feel free.

30. Save this program and exit Alice.

Copyright 2015 University of North Texas | Computer Science & Engineering

Making an Alien Walk in Alice

We are going to using a variable to make an alien walk in Alice.

1. Get into Alice. Choose the mars template.

2. Choose Setup Scene. Add an alien object from the Biped folder. You may want to rotate

the alien to the side so that you can see the leg movements easier.

3. Save this program as AlienWalk.

4. Click on Edit Code. Select the alien and drag the move method to the editor. Choose

forward and 1 meter (these choices are known as arguments) to fullfill the direction and

amount questions. Click the run button to test your program.

5. Now select the alien’s right hip, by clicking on the object drop down, selecting the arrow

to the right of the alien object, and then choosing getRightHip()

6. Next, drag the turn method for the right hip onto the editor under the move method.

Choose backward and 0.25 as your arguments. Think of the directions for turning a

subpart of an object as clockwise for forward motion and counterclockwise for backward

motion. The 0.25 represents the amount that the subpart will turn (1 would be 1 full

revolution, therefore 0.25 would ¼th of the way around). Click the run button to test

your program.

Copyright 2015 University of North Texas | Computer Science & Engineering

7. Now let’s have the right knee turn forward 0.25. Remember to think closewise for

forward motions and counterclockwise for backwards motions.

8. Click the run button to test your program. This walk looks akward. We need to fix the

timing of these movements. Drag the do together block underneath the move method

and then drag the right hip and right knee turn methods in the do together block so that it

happen simultaneously. Run your animation again. This should look smoother.

Copyright 2015 University of North Texas | Computer Science & Engineering

9. Since this leg is raised up, we need to put it back down to create a walking motion. We

are going to practice copying the do together block that we already have written to the

clipboard. Hold down the ctrl button (command button on the Mac) and drag the do

together block to the clipboard in the right hand corner and release. You should now see

a white piece of paper on the clipboard (this indicates that you copied code to the

clipboard). If you hover your mouse over the clipboard, you can see the code. (Note: if

you do not hold the ctrl button down when you added code to the clipboard, it will cut

instead of copying. Click Edit > Undo from the menu if you did a cut.)

10. Hold down the Control key (Command key on Mac) and drag the piece of paper from

the clipboard to underneath your first do together block to create a second do together

block. Make sure that the second do together block is not inside of the other block.

Change the second do together block right hip turn to forward and the right knee turn

to backward (click the drop down next to the direction) as shown below:

Copyright 2015 University of North Texas | Computer Science & Engineering

11. It looks silly that the alien moves forward before his right leg bends. We need him to

move forward at the same time that he moves his legs. This is a bit challenging because if

we add the move to the first do together, then he will be done moving forward before he

puts his leg back down. If we combine the 2 do togethers, then he won’t bend his leg at

all because the forward and backwards motions will cancel each other out. We need to

move the 2 do together blocks into a do in order block and then have the do in order

block happening at the same time as the move method. This may take some practice. If

you make a mistake click Edit on the menu bar and then Undo.

12. You may want to change the duration of the move to be 2 seconds instead of 1 second

(default). Since the first do together block will take 1 second and the second do together

block will take 1 second, it would be nice if the move took the same amount of time as

both do together blocks added together (which would be 2 seconds).

Copyright 2015 University of North Texas | Computer Science & Engineering

13. Repeat the code for the left hip and left knee to create a walking motion. Hint: use the

clipboard to copy the code that you already have and then change the body part to be left

hip and left knee. The code is shown below if you need some help.

Copyright 2015 University of North Texas | Computer Science & Engineering

14. Run your animation. It looks good for now, but what if we decided that we wanted to

adjust the amount that the alien bends his hip and knees? Let’s try changing the amount

to be 0.24 instead of 0.25. Select Custom DecimalNumber… and type 0.24. You will

need to do this for all 8 movements.

15. Hmmm….now let’s say we want 0.23. It is such a pain to keep changing all 8 movements

to test what looks good. It would be nice if there was an easier way to change this. Well

you are in luck. If we create a variable to replace the 0.24, then we can just change the

value of the variable instead of changing all the values every time. Drag the variable

block to the top of your code editor.

16. Let’s choose DecimalNumber as the type, amount as the variable name, and 0.23 as the

intializer (value). Click OK. The DecimalNumber is an Alice variable type, if you switch

Copyright 2015 University of North Texas | Computer Science & Engineering

your preferences to Java mode it will show as a Double variable type instead. To change

your preferences, you would need to select Window from the menu, Preferences,

Programming Language, Java (Note: using Java view in Alice will make Do Together

blocks of code look more challenging).

17. Now we will need to change the 0.24 to the amount variable for all 8 turn movements.

18. From this point on, we can change the value in the amount variable and it will update the

value everywhere we used the amount variable. Save and close this program.

Copyright 2015 University of North Texas | Computer Science & Engineering

Making a Dog’s Tail Wag in Alice

1. Get into Alice3.

2. Choose the Grass template.

3. Save the file as DogWag.

4. Click on Setup Scene button.

5. Add a Dalmatian to the scene. Name the dog spot. Then click on the Edit Code button.

6. We would like to make the dog’s tail wag, but instead of writing the code in

myFirstMethod, we should add the code to the class that the dog belongs to. Since our

dog object was created from the Dalmatian class, we would need to add our wag

procedural method to the Dalmatian class. Click on the drop down arrow as shown

below. Select the Dalmatian class and then select Add Dalmatian Procedure…

Copyright 2015 University of North Texas | Computer Science & Engineering

7. Name this new procedure wag.

8. Select the subpart tail for the Dalmatian object. Click the drop down next to this in your

object tree. Then click on the arrow to the right of the word this and select this.getTail.

The word “this” represents the current class which is Dalmatian.

Copyright 2015 University of North Texas | Computer Science & Engineering

9. Now that the tail subpart for the Dalmatian class selected, let’s drag the turn method onto

the editor for the wag method. Select LEFT as the direction argument and 0.125 as the

amount argument.

10. Next, let’s make the tail wag to the RIGHT. Instead of choosing 0.125 again as our

amount, we would need to choose 0.25. The tail has to move double the amount that it

moved to the left; otherwise it would end up back at the original starting position. Drag

the turn method onto the editor choosing a direction argument of RIGHT and an amount

argument of 0.25.

Copyright 2015 University of North Texas | Computer Science & Engineering

11. Finally, let’s add the turn method with LEFT as the direction argument and 0.125 as the

amount argument.

12. Click the Run button to play the animation. You should notice that nothing happens.

Although we create a new wag procedural method for all Dalmatian objects, we did not

call (invoke) this method.

13. Click on the myFirstMethod tab. Select spot from the object tree. Drag the wag method

into the editor.

14. Click the Run button to play the animation. The dog should wag its tail.

Copyright 2015 University of North Texas | Computer Science & Engineering

15. What if we want to have the dog wag its tail at different speeds? Let’s click back on the

wag method to take a look at our code. Click on add detail, then duration, select 0.5.

16. Adjust the two turn methods to be 0.5.

Copyright 2015 University of North Texas | Computer Science & Engineering

17. Click Setup Scene button and add another Dalmatian object to your scene. Name this

object spike.

18. Click back on the myFirstMethod tab, select the Dalmatian object spike, and drag the

wag method for spike to the editor. Run your animation. Spot should wag its tail and then

spike should wag its tail.

Copyright 2015 University of North Texas | Computer Science & Engineering

19. If you accidently close the wag method, or closed down the Alice environment and

restarted, you will need to reopen the wag method. You can do this by select an object

from the Dalmatian class (spot or spike) and clicking edit next to the method name as

shown below:

20. What if we wanted to have spot wag his tail at a different speed than spike? The way we

have the program currently written, this would not be possible. Click back on the wag

method and click on the Add Parameter… button to add a parameter to our wag method.

Copyright 2015 University of North Texas | Computer Science & Engineering

21. Select DecimalNumber as the type (this is an Alice type, but would be a double in Java),

name the variable duration, and check the box for understanding the need for updating

invocations to this procedure.

22. We will need to put the parameter that we just created into our turn statements. Put the

new duration parameter as an argument for the duration for each statement.

Copyright 2015 University of North Texas | Computer Science & Engineering

23. Now, we need to change the invocations to the wag procedure. Click back on

myFirstMethod tab and pick a different duration for the wag for each dog.

24. Run the animation. Spot and Spike are both able to do the wag method since they are

both Dalmatians and the wag method was written for the Dalmatian class. Any Dalmatian

object that you add to your scene will be able to wag their tail.

25. Save and exit Alice.

1. Now, let’s transfer our Alice project into NetBeans and see what the Java code looks like.

Open NetBeans. Click File, New Project, and select Java Project from Existing Alice

Project and click the Next button.

2. Browse for the DogWag.a3p Alice file and then be sure to change the location of where

you are saving the new NetBeans project. Click Finish.

3. If you look at the Java code for this Alice project, you will notice that myFirstMethod in

the Scene.java file calls the wag method for both dogs.

Copyright 2015 University of North Texas | Computer Science & Engineering

4. Double click on the Dalmatian.java file in the Projects tab. The wag procedural method

is located in the Dalmatian class since the wag method belongs with the Dalmatian. Note:

the some of the methods in this file are collapsed in the screenshot below. You can click

the plus and minus sign to the left of the method to collapse or expand the code.

5. Run your project and then close it.

Copyright 2015 University of North Texas | Computer Science & Engineering

Creating a Hokey Pokey Method in Alice

1. Get into Alice3.

2. Choose the Grass Template and then click on the Setup Scene button.

3. Add a tortoise to your world from the biped folder. Name the object tortoise.

4. Resize the tortoise so that you can clearly see him. Go back to the code editor.

5. Name your project HokeyPokey.

6. We are going to have this tortoise do the hokey pokey. Let’s add the Hockey Pokey song

so that our tortoise could have some music. Please download the HokeyPokey.wav file

and place in same folder where you are placing your Alice projects.

7. Choose the Scene by clicking on .this. Scroll down to the playAudio procedure

(method). Drag this method to myFirstMethod and then choose Import Audio. Then find

the HokeyPokey.wav file. Your statement should look as follows:

Copyright 2015 University of North Texas | Computer Science & Engineering

8. Instead of putting all of our code in our run method as we have been doing in previous

chapters, we are going to break the code down into separate methods. The first method

that we are going to create is going to be the hokeyPokeyVerse. Method names always

start with a lowercase letter. Method naming follows the same rules as variable naming.

To create this new procedure method for the tortoise, we will click on the Tortoise class

and then Add Tortoise Procedure…

9. Name the new procedure method hokeyPokeyVerse.

10. We will add the statements to have the tortoise put his right hip in and right hip out.

Select the RightHip body part. Choose the turn method and then fill in the

BACKWARD and 0.25 as arguments. Add a turn with FORWARD and 0.25 as

arguments. (Note: you can copy the first turn method and make adjustments by holding

down the control key, command key on the Mac, dragging it down and releasing or by

using the clipboard.)

Copyright 2015 University of North Texas | Computer Science & Engineering

11. If you click on the Run button, you will notice that nothing happens. We need to call the

hokeyPokeyVerse procedure method from myFirstMethod. Click on the myFirstMethod

tab.

12. Click the tortoise from drop down list. Drag the hokeyPokeyVerse onto myFirstMethod.

13. Click the Run button. What happens? The song is playing to the end and then the

tortoise turns his leg. This is a problem. The song and the tortoise hokeyPokeyVerse

should be playing at the same time. You can use the DoTogether to have the song play at

the same time as the leg movements:

14. The shake is going to be 6 lines of code. We will have the tortoise turn his right leg to the

right, then left, then right, and then left. Instead of adding these 6 lines to our

hokeyPokeyVerse method, we want to separate this code into a new procedure method

called shake that we call from the hokeyPokeyVerse method.

15. To create this new procedure method for the tortoise, we will click on the Tortoise class,

then Add Tortoise Procedure…

Copyright 2015 University of North Texas | Computer Science & Engineering

16. Name the new procedure method shake.

17. We need to add the following lines of code to have the tortoise shake his right hip. We

need to turn his right hip backward to get the hip ready for the shake. Then, the right hip

should turn 0.125 to the right to begin the shake. To turn his right hip to the left, the

tortoise will need to turn his hip 0.25 to right to make up for the 0.125 that his hip has

already turned to the right. Then, we repeat this again for the right and left motions

except that the left turn should only be 0.125 so that it ends up back at its original

position. After, the shaking, we will put the hip back to standing position by turning it

forward. Please see the code below.

18. Before playing your animation, you need to call the new shake method from the

hokeyPokeyVerse method. To get to the hokeyPokey verse method, click on the

hokeyPokeyVerse tab.

Copyright 2015 University of North Texas | Computer Science & Engineering

19. Then, click on this (this refers to the current object which is the tortoise). Drag the shake

method into the hokeyPokeyVerse method as shown below:

20. Now we are going to have the tortoise put his arms up in the air and turn around. We will

create a new method named turnAround. Click on the Tortoise class, then Add

Tortoise Procedure…Give the new procedure method the name turnAround. Add the

following code for the new turnAround method.

21. Now, we need to call the turnAround method from the hokeyPokeyVerse method in order

for it to play.

22. Play your animation. This looks pretty good so far, but wouldn’t it be nice if this worked

for the left leg, right arm, etc.? You are half way done with this exercise. This is a good

stopping point if you want to take a break. Please save and exit Alice.

Copyright 2015 University of North Texas | Computer Science & Engineering

23. Continue: If you took a break, please open Alice, open your HokeyPokey program, and

open all your method tabs for the Hokey Pokey (click on the Tortoise class and then click

on each method to open the tab for that method).

24. We already programmed the tortoise to do the hokey pokey with his right leg, but if we

wanted to switch body parts, we shouldn’t have to rewrite the same methods over and

over again for every body part. Since the only thing that will be changing will be the

body part, we can set up a parameter to pass the body part into the methods that we

already created. Let’s click on the hokeyPokeyVerse method tab to open up the code for

this method.

25. We are going to add a parameter to this method. You can do this by clicking on the Add

Parameter… button.

Copyright 2015 University of North Texas | Computer Science & Engineering

26. This parameter should have a type of Other Types… SJoint, name it bodyPart, and

check the box that reads I understand….

27. Now we are going to replace the right hip with the new bodyPart variable. Drag the

bodyPart parameter onto the this.getRightHip as shown below. You can also click the

drop down next to this.getRightHip to select the bodyPart variable.

Copyright 2015 University of North Texas | Computer Science & Engineering

28. Now we have to go back to myFirstMethod. We need to pass a bodyPart as an argument

to the hokeyPokeyVerse method. Click the drop-down next to hokeyPokeyVerse and

choose the getRightHip. If you do not change the bodyPart from unset to a body part,

Alice will crash (it cannot do the verse without a body part).

29. Play your animation. It should still look the same since we are using the right leg.

30. Now, we need to fix the shake method the same way. We should add a parameter and we

can name it bodyPart. Go to the shake method tab. We are going to add a parameter to

this method. You can do this by clicking on the Add Parameter… button. This

parameter should be type of OtherTypes…. SJoint, name it bodyPart, and check the I

understand…. box.

31. We are going to replace the this.getRightLeg with the bodyPart (parameter) as shown

below.

Copyright 2015 University of North Texas | Computer Science & Engineering

32. Now we need to go back to the place where we called this method. Click on the

hokeyPokeyVerse method tab. Select bodyPart from the drop-down next to the shake

method bodyPart parameter. We are actually using the bodyPart that was passed in to

the hokeyPokeyVerse (the right leg in this case) and passing that into our shake method.

33. Now play your animation. It should still work for the right leg. We don’t need to worry

about adding a parameter for the turnAround method since the tortoise will be raising his

arms and turning around exactly the same way each time.

34. Let’s go back to the myFirstMethod and call the hokeyPokeyVerse method again this

time with the left leg.

35. You will notice that the right hip and left hip move at the same time. You will need to

add a DoInOrder to fix this issue as shown below:

Copyright 2015 University of North Texas | Computer Science & Engineering

36. Everything works fine except the timing with the song may be off by 2 seconds. We need

a delay at the end of the turnAround so that it doesn’t start the next leg too soon. Click on

the turnAround method and adjust it to have the delay of 2 seconds.

37. We need to have one method called hokeyPokey which calls the hokeyPokeyVerse which

calls the shake and turnaround methods. Create the hokeyPokey method for the Tortoise.

38. Drag the DO IN ORDER block from myFirstMethod onto the clipboard (if you hold

down the ctrl key while you drag to the clip board it will copy and if you just drag to the

clip board it will cut). Since we want to remove this code from myFirstMethod, we

should use cut instead of copy.

39. Click on the hokeyPokey method tab and drag the code from the clipboard to the

hokeyPokey method (the white piece of paper on the clipboard represents your code).

Copyright 2015 University of North Texas | Computer Science & Engineering

40. DO NOT run your program yet. You will notice some red in you the code that you pasted

(red indicates errors in code). You still have a reference to a particular tortoise and it

should be referencing the current object (this) instead of a particular object. Change the

reference to the tortoise object named “tortoise” to be the word this to represent any

tortoise object. The concept of “this” will make more sense as we progress through the

course.

41. Invoke (call) the hokeyPokey method for the tortoise in myFirstMethod (make sure that

you select the tortoise object and click on the procedures tab).

Copyright 2015 University of North Texas | Computer Science & Engineering

42. You may need to add a delay before your DoTogether block to give the animation a

chance to load the sound file. Make sure that you are in myFirstMethod and you have the

scene selected “this”. Drag the delay statement above the DoTogether block and choose 2

seconds as the argument.

43. Add another tortoise called tortoise2 to the scene. Have that tortoise do the Hokey Pokey

also.

44. Run your animation. Both tortoises should do the Hokey Pokey dance.

Copyright 2015 University of North Texas | Computer Science & Engineering

45. Let’s add the right and left shoulder to the hokeyPokey method as shown below. This

verse doesn’t work for all of the body parts, since some body parts need to turn forward

and some need to turn backward.

46. Run your animation. You should notice that the song stops after 2 body parts. We need

the song to play twice. Copy the playAudio statement so it looks as follows:

Copyright 2015 University of North Texas | Computer Science & Engineering

47. Run the animation.You should notice that the song isn’t any longer than it was before.

Even though we have the line of code twice, it is inside a DoTogether block and so it

happens at the same time, therefore canceling the second playAudio line out. We need to

put these 2 lines in a do in order to keep them from playing at the same time.

48. Run the animation. Looks pretty good. Now we are going to add some more characters to

your environment.

49. Add an alien and a baby yeti to the environment to do the Hokey Pokey.

Copyright 2015 University of North Texas | Computer Science & Engineering

50. Why isn’t there a hokeyPokey method for the alien? The hokeyPokey is a method that

belongs to the Tortoise class and therefore the alien and baby yeti do not have access to

this method.

51. Save your Alice project and close the Alice environment.

52. Now, let’s transfer our Alice project into NetBeans and see what the Java code looks like.

Open NetBeans. Click File, New Project, and select Java Project from Existing Alice

Project. Click the Next button.

53. Browse for the HokeyPokey Alice file and then be sure to change the location of where

you are saving the new NetBeans project. Click Finish.

54. Open the Scene.java file. The code in myFirstMethod should look familiar. Please ignore

the DoTogether code and just focus on the highlight lines.

Copyright 2015 University of North Texas | Computer Science & Engineering

55. Open the Tortoise.java file. You should see the hokeyPokeyVerse, shake, turnAround,

and newly added hokeyPokey methods. Notice how none of the methods that we created

are static? Static methods are methods that are not called on an object and since most of

the methods that we will write in Alice will be using objects, they will not be static.

Run your animation to ensure that it still works. Close your NetBeans project.

Copyright 2015 University of North Texas | Computer Science & Engineering

Using Alice Built-in Functional Methods

Our goal is to have a walrus hop onto an ice floe by using built in Alice functional methods. You

can use the built in functions answer questions you have about your objects. For example, the

getDistanceTo function will return the distance from one object to another.

1. Get into Alice.

2. Choose the Sea_Surface template.

3. Click on the Setup Scene button and add a walrus, an iceberg, and an ice floe to your

world. You can leave the default names for the objects, or create your own names. Just be

sure to follow the naming rules if you are going to name them yourself. Place the walrus

into the water with his head sticking out as shown below (you will need to click on the

Translation button and use the arrow above the walrus to move the walrus so that just his

head is out of the water).

4. Save your project as WalrusToIceFloe. Go back to the code editor.

5. Select the walrus and then drag the turnToFace method onto the editor and select the

iceFloe object as the argument.

Copyright 2015 University of North Texas | Computer Science & Engineering

6. Next, drag the moveToward method onto the editor selecting the iceFloe as the first

argument and 10 meters as the second argument as shown below.

7. Click the run button to watch the animation. The walrus bypasses the iceFloe object and

is floating in the air. This tells us that 10 meters is too large of a number, but I still don’t

know how far the iceFloe truly is. We would need to keep guessing and running the

animation to see if we choose the right number. This trial and error process can be very

frustrating and is unneccessary. Alice has a built in function called getDistanceTo that

will measure the distance from one object to another and return the result.

8. Let’s use the getDistanceTo function (function tab) to find the actual distance between

the walrus and the iceFloe object. You will need to select the walrus, click on the

functions tab, and then drag the getDistanceTo function to replace the 10 meters

argument. Select iceFloe as the argument.

9. Click run to view the animation. The walrus ends up inside the iceFloe object. This is

okay because we are going to add a move up method that fixes this to look like he is

jumping onto the iceFloe object.

Copyright 2015 University of North Texas | Computer Science & Engineering

10. Go ahead and drag the move method onto the editor and select up as the first argument

and 2 meters as the second argument. The 2 meters is just a guess.

11. Click run. The 2 meters is too far. Again, we don’t want to spend time playing this

guessing game of how far objects are and how tall they are; there are built in Alice

functions that will give you this information so that we don’t have to guess. Click on the

iceFloe object, then click on the functions tab, and then drag the getHeight function

(function tab) for the iceFloe to replace the 2 meters for the distance on the move method.

12. Click run to view the animation. The walrus ends up on the ice floe, but he goes right

through it and this doesn’t look very natural. If we change the moveToward and move
method so that they happen at the same time, this will fix it so that he moves at a diagonal
and doesn’t end up inside the ice floe. Drag the do together block onto the editor and
place the moveToward and move methods inside of this block.

13. Click run to view the animation. The walrus should now jump onto the ice floe and not

through it. Save and close this project.

Copyright 2015 University of North Texas | Computer Science & Engineering

Determining the Tallest Object

Our goal is to use conditionals to determine the tallest object.

1. Open Alice3.

2. Scene setup: Begin with a grass template. Add 3 adult female objects from the Biped

classes (change the characteristics of each person to make them unique). Give them the

names of sue, betty, and kelly respectively. Move them away from each other.

3. Name this project TallestPerson.

4. Switch your preferences to Java view instead of Alice view. Click on Window from the

menu, then Preferences, Programming Language, and select Java.

5. Declare a variable to represent sue’s height. Call it sueHeight, make it a Double and set

the initializer to 0.0 as follow:

Note: If your version is saying DecimalNumber instead of Double, click on Window

menu, select Preferences, then Programming Language and then JAVA.

Copyright 2015 University of North Texas | Computer Science & Engineering

6. Click on the Functions tab for sue and drag sue.getHeight to replace 0.0 in your variable

statement for sueHeight as shown below:

7. Repeat this for betty and kelly. (Make sure you are clicked on the correct girl when doing

her height). You should have 3 variables (sueHeight, bettyHeight, and kellyHeight) with

each of the object’s height saved accordingly.

8. Now we need to figure out which of the girls is the tallest. This would be easy if we only

had 2 girls, but since we have 3 it is going to be a bit more complex. Let’s start with sue

and see if she is the tallest. We need to figure out if sue is taller than betty first. Drag up

the if… block statement and release and set to true as follows:

Copyright 2015 University of North Texas | Computer Science & Engineering

9. You should change the true by choosing Relational Decimal Number, then ???> ???

then sueHeight and then bettyHeight as follows

10. So that your if statement should look as follows:

Copyright 2015 University of North Texas | Computer Science & Engineering

11. Just because sue is taller than betty doesn’t necessarily mean that she is taller than kelly.

We need to add another condition (compound condition) to ensure that sue is taller than

both of betty and kelly. You need to have both conditions be true so you will click on the

down arrow farthest to the right, select BOTH sueHeight>bettyHeight AND ??? then

select true.

You should have the following code:

Copyright 2015 University of North Texas | Computer Science & Engineering

12. Click on the down arrow next to the “true” that is next to the “AND”. Then select

Relational DecimalNumber, then ???> ???, then sueHeight, and then kellyHeight.

Your if statement should now look as follows:

13. You should now have the following if statement:

14. We can now say that sue is the tallest if she is taller than betty and taller than kelly. Have

sue say that she is the tallest as shown below:

Copyright 2015 University of North Texas | Computer Science & Engineering

15. In the “else” block of this if statement, we know that sue must not be the tallest or we

would have never gotten to the else block. However, we don’t know which of the other

two, betty or kelly, is the tallest. We need a nested if statement to determine that. We

only need to compare betty and kelly. Drag an if tag into the else block and set it to true

as follows:

16. Now, on your own, have the computer compare betty and kelly’s height. If betty’s height

is greater than kelly’s height, then betty should say she is tallest, else kelly should say she

is tallest. You should also add some comments and your final version of the program

should look as follows:

Copyright 2015 University of North Texas | Computer Science & Engineering

17. Run your program. Does it tell you who is the tallest? Try resizing each of the girls and

see if the results change. Make sure that you try all possibilities to truly test your

program. Save your program. Note: you may have to resize the animation window to see

the speech bubbles and/or change the duration of the say method to have enough time to

read the text in the speech bubbles.

18. Get into NetBeans and start a new project based on the TallestPerson.a3p file and then

you should scroll down in the Scene.java file until you can see the myFirstMethod

method as follows:

19. To test the program, let’s make sue be the tallest by inserting a statement at the beginning

of the myFirstMethod that will adjust sue’s height to be 2.0 meters as follows:

20. Run your program. Unless you have made your females very tall, this should be enough

to make sue the tallest. If not, make the number larger than 2.0. Once it works for sue

being the tallest, adjust that first line to set the height for betty to be a large number and

see if it works for her. Last of all, do a test by adjusting kelly’s height and see if it works

for her.

21. Close your project.

Copyright 2015 University of North Texas | Computer Science & Engineering

Exploring	
 Alice	
 on	
 your	
 own	

	

	

O\Now	
 that	
 you	
 have	
 learned	
 how	
 to	
 do	
 many	
 interesting	
 things	
 in	
 Alice	
 3.0	
 it	
 is	

time	
 to	
 work	
 on	
 your	
 own	
 creations!	

	

First	
 you	
 should	
 create	
 a	
 story	
 on	
 paper,	
 or	
 at	
 least	
 an	
 outline.	
 Then	
 you	
 can	
 start	

selecting	
 characters	
 and	
 building	
 scenes.	
 Then	
 make	
 your	
 characters	
 move	
 and	
 talk,	

and	
 create	
 your	
 transitions.	
 Don’t	
 forget	
 the	
 title	
 screen	
 and	
 the	
 credits	
 at	
 the	
 end!	

	

At	
 the	
 end	
 of	
 this	
 sections	
 we	
 will	
 watch	
 the	
 animations	
 that	
 you	
 have	
 made.	

	

	

Copyright 2015 University of North Texas | Computer Science & Engineering

Acknowledgements	

	

	

Thanks	
 to	
 Dr.	
 Tebring	
 Daly	
 at	
 Collin	
 College	
 for	
 the	
 use	
 of	
 this	
 material.	
 These
materials were developed through a National Science Foundation -­‐‑ Advanced
Technological Education (ATE) Grant #0835036.	

Copyright 2015 University of North Texas | Computer Science & Engineering

