Social and Economic Characteristics of Currently Unmarried Women With a Recent Birth: 2011

American Community Survey Reports

By Rachel M. Shattuck and Rose M. Kreider Issued May 2013
ACS-2 1

INTRODUCTION

Births to women living in the United States are tracked throughout the year by the National Vital Statistics System (NVSS), which is overseen by the National Center for Health Statistics (NCHS). While the NVSS provides administrative counts of births in the United States and basic characteristics of the mothers such as age, race, and marital status, other characteristics of the mother may provide a fuller profile of differences among groups of mothers. ${ }^{1}$ This report focuses on survey data from the American Community Survey (ACS) that is unavailable in administrative birth records and highlights the characteristics of currently unmarried women who report having had a birth in the last year. ${ }^{2}$

The percentage of U.S. births to unmarried women has been increasing steadily since the 1940s and has increased even more markedly in recent years. According to NCHS, the birth rate for unmarried women in 2007 was 80 percent higher than it was in 1980 and increased 20 percent between 2002 and 2007. ${ }^{3}$ Trends in nonmarital fertility reflect changing norms regarding sexual behavior and family formation. The increase in nonmarital fertility may be due to both an increase in pregnancies conceived outside of marriage and to a decrease in marriage rates overall. Social scientists, journalists, and policy makers consider nonmarital

[^0]fertility to be an important topic because it is linked to measures of child well-being. ${ }^{4}$

Births outside of marriage are often associated with disadvantage for both children and their parents. Women and men who have children outside of marriage are younger on average, have less education, and have lower income than married parents. ${ }^{5}$ Children who are born to unmarried parents are more likely to live in poverty and to have poor developmental outcomes. ${ }^{6}$ Shifts away from childbearing in the context of marriage may be largely due to an increase in cohabitation. According to one estimate, two-fifths of all children in the United States will live in a cohabiting household by age 12, and this proportion continues to grow. ${ }^{7}$ The poorer developmental and behavioral outcomes experienced by children living in cohabiting households may be due in part to family instability. ${ }^{8}$ An estimated 40

[^1]percent of children may see their parents break up by the time they are $15 .{ }^{9}$

The data analyzed in this report come from the 2011 ACS. This report discusses women aged 15 to 50 who gave birth in the last year and who were unmarried at the time of the survey. ${ }^{10}$ Estimates of numbers and percentages of recent births to unmarried women are presented at the national and state levels, with an additional table with metropolitan area level estimates provided on the Internet. The mothers discussed in this report include both women who do not live with the father of their child and women in cohabiting unions living in households in which the father of the child may be present.

NATIONAL FINDINGS

This section presents nationallevel estimates and explains how the ACS estimates differ from the administrative data published by NCHS. In 2011, 4.1 million women reported that they had a birth in the last year (see Table 1). Of these women, 35.7 percent were unmarried at the time of the survey. ${ }^{11}$ The percentage of women who had a birth in the last year and who were unmarried has been tracked in the ACS since 2005, when an estimated 30.6 percent of recent births were to unmarried women.

National-level ACS estimates of the percentages of women with a birth in the last year who are unmarried, as well as state-level estimates discussed later in this report, differ from the NCHS vital statistics

[^2]
What Is The American Community Survey?

The American Community Survey (ACS) is a nationwide survey designed to provide communities with reliable and timely demographic, social, economic, and housing data for the nation, states, congressional districts, counties, places, and other localities every year. It had a 2011 sample size of about 3.3 million addresses across the United States and Puerto Rico and includes both housing units and group quarters (e.g., nursing facilities and prisons). The ACS is conducted in every country throughout the nation and every municipio in Puerto Rico, where it is called the Puerto Rico Community Survey. Beginning in 2006, ACS data for 2005 were released for geographic areas with populations of 65,000 and greater. For information on the ACS sample design and other topics, visit <www.census.gov/acs/www>.
estimates of nonmarital births for two main reasons. First, while the NCHS's vital statistics system records information on all births, the ACS is a survey, and while it is nationally representative, it does not have information on every birth that occurred in the United States. Second, the time frames covered by vital statistics and the ACS are quite different. Birth records reported through the vital statistics system are collected at the time of the birth itself and reported for a 1-year period. The ACS interviews respondents throughout a calendar year, asking them whether they had a birth in the 12 months prior to the interview. So births reported in the 2011 1-year ACS data could have occurred as early as January 2010 or as late as December 2011.

The difference in timeframe affects other characteristics as well, including marital status and place of residence. ACS survey respondents report their marital status at the time of the interview, which may differ from their marital status at the time of the birth. Thus it is possible that some of the respondents who indicate in the ACS that they are unmarried and had a birth in the last 12 months may have been married at the time of the birth
even though they were unmarried at the time of the survey. It is also possible that some of the respondents who indicated that they are married and had a birth in the last year were unmarried at the time of the birth and got married before the survey date. Another source of differences between vital statistics counts and ACS estimates is that birth certificates are filed at the place where the birth occurred, while the ACS records the place the mother is living at the time of the survey.

Despite these differences, the ACS offers the important advantage of collecting social, demographic, and economic information about the women to whom these births occurred and the households in which they lived. We discuss some of these characteristics below, before looking at the geographic variation by state and metropolitan area. ${ }^{12}$

[^3]Table 1.
Recent Births to Unmarried Women Aged 15 to 50, by State: 2011
For information on confidentiality protection, sampling error, nonsampling error, and definitions, see www.census.gov/acs/www

State	Total		Nonmarital births		Percent nonmarital births	
	Number	Margin of error ${ }^{1}$	Number	Margin of error ${ }^{1}$	Percent	Margin of error ${ }^{1}$
U.S. total. .	4,113,472	38,124	1,467,435	22,785	35.7	0.5
Alabama	70,601	4,956	28,385	2,828	40.2	3.5
Alaska	12,883	2,123	4,573	1,155	35.5	7.7
Arizona	84,696	6,441	33,440	4,002	39.5	3.5
Arkansas	36,586	3,760	13,167	2,092	36.0	4.3
California	518,722	12,551	175,858	7,386	33.9	1.1
Colorado	75,261	5,050	21,980	2,729	29.2	3.1
Connecticut	39,770	3,134	15,167	2,324	38.1	4.2
Delaware	10,066	1,528	4,106	1,099	40.8	8.3
District of Columbia .	7,070	1,539	3,591	1,117	50.8	10.1
Florida .	206,786	9,924	82,756	6,766	40.0	2.4
Georgia	135,886	6,729	52,417	4,205	38.6	2.5
Hawaii	22,942	2,229	6,804	1,428	29.7	5.5
Idaho.	27,418	3,145	8,210	1,836	29.9	5.7
Illinois.	161,456	7,195	58,402	4,639	36.2	2.0
Indiana.	88,441	4,365	34,754	2,793	39.3	2.6
lowa.	37,621	2,983	11,847	1,798	31.5	3.8
Kansas.	43,443	3,262	13,239	1,795	30.5	3.7
Kentucky	56,213	3,774	21,347	2,754	38.0	3.9
Louisiana.	65,280	4,243	31,761	3,841	48.7	4.5
Maine.	13,843	1,731	4,577	1,000	33.1	5.8
Maryland	78,351	4,707	30,221	3,134	38.6	3.2
Massachusetts.	79,641	4,641	26,201	2,833	32.9	3.1
Michigan	122,324	5,410	45,304	3,400	37.0	2.3
Minnesota	74,548	4,049	22,873	2,464	30.7	2.7
Mississippi	36,711	3,079	17,673	2,290	48.1	4.3
Missouri.	78,269	4,764	28,929	3,213	37.0	3.1
Montana.	12,558	1,567	2,988	865	23.8	6.0
Nebraska .	25,777	2,129	6,509	962	25.3	3.3
Nevada	35,270	3,347	12,121	1,895	34.4	4.3
New Hampshire.	14,182	2,156	2,779	837	19.6	5.4
New Jersey	108,843	5,368	30,917	2,711	28.4	2.2
New Mexico.	29,765	3,335	14,181	2,370	47.6	6.0
New York	247,202	8,018	86,053	5,379	34.8	1.9
North Carolina .	133,512	7,165	48,543	4,698	36.4	3.0
North Dakota	10,400	1,586	3,131	827	30.1	6.6
Ohio.	142,781	5,673	56,278	3,795	39.4	2.1
Oklahoma	53,718	2,766	21,333	2,265	39.7	3.3
Oregon.	49,012	4,085	15,256	2,214	31.1	3.8
Pennsylvania	147,720	5,553	59,696	3,515	40.4	1.9
Rhode Island	13,199	1,918	5,844	1,265	44.3	6.4
South Carolina.	68,937	4,391	30,275	3,445	43.9	3.8
South Dakota.	11,258	1,892	4,210	1,061	37.4	7.5
Tennessee .	85,632	4,922	32,345	3,507	37.8	3.1
Texas.	384,330	12,633	137,495	7,636	35.8	1.5
Utah.	51,272	3,509	7,559	1,446	14.7	2.5
Vermont.	6,255	1,016	1,767	482	28.2	7.1
Virginia.	110,163	5,732	34,591	3,114	31.4	2.5
Washington	92,152	4,902	25,538	2,538	27.7	2.2
West Virginia	18,305	2,228	6,518	1,339	35.6	5.7
Wisconsin	69,390	3,718	21,713	2,089	31.3	2.5
Wyoming	7,011	1,344	2,213	791	31.6	8.6

[^4]
CHARACTERISTICS OF UNMARRIED WOMEN WITH A RECENT BIRTH

Education: Among women who had a birth in the last year, those with more education had lower percentages of nonmarital births (Table 2). Although births to women with
less than a high school degree constituted the smallest number of total births by educational group out of the national total, these women had the largest percentage unmarried (57.0 percent) compared with the other education groups. Women with a bachelor's degree or higher who had a birth in the last
year had the lowest level who were unmarried, 8.8 percent.

Household income: Percentages of women with a birth in the last year who were unmarried decreased with each sequentially higher income level. Women with a birth in the last year at the lowest

Table 2.

Recent Births to Unmarried Women Aged 15 to 50, by Selected Characteristics: 2011

For information on confidentiality protection, sampling error, nonsampling error, and definitions, see www.census.gov/acs/www

Characteristics	Total births		Nonmarital births		Percent nonmarital births	
	Number	Margin of error ${ }^{1}$	Number	Margin of error ${ }^{1}$	Percent	Margin of error ${ }^{1}$
U.S. total.	4,113,472	38,125	1,467,435	22,785	35.7	0.5
EDUCATIONAL ATTAINMENT						
Less than high school	675,127	16,572	384,605	11,099	57.0	1.1
High school graduate.	941,463	16,769	460,974	12,446	49.0	1.0
Some college.	1,295,505	21,041	515,912	13,326	39.8	0.7
Bachelor's degree or more	1,201,377	19,043	105,944	6,032	8.8	0.5
HOUSEHOLD INCOME ${ }^{2}$						
Less than \$10,000.	314,630	9,766	216,777	8,709	68.9	1.5
\$10,000 to \$14,999	190,684	6,978	116,416	6,133	61.1	2.1
\$15,000 to \$24,999	419,568	12,612	221,662	8,141	52.8	1.4
\$25,000 to \$34,999	406,314	12,153	188,907	7,850	46.5	1.3
\$35,000 to \$49,999	546,395	14,937	215,029	9,390	39.4	1.3
\$50,000 to \$74,999	748,000	16,248	221,478	10,035	29.6	1.1
\$75,000 to \$99,999	533,085	13,094	117,818	7,286	22.1	1.2
\$100,000 to \$149,999	558,394	13,624	102,425	6,440	18.3	1.0
\$150,000 to \$199,999	197,011	8,056	27,250	3,374	13.8	1.5
\$200,000 and above	166,796	7,549	15,045	2,186	9.0	1.2
AGE						
15 to 19	251,460	9,487	216,436	9,153	86.1	1.2
20 to 24	871,445	14,724	535,779	14,226	61.5	1.0
25 to 29	1,094,949	18,613	349,305	10,714	31.9	0.8
30 to 34	1,032,090	16,703	199,462	8,237	19.3	0.7
35 to 39	565,148	13,991	98,284	6,218	17.4	1.0
40 to 44	208,275	8,159	43,266	3,566	20.8	1.5
45 to 50	90,105	5,040	24,903	2,798	27.6	2.7
RACE AND HISPANIC ORIGIN						
White alone	2,812,958	34,048	820,975	18,327	29.2	0.5
White, non-Hispanic.	2,209,244	29,691	575,107	15,915	26.0	0.6
Black alone	595,983	12,796	403,820	11,025	67.8	1.2
American Indian or Alaska Native alone	46,902	3,502	30,040	3,015	64.0	3.5
Asian alone	243,814	8,865	27,514	3,180	11.3	1.2
Native Hawaiian and Other Pacific Islander alone.	11,602	2,089	4,703	1,436	40.5	9.6
Some Other Race alone	289,582	11,028	130,111	7,164	44.9	1.9
Two or More Races	112,631	5,777	50,272	3,693	44.6	2.7
Hispanic (any race)	944,717	21,698	405,836	12,987	43.0	1.1
NATIVITY						
Native	3,264,025	33,520	1,266,807	20,939	38.8	0.5
Foreign born .	849,447	18,705	200,628	8,983	23.6	0.9

[^5]household income level-less than \$10,000 per year-had the highest percentage, 68.9 percent, who were unmarried. In contrast, just 9 percent of women whose household income in 2010 was \$200,000 or above and had a recent birth were unmarried.

Age: Younger mothers had higher percentages of nonmarital births. Among women aged 15 to 19 with a birth in the last year, 86.1 percent were unmarried, while 61.5 percent of women aged 20 to 24 were unmarried. Women aged 35 to 39 with a birth in the last year had the lowest percentage unmarried, at 17.4 percent.

Race and Hispanic Origin: Percentages of women with a birth in the last year who were unmarried varied by race and Hispanic origin. Among those who listed their race as Black or African-American alone and who had a birth in the last year, 67.8 percent (the highest percentage) were unmarried.

Among those who listed their race as Asian alone and who had a birth in the last year, 11.3 percent (the lowest percentage) were unmarried. Forty-three percent of recent births to Hispanic women and 26 percent of recent births to nonHispanic Whites were to unmarried women.

Nativity: Native-born women had a higher percentage of nonmarital births than women born outside of the United States. While 38.8 percent of native-born women with a recent birth were unmarried, this was true of 23.6 percent of foreignborn women with a recent birth.

STATE FINDINGS

Table 1 shows estimates of the percentage of recent births to unmarried women by state. The areas with the highest percentages of currently unmarried women who
had a birth in the last year include the District of Columbia (50.8 percent), Louisiana (48.7 percent), Mississippi (48.1 percent), and New Mexico (47.6 percent). ${ }^{13}$ Among the states with the lowest percentage of women with a birth in the last year who were unmarried were New Hampshire (19.6 percent) and Utah (14.7 percent). ${ }^{14}$

State-level percentages of unmarried women with a birth in the last year are also shown in the map in Figure 1. Coastal states in the south-Louisiana, Mississippi, Alabama, Georgia, Florida, and South Carolina-had levels that were significantly higher than the national average. In contrast, states on the west coast-Washington, Oregon, and California—had significantly lower proportions of recent births that were to unmarried women than in the nation as a whole. Another group of states in the middle of the country also had levels that were below the national average, including Utah, Colorado, Kansas, Nebraska, lowa, Minnesota, and Wisconsin.

Research has shown that income is negatively related to the likelihood of having a nonmarital birth. ${ }^{15}$ Table 3 shows state-level estimates of income, poverty, and educational attainment. It shows the median household income for all people living in each state, as well as the percentage of individuals in each state who lived in households

[^6]below the poverty level. The Pearson's r correlation between the percentage of recent births that were to unmarried women and the percent of people in households below the poverty line was about . 6 at the state level. It also shows the percentage of all women aged 15 to 50 within each state who had a bachelor's degree or more and the percentage of all women aged 15 to 50 within each state who had less than a high school degree. Educational attainment is linked, on average, to earnings and economic well-being. ${ }^{16}$

Since, on average, higher income tends to be associated with a lower likelihood of nonmarital births, we expect that states with higher median income and a lower percentage in poverty would also have lower percentages of unmarried women with a recent birth. Women with more education are less likely to have a nonmarital birth, so we would expect states with high proportions of women with a bachelor's degree to have lower proportions of recent births to unmarried women. Mississippi's poverty rate was among the highest (21.2 percent), while it had the lowest median income $(\$ 36,919)$ and one of the lowest percentages of women aged 15 to 50 with a bachelor's degree or more (17.9 percent). As shown earlier in Table 1, Mississippi also had one of the highest percentages of women with a recent birth who were unmarried.

Another state with one of the highest proportions of recent births to unmarried women-New Mexicohad a high percentage of residents

[^7]
living in poverty (20.3 percent) $)^{17}$ and a high percentage of women aged 15 to 50 with less than a high school degree (22.5 percent). It was also among the states with a lower percentage of women aged 15 to 50 with a bachelor's degree or more (19.6 percent). In addition to its high level of nonmarital births, Louisiana also had a high poverty rate, with 19.3 percent of its residents living in poverty.

The exception was the District of Columbia which had a high proportion of births to unmarried women (50.8 percent) as well as one of the highest median incomes ($\$ 63,124$), one of the highest percentages of women aged 15 to 50 with a

[^8]bachelor's degree or more (50.2 percent), and one of the lowest percentages of women aged 15 to 50 with less than a high school degree (11 percent).

New Hampshire, which had one of the lowest percentages of nonmarital births also had one of the lowest percentages of its residents living in poverty (7.9 percent), as well as a relatively low percentage of women aged 15 to 50 with less than a high school degree (13 percent).

Statistical models allow the opportunity to assess the level of association among various characteristics simultaneously. Due to the high level of intercorrelation among the various income and education variables in Table 3, it is not advisable to put all of them into one model.

However, the model makes it possible to assess the relationship among the proportion of recent births to unmarried women and educational and income levels across states. By including a measure of the proportion of unmarried women in the model as well, we can control for that basic demographic condition, and assess the effects of education and income, net of the basic demography. The results of this regression model based on state levels, show that the proportion of women who have less than a high school degree in a state is positively associated with the level of recent births to unmarried women. The opposite relationship holds for income; states with higher median income have a lower proportion, in general, of recent births to unmarried women.

Table 3.
Recent Births to Unmarried Women Aged 15 to 50 by State, With Other State-Level Characteristics: 2011
For information on confidentiality protection, sampling error, nonsampling error, and definitions, see www.census.gov/acs/www

State	Percent nonmarital births		Median household income		Percent in poverty ${ }^{1}$		Percent of women 15-50 with a bachelor's degree or more		Percent of women 15-50 with less than a high school degree	
	Percent	Margin of error ${ }^{2}$	In 2011 dollars	Margin of error ${ }^{2}$	Percent	Margin of error ${ }^{2}$	Percent	Margin of error ${ }^{2}$	Percent	Margin of error ${ }^{2}$
U.S. total.	35.7	0.5	50,502	73	15.1	0.1	26.2	0.1	18.3	0.1
Alabama	40.2	3.5	41,415	550	18.0	0.5	20.8	0.6	19.5	0.6
Alaska	35.5	7.7	67,825	1,948	8.8	0.8	23.9	1.6	15.5	0.9
Arizona	39.5	3.5	46,709	554	17.9	0.6	21.4	0.6	21.7	0.6
Arkansas	36.0	4.3	38,758	761	18.2	0.6	18.8	0.7	18.8	0.7
California	33.9	1.1	57,287	279	15.2	0.2	25.8	0.2	22.6	0.2
Colorado	29.2	3.1	55,387	605	12.4	0.4	31.9	0.7	16.1	0.5
Connecticut	38.1	4.2	65,753	854	9.7	0.5	33.4	0.8	15.9	0.5
Delaware	40.8	8.3	58,814	1,586	10.6	0.9	26.9	1.5	16.1	1.1
District of Columbia	50.8	10.1	63,124	2,407	16.3	1.3	50.2	1.6	11.0	0.8
Florida	40.0	2.4	44,299	406	15.7	0.3	23.2	0.4	17.5	0.3
Georgia	38.6	2.5	46,007	454	17.9	0.4	25.0	0.6	19.2	0.5
Hawaii	29.7	5.5	61,821	1,035	10.4	0.9	26.0	1.0	13.0	0.7
Idaho	29.9	5.7	43,341	1,320	15.7	0.9	20.9	1.5	17.3	0.9
Illinois.	36.2	2.0	53,234	511	14.0	0.3	30.2	0.4	17.3	0.3
Indiana.	39.3	2.6	46,438	455	14.8	0.4	21.5	0.5	18.6	0.5
lowa.	31.5	3.8	49,427	693	11.8	0.4	26.0	0.8	15.3	0.5
Kansas.	30.5	3.7	48,964	756	12.7	0.5	28.2	0.7	16.4	0.5
Kentucky	38.0	3.9	41,141	464	17.9	0.6	20.9	0.8	17.9	0.6
Louisiana	48.7	4.5	41,734	528	19.3	0.5	19.7	0.8	20.1	0.7
Maine.	33.1	5.8	46,033	802	12.8	0.7	26.6	1.0	13.2	0.6
Maryland	38.6	3.2	70,004	804	9.0	0.4	34.4	0.6	14.8	0.4
Massachusetts.	32.9	3.1	62,859	902	10.5	0.4	36.6	0.6	14.3	0.4
Michigan	37.0	2.3	45,981	330	16.2	0.3	24.0	0.4	16.6	0.3
Minnesota	30.7	2.7	56,954	488	10.7	0.3	31.4	0.5	14.4	0.4
Mississippi	48.1	4.3	36,919	583	21.2	0.7	17.9	0.9	20.5	0.7
Missouri .	37.0	3.1	45,247	529	14.6	0.4	25.5	0.7	17.1	0.4
Montana.	23.8	6.0	44,222	1,078	13.2	0.9	25.7	1.5	13.9	0.9
Nebraska	25.3	3.3	50,296	687	12.2	0.6	27.1	1.0	15.7	0.6
Nevada	34.4	4.3	48,927	1,020	14.4	0.8	18.7	1.0	22.9	0.9
New Hampshire.	19.6	5.4	62,647	1,415	7.9	0.7	31.0	1.2	13.0	0.6
New Jersey	28.4	2.2	67,458	721	9.6	0.3	33.8	0.4	15.8	0.3
New Mexico	47.6	6.0	41,963	803	20.3	0.9	19.6	0.9	22.5	1.1
New York	34.8	1.9	55,246	398	14.6	0.2	32.6	0.3	17.6	0.2
North Carolina	36.4	3.0	43,916	519	16.6	0.4	25.4	0.6	17.8	0.4
North Dakota	30.1	6.6	51,704	1,260	11.0	0.8	28.0	1.6	12.0	0.8
Ohio.	39.4	2.1	45,749	319	15.3	0.3	23.6	0.4	16.7	0.3
Oklahoma	39.7	3.3	43,225	607	16.1	0.5	21.6	0.6	18.8	0.4
Oregon.	31.1	3.8	46,816	711	15.8	0.6	25.5	0.6	17.5	0.6
Pennsylvania	40.4	1.9	50,228	292	12.5	0.3	27.3	0.4	15.5	0.3
Rhode Island	44.3	6.4	53,636	1,699	13.2	0.9	27.9	1.4	16.0	0.9
South Carolina.	43.9	3.8	42,367	559	17.8	0.5	21.6	0.6	17.8	0.6
South Dakota.	37.4	7.5	48,321	1,598	12.5	0.9	24.8	1.3	16.8	1.2
Tennessee.	37.8	3.1	41,693	423	17.1	0.5	23.1	0.6	17.0	0.4
Texas	35.8	1.5	49,392	391	17.4	0.2	22.6	0.3	22.8	0.3
Utah.	14.7	2.5	55,869	805	12.7	0.7	22.1	0.8	16.9	0.6
Vermont.	28.3	7.1	52,776	1,420	10.3	0.9	32.0	1.4	12.1	0.7
Virginia.	31.4	2.5	61,882	507	10.5	0.3	32.9	0.5	15.0	0.4
Washington	27.7	2.2	56,835	569	12.6	0.3	26.8	0.6	16.6	0.4
West Virginia	35.6	5.7	38,482	875	17.2	0.8	19.3	1.0	17.5	0.9
Wisconsin	31.3	2.5	50,395	428	12.2	0.4	25.5	0.5	15.3	0.3
Wyoming	31.6	8.6	56,322	1,890	10.7	1.1	22.5	1.9	14.9	1.4

[^9] interval.

Source: U.S. Census Bureau, 2011 American Community Survey.

While the model does not explain all of the variance in recent births to unmarried women, it explains about 67 percent, indicating that educational level and income are important factors associated with the occurrence of recent births to unmarried women. Clearly, however, these two factors alone do not account for all of the variation that is observed across states. In short, there are other unmeasured factors which also affect the proportion of births to unmarried women at the state level.

METRO FINDINGS

Figure 2 shows percentages of women with a birth in the last year who are unmarried for the metropolitan statistical areas in the United States. ${ }^{18}$ Since having a birth in the 12 months prior to the survey is a relatively rare event, estimates of the proportions of these births that are to unmarried women can be quite variable, even at the metropolitan level. Because of this, we show only whether estimates differ significantly from the national average, rather than showing a range of values.

Among the metropolitan areas with estimates at least 10 percentage points higher than the national average are Flagstaff, Arizona (74.6 percent), Greenville, North Carolina (69.4 percent), Lima, Ohio (67.5 percent), Myrtle Beach-North Myrtle Beach-Conway, South Carolina (67.4 percent), and Danville, VA (67.3 percent). None of these estimates

[^10]Table 4.

Selected Metropolitan Statistical Areas With Among the Highest and Lowest Percentages of Recent Births to Unmarried Women Aged 15 to 50: 2011

For information on confidentiality protection, sampling error, nonsampling error, and definitions, see www.census.gov/acs/www

State	Percent nonmarital births	
	Percent	Margin of error ${ }^{1}$
U.S. total.	35.7	0.5
Among the highest ${ }^{2}$		
Flagstaff, AZ	74.6	15.2
Greenville, NC	69.4	15.2
Lima, OH	67.5	13.7
Myrtle Beach-North Myrtle Beach	67.4	17.9
Danville, VA	67.3	24.0
Brunswick, GA	66.2	35.2
Redding, CA	63.8	30.8
Monroe, LA	62.5	17.7
Sumter, SC	61.6	24.9
Albany, GA.	61.5	17.0
Among the lowest ${ }^{2}$		
Cheyenne, WY.	4.7	8.5
Palm Coast, FL	6.2	14.4
Jonesboro, AR.	8.0	12.8
Provo-Orem, UT	8.2	4.5
Missoula, MT	8.6	11.3
St. George, UT.	10.4	15.9
Logan, UT-ID .	10.7	10.3
Kennewick-Pasco-Richland, WA	12.2	10.4
Bremerton-Silverdale, WA .	12.5	8.1
Lake Havasu City-Kingman, AZ.	12.7	11.3

[^11]Source: U.S. Census Bureau, 2011 American Community Survey.
differs statistically from each other, and they also do not differ from estimates for some other metropolitan areas. But all of the areas listed above are significantly higher than the U.S. average value of 35.7 percent.

Among the metropolitan areas with percentages of unmarried women with a birth in the last year that are at least 10 percentage points below the national average are Provo-Orem, Utah (8.2 percent), Kennewick-Pasco-Richland, Washington (12.2 percent), Bremerton-Silverdale, Washington (12.5 percent), and Lake Havasu City-Kingman, Arizona (12.7
percent). None of these estimates differs statistically from each other, and they also do not differ from some estimates for other metropolitan areas. ${ }^{19}$ A complete list of percentages of women with a birth in the last year who were unmarried, for metropolitan areas is available in Table A available on the Internet at <www.census.gov/hhes/fertility /data/acs/>.

As demonstrated above at the state level, a statistical model can quantify the amount of association

[^12]
among several factors. The same model that was used for states was estimated for metropolitan areas and shows the same pattern of positive association between the proportion of women with less than a high school degree and the proportion of recent births to unmarried women. We also see the same negative association with income, such that metropolitan areas with higher median income have lower proportions of recent births to unmarried women, in general. With the larger number of metropolitan areas compared with states, there was an increase in the variance of the proportion of recent births to unmarried women. The model explains roughly 27 percent of the variance, less than was explained in the state-level model mentioned above. So, while the model shows women's educational levels and
household income to be related to the proportion of recent births to unmarried women over and above the area's proportion of unmarried women, it also demonstrates again that there are other factors related to the proportion of recent births to unmarried women.

SOURCE AND ACCURACY

The data presented in this report are based on the ACS sample interviewed in 2011. The estimates based on this sample approximate the actual values and represent the entire household and group quarters population. Sampling error is the difference between an estimate based in a sample and the corresponding value that would be obtained if the estimate were based on the entire population (as from a census). Measures of the sampling errors are provided in the form of
margins of error for all estimates included in this report. All comparative statements in this report have undergone statistical testing, and comparisons are significant at the 90 percent level unless otherwise noted. In addition to sampling error, nonsampling error may be introduced during any of the operations used to collect and process survey data such as editing, reviewing, or keying data from questionnaires. For more information on sampling and estimation methods, confidentiality protection, and sampling and nonsampling errors, please see the 2011 ACS Accuracy of the Data document located at <www.census.gov/acs /www/Downloads/data _documentation/Accuracy/ACS _Accuracy_of_Data_2011.pdf>.

[^0]: ${ }^{1}$ For a detailed comparison of NVSS data with ACS, see Appendix A on page 17 of the "Fertility of American Women: 2008" report available at <www.census.gov/prod/2010pubs/p20-563.pdf>.
 ${ }^{2}$ To access administrative birth data from the NVSS, go to <www.cdc.gov/nchs/births.htm>.
 ${ }^{3}$ Stephanie J. Ventura, "Changing Patterns of Nonmarital Childbearing in the United States," NCHS Data Brief No. 18 (May 2009).

[^1]: ${ }^{4}$ See Jason DeParle, "Two Classes, Divided by 'I Do’," New York Times, July 14, 2012 <www.nytimes.com/2012/07/15/us/two-classes -in-america-divided-by-i-do.html?pagewanted=all>.

 Cynthia Osborne and Sara McLanahan, "Partnership Instability and Child Well-Being," Journal of Marriage and Family 69.4 (November 2007).

 Jane Waldfogel, Terry-Ann Craigie, and Jeanne Brooks-Gunn, "Fragile Families and Child Well-Being," Future of Children 20.2 (Fall 2010).
 ${ }^{5}$ See Sara McLanahan, "Fragile Families and the Reproduction of Poverty," Annals of the American Academy of Political and Social Science 621 (January 2009).
 ${ }^{6}$ See Rebecca M. Ryan, "Marital Birth and Early Child Outcomes: The Moderating Influence of Marriage Propensity," Child Development 83.3 (May/June 2010).

 7 Sheela Kennedy and Larry Bumpass, "Cohabitation and Children's Living Arrangements: New Estimates from the United States," Demographic Research 19 (September 2008).
 ${ }^{8}$ R. Kelly Raley and Elizabeth Wildsmith, "Cohabitation and Children's Family Instability," Journal of Marriage and Family 66 (February 2004).

[^2]: ${ }^{9}$ Andrew Cherlin. 2005. The Marriage GoRound: The State of Marriage and the Family in America Today. Knopf.
 ${ }^{10}$ In this report, we use the term unmarried to refer to women who were widowed, divorced, or never married at the time of the survey.
 ${ }^{11}$ The majority of these women were never married. At the national level, 87 percent of the currently unmarried women with a recent birth were never married.

[^3]: ${ }^{12}$ For detailed tables showing characteristics of women with a birth in the last 12 months, search for "fertility" in American FactFinder: <http://factfinder2 .census.gov/faces/nav/jsf/pages /searchresults.xhtml?refresh=t>.

[^4]: ${ }^{1}$ Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error is in relation to the size of the estimate, the less reliable the estimate. This number when added to or subtracted from the estimate forms the 90 percent confidence interval.

 Source: U.S. Census Bureau, 2011 American Community Survey.

[^5]: ${ }^{1}$ Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error is in relation to the size of the estimate, the less reliable the estimate. This number when added to or subtracted from the estimate forms the 90 percent confidence interval.
 ${ }^{2}$ Only women living in households have household income. Women living in group quarters are not included.
 Source: U.S. Census Bureau, 2011 American Community Survey.

[^6]: ${ }^{13}$ These states also do not differ statistically from each other, and each of these states also does not differ statistically from some of the other states.

 14 Estimates for Utah and New Hampshire do not differ statistically from each other. The estimate for New Hampshire does not differ statistically from that of several other states.
 ${ }^{15}$ Lawrence L. Wu, "Effects of Family Instability, Income, and Income Instability on the Risk of a Premarital Birth," American Sociological Review 61.3 (June 1996).

 Saul D. Hoffman and Michael E. Foster, "Economic Correlates of Nonmarital Childbearing Among Adult Women," Family Planning Perspectives 29.3 (May/June 1997).

[^7]: ${ }^{16}$ Tiffany Julian and Robert Kominski, "Education and Synthetic Work-Life Earnings Estimates," American Community Survey Reports, U.S. Census Bureau, September 2011, available at <www.census.gov /prod/2011pubs/acs-14.pdf>.

[^8]: ${ }^{17}$ The percentage of residents in poverty in Mississippi and New Mexico does not differ statistically.

[^9]: ${ }^{1}$ This reflects the poverty level of the householder for all people in the listed geographic area.
 ${ }^{2}$ Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error is in relation to the size of the estimate, the less reliable the estimate. This number when added to or subtracted from the estimate forms the 90 percent confidence

[^10]: 18 By Census Bureau definition, metropolitan areas require the presence of a distinct city with 50,000 or more inhabitants or the presence of an urban area (more than a single city or town) with a total population of at least 100,000. For more information on the 366 metropolitan statistical areas, lists of these areas, and definitions, see
 <http://quickfacts.census.gov/qfd/meta /long_metro.htm>. Two metropolitan areas did not meet the population threshold of 65,000 in the ACS 20111-year file and so are not shown in this report: Carson city, NV, and Lewiston, ID-WA.

[^11]: Data are based on a sample and are subject to sampling variability. A margin of error is a measure of an estimate's variability. The larger the margin of error is in relation to the size of the estimate, the less reliable the estimate. This number when added to or subtracted from the estimate forms the 90 percent confidence interval.
 ${ }^{2}$ Estimates shown in this table may not differ statistically from one another or from estimates for other metropolitan statistical areas.

[^12]: ${ }^{19}$ Some other metropolitan areas also have estimates at least 10 percentage points below the national average but have a coefficient of variation of at least .6, and so are not discussed here.

