
UNCLASSIFIED

UNCLASSIFIED

Suggested Language to Incorporate
Department of Defense

•

•

Working Papers. Distribution Statement A: Approved for Public Release.

Abstract
This document is intended as a source for a web available resource setting forth a discussion on
how to guide the application of Software Assurance concepts and deliverables to a new or existing
contract for the delivery of software that behaves securely and is resilient to hazards and attack
with respect to fulfilling the mission that the software supports. The examples cited in this
document are not intended as copy-and-paste examples but rather a collection of examples that
may be leveraged. Ideally, Software Assurance language should be included in the RFP.
However, since there are many program already under contract, this document also addresses how
and where to apply software assurance contract language throughout the software development
lifecycle.

Working Papers. Distribution Statement A: Approved for Public Release.

iii

1 Introduction 1-1

1.1 Confidence 1-1

1.2 Functions as Intended 1-2

1.3 Free of Vulnerabilities 1-3

2 Inserting Software Assurance into Contract Language 2-6

2.1 Section I clause example 2-3

2.2 Section L&M clause examples 2-3

3 Use of Automated Detection Software Tools 3-7

4 Deliverables: [from the EM-RFP] 4-9

4.1 Attachment 1: Software Assurance Evaluation Report Template [From EM-RFP] 4-9

4.1.1 Assessment Report 4-9

4.1.2 Executive Summary 4-9

4.2 Software Assurance in CDRL 4-10

5 Incentive and award fees 5-12

6 Liability 6-13

7 References 7-14

Working Papers. Distribution Statement A: Approved for Public Release.

iv

Figure 1: Confidence ... 1-2

Figure 2: Functions as Intended .. 1-3

Figure 3: Free of Vulnerabilities ... 1-4

Figure 4: Typical Contract Structure .. 1-5

Figure 5: Notional SOO Items .. 1-5

Figure 6: Contract Process for Existing .. 2-7

Figure 7: Contract Process .. 2-7

Figure 8: Contract Process - During Proposal ... 2-7

Figure 9: Contract Process - Request For Proposal (RFP) .. 2-7

Figure 10: RFP Structure .. 2-2

Figure 11: Guidance Coverage Comparisons .. 2-6

Figure 12: Utilizing CWE Coverage Claims ... 3-7

Figure 13: Covering the Most Important CWEs .. 3-7

Working Papers. Distribution Statement A: Approved for Public Release.

v

Table 1: CDRL List .. 4-9

Working Papers. Distribution Statement A: Approved for Public Release.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED
1-1

1 Introduction
Common industry practice and Section 933 of the National Defense Authorization Act for
Fiscal Year 2013 (Public Law 113-239) [1], define "software assurance" to mean the level of
confidence that software functions as intended and is free of vulnerabilities, either
intentionally or unintentionally designed or inserted as part of the software, throughout the
life cycle. This document suggests language that may be tailored for use in Request for
Proposal (RFP) packages and contracts to provide a government program office insights into
the software development activities of its contractors and to provide assurance regarding
developed software and its ability to meet the mission needs. With so much of today’s
mission functionality realized through software, both the traditional types used for planning,
management, and logistics, as well as that used directly in weapon systems, vehicles,
infrastructure management and utilities, the need for assurance about that software continues
to grow. This language will generally appear in Sections C, I, L, and M of the standard
format RFP and contract.

The following sections take a closer look at how RFP and contract language can be used to
effectively address the three key concepts of this definition: confidence in a system, that the
system functions as intended, and that the system is free of vulnerabilities.

The Department of Defense (DoD) Program Protection Plan (PPP) Outline and Guidance [2]
Software Assurance Table [2, 3] includes a variety of measures and measurements, described and
more fully explained in Section 13.7.3 of the Defense Acquisition Guide (DAG) [4], that focus on
these three key concepts of conducting software assurance for a system.

1.1 Confidence
Confidence regarding contractors' assurance activities comes from obtaining appropriate
information that a program office and others can understand and that supports the claims about the
functionality of the software as well as the addressing of exploitable constructs in the system. The
use of standardized collections of weaknesses, vulnerabilities, and attack patterns makes the
understanding of contractors' assurance actions easier and more consistent and offers opportunities
for reuse of that approach to provide similar confidence in other system needed and other
contractors. There are several points in the lifecycle of a system when insights into the risks and
the mitigation of those risks can be obtained and the Program Protection Planning (PPP) Software
Assurance Table calls out several of them explicitly, as shown in Figure 1, so that the appropriate
information can be collected and reviewed at the earliest stage of development supporting risk
management decision making.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

1-2

Figure 1: Confidence

We build confidence in the software system through static analysis, design inspection, code
inspections, and penetration testing during the development process. Each of these activities
identifies weaknesses and vulnerabilities in the software and its design and allows easy, and
early, correction at minimal cost and time.

1.2 Functions as Intended
Determining whether a system “functions as intended” requires both showing through testing that
the intended functionality is there and understood by test coverage metrics and understanding
what testing effort was made to make the system perform functions it is not supposed to do. As
with the confidence measures discussed above, there are several points where insights into the
risks and the mitigation of those risks regarding a system's ability to “function as intended” can be
obtained and the PPP Software Assurance Table calls out several of them explicitly, as shown in
Figure 2, so that the appropriate information can be planned for, collected, and reviewed at the
appropriate stage of the System Development Life Cycle (SDLC). The Common Attack Pattern
Enumeration and Classification (CAPEC) [5, 6] contains a collection of patterns of attacks that
can be used to describe misuse and abuse testing done on a system either through automated tools
or through pen test team activities.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

1-3

Figure 2: Functions as Intended

We assert that the software functions as intended through application of CAPECs,
penetration testing, test coverage, and through failover multiple suppliers. Each of these
activities allows us to identify that the software is indeed functioning as intended without
functioning, or being made to function, in unintended ways.

1.3 Free of Vulnerabilities
It is common practice in industry [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] in assessing whether software
is “free of vulnerabilities” to refer to the Common Weakness Enumeration (CWE) [17, 18, 19]
catalogue. This approach allows others to understand both what was “looked for” and what
wasn’t but could have been “looked for”.

Similarly, for commercial software packages (proprietary and open source) being used as part of a
system, the collection of publicly known vulnerabilities in these types of software, called the
Common Vulnerabilities and Exposures (CVE) [20, 21] dictionary, is almost always used a
reference source to determine if known issues have been mitigated.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

1-4

Figure 3: Free of Vulnerabilities

We assert that the software is free of vulnerabilities by validating that those CVE and CWE
items that are most dangerous to the mission, are absent from the software and that the
software operates at the least privilege required to complete its task.

Figure 3, above, shows how the listed types of information can give insights into activities
and their results with respect to determining whether a system is “Free of Vulnerabilities” as
outlined in the PPP Software Assurance Table and explained in DAG section 13.7.3. Of
course, getting these types of findings and informational items for a particular system during
its design, development, test, and post-deployment sustainment activities will require that the
contract provide for the contractor to collect the necessary information or provide the
government the opportunity to collect it directly.

Different parts of a contract will guide or require these different artifacts and activities from
a contractor and it is critical that the contract fully describe what is expected from the
contractor's development activity. The System Performance Specification, the Statement of
Work, System Engineering Plan, Incentive Plan, CDRLs and other parts of a contract all
have their appropriate part in guiding the expectations and performance of the developing
organization and ensuring that they and their DoD customer understand each other’s
expectations and concerns but these activities are all predicated on the government having
access to the custom and reused software for independent inspection, testing, and evaluation,
so including a clause about delivery of the source code, all libraries, and frameworks is
crucial.

A notional Statement of Objectives (SOO), as shown in Figure 5, could cover software
assurance related activities for the Software Development, the Software Interfaces, as well as

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

1-5

the use of Software Tools and Metrics. Working from the Systems Description document we
can map these concepts to typical contract sections as illustrated in Figure 4 below.

Figure 4: Typical Contract Structure

Using the SOO as shown as an example in Figure 5, we can identify notional SOO items
related to Software Assurance.

•

•
•
•

•

•
•

•

Figure 5: Notional SOO Items

The specific wording for each of the above notional SOO items should be adjusted as
required for a specific contract.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

1-6

2 Inserting Software Assurance into Contract Language
Figures 6 through 9 illustrate that specific items that need to be in your contract to guide the
various software assurance activities must be inserted into the contract during the contracting
process. This is important because software assurance must be applied throughout the
lifecycle of the software and must be addressed in contract vehicles from the RFP through
sustainment activities.

If you have an existing contract, which is already in development, or are in sustainment, and
need to add software assurance items, these changes will need to be inserted into the
appropriate parts of the existing contract as illustrated in Figure 6 by a bilateral contract
modification agreed to by the contractor. Adding these types of risk reduction activities and
measurement opportunities to an existing contract will be disruptive and costly. The risk to
the operational system posed by the unknown and unexpected vulnerabilities and frailties
must be considered against the potential cost and perturbation to the project of identifying
and removing them.

Whether you have an existing contract or are in the process of establishing one as shown in
Figures 7 through 9, the allocation of liability for software defects and vulnerabilities must
either be directly put in the contract through the mechanisms described in the subsequent
parts of this document and the referenced examples, or you can try to rely on normal liability
protections from either the Uniform Commercial Code (UCC) if you can make the case that
the software in question is “goods” versus a “service” and the developer may be subject to
suit under a strict liability theory of tort for residual vulnerabilities and susceptibility to
hazards and attacks.

The specifics of the program office's concerns about liability have to be explicitly described,
and discussed, so that both the developer and the government have a clear understanding of
what is and is not the result when flaws are found in the operational system and fixes are
needed or the impact from a failure needs to be addressed.

For those interested in understanding the general liability issues surrounding software, a
good starting point on the question of contractor liability for software issues is the May 26,
1990 article posted at the Berkeley Technology Law Journal (BTLJ) in Volume 5 entitled
“Software Product Liability: Understanding and Minimizing the Risks and Michael D. Scott,
Tort Liability for Vendors of Insecure Software: Has the Time Finally Come?” [22].

The question of whether the development team is liable for fixing the residual issues in their
software, or if they hold liability for the damage or fall-out from the vulnerable and/or
unreliable nature of the software allowed to happen or caused, is still open. Until such time
as severe monetary awards are levied against software vendors/developers who release faulty
code there will be no incentive for software vendors/developers to build security into their
software. The only reasonable alternative is to explicitly state what faults are to be repaired
by the software vendor/developer in the contract agreed to by both parties.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

1-7

Figure 6: Contract Process for Existing

In a new procurement the program office will need to make sure that the appropriate parts of
the contract have the right language. To do that you will have to make sure that the Source
Selection process as shown in Figure 7 results in a contract with the needed language in the
right parts. To do that, the appropriate language needs to be part of the selected proposal or
proposals, as shown in Figure 8, which means it needs to be included in the RFP and
addressed by the criteria used to evaluate those proposals, as shown in Figure 9.

Figure 7: Contract Process Figure 8: Contract Process -

During Proposal
Figure 9: Contract Process -
Request For Proposal (RFP)

For a new procurement to incorporate the appropriate software assurance activities into the
contract there needs to be a clear articulation by the government about what is required.
Additionally a clear statement that the requirements for these aspects of quality and their verified
presence in the software must be a part of the selection criteria in the final award, part of the

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-2

source selection process, and part of the performance criteria and incentive plan for the awarded
contract.

Within the traditional RFP package, the appropriate language to be inserted goes in Section
C, Section I, and Sections L & M, as highlighted in Figure 10.

Figure 10: RFP Structure

The subsequent example clauses and other procurement language examples target the above
mentioned RFP Section by name, for example the Air Force Life Cycle Management Center
(AFLCMC), AFLCMC/EZC - "Engineering Model RFP" (EM RFP) [23] language package
provides modules with suggested items for several sections of an RFP to address different
issues areas. These areas include modules on Software Assurance, Software Engineering,
Software Metrics, and Supply Chain Risk Management (SCRM), Independent Verification
and Validation, Quality Assurance, System Security Engineering, Configuration
Management, Anti-Tamper, Firmware, and one on concerning Internal and External Inter-
faces.

Some of the examples provided do not offer specific clauses but rather discuss the issues that
need to be addressed, while others are examples of existing contract clauses that are in use by
components of the DoD or other government agencies to address some software assurance
issues.

The important point is to remember that if you want a contractor to follow a particular approach or
report and discuss issues dealing with software assurance in a particular manner, specify that
approach or report and require the discussion of those issue in the contract, deliverables, and
incentive plan. In order to accomplish that, we must show to the contractor that the government

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-3

values quality and assurance by explicitly tying the delivery of quality software and software free
of vulnerabilities to financial rewards and delivery criteria.

We must not sacrifice critical aspects of quality for reduced cost or improved schedule when those
diluted requirements put the operational integrity of the software in question. In order for software
to support the mission(s) it is planned to support, we must give the contractor good technical
requirements (e.g., resilient design), require good practices (e.g., use code inspections), structure
deliverables to require reporting issues in a standards-based manner (with CVEs, CWEs, and
CAPECs), and support quality both initially at the time of delivery and in operation and sus-
tainment.

2.1 Section I clause example
A sample Section I clause would include instructions to the offeror to require all Software
Assurance requirements applied to the Prime contractor are also applied by the Prime contractor
to all sub-contractors. Example entries for section I could be:

Section I:
• The Software Assurance requirements detailed in this RFP shall apply to all of the

software delivered by the Prime contractor. Should the Prime contractor employ sub-
contractors, then the Prime contractor shall require all of the Software Assurance
requirements detailed in this RFP from each sub-contractor they employ for use on this
contract.

• All software assurance requirements defined herein shall apply to all reused code included
and delivered by the Prime contractor and its sub-contractors.

• All software assurance requirements defined herein shall apply to all reused objects, both
proprietary and open source, and their originating reused source code, whether that code
was included and delivered by the Prime contractor and its sub-contractors or just referred
to by them as the source of the reused object.

• The government will provide to the Prime contractor a list of the Top-n most important
CWEs. All software delivered by the Prime contractor shall be free of all of the CWEs in
the government’s Top-n CWE list. If a CWE in the government’s Top-n CWE list is
found to be present in the delivered software, the Prime contractor shall be liable only to
repair the defect within XX-days at the contractor’s expense.

2.2 Section L&M clause examples
It is important that for each instruction, condition, and notice to offerors included in Section L of
an RFP that there be a corresponding paragraph in Section M indicating how to evaluate the item
from Section L. An example entry for section L is:

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-4

Section L: Paragraph XX: Software Assurance Sample Report:

• The Offeror shall provide a report titled “Software Assurance Analysis”

• The “Software Assurance Analysis” report shall contain two sections:

o Section 1: Details how static analysis for Software Assurance is used within the
offeror’s development lifecycle in writing and in diagrammatic form for
illustrative purposes

o Section 2: Contained within a spreadsheet file, details the output from a minimum
of two software static analysis tools used by the offeror according to the following
table (not including the two samples provided):

• The “Software Assurance Analysis” report shall provide a static analysis of the legacy
(GFI) code provided <make this section as specific as possible to include file names or
code groups where possible>

• The “Software Assurance Analysis” report shall have a primary sort on Column 1 so that
all CWE-### entries are at the top of the report in ascending order by CWE #

• The “Software Assurance Analysis” report shall have a secondary sort on Column 2 so
that the highest priority results are at the top of the report

Section M: Paragraph XX: The government has run a static analysis tool on the specified
code to serve as a baseline to spot-check known violations in the sample source code
provided by the government as part of the bidder’s library.
The Software Assurance report will be graded as follows [100 points total + bonus points]:

• Report named correctly [10 points]

• Report formatted correctly [10 points]

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-5

• Report covers the specified source code from Section L paragraph 23 <note to reader:
this Section M item corresponds exactly to the specified Section L item> and provides text
describing detailing how, and in which part(s) of the software development lifecycle,
static analysis for Software Assurance is used [10 points]

• Report entries include CWE numbers [60 points]

o 1-5 unique CWE entries [10 points]

o 6-10 unique CWE entries [20 points]

o 11+ unique CWE entries [30 points]

• Report entries include non-CWE labeled violations [10 points]

• Bonus: 10 points if each of the following 10 CWEs are identified in the sample source
code. Note that there is no guarantee that the following CWEs are present in the sample
source code: <note to reader: This is a good place to insert your Top-N CWE list>

1. CWE-xxx

2. CWE-xxx

3. CWE-xxx

4. CWE-xxx

5. CWE-xxx

6. CWE-xxx

7. CWE-xxx

8. CWE-xxx

9. CWE-xxx

10. CWE-xxx

The challenge of gaining assurance about the software is not unique to DoD contracting.
Many have attempted to bring the risk from insecure and brittle software under control and
these previous efforts have covered some portion of what is now known as Software
Assurance. We have reviewed many of these previous works [24, 25, 26, 27, 28. 29. 30, 31,
32], as shown in Figure 11, and believe that many of them created content that could be
incorporated within today’s Software Assurance efforts as appropriate material for programs
to consider when looking for ideas on managing these risks, rather than starting from scratch.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-6

RFP Coverage

[2
4]

 S
ys

te
m

 S
ec

ur
ity

 E
ng

in
ee

rin
g

La
ng

ua
ge

 fo
r

T
D

P

ha
se

 R
F

P

[2
5]

 S
of

tw
ar

e
A

ss
ur

an
ce

 in
 A

cq
ui

si
tio

n
an

d
C

on
tr

ac
t

La
ng

ua
ge

[2
6]

 G
ui

de
 fo

r
In

te
gr

at
in

g
S

ys
te

m
s

E
ng

in
ee

rin
g

in
to

D

oD
 A

cq
ui

si
tio

n
C

on
tr

ac
ts

 s

[2
7]

 D
oD

 O
pe

n
S

ys
te

m
s

A
rc

hi
te

ct
ur

e
C

on
tr

ac
t

G
ui

de
bo

ok
 k

[2
8]

 S
of

tw
ar

e
A

ss
ur

an
ce

 in
 A

cq
ui

si
tio

n:
 M

iti
ga

tin
g

R
is

ks
 to

 th
e

E
nt

er
pr

is
e

[2
9]

 R
ec

om
m

en
de

d
S

of
tw

ar
e

A
ss

ur
an

ce
 A

cq
ui

si
tio

n
La

ng
ua

ge
 fo

r
S

pa
ce

 &
 M

is
si

le
 S

ys
te

m
s

C
en

te
r

[3
0]

 C
yb

er
 S

ec
ur

ity
 L

an
gu

ag
e

fo
r

In
fo

rm
at

io
n

T
ec

hn
ol

og
y

(I
T

)
R

eq
ui

re
m

en
ts

[3
1]

 D
oD

/V
A

 in
te

gr
at

ed
 E

le
ct

ro
ni

c
H

ea
lth

 R
ec

or
d

(iE
H

R
)

T
ec

hn
ic

al
 S

pe
ci

fic
at

io
ns

 S
um

m
ar

y

[3
2]

 O
W

A
S

P
 S

ec
ur

e
S

of
tw

ar
e

C
on

tr
ac

t A
nn

ex

C- Description

J – Top Level Schedule

J – Prelim. Performance Spec.

J – Program WBS

J – SOO/SOW

J – SEP

J – CDRLS

J – List of Attachments

L – Instruction to Offerors

M – Evaluation Factors

Figure 11: Guidance Coverage Comparisons

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-7

3 Use of Automated Detection Software Tools

Identifying most CWEs by hand, or visual inspection, is very difficult, time-consuming, and
error-prone. The use of automated tools is needed to effectively find these types of issues in
software and your contract should say this explicitly, but must be supplemented with other
types of assessment, such as attack surface analysis, a security review of the CONOPs for the
application, an architecture review, a design review, fuzz testing, running misuse and abuse
test cases, running dynamic analysis tools and web testing tools, conducting pen testing, as
well as blue teams and red teams assessment testing of the live application, with the goal is to
document the weaknesses targeted by these activities or the attack patterns
emulated/simulated/practiced and account for the coverage/completeness of the
weakness/attack spaces being addressed [33, 34]. By understanding the coverage of these
various types of assessment, as shown in Figure 12, of the different types of assessment with
respect to the CWE corpus a mixture of them can be constructed to cover the CWEs of most
concern, i.e., the Top-N CWEs that are important to you and the mission the application is
supporting, as illustrated in Figure 13.

 Figure 12: Utilizing CWE Coverage Claims Figure 13: Covering the Most Important CWEs

Automated software assurance tools must be executed on the entire code base and other
assessment approaches may need access to other aspects of the system. Frequently, a
contract may only cover an incremental addition to an existing codebase or a subsystem. In
these cases the software assurance assessment approaches used should still be applied to the
entire codebase and the full system even though the development contract for the new
additional section of software code/functionality would only require the repair of defects in
the newly written code. The point of assessing all of the system with the software assurance
assessment is for the government to gain insight into the software assurance defects in the
entire system. This provides the program manager the insight to existing risk within the

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-8

software release. In a similar vein, the same issues and responsibilities exist for Foreign
Military Sales (FMS) code releases as for US Government use software releases.

The DISA STIGS [35] describe in section 5 and specifically 5.4, describe that automatic
static analysis should be applied to all of the source code to identify hidden vulnerabilities
and weaknesses in the code base.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-9

4 Deliverables: [from the EM-RFP]

[Note: The following table includes a set of CDRLs and the associated Data Item
Descriptions (DIDs) that the Program office may include. The selection of the CDRLs can
be tailored by the chief engineer based on individual program needs/requirements.]

CDRL # CDRL Title
Data Item Description

(see ASSIST)

SWA001
Technical Report/Study Services (Software
Assurance Evaluation Report)

DI-MISC-80508B

SWA002
Technical Report/Study Services (Software
Assurance Case)

DI-MISC-80508B

SWA003
Technical Report/Study Services
(Vulnerability Assessment Report)

DI-MISC-80508B

SWA004 Security Test Plan DI-NDTI-81351

SWA005
Technical Report/Study Services (Security
Test Report)

DI-MISC-80508B

Table 1: CDRL List

4.1 Attachment 1: Software Assurance Evaluation Report Template
[From EM-RFP]

4.1.1 Assessment Report

• Executive Summary
• Objectives and Technical Scope

• Assessment Approach

• Report of Findings

• Vulnerability Descriptions
• Recommendations for Mitigation

OR

4.1.2 Executive Summary

1 Overview
1.1 Objectives
1.2 Technical Scope
1.3 Participants
1.4 Assessment Approach

2 System Overview
3 Security Analysis

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-10

3.1 Critical Findings
3.2 Major Findings
3.3 Minor Findings

4 Recommendations
4.1 Application Risk Assessment Recommendations
4.2 Detailed Risk Assessment (DRA) Recommendations
4.3 Software Vulnerability Assessment (RTA) Recommendations
4.4 Database Security and Compliance Recommendations

Appendix A: Extract of Software Application Tool Scan Results
Appendix B: Extract of Database Tool Scan Results
Appendix C: Security Findings Issue Descriptions
Appendix D: Glossary of Terms

4.2 Software Assurance in CDRL
The CDRL review should occur prior to software acceptance, and at each delivered software
set for evaluation:

•

•

•

•

•

The CDRL documents which CWEs, CVEs, CAPECs and software assurance critical
violations are absent and present in the delivery-candidate source code. This requires the
government to have assessed and defined which CWEs are most important to the project in
rank order prior to the CDRL definition. Once this ranked-list of CWEs is created it can be
modified throughout the software development lifecycle as needed by the specific program.
An example of why you would change the ordered list of CWE might be the discovery of a
new critical CWE that affects your program. This new CWE did not exist during the
creation of the first Top-N CWE list for your program but is a critical issue that needs to be
resolved. This ranked CWE Top-N list must be placed on contract (with appropriately
defined Contract Language). The ranked CWE list is sub listed to include a schedule of:

1. CWEs must not be present in the released software
2. CWEs should be removed from the released software
3. CWEs can be removed from the released software
4. All other CWEs are considered acceptable risks by the government team

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-11

The above categories can be tied to award fee, or appropriate incentive fee, for the contractor
to use in guiding them to produce the highest quality software within the budget and time
constraints of the project.

A milestone event should be added to the development milestone list which occurs after
CDR and before TRR (and software acceptance). This milestone event would contain the
following entrance and exit criteria:

• Entrance Criteria: The software developer must submit a report/CDRL to the

government entitled “Software Assurance” which defines how the software was

developed and verified for software assurance and provides a detailed report of the

CWEs, and critical vulnerabilities, present in the delivered software with an

adjudication of each CWE, and software assurance critical vulnerability, in the

software.

• Exit Criteria: The Government validates that all of the CWEs, and software

assurance critical violations, as defined by the government on contract are absent

from the delivered source code. If the software delivered as described in the report

satisfies the government requirements (on contract) then the exit criteria has been

met. If the exit criteria has not been met then this milestone remains open and the

contractor must repair the software per the government’s direction to remove the

noted CWEs and software assurance critical violations and both update the CDRL

and resubmit the software and report for evaluation.

The Government is responsible for defining which CWEs, in priority order, are to be absent
from the delivered software as well as what constitutes a software assurance critical
vulnerability.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-12

5 Incentive and award fees

There are several methods being discussed to assist in incentivizing software development
contractors to produce higher quality code through software assurance. Each method
depends on the contract type being used. For example, one method for an award fee contract
is to tie their award fee to the proven absence of your specific Top-N CWEs from your Top-
25 CWE list.

X% of the Award Fee for the Contractor is tied to the proven eradication of
all items on the Top-25 list

Top-1 through Top-5 ==> 0% of X%
Top-1 through Top-10 ==> 20% of X%
Top-1 through Top-15 ==> 40% of X%
Top-1 through Top-20 ==> 60% of X%
Top-1 through Top-25 ==> 100% of X%

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-13

6 Liability
If the contract is written that way, the software developer will only be liable to repair the defects in
the software that they, or their subcontractors, have written, when those defects are listed in the
government’s Top-n CWE list and only to the extent of the software development and testing
required to assure the defect has been repaired. The software developer will not be held liable for
defects in software, which they, or their subcontractors, did not write or were responsible for. The
exception to this rule applies to open source software for which the software developer, or their
subcontractors, made the decision to include into the software product. In this case the software
developer, or their subcontractors, shall be liable to repair only the defects in the open source code
software that are listed in the government’s Top-n CWE list.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-14

7 References
[1] National Defense Authorization Act for Fiscal 2013, Public Law 112–239, Section 933,

Jan. 2013 http://www.gpo.gov/fdsys/pkg/PLAW-112publ239/pdf/PLAW-
112publ239.pdf

[2] USD(AT&L) Memorandum, Document Streamlining – Program Protection Plan (PPP),
July 18, 2011. http://www.acq.osd.mil/se/docs/PDUSD-ATLMemo-Expected-Bus-
Practice-PPP-18Jul11.pdf

[3] Program Protection Plan Outline and Guidance version 1.0, July 2011.
http://www.acq.osd.mil/se/docs/PPP-Outline-and-Guidance-v1-July2011.pdf

[4] Defense Acquisition Guidebook Chapter 13, Program Protection
https://acc.dau.mil/dag13

[5] Common Attack Pattern Enumeration and Classification (CAPEC™) - a publicly
available, community-developed list of common attack patterns along with a
comprehensive schema and classification taxonomy - to analyze environments, code,
and interfaces for common destructive attack patterns, http://capec.mitre.org/. CAPEC is
a catalog of attack patterns along with a comprehensive schema and classification
taxonomy focused on enhancing security throughout the software development lifecycle,
and to support the needs of developers, testers and educators. By providing a standard
mechanism for identifying, collecting, refining, and sharing attack patterns among the
software community, CAPEC provides for a more complete and thorough review of the
strength of our systems from the point-of-view of attackers.

[6] ITU-T Telecommunication Standardization Sector of ITU, X.1544 Series X: Data
Networks, Open System Communications and Security, Cybersecurity information
exchange – Event/incident/heuristics exchange, Common attack pattern enumeration and
classification, Apr. 2014 http://www.itu.int/rec/T-REC-X.1544-201304-I

[7] Fundamental Practices for Secure Software Development: A Guide to the Most
Effective Secure Development Practices in Use Today, Feb. 2011
http://www.safecode.org/publication/SAFECode_Dev_Practices0211.pdf

[8] Practical Security Stories and Security Tasks for Agile Development Environments, Jul.
2012 http://safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

[9] ISO/IEC TR 20004-1, Information technology — Security techniques — Refining
Software vulnerability analysis under ISO/IEC 15408 and ISO/IEC 18045 — Part 1:
Using publicly available information security resources, 2012
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=509
51

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-15

[10] ISO/IEC TR 20004-2, Information technology — Security techniques — Refining
software vulnerability analysis under ISO/IEC 15408 and ISO/IEC 18045 — Part 2:
CWE and CAPEC based software penetration testing.

[11] NIST SP800-51 revision 1, Guide to Using Vulnerability Naming Schemes, Feb 2011
(http://csrc.nist.gov/publications/nistpubs/800-51-rev1/SP800-51rev1.pdf

[12] NIST SP800-53 revision 4, Security and Privacy Controls for Federal Information
Systems and Organizations, Apr 2013
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf

[13] Office of the Deputy Assistant Secretary of Defense (ODASD) Systems Engineering
(SE) Trusted Systems and Networks (TSN) Analysis, June 2014
http://www.acq.osd.mil/se/docs/Trusted-Systems-and-Networks-TSN-Analysis.pdf

[14] Office of the Deputy Assistant Secretary of Defense (ODASD) Systems Engineering
(SE) Software Assurance Countermeasures in Program Protection Planning, March 2014
http://www.acq.osd.mil/se/docs/SwA-CM-in-PPP.pdf

[15] Defense Acquisition Guidebook Chapter 13, Program Protection, May 2013
https://acc.dau.mil/docs/dag_pdf/dag_ch13.pdf

[16] Institute for Defense Analyses (IDA) State-of-the-Art Resources (SOAR) for Software
Vulnerability Detection, Test, and Evaluation, Jul 2014
(http://www.acq.osd.mil/se/docs/P-5061-software-soar-mobility-Final-Full-Doc-
20140716.pdf)

[17] Common Weakness Enumeration (CWE™) - A Community-Developed Dictionary of
Software Weakness Types - to examine software architectures, designs, and source code
for weaknesses. http://cwe.mitre.org. Targeted to developers and security practitioners,
CWE) is a formal or dictionary of common software weaknesses created to serve as a
common language for describing software security weaknesses in architecture, design,
or code; serve as a standard measuring stick for software security tools targeting these
weaknesses, and to provide a common baseline standard for weakness identification,
mitigation, and prevention efforts.

[18] ITU-T Telecommunication Standardization Sector of ITU, X.1524 Series X: Data
Networks, Open System Communications and Security, Cybersecurity information
exchange – Event/incident/heuristics exchange, Common weakness enumeration, Mar.
2012 http://www.itu.int/rec/T-REC-X.1524-201203-I/

[19] CWE/SANS Top 25 Most Dangerous Software Errors - http://cwe.mitre.org/top25/. The
Top 25 is a consensus list of the most significant software errors that can lead to serious
software vulnerabilities. The errors are dangerous because they frequently will allow
attackers to completely take over the software, steal data, or prevent the software from
working at all. The Top 25 is the result of collaboration between the SANS Institute,

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-16

MITRE, and many top software security experts in the US and Europe and leverages
experiences in the development of the SANS Top 20 attack vectors and MITRE’s CWE.

[20] Common Vulnerabilities and Exposures (CVE®) - The Standard for Information
Security Vulnerability Names. http://cve.mitre.org/. International in scope and free for
public use, CVE is a dictionary of publicly known information security vulnerabilities
and exposures. CVE’s common identifiers enable data exchange between security
products and provide a baseline index point for evaluating coverage of tools and
services.

[21] ITU-T Telecommunication Standardization Sector of ITU, X.1520 Series X: Data
Networks, Open System Communications and Security, Cybersecurity information
exchange – Event/incident/heuristics exchange, Common vulnerabilities and exposures,
Jan. 2014 http://www.itu.int/rec/T-REC-X.1520-201401-I

[22] Software Product Liability: Understanding and Minimizing the Risks and Michael D.
Scott, Tort Liability for Vendors of Insecure Software: Has the Time Finally Come?,
Berkeley Technology Law Journal (BTLJ) Volume 5, 67 Md. L. Rev. 425, 2008.
http://btlj.org/1990/05/26/volume-5-issue-1-spring-1990/

[23] AFLCMC/EZC – Engineering Model RFP Language, Hanscom Air Force Base, MA,
November 2012.

[24] “System Security Engineering Language for TD Phase RFP” - Deputy Assistant
Secretary of Defense for Systems Engineering (DASD(SE)). 2014. “Suggested
Language to Incorporate System Security Engineering for Trusted Systems and
Networks into Department of Defense Requests for Proposals.” Washington, D.C.:
DASD (SE). http://www.acq.osd.mil/se/docs/SSE-Language-for-TSN-in-DoD-RFPs.pdf

[25] Software Assurance in Acquisition and Contract Language Acquisition and
Outsourcing, Volume I, Version 1.2, May 18, 2012 https://buildsecurityin.us-
cert.gov/swa/software-assurance-pocket-guide-series#acquisition

[26] Guide for Integrating Systems Engineering into DoD Acquisition Contracts, version 1.0,
December 11, 2006 http://www.acq.osd.mil/se/docs/Integrating-SE-Acquisition-
Contracts_guide_121106.pdf

[27] DoD Open Systems Architecture Contract Guidebook, version 1.1, June 2013
https://acc.dau.mil/osaguidebook

[28] Software Assurance in Acquisition: Mitigating Risks to the Enterprise, National Defense
University Press. Polydys, M. & Wisseman, S., 2009. http://www.dtic.mil/cgi-
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA495389

[29] Recommended Software Assurance Acquisition Language for Space & Missile Systems
Center, HQ Space and Missile Systems Center, SMC/ENP, September 2015.

Working Papers. Distribution Statement A: Approved for Public Release.

UNCLASSIFIED

2-17

[30] USTRANSCOM - Information Assurance/Cyberspace Operations Defense Functional
Requirements, Cyber Security Language for Information Technology (IT) Requirements
http://www.transcom.mil/about/org/tccs/Cyber_Defense_IT_Contract_Language.pdf

[31] DoD/VA integrated Electronic Health Record (iEHR) Technical Specifications
Summary, sections 6.5.1 through 6.5.7, Version 2.2, June 17, 2013.

[32] Open Web Application Security Project, OWASP Secure Software Contract Annex,
https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex

[33] Deputy Assistant Secretary of Defense for Systems Engineering and Department of
Defense Chief Information Officer, Software Assurance Countermeasures in Program
Protection Planning, March 2014. http://www.acq.osd.mil/se/docs/SwA-CM-in-PPP.pdf

[34] Integrated Analysis and Reporting In Multiple Tools - What cybersecurity and
robustness testing tool manufactures should be building towards, 2015.
https://interact.gsa.gov/sites/default/files/Mon%20AM2-
Integrated%20Analysis%20and%20Reporting%20In%20Multiple%20Tools%20V%208
-30-2015_MVE%20-RAM.pdf

[35] DISA Application Security and Development Security Technical Implementation Guide
(STIG), Version 3, Rel.10”, 23 January 2015. http://iase.disa.mil/stigs/app-security/app-
security/Pages/index.aspx

Working Papers. Distribution Statement A: Approved for Public Release.

