

Acquisition Directorate

Research, Development, Test & Evaluation

FY17 RDT&E Project Portfolio

UNCLAS | FY17 RDT&E Project Portfolio RDC | T. Girton | January 2017

Table of Contents – FY17 CG RDT&E Funded

Branch Area	Project #	Project	Slide #
	1108 (2017-8)	Cell Phone Location for Search and Rescue	6
	5711	Vectoring Over the Horizon-Cutter Boat (OTH-CB) for Non Complaint Vessel (NCV) Intercept	7
	5804	Tactical Communications to Enhance Coast Guard Operations	8
C4ISR	6208	Arctic Communications Technology Assessments	9
(Command,	7203	Mobile, Modular, Maritime Domain Awareness (M3DA)	10
Control,	7526	Hoax Location Systems and Methods	11
Communications, Computers,	7759	Evaluation of Potential CG Use of CubeSats	12
Intelligence, Surveillance and	7811	sUAS Direction Finding (DF) Payloads	13
Reconnaissance)	8105	Mobile Asset Tracking and Reporting During an IONS	14
Neconinaissance)	8113	Automatic Transport of SAR Patterns	15
	8114	Mobile Technology for Operational Efficiency	16
	8502 (2017-14)	Cybersecurity Vulnerabilities, Threats and Risk Mitigation Strategies for Coast Guard Surface and Air Assets	14 15 16 17 18 19
	9991	C4ISR Branch Support	18
	1101	Alternatives to Pyrotechnic Distress Signals	19
	2302 (2017-13)	Assessment and Technology Demonstration of Inertial Navigation System (INS) Technology	20
	2702	Develop an Environmentally Friendly Buoy Mooring System	21
E&W	2722	Western Rivers e-AtoN Technology Demonstration	22
(Environment	4202	Bureau of Safety and Environmental Enforcement (BSEE) Project SME Support (New)	23
and Waterways)	4701	Response to Oil in Ice	24
	4702	Detection and Mitigation of Oil within the Water Column	25
	4704	Improved In-Situ Burning (ISB) for Offshore Use	26
	4705	Oil Sands Products Spill Response	27
	4707	Shale Oil Preparedness and Response	28

Table of Contents – FY17 CG RDT&E Funded (cont.)

Branch Area	Project #	Project	Slide #
E&W	4708 (2017-12)	Oil Spill Response Technology Evaluation Process Research	29
(Environment	4710 (2017-26)	Nearshore and Inland Evaluation of the Estimated Recovery System Potential (ERSP) Calculator	30
and Waterways)	6211	Next Generation Arctic Navigational Safety Information System	31
Cont.	9993	Environment & Waterways (E&W) Branch Support	32
M&S COE	5676	Develop Innovative Interdiction Patrol Tactics	33
(Modeling &	7529 (2016-29)	Research into Navigational Safety Risk Modeling and Analysis Tool	34
Simulation	9365	Mass Migration Modeling and Analysis	35
Center of	9997	Modeling & Simulation (M&S) Center of Expertise (COE) Branch Support	36
Expertise)	N/A	Short Term Modeling & Simulation Support Efforts (M&S COE Tasks)	37
	4110	Diesel Outboard Development	38
	56411	Joint Non-Lethal Weapons Directorate Small Vessel Entanglement	39
	5674	Non-Lethal Impact Munitions (NLIM)	40
	5678	Non-Compliant Vessel Stopping Using Less-than-Lethal Radio Frequency Technologies	41
	5806	Evaluation of Helmet Wear for CG Personnel	42
	5921	Define and Communicate Exclusion Zones	43
	6210	Arctic Operations Support	44
Surface	6512 (2017-19)	Ice Condition (ICECON) Risk Assessment Tool(s)	45
	7758	Evaluation of Three-Dimensional (3D) Printing Technology for Coast Guard Applications	46
	7760 (2017-7)	Corrosion Control and Monitoring	47
	7805	Evaluation of WMEC 270' Pitch/RPM Schedules	48
	7812 (2017-16)	Maritime Counter Unmanned Aircraft Systems	49
	7936	Line Handling Safety Glove Research (Completed)	50
	8602	Other Government Laboratory Research (New)	51
	9994	Surface Branch Support	52

Table of Contents – FY17 CG RDT&E Funded (cont.)

Branch Area	Project #	Project	Slide #
	2016-31	Library of Visual, Night Vision Goggles, Radar, and Thermal Detection Signatures (Proposed)	53
	7609	Airborne Oil Spill Remote Sensing and Reporting (Completed)	54
	7610 Research of Tethered Aeri	Research of Tethered Aerial Surveillance and Communication Systems (TASCS) for USCG Operations (On Hold)	55
	7611	Evaluation of ESS and NVG LRCs in SAROPS	56
	7755	Cockpit Laser Strike Protection	53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
	7807	Robotic Aircraft for Maritime Public Safety (RAMPS)	58
	7808	Assessment of Unmanned Maritime Vehicles for CG Missions	59
Systems	7810	Advanced sUAS Sensor Investigations	60
Systems	7934	Joint Requirements and Analysis Subject Matter Expertise Support (New)	61
	7935	Equipment Surge Risk Assessment Tool	62
	8204	Analysis of Methods and Underway Time to Develop and Maintain Crew Proficiency	63
	8601	University Research Partnership	64
	9992	Aviation Branch Support (Completed)	65
	9995	Systems Branch Support	66
	99952	Coast Guard Science & Technology Innovation Center (CG-STIC)	67
	N/A	Coast Guard Science & Technology Innovation Center (CG-STIC) Tasks	68
Miscellaneous	N/A	Short Term Analytical Support Efforts (REACT Reports)	69

Table of Contents – FY17 Non-CG RDT&E Funded

Fund Type	Project #	Project	Slide#
AC&I	5677	Non-Compliant Vessel Less-than-Lethal Technologies Procurement Support (On Hold)	71
Ασαι	7930	Polar Icebreaker Acquisition Support	72
	2784	General Engineering Laboratory Support (GELS)	73
OE	7205	Maritime Safety, Security, Communication and Navigation Standards	74
	9507	Financial Management System Improvement Initiative (FMSII) Operational Test Agent (OTA) Support (New)	75
	410131	Shipboard Compliance of Ballast Water Discharge Standards (BWDS)	76
Other	410133	Analysis Support for the Mandated Periodic & Practicability Reviews of Ballast Water Standards	77
Government	410136	Illinois Waterway Marine Safety Risk Research	78
Agencies	410145	Scalability of Ultraviolet-based Ballast Water Management Systems (BWMSs)	79
	410146	Research and Development of Quality Assurance Protocols for Ballast Water Testing Independent Laboratories (IL)	80

FY17 Project Portfolio

CG RDT&E Funded Projects

Cell Phone Location for Search and Rescue

Mission Need: Cell phone technology to support the precise geo-location of distressed mariners in mayday and Search and Rescue (SAR) scenarios.

Project Objectives:

- Conduct market research, identify, and assess state of the market Commercial/Government off the Shelf (COTS/GOTS) geo-locating system(s).
- Inform functional requirements, Tactics, Techniques and Procedures (TTP) and Quick Response Cards (QRC) for cell phone geo-location system and methods.
- Investigate Coast Guard surface, rotary and fixed wing asset ability to locate signals being emitted from distressed mariner cell phones.
- Inform the current SAR TTPs/QRCs of Command Centers and tacticallycontrolled fixed wing, rotary and surface assets.
- Contribute to current awareness campaign educating mariners to provide cell phone numbers in float plans, place cell phones in waterproof sleeves, and carry onboard solar cell phone chargers to extend mobile battery life.

	Key Milestone / Deliverable Schedule:	
	Project Start	3 Oct 16 ✓
	Document Functional Requirements	0 Dec 16 ✓
	Market Research	Mar 17
t	Market Research Briefing	May 17
	Obtain COTS/GOTS Solutions for Demonstration	Aug 17
	Demonstration Test Plan	Sep 17
	Conduct Demonstration	Nov 17
+	Cell Phone Tracking for SAR Final Brief and Report	Jan 18
	Project End	Feb 18

Sponsor: CG-SAR

Stakeholder(s): LANT, PAC, CG-7, CG-BSX, C4IT SC, FORCECOM

1108

Project #: Expected Benefit:

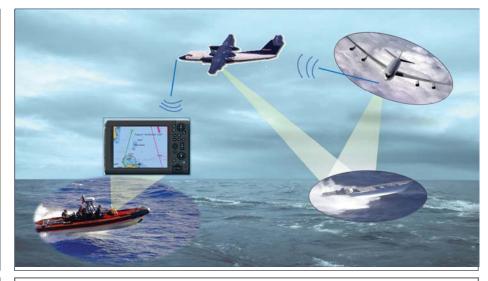
Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Leverage DHS Science & Technology's efforts in cell phone tracking technologies.
- Supports the Coast Guard Western Hemisphere and Cyber Strategies.
- Possible use of Cooperative Research and Development Agreements (CRADAs)/Bailment Agreements.

RDC POC: LTJG Gianfranco Palomba **CG-926 Domain Lead:**

Ms. Holly Wendelin


Vectoring Over the Horizon-Cutter Boat (OTH-CB) for Non Compliant Vessel (NCV) Intercept Mission Need: Ability to vector the Over the Horizon-Cutter Boat (OTH-CB) to intercept Non Compliant

Vessels (NCV).

.. 5 Oct 15 ✓

Project Objectives:

- Evaluate technical solutions to help vector surface assets to targets of interest.
- Identify the OTH-CB system weaknesses in the NCV Intercept chain.
- Develop inputs to Tactics, Techniques, and Procedures (TTP) to standardize vectoring CG vessels and in particular, OTH-CBs.

Key	Milestone /	Deliverable	Schedule:

Determine Gaps and Capabilities	12 Feb 16 ✓
Alternative Recommendations Brief	11 Mar 16 ✓
Develop Alternative Solution Prototype	Jul 17
Conduct Field Test/Demonstration of Alternative Solution	Jul 17
Results of OTH-CB Vectoring Alternative Evaluation	

& TTP Recommendations	Sep 17
Project End	Oct 17

Sponsor: CG-751

CG-711, CG -731, CG-741, CG-761, CG-MLE, **Stakeholder(s):** LANT. PAC. FORCECOM. D7. CBP

5711

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Leverage RDC Projects:

 - Automatic Transport of Search and Rescue Patterns.
 Tactical Communications to Enhance Coast Guard Operations.
- Supports the Coast Guard Western Hemisphere Strategy and the Department of Homeland Security Southern Border and Approaches Campaign Plan.

RDC POC:	CG-926 Domain Lead:
Mr. Sean Lester	LT Steve Hager

Tactical Communications to Enhance Coast Guard Operations

Mission Need: Rapidly communicate voice and data among Sector and Cutter Forces; access databases and share data between surface assets, boarding and inspection teams, and command centers.

Project Objectives:

- Review and assess the current state of commercial and government communications technologies suitable for Sector and Cutter Forces (including surface assets, boarding & facility inspection teams, and command centers) to securely share imagery, text, email, documents, and other operational data.
- Review & assess information sharing technologies to:
 - Upload/complete/submit routine boarding documents; and
 - Access law enforcement databases (vessels & people).
- Design a preliminary concept and scalable network architecture (offshore Cutter boarding team network (TCN-BT), and Sector Forces Protected Tactical Communications Network (SFTacNet)).
- Conduct preliminary demonstration of select technologies; report findings.

Sponsor: CG-761

CG-255, CG-642, CG-721, CG-731, CG-741, CG-751. **Stakeholder(s):** C3CEN, AREA-6

5804

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Related projects: Boarding Team Comms Phase I; Secure Tactical Connectivity; Mobile Technology for Operational Efficiency.
- Partners: NAVSEA Dahlgren; JSOC; DTRA; FirstNet Program Office; DHS S&T; DISA; Industry Tech Reps (CRADA(s)); CBP OA&M: FL FWC.
- Supports the Coast Guard Western Hemisphere Strategy.

RDC POC:	CG-926 Domain Lead:
Mr. Jon Turban, P.E.	Ms. Holly Wendelin

Key Milestone / Deliverable Schedule:
Project Start
Task Segment 1 Start – TCN-BT Architecture
Integrated TCN−BT Architecture Briefing 1 Dec 14 ✓
TCN-BT Final Report
Task Segment 2 Start – SFTacNet Architecture
Explore FirstNet Partnership
Evaluate/Approve Cooperative Research Development
Agreement(s) (CRADA)
SFTacNet Architecture Design
Interim Authorization to Test/Interim Approval to Connect/
Tower Collocation/Time Compliance Technical Orders
Approvals Jan 17
Technical Demonstration Plan
Technical Demonstration Feb 17
SFTacNet Annotated Briefing & Transition Assessment Jun 17
Project End

Arctic Communications Technology Assessments

Mission Need: With anticipated increases in shipping traffic through the Arctic Region, increased communications to improve mission performance must be assessed.

Project Objectives:

- Survey, evaluate, and document the capabilities of existing CG and non-CG maritime Arctic communications technologies.
- Assess emergency communications capabilities in the Arctic for mariners.
- Develop and demonstrate the feasibility of connecting shipboard mobile Automatic Identification System (AIS) transponders on Class A vessels to existing Iridium satellite links, to include an initial system architecture for extended ranges.
- Observe High Frequency (HF) and satellite coverage in the Arctic Region and compare with modeled coverage.
- Assess Mobile User Objective System satellite system for CG high bandwidth data communications.
- Investigate use of National Incident Command System (NICS) in the Arctic.

The Control of the Co	Barrow, Alaska Beau	ufort Sea
	UNITED	CANADA
· · · · · · · · · · · · · · · · · · ·	STATES	

Sponsor: CG-761

Stakeholder(s): CG-6, C3CEN, DHS S&T, R21, Alaska Marine Ex, PAC. D17. CG-5PW

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

6208

- Execution in conjunction with RDC Arctic Operations Support.
- Project will collaborate with and utilize funding from Department of Homeland Security Science and Technology Office of University Programs.
- Supports the Coast Guard Arctic Strategy.

RDC POC: CG-926 Domain Lead:
LCDR Samuel Nassar Ms. Holly Wendelin

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

Key Milestone / Deliverable Schedule:

Project Start 1 Oct 12 ✓
Arctic Coverage and Average Expected Coverage 16 Aug 13 ✓
Modeling of Emergency Frequencies in the Arctic 23 Dec 13 ✓
As-Is vs. Alternative System Performance 7 Mar 14 ✓
State of Arctic HF Comms 2014 vs. Modeled Predictions 15 Dec 14 ✓
Feasibility of an Iridium/Automatic Identification System
(AIS) Shipboard System
Assessment of Technology Deployed to Provide Arctic
Communications 201522 Feb 16 ✓
Commercial & National Asset Satellite Survey Report 3 Aug 16 ✓
Summary Report NICS Use in the Arctic Feb 17
Arctic Communications Technology Recommendations and
Path Forward Apr 17
Project End May 17

Mobile, Modular, Maritime Domain Awareness (M3DA)

Mission Need: A mission-linked catalog of existing and potential Maritime Domain Awareness (MDA) sensors for the future fielding of an optimum mobile modular MDA system to support cross-agency operations.

Project Objectives:

- Determine applicability of agency/industry/interagency sensors (land based, surface and airborne) and communications systems that meet defined mission needs.
- Categorize the taxonomy and the capabilities and limitations of sensors, communication systems and platforms utilized for multi-mission, multiagency assets to establish full mission capability based on a regional approach.

Key Milestone / Deliverable Schedule:

S&T Awards Contract	Jun 15 ✓
End Series of Discovery Meetings	Jun 16 ✓
Capabilities and Limitations Taxonomy A	pr 17
Interagency Unit Discussion	Apr 17
Summary Report and Brief S	Sep 17
Project EndS	Sep 17

DHS S&T Sponsor:

D7, D8, CG-761, CG-65, LANT, C4IT SC, JTF-E, **Stakeholder(s):** JIATES

Project #: Expected Benefit: 7203

Improve operational performance/efficiency/mission

execution/resiliency

Notes:

- Related RDC Projects:
 - Mobile Technology for Operational Efficiency,
 - Mobile Asset Tracking and Reporting During an IONS,
 - Develop Innovative Counter Drug (CD) Interdiction Patrol Tactics,
 - Tactical Comms Network (TCN) to Enhance Boarding Operations,
 - Robotic Aircraft for Maritime Public Safety (RAMPS).
- Supports the Coast Guard Western Hemisphere Strategy.

RDC POC: CG-926 Domain Lead: Ms. Judith Connelly Ms. Holly Wendelin

Hoax Location Systems and Methods

Mission Need: Systems and methods to support precise geo-locating of possible hoax calls as well as providing data to aid investigations, evidence development and follow-on prosecution.

Project Objectives:

- Conduct market research, identify, and assess state of the market Commercial/Government Off the Shelf (COTS/GOTS) geo-locating system(s).
- Investigate Social Media aspects of hoax calling/investigation to verify and validate behaviors and data collection.
- Inform functional requirements; methods; and Tactics, Techniques, and Procedures (TTP) for hoax location systems and methods.
- Provide input to Coast Guard Investigative Service case investigations.

Kev	Milestone	/ Deliverable	Schedule:

Project Start
Document Functional Requirements
Market Research
Market Research Briefing 6 Nov 15 ✓
Obtain all COTS Equipment for Test Plan
Carry out Limited User Evaluation
Stiletto Direction-Finding Demonstration
Hoax Location Systems & Methods Final Brief & Report Apr 17
Project End May 17

Sponsor: CG- MLE

CGIS, CG-257, CG-SAR, LANT/PAC-6, CG-761, Stakeholder(s): C4IT-SC, CGA-EE, CG-MER

7526

Project #: Expected Benefit:

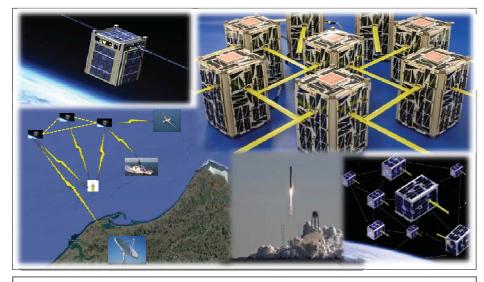
Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Supports the Coast Guard Western Hemisphere Strategy.
- Collaborate with Department of Homeland Security Science and Technology Office of University Programs and other universities researching social media and voice forensics.

RDC POC:	
LTJG Gianfranco Palomba	

CG-926 Domain Lead: Ms. Holly Wendelin


Evaluation of Potential CG Use of CubeSats

Mission Need: Investigation and assessment of the operational utility of CubeSat technology for CG missions.

Project Objectives:

- Inform CubeSat Concept of Operations (CONOPs) scenarios that would support CG mission needs and influence CubeSat requirements, including ground station data flow to/from the Integrated Maritime Domain Environment (IMDE).
- Build and deploy two ground stations for the CubeSat Command and Control (MC3) ground network.
- Participate/partner/develop test plans/metrics for CubeSat technology evaluation(s), test and document the performance of the MC3 ground stations during On-orbit test and evaluation.
- Develop a CubeSat technology roadmap to support the most pressing CG mission needs, including development, deployment and Operations and Maintenance (O&M) planning factors.

	Key Milestone / Deliverable Schedule:	
	Project Start	29 Jun 16 ✓
	Partner Collaboration/IPT Establishment	25 Oct 16 ✓
	Deploy MC3 Ground Station #1	Jun 17
	Deploy MC3 Ground Station #2	Oct 17
	Technology Evaluation(s)	Dec 17
	Performance Test Results of Two MC3 Ground Stations	Feb 18
	CG CubeSat Technology Roadmap Report and Brief	Aug 18
	Project End	Sep 18
1		

Sponsor: CG-SAR

Stakeholder(s): DHS S&T (BMD), CG-25/64/761/741/MLE, C4IT SC, CGA

7759

Project #: Expected Benefit:

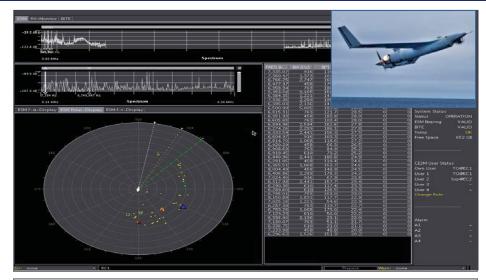
Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Partner with DHS S&T Borders and Maritime Div., National Reconnaissance Office Mission Integration Dir. CubeSat, and U.S. Air Force Operationally Responsive Space.
- Collaborate with Program Executive Office Space Systems/DoD J39.
- Leverage In-Q-Tel Cosmiq Works Lab.
- Link to RDC Arctic Communications Project 6208.
- Supports the Coast Guard Western Hemisphere and Arctic Strategies.

RDC POC: LCDR Sam Nassar CG-926 Domain Lead:

Ms. Holly Wendelin



sUAS Direction Finding (DF) Payloads

Mission Need: Small Unmanned Aircraft System (sUAS) advanced sensors to refine USCG Wide Area Surveillance needs and expand Beyond Line-Of-Sight communications/signal exploitation.

Project Objectives:

- Evaluate the applicability of DF payloads on increasing sUAS capability to self cue to targets of interest.
- Determine market availability of needed capabilities and determine extent that this capability has been employed.
- Obtain capability and conduct field evaluations of technology using USCG mission scenarios.
- Analyze and report results with recommendations for potential employment.

Key Milestone / Deliverable Schedule:

Project Start	6 Oct 15 🗸
Capability Needs for sUAS DF Payloads Kick-off Meeting 2	Mar 16 ✓
NSWC Stiletto Demonstration and After-action Report 17	Nov 16 ✓
NSWC Dahlgren Demonstration and After-action Report	Feb 17
RDC Cape Cod Demonstration and After-action Report	Apr 17
Post-Demonstration Modeling Report	May 17
Final Report: sUAS DF Payloads	May 17
Project End	Jun 17

Sponsor: CG-761

Stakeholder(s): CG-711, CG-SAR, CG-931, CG-2

Project #3 7811

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- The project is to collaborate with Project 7526 VHF Hoax Location and Methods to enhance the effectiveness of the other projects technologies while demonstrating sUAS DF capability.
- Supports the Coast Guard Western Hemisphere and Arctic Strategies.

RDC POC:		
Mr. Donald Decker		

CG-926 Domain Lead:

Ms. Holly Wendelin

Mobile Asset Tracking and Reporting During an IONS

Mission Need: A flexible ad hoc interoperable communication/information system to enhance the Coast Guard's ability to respond to Incidents of National Significance (IONS).

Project Objectives:

• Prototype a flexible interoperable communication/information system, processes, and procedures to enhance the CG's ability to transfer information that will assist personnel responding to an IONS (e.g., oil spill). The system, processes, and procedures should make use of the equipment the responders are expected to bring to the incident such as smart phones, tablet computers, and laptops.

Key Milestone / Deliverable Schedule:		
Project Start	9 Aug 1	1 ✓
Technical Assessment Brief for Mobile Asset Tracking and Reporting Device	9 May 13	3 ✓
Technical Assessment Brief: System Integration with Commercial Off The Shelf (COTS) Incident Action Plan (IAP) Software	27 Oct 14	4 ✓
Mobile Asset Tracking and Reporting Device: IONS System Test Results and Recommendations (Report)		4 ✓
Technology Demonstrations	24 Aug 10	6 ✓
Conversion of National Incident Command System (NICS) 5 to NICS 6	31 Jul 10	6 ✓
Installation of NICS in Homeland Security Information Network	kFeb 1'	7
Brief: Mobile Asset Tracking and Reporting Device:		
Project Summary Brief and Press Release	Mar 1'	7
Project End	Mar 1'	7

Sponsor: CG-761
Stakeholder(s): CG-CPE, DHS S&T, USCG-IMAT, CG-633, CG-MER, C4IT SC

Project #: Expected Benefit:

8105 Improve operational performance/efficiency/mission execution/resiliency

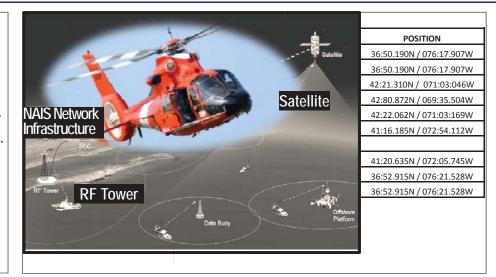
Notes:

- Includes funding from FY11 Congressionally directed Oil Spill Research.
- Project includes use of a Cooperative Research and Development Agreement (CRADA).
- Project includes Interagency Agreement (IAA) with DHS S&T/MIT Lincoln Labs.
- Supports the Coast Guard Western Hemisphere and Arctic Strategies.

RDC POC:	CG-926 Domain Lead:	
Mr. Jon Turban, P.E.	Ms. Holly Wendelin	

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

Indicates RDC product.



Automatic Transport of SAR Patterns

Mission Need: Near real-time Search and Rescue (SAR) patterns for forward assets to effectively execute mission.

Project Objectives:

- Demonstrate and evaluate the near real-time transport of SAR patterns to forward assets.
- Define required capabilities for deployment/transition.
- Provide system architecture(s), system dataflow diagram(s), and Concept of Operation documentation necessary for deployment/transition of the system.
- Inform planned enterprise transmit solution being coordinated by CG-761.

Key Milestone	/ Deliverable	Schedule:

-	
Project Start	12 Nov 14 ✓
Auxiliary Search and Rescue (AUXSAR) Test	10 Sep 15 ✓
Sponsor Brief AUXSAR Test	26 Oct 15 ✓
Cutter Test	1 Apr 16 ✓
Sponsor Brief Cutter Test	26 May 16 ✓
Test through Enterprise Service Bus using Nationwide Automat	ic
Identification System Transmit Services	. May 17
Final Summary Report	. Jul 17
Project End	Aug 17

Sponsor: CG-761

Stakeholder(s): CG-711, CG-731, CG-751, C3CEN, CG-SAR, CG-5P

8113

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Response Boat testing removed from project plan due to SINS II Acquisition – future replacement includes required Secure-butunclassified Tactical Encrypted Data System (STEDS) protocol requirements.
- Supports the Coast Guard Western Hemisphere and Arctic Strategies.

RDC POC: Mr. Sean Lester **CG-926 Domain Lead:**

Ms. Holly Wendelin

Mobile Technology for Operational Efficiency

Mission Need: Enhance field operations by using mobile technology to capture and access operational data.

Project Objectives:

- Prototype a flexible communications/information system with processes, and procedures to enhance the CG's ability to transfer information that will assist personnel during field operations.
- Develop processes/procedures to ensure tie-in and compliance with CG Program of Record/System Architecture/System Development Life Cycle (SDLC).

Key Milestone / Deliverable Schedule:

Project Start	6 Mar 15
Prototype System	Feb 17
Technology Demonstration	Nov 17
Mobile Technology for Operational Efficiency: System Test	
Results and Recommendations	Mar 18
Project End	May 18

Sponsor: CG-761

CG-1B3, LANT/PAC-6, CG-6, C4IT-SC, OSC. **Stakeholder(s):** TISCOM

8114

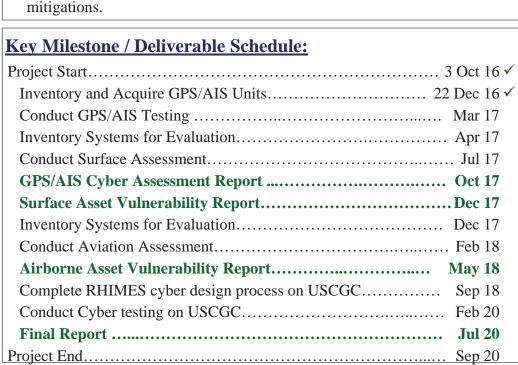
Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Leverage current projects:
 - Mobile Asset Tracking and Reporting During an IONS.
 - PROTECT/TRUST and other Deterrence Models.
- Leverage past PDA efforts.
- Supports the Coast Guard Western Hemisphere Strategy.

RDC POC:	CG-926 Domain Lead:
Mr. Jon Turban, P.E.	Ms. Holly Wendelin



Cybersecurity Vulnerabilities, Threats, and Risk Mitigation Strategies for Coast Guard Surface and Air Assets

Mission Need: CG platforms require resistance and resilience to cyber attacks.

Project Objectives:

- Conduct cyber security risk research analysis for Global Positioning System (GPS), Automatic Identification System (AIS) and specific mission oriented systems dependent on position navigation and timing.
- Partner with Department of Homeland Security (DHS) Science and Technology (S&T) and Office of Naval Research (ONR) to test specific equipment vulnerabilities and derive the impact and consequence of attacks to identify defense strategies.
- Review USCG platform configurations for computer controlled systems. Using design documentation and ship inspection details, perform cyber assessments of various vessels and aircraft. Partner with ONR Resilient Hull, Mechanical, and Electrical Security (RHIMES), National Labs, and Federally Funded Research and Development Centers (FFRDCs) to develop mitigations.

Sponsor: CG-761

Stakeholder(s): CYBERCOM, CG-2, CG-65, CG-7, C4IT SC, DHS S&T, LANT, PAC, CG-93

Project #: Expected Benefit:

Direct Product Line/Core Technology Support (Tech refresh, DMS, etc)

Notes:

- Partner with DHS S&T First Responders Group, Cyber Security Division, ONR RHIMES program.
- Leverage internal R&D efforts at MITRE FFRDC.
- Collaborate with Oak Ridge/Pacific National Labs, Johns Hopkins Applied Physics Lab and U.S. Merchant Marine Academy.
- Supports the Coast Guard Cyber Strategy.

RDC POC: CG-926 Domain Lead: Mr. Jay Spalding Ms. Holly Wendelin

C4ISR Branch Support

Mission Need: Maintenance of RDC Branch competency and knowledge; provide rapid response; and provide external liaison.

Project Objectives:

- Maintain RDC competency in understanding present and future CG mission performance gaps relating to Command, Control, Computers, Communications, Intelligence, Surveillance and Reconnaissance (C4ISR).
- Maintain RDC competency in technologies that currently or potentially could be used to eliminate or reduce mission performance gaps across multiple CG offices/missions.

Key Milestone / Deliverable Schedule:

Project Start	√
FY18-19 Idea Submission Review	√
REACT Report: Portable Vessel Exhaust Gas Sensor Feb 17	
FY18 Assessment of Prospective Portfolio	
FY18 Project Execution Plan (PEP) Ramp Up Jul 17	
FY18 Portfolio Approval	
New PEPs/Proposals	
Conduct Market Research	
Technology Interchange As Required	
Project End	

Sponsor: CG-926 **Stakeholder(s):**

Project #: Expected Benefit:
Add to general R&D

Add to general R&D knowledge base

Notes:

RDC POC: Mr. Al Arsenault

CG-926 Domain Lead:

Ms. Holly Wendelin

Alternatives to Pyrotechnic Distress Signals

Mission Need: Improve distress signal devices.

Project Objectives:

- Determine suitability of potential alternatives to pyrotechnic visual distress signals.
- Narrow the optimal distress signal characteristics range by evaluating human-subject response to laboratory generated visual-stimuli.
- Validate laboratory findings through human-subject field test.
- Recommend optimal visual distress signal characteristics.
- Investigate near-Infrared (IR) signal characteristic to allow detection by filtered night vision imaging systems.
- Investigate and develop Safety of Life at Sea (SOLAS) acceptable electronic Visual Distress Signal (eVDSD) characteristic.
- Conduct field testing to ensure actual capability.

Key Milestone / Deliverable Schedule:	
Project Start	1 Nov 10 ✓
Visual Comparisons and Use Testing	9 Nov 11 ✓
Suitability of Potential Alternatives to Pyrotechnic Distress	
Signals	21 Jan 12 ✓
Field Testing	19 Sep 14 ✓
Alternatives to Pyrotechnic Distress Signals; Laboratory	
and Field Studies	29 Jan 15 ✓
Alternatives to Pyrotechnic Distress Signals, Supplemental	
Report: Near-IR Characteristic	27 Aug 15 ✓
Interim Report - Development of a SOLAS eVDSD	Sep 17
Final Report – Test of SOLAS eVDSD	Jan 18
Project End	Jan 18

Sponsor: CG-ENG

Stakeholder(s): CG-SAR, CG-BSX, DoD

Project #: Expected Benefit:

1101 Influence international standards

Notes:

• Supports the Coast Guard Western Hemisphere Strategy.

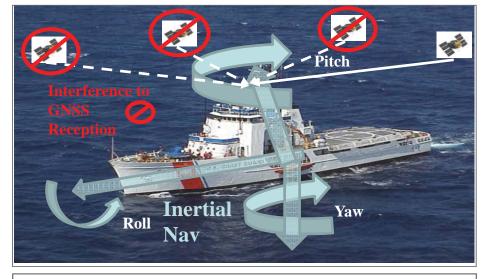
RDC POC:

CG-926 Domain Lead:

Mr. M. J. Lewandowski

Ms. Holly Wendelin




Assessment and Demonstration of Inertial Navigation System (INS) Technology

Mission Need: Reduce reliance on sole means of navigation and harden navigation capabilities to withstand unintentional and intentional outages or hacking of GNSS based navigation.

Project Objectives:

- Research, test, evaluate, and demonstrate inertial navigation system technologies that can mitigate the impact losses of Global Navigation Satellite System (GNSS) service on the navigational process.
- Determine existing products available through market research.
- Determine state of technology advancements on near-term and long-term future capabilities.
- Test and evaluate selected INS technologies to validate interoperability issues.
- Install and perform demonstrations of selected INS technologies on one more USCG vessels.
- Proactively stimulate further technology development through development of new INS technology standards.

Sponsor: CG-5PW, CG-NAV

Stakeholder(s): CG-761, CG-751, CG-731, CYBERCOM

2302

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency & Influence international standards

Notes:

- Supports the Coast Guard Cyber Strategy.
- Leverage Office of Naval Research, national labs, academia including CGA, and international/national standards communities.

RDC POC: Mr. Lee Luft **CG-926 Domain Lead:**

Mr. Shannon Jenkins

Develop an Environmentally Friendly Buoy Mooring System

Mission Need: A buoy mooring system for environmentally sensitive areas that would avoid directly damaging nearby delicate plants and animals in the benthic zone.

Project Objectives:

- Conduct a market research to determine alternatives to traditional buoy mooring systems.
- Develop and test prototypes to determine best buoy mooring technology for environmentally sensitive areas.

Ke	Milestone	/ Deliverable	Schedule:

Project Start	10 Nov 14 ✓
Conduct Market Research	25 Feb 15 ✓
KDP: Broad Area Announcement or Prize Competition	14 Oct 15 ✓
KDP: Prototype Development	2 Jun 16 ✓
KDP: Smart Technology	Mar 17
Environmentally Friendly Buoy Mooring System	
Prototype Development Report	Jul 17
Prototype Testing	Jul 19
Destructive Testing	Sep 19
Environmentally Friendly Buoy Mooring System	
Final Report	. Oct 19
Project End	Jan 20

Sponsor: CG-NAV

Stakeholder(s): LANT, PAC, CG-AtoN/MER

2702

Project #: Expected Benefit:

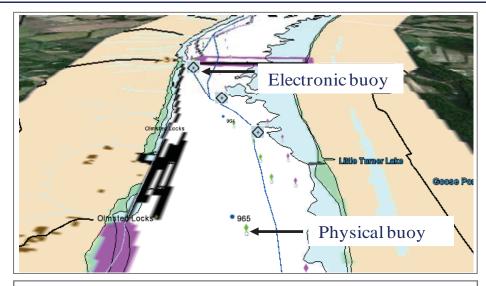
Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Supports Coral Reef Protection Executive Order 13089.
- Supports CG's Energy Renaissance Action Plan.
- Will leverage the academic community.

RDC POC: Ms. Danielle Elam **CG-926 Domain Lead:**

Mr. Shannon Jenkins



Western Rivers e-AtoN Technology Demonstration

Mission Need: Demonstrate benefits and demands posed by e-Nav technology to inform maritime security, safety, and mobility requirements in the Western Rivers.

Project Objectives:

- Provide the Coast Guard and Army Corps of Engineers (USACE) and other partners with experience in distributing navigation information to users via the Automatic Identification System (AIS).
- Inform Coast Guard implementation plan to successfully operate the e-Nav system: agreements, policy changes, necessary infrastructure, the level of effort needed to operate, and the user acceptance challenges.
- Transition the capability for automated message transmission (e.g., NOAA National Weather Service Meteorological Aviation Report, U.S. Geological Survey Water Levels, Ohio River Forecast Center Currents) to USACE for operational deployment throughout Inland Rivers.

Project Start	0 Nov 13 ✓
Phase 1	
Preliminary Protocol Scope	8 Apr 14 ✓
Draft Demo Protocols Submitted for FY15 Project Planning	6 Oct 14 ✓
KDP: Phase II Joint Capability Technology Demonstration	
Execution (funding decision)	8 Oct 14 ✓
Western Rivers Electronic Aids to Navigation (e-AtoN)	
	7 Jan 15 ✓
Phase 2	
Federal Register Notice for Charting System Manufacturers	1 Jan 15 ✓
RDC Test Bed Established.	29 Jun 15 ✓
Transition Automated Message Transmission Capability	Apr 17
Western Rivers Demonstration	May 17
Western Rivers Electronic Aids to Navigation (e-AtoN)	5
Technology Demonstration	Jun 17

Project End

Sponsor: CG-NAV

Stakeholder(s): USACE, CG-761, CG-5PW, C4IT, NAVCEN

2722

Project #: Expected Benefit:

Improved Doctrine/CONOPs/TTPs

Notes:

- Cooperative Research and Development Agreement(s) established with charting system manufacturers to place updated systems on board vessels participating in the test.
- Supports CG's Energy Renaissance Action Plan.

RDC POC:	
Mr. Scott Fields	

CG-926 Domain Lead:

Mr. Shannon Jenkins

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

Indicates RDC product.

Key Milestone / Deliverable Schedule:

Jun 17

Bureau of Safety and Environmental Enforcement (BSEE) Project SME Support

Mission Need: Support spill response and prevention R&D projects.

Project Objectives:

- Assist the Bureau of Safety and Environmental Enforcement with project management, proposal evaluation, and other related tasks that support oil spill response and prevention research and development efforts.
- Broaden and strengthen RDC's competency in oil spill response and prevention.

Project Start	2 Jul 14 ✓
FY15 Staff Support	. 30 Sep 15 ✓
1QFY16 Staff Support	30 Dec 15 ✓
2QFY16 Staff Support	31 Mar 16 ✓
3QFY16 Staff Support	30 Jun 16 ✓
4QFY16 Staff Support	30 Sep 16 ✓

Project End. Mar 17

Evaluating Past and Future USCG Use of OHMSETT

4202

Sponsor: BSEE Stakeholder(s): CG-MER

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Funded by BSEE and RDT&E funds.
- BSEE requested extension into FY16 using FY15 carryover.
- BSEE Requested Deliverable (Feb 17) but effort being performed using RDT&E funds.

RDC POC:	
Mr. Kurt Hansen	

CG-926 Domain Lead:

Mr. Shannon Jenkins

Response to Oil In Ice

Mission Need: A group of methodologies to minimize the damage to the environment caused by spilled oil in extreme cold regions of the Arctic and Northern U.S.

Project Objectives:

- Develop equipment and techniques that can be used successfully to detect, track and recover oil in ice filled waters in all conditions.
- Test operational deployments of equipment by conducting a series of demonstrations in the Great Lakes and the Arctic of increasing complexity.
- Evaluate state of the art for response by supporting National Academy of Science (NAS) Arctic Response Assessment.

Key Milestone / Deliverable Schedule:

Project Start
Great Lakes Demonstration 3
Final Great Lakes Demonstration 3 Report 14 Jun 13 🗸
Review Recommendations from NAS Report 25 Jul 14 ✓
Arctic Shield 2014 Demonstration Report 16 Mar 15 ✓
Decision Milestone: Follow-on Work and Demonstration 4 26 Feb 15 ✓
Oil-in-Ice Demonstration 4
Oil in Ice Demonstration 4 Quick-Look Report28 Nov 16 ✓
Final Report and Input for FOSC Guide Apr 17
Project End

Sponsor: CG-MER

Stakeholder(s): D9, D17, BSEE, USEPA, LANT, PAC-7

Project #: Expected Benefit:

4701

Improve operational performance/efficiency/mission execution/resiliency

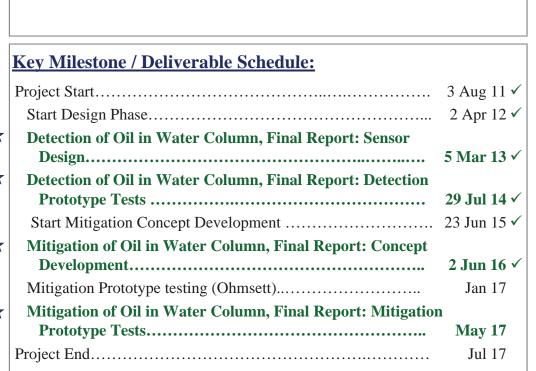
Notes:

- Partnering with Great Lakes Restoration Initiative (GLRI).
- Supports the Coast Guard Energy Renaissance Action Plan.

RDC POC: Mr. Kurt Hansen

CG-926 Domain Lead:

Mr. Shannon Jenkins



Detection and Mitigation of Oil within the Water Column

Mission Need: Accurately detect and mitigate subsurface oil within the water column to 10,000 feet.

Project Objectives:

- Develop new spill response technologies that detect and mitigate oil within the water column down to 10,000 ft.
 - Operate in all environmental conditions.
 - Locate and mark subsurface oil for possible removal.
 - High resolution for detecting small droplets of oil.
- Technology to be capable of operating off vessels of opportunity.
- Addresses near shore and rivers.

Sponsor: CG-MER. BSEE

Stakeholder(s): ICCOPR

Project #: Expected Benefit: 4702

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Includes funding from FY11 Congressionally directed Oil Spill Research.
- Partnering with Bureau of Safety and Environmental Enforcement (BSEE).
- Supports CG's Energy Renaissance Action Plan.

RDC POC: CG-926 Domain Lead: Mr. Alexander Balsley Mr. Shannon Jenkins

> For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

★ Indicates RDC product.

Improved In-Situ Burning (ISB) for Offshore Use

Mission Need: Better decision-making and operational tools for using ISB as a response option.

Project Objectives:

- Identify capability gaps that industry is not addressing.
- Determine best practices for operational use of ISB.
- Develop new equipment, such as igniters or fire boom, and procedures to support ISB.
- Perform short-term and long-term enhancements of Little Sand Island (LSI) and the burn pan.
- Annually collect and publish burn results for use by academia, national labs, and international stakeholders.

	Key Milestone / Deliverable Schedule:
	Project Start
	ISB Gaps Analysis
-	Initial Burn Pan Testing Results
	KDP on Project Path Forward
	Pacific Northwest National Lab (PNNL) Testing at LSI21 Oct 16 ✓
	LSI Short-Term Enhancement
	Worcester Polytechnic Institute Testing (WPI) at LSI Mar 17
	LSI Long-Term Enhancement Aug 17
	BSEE Burn Projects Initialized (6 Potential) Oct 16
	JMTF Summary Burn Report FY17 Sep 17
	JMTF Summary Burn Report FY18 Sep 18

JMTF Summary Burn Report FY19.....

Project End....

Sponsor: BSEE, CG-MER Stakeholder(s): NOAA, LANT, PAC

4704

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Joint funding with the Bureau of Safety and Environmental Enforcement (BSEE).
- Partner with academia and national labs to ensure result visibility and access.
- Supports CG's Energy Renaissance Action Plan.

RDC POC: Mr. Kurt Hansen CG-926 Domain Lead: Mr. Shannon Jenkins

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

★ Indicates RDC product.

Sep 19

Sep 19

Oil Sands Products Spill Response

Mission Need: Research and develop enhanced decision- making tools and recovery/mitigation tools for responding to spilled oil sands products.

Project Objectives:

- Research and develop decision making tools for Federal On-Scene Coordinator (FOSC) to aid in response planning for spills of oil sand products in fresh and salt water.
- Analyze and assess behavior, response issues and strategies in fresh and salt waters.

Key	Milestone /	Deliverable	Schedule:

Project Start	31 Aug 14 ✓
Response to Oil Sands Products Assessment	29 Sep 15 ✓
Oil Sands Products Skimmer Evaluation	Feb 17
Development of Bottom Mitigation Techniques Part 1	Jun 17
Development of Bottom Mitigation Techniques Part 2 Tests	. Dec 18
Mitigation of Oil Moving Along the Bottom	. Jul 19
FOSC Job Aid for Mitigation of Oil Sands Products	. Nov 19
Project End	Feb 20

Sponsor: **CG-MER**

Stakeholder(s): EPA, LANT, PAC, NOAA

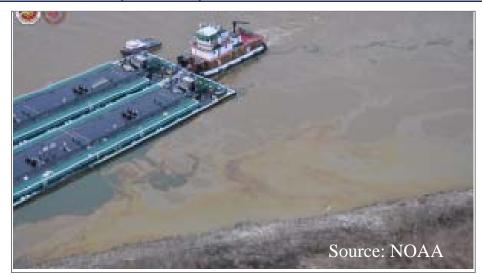
Project #: Expected Benefit: 4705

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Partnering with Great Lakes Restoration Initiative under the Clean water Act 33 USC 1251-1387.
- Working to develop Cooperative Research and Development Agreement with Enbridge Pipeline.
- Supports the Coast Guard Energy Renaissance Initiative.
- Potential partnership with Bureau of Safety and Environmental Enforcement.

RDC POC:	CG-926 Domain Lead:
Mr. Kurt Hansen	Mr. Shannon Jenkins



Shale Oil Preparedness and Response

Mission Need: Responders need best strategies, tactics, and equipment for preparedness and response to spills of shale oils and Shale Gas Extraction Wastewater (SGEWW).

Project Objectives:

- Develop an assessment characterizing the behavior of shale oil and chemical composition of SGEWW.
- Develop a scientifically sound best practices guide for preparedness and response to spills of shale oils and SGEWW for use by Coast Guard field responders and Area Committees.
- Provide decision makers with valuable reference material for use in making response policy decisions regarding the shipment of shale oil and SGEWW products via U.S. Waterways.

Key	Milestone /	Deliverable	Schedule:

Project Start	28 Oct 15 ✓
Literature Review Completed	1 Apr 16 ✓
Gap Analysis Reports	24 Oct 16 ✓
Key Decision Point (KDP): Best Practices Policy Doc vs. FOSC Response Guide.	22 Nov 16 ✓
Recommendations for Shale Oil & Gas Response Practices Guide	Jun 17
KDP: Project Continuation	. Jul 17
Project End	Aug 17

Sponsor: CG-MER, EPA

Stakeholder(s): LANT, PAC, CG Districts, NSF

Project #: 4707

Project #: Expected Benefit:

Improved Doctrine/CONOPS/TTPs

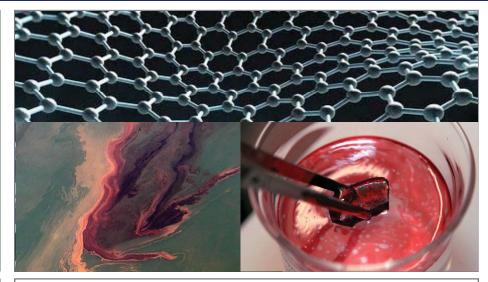
Notes:

- Great Lakes Restoration Initiative (GLRI) to fund direct project costs.
- Supports the Coast Guard Energy Renaissance Initiative.

RDC POC:	
Ms. Danielle Elam	

CG-926 Domain Lead:

Mr. Shannon Jenkins



Oil Spill Response Technology Evaluation Process Research

Mission Need: A process for the evaluation of proposed oil spill response technologies for the Coast Guard's use and determination of their technology maturity and economic feasibility.

Project Objectives:

- Research repeatable technology evaluation process that can be followed during a non-emergency scenario when an oil spill response technology has been submitted for consideration.
- Determine the efficacy of the evaluation process by using it to analyze submitted technologies' technical maturity, potential usefulness, and economic feasibility.
- Provide the final evaluation process to the Office of Marine Environmental Response Policy (CG-MER) as part of the Oil Spill Response Technology Evaluation report.

Key	Milestone /	Deliverable	Schedule:

Project Start	1 Oct 16 ✓
Market Research	Jul 17
Develop Process Framework	Oct 17
KDP: Review Initial Evaluation Process	Oct 17
Evaluate Proposal Submissions	Feb 18
Oil Spill Response Technology Evaluation Report	Sep 18
Project End	Oct 18

Sponsor: CG-MER Stakeholder(s): ICCOPR

4708

Project #: Expected Benefit:

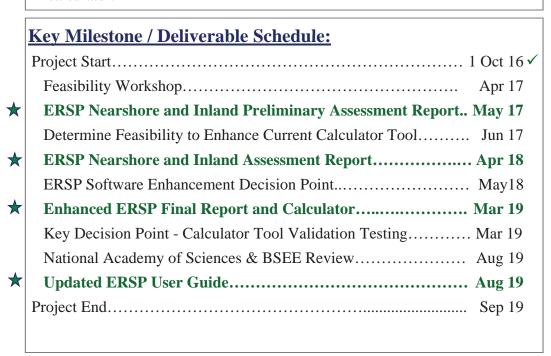
Improve operational performance/efficiency/mission execution/resiliency

Notes:

• Supports the Coast Guard Energy Renaissance Initiative.

RDC POC: Mr. Alexander Balsley **CG-926 Domain Lead:**

Mr. Shannon Jenkins



Nearshore and Inland Evaluation of the Estimated Recovery System Potential (ERSP) Calculator Mission Need: An Estimated Recovery System Potential (ERSP) calculator to include response systems for the

entire nearshore and inland operating environment.

Project Objectives:

- Research the viability of the current ERSP and the calculator's initial impact in the offshore oil spill response industry.
- With industry and interagency (EPA) representatives, assess ERSP as whole and determine if it effectively rectifies the EDRC challenges experienced during Deepwater Horizon.
- Research inland and nearshore oil recovery equipment and efficiencies.
- Research if ERSP can be expanded to include the entire near shore and inland operating environment.
- Expand ERSP to include inland and nearshore recovery modeling in calculator.

Sponsor: CG-MER Stakeholder(s): BSEE

4710

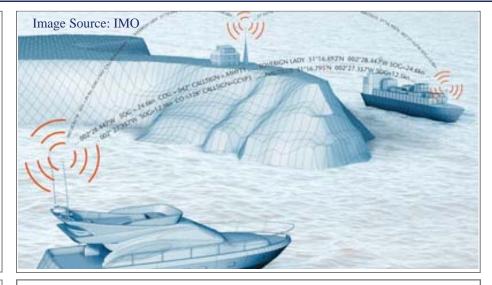
Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Partner with Bureau of Safety of Environmental Enforcement (BSEE).
- Supports Coast Guard's Energy Renaissance Action Plan.

RDC POC:	CG-926 Domain Lead:
ENS Hessamoddin Shafeian	Mr. Shannon Jenkins


Next Generation Arctic Navigational Safety Information System

Mission Need: Reliable critical navigational safety information to identify, assess, and mitigate navigational risks in the Arctic region.

Project Objectives:

Partner with Marine Exchange Alaska (MXAK) to:

- Define the prototype system that will be developed under this public/private partnership.
- Develop the Arctic Navigation Safety Information System (ANSIS) prototype system for the technology demonstration.
- Install, test, and utilize ANSIS technology demonstration system.
- Monitor ANSIS technology demonstration system performance and mariner utilization.

<u>Key Milo</u>	<u>estone /]</u>	<u>Deliveral</u>	ble Sc	<u>hedule:</u>
Project St				

Project Start	13 ✓
Design ANSIS for Tech Demonstration	14 ✓
ANSIS Functional Design Letter Report 9 Sep	14 ✓
Maritime Geo-Fence Tech Demonstration Letter Report 25 Jul	16 ✓
Test & Utilize ANSIS Technology Demonstration System (Automatic Identification System (AIS) Transmit in Arctic Exclusive Economic Zone)	15 ✓
Build and Develop ANSIS Technology Demonstration System (Digital Radio Mondiale over High Frequency Beta Test) 24 Oct	16 ✓
Enhancement to Improve AIS Radio-Link Performance Aug	17
ANSIS Technology Demonstration Letter Report Jan	18
Project EndFeb	18

Sponsor: CG-NAV

Stakeholder(s): CG-761, C3CEN, D17, PAC, CG-5PW

6211

Project #: Expected Benefit:

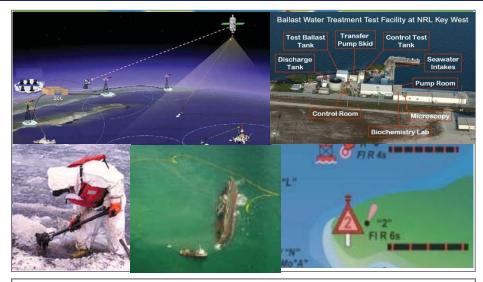
Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Project includes use of a Cooperative Research and Development Agreement.
- Supports development and implementation of CG Arctic strategy and public/private partnerships.
- Leverage other RDC efforts, including Project 2722, 5711, & 8113.

RDC POC: Ms. Irene Gonin CG-926 Domain Lead:

Mr. Shannon Jenkins



Environment & Waterways (E&W) Branch Support

Mission Need: Maintain RDC Branch competency and knowledge, provide rapid response, and provide external liaison.

Project Objectives:

- Maintain RDC competency/technical knowledge in understanding present and future CG mission performance gaps that are within the Branch's purview.
- Maintain RDC competency in technologies that currently or potentially could be used to eliminate or reduce CG mission performance gaps within the Branch's purview.
- Maintain RDC competency/technical knowledge necessary to maintain leadership within the appropriate Subject Matter Expert community.

Project Start	3 Dec 07 ✓
FY17 Great Lakes Restoration Initiative Funding Plans	10 Nov 16 ✓
FY18-19 Idea Submission Review	8 Dec 16 ✓
FY18 Assessment of Prospective Portfolio	Mar 17
FY18 Project Execution Plan (PEP) Ramp Up	Jul 17
FY18 Portfolio Approval	Aug 17
New PEPs/Proposals	As Required
Conduct Market Research	As Required
Technology Conferences.	As Required
Project End	TBD

Sponsor: CG-926 **Stakeholder(s):**

Project #: Expected Benefit:

9993 Add to general R&D knowledge base

Notes:

RDC POC: Mr. James Fletcher CG-926 Domain Lead:

Mr. Shannon Jenkins

Develop Innovative Interdiction Patrol Tactics

Mission Need: Improve efficiency and effectiveness of interdiction mission patrols.

Project Objectives:

- Assess the advantages and disadvantages of using probabilistic-based search and game theory algorithms to improve patrol tactics for each geographic area of interest.
- Evolve the model incorporating the optimal tactics under the assumption that the adversary will adapt to estimate interval between adversary tactical shifts and potential leading indicators.
- Deploy proof-of-concept for field evaluation and initial response.
- Develop an adaptive, multi-stage campaign-modeling approach to analyze alternative adversary tactical strategies as they shift in reaction to Coast Guard tactics, techniques, and procedures.

Key Milestone / Deliverable Schedule:	
Project Start	. 🗸
Complete Data and Model Development	; ✓
Tactical Concept Development and Evaluation	; ✓
Proof of Concept Deployment	; ✓
Florida Straits Air Campaign Analysis Report27 Jul 16	5 ✓
Multi-stage Campaign Evaluation	5 √
Interdiction Tactical Patrol Scheduling Evaluation Report 2 Dec 16	5 ✓
Project End	,

Sponsor: **CG-MLE**

LANT, PAC, D7, D11, JIATF South, JIATF West, **Stakeholder(s):** JTF-E

5676

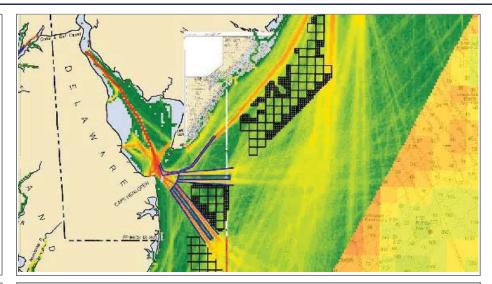
Project #: Expected Benefit:

Improve operational performance/ efficiency/ mission execution/resiliency

Notes:

- Leverages previous/ current work such as: Game Theoretic Fish Patrol Schedule Model, Panga Research, and Port Resilience Operational/ Tactical Enforcement to Counter Terrorism.
- Supports the Coast Guard Western Hemisphere Strategy and the Department of Homeland Security Southern Border and Approaches Campaign Plan.

RDC POC:	CG-926 Domain Lead:
Mr. Sam Cheung	Mr. Curtis Catanach



Research into Navigational Safety Risk Modeling and Analysis Tool

Mission Need: Capability to fully characterize the impact of rerouting traffic, funneling traffic, and placement of offshore structures in terms of risk.

Project Objectives:

- Analytical modeling process and analysis tools to predict changes in traffic patterns and determine the resultant changes in navigational safety risk.
- The ability to assess the proposed wind energy areas to further refine appropriate distances between shipping and structures.
- The ability to assess the need to create routing measures to mitigate risk posed by fixed structures.
- Review Pacific Northwest National Laboratory (PNNL) tool.

Key	Milestone	/ Deliverable	Schedule:

Project Start	1 Oct 16 ✓
Assessment of Risk Modeling Tools	Apr 18
Key Decision Point to Continue	May 18
Creation of a Risk Modeling Package	Nov 18
Risk Assessment Model	Nov 18
Key Decision Point to Continue	Jan 19
After Action T&E Report	Apr 19
Project End	May 19

Sponsor: CG-5PW, CG-NAV

Stakeholder(s): LANT

7529

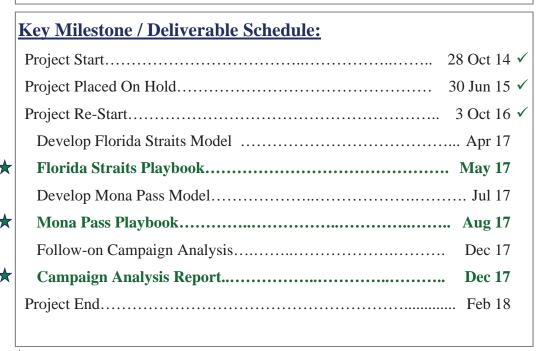
Project #: Expected Benefit:

Influence Mission Support efficiencies

- Supports the Coast Guard Western Hemisphere Strategy and Energy Renaissance Initiative.
- Continuation of the Atlantic Coast Port Access Route Study (ACPARS) with requirements as documented in the Interim Report from July 2012 and the Final Report from February 2016.
- Possible partnership with DHS Center of Excellence (COE) at Purdue and the Bureau of Ocean Energy Management.

RDC POC: Ms. Christine Hansen **CG-926 Domain Lead:**

Mr. Curtis Catanach



Mass Migration Modeling and Analysis

Mission Need: Improved planning for a mass migration event.

Project Objectives:

- Develop a modeling suite that would provide a capability for force-on-force modeling and optimization of force package employment for Migrant Interdiction Operations in the Florida Straits. Create a portfolio of optimized deployment and support options based on the nature and volume of the migrant flow and capability/capacity of the Coast Guard Forces.
- Use the modeling capability to develop a similar mass migration response playbook for Mona Pass Migrant Interdiction Operations.
- Use existing campaign-level modeling to estimate the effect redeployment of additional assets to mass migration response will have on other missions during the event and recovery period.

Sponsor: CG-MLE

D7, CG-771, Homeland Security Task Force-Southeast **Stakeholder(s):**

Project #: Expected Benefit: 9365

Improve operational performance/efficiency/mission

execution/resiliency

Notes:

- Supports the Coast Guard Western Hemisphere Strategy.
- Partner with Oak Ridge National Lab and Naval War College Humanitarian Assistance Center.

RDC POC: Mr. Michael Lehocky **CG-926 Domain Lead:**

Mr. Curtis Catanach

Modeling & Simulation (M&S) Center of Expertise (COE) Branch Support

Mission Need: Maintain RDC Branch competency and knowledge; provide rapid response and provide external

liaison.

Project Objectives:

- Maintain and enhance Branch competencies (Fleet Mix Strategic Analysis, Tactical Force Package Analysis, Sensor Performance Analysis, Data Repository, Analysis, and Visualization).
- Provide CG-9 a core competency for analysis, modeling and simulation by investigating/developing modeling approaches that provide more efficacy and efficiency for acquisition decision-making.

Ex. Tools:	A	Ex. Analysis Products:
• CGMOES	Campaign Modeling	 Fleet Mix Analysis (CG-wie Western Rivers)
Arctic Tactical Modeling Environment		OPC Alternatives Analysis
Coast Guard Tactical	Mission Modeling	HLS Mission AnalysisDOMICE Mission Analysis
Modeling Environment Human Performance		VUAV/UAS4NSC
Modeling	Engagement	• D7 Airship Analysis
Cost Modeling	Modeling	Manned Covert Surveilland Aircraft CONOPs
		C4ISR Alternatives Analys
	Specialty Modeling	SIGINT Requirements & Capabilities Analysis

Key Milestone / Deliverable Schedule:	
Project Start	3 Dec 11 ✓
Annual Maritime Risk Symposium	16 Nov 16 ✓
FY18-19 Idea Submission Review	8 Dec 16 ✓
REACT Report: Investigate Application of Insurance/ Banking Risk Practices to CG Operations	Jan 17
FY18 Assessment of Prospective Portfolio	Mar 17
FY18 Project Execution Plan (PEP) Ramp Up	Jul 17
FY18 Portfolio Approval	Aug 17
New PEPs/Proposals/Tasks	As Required
Accreditation Management	As Required
Technology Conferences	As Required
Project End	TBD
Indicates PDC product	

Sponsor:	CG-926	
Stakeholo	ler(s):	
Project #: Expected Benefit: 9997 Add to general R&D knowledge base		
Notes:		
	RDC POC:	CG-926 Domain Lead:
	OR Erich Stein	Mr. Curtis Catanach
	v	n, call (860) 271-2600 or OC-Info@uscg.mil

FY17 Short Term Modeling & Simulation Support Efforts (M&S COE Tasks)

Purpose:

Provide modeling, simulation or analysis to focused operational or business questions. Short term efforts are characterized by limited complexity with the need for standard technical and contracting approaches.

Task	Title	Objective	Office Supported	Funding Type	RDC POC	CG-926 Domain Lead	Due/ Delivery Date
7400029	Airspace Density Analysis that will be used for enabling beyond line of sight UAS operations from the NSC. Analysis to inform UAS TTP and operations.		CG-711	AC&I	LT Ben Walsh	Mr. Curtis Catanach	29 Dec 16
7400031 Hudson River Anchorage Rulemaking Process AIS Data Analysis Providing analytical support to CGD1. Analyzing AIS and Comment data for the field commander to support their rulemaking project.		CGD1	OE	Mr. Jack Cline	Mr. Curtis Catanach	Sep 17	

Diesel Outboard Development

Mission Need: Single fueled fleet.

Project Objectives:

- Document current developmental stage of diesel outboards applicable to Coast Guard usage.
- Conduct cost-benefit analysis of implementing diesel outboard engines in the Coast Guard.
- Investigate partnership options with manufacturers and other government agencies and test promising diesel outboard engine technologies to better understand performance capabilities.
- Provide recommendations for potential future acquisition initiatives, as appropriate.

Key Milestone / Deliverable Schedule:	
Project Start	7 Feb 14 ✓
Issue Request for Information	3 Apr 14 ✓
Market Availability PowerPoint 18	3 Sep 14 ✓
Cost Benefit Analysis Report 2	4 Jul 15 ✓
Key Decision Point to Determine Path Forward	24 Jul 15 ✓
Conduct Spark-Ignited Diesel Outboard Engine Testing	May17
Conduct Compression-Ignited Diesel Outboard Engine Testing	Feb 18
Diesel Outboard Feasibility Report	Jun 18
Project End	Jun 18

Sponsor: CG-45

Stakeholder(s): CG-731, SFLC, CG-DOL

4110

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

- Project will include Cooperative Research and Development Agreements.
- RDC will establish partnerships with Joint Task Force-East, Customs and Border Protection, Immigration and Customs Enforcement, and DHS Science & Technology and will continue to leverage partnership with Navy Combatant Craft Division to test diesel outboard engines, where possible.

RDC POC: LT Carlon Brietzke **CG-926 Domain Lead:**

LT Steve Hager

Joint Non-Lethal Weapons Directorate Small Vessel **Entanglement**

Mission Need: A capability to non-lethally stop a non-compliant vessel.

Project Objectives:

- Team with Naval Surface Warfare Center (NSWC) Dahlgren and Carderock to: Conduct tests on outboard and inboard vessels, optimize full-scale net design, and develop and demonstrate launcher capabilities.
- Once the system design is complete, conduct a Limited User Evaluation (LUE) to evaluate system for fleet use.
- Draft and finalize Tactics, Techniques, and Procedures (TTP) for CG fleet use.

<u>Key</u>	<u>Milestone /</u>	<u>Deliverable</u>	Schedule:

Small Vessel Surface Entanglement (SVSE) Prototype System

Delivered 8 Prior Year Products

Delivered/DT&E.... 26 Mar 12 ✓

Monitor and Support LUE (D8)..... 31 Jan 14 ✓

Observe Other SVS Technologies 3 Nov 14 ✓

Support TTP Development..... 31 Aug 15 ✓

Monitor and Support LUE (D7)..... 1 Jun 16 ✓

Joint Non-Lethal Weapons Directorate (JNLWD) Small

Vessel Surface (SVS) SNARE Progress Report..... **Apr 17**

Project End May 17 Sponsor: CG-721

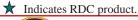
FORCECOM, PAC, LANT, MSRT, MSST, DCO, **Stakeholder(s):**

JTF-E, CG-MSR-1

56411

Project #: Expected Benefit:

Improve operational performance/efficiency/mission

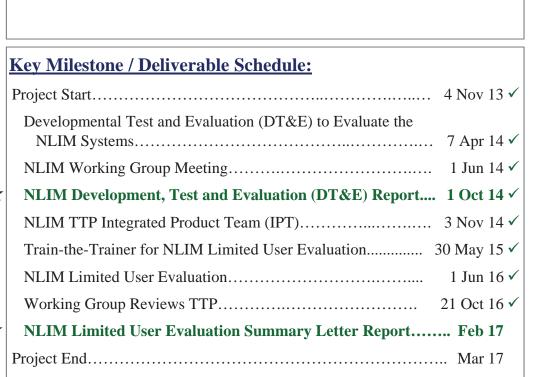

execution/resiliency

Notes:

- Partnering with Office of Naval Research (ONR), Joint Non-Lethal Weapons Directorate (JNLWD) and DoD efforts.
- Supports the Coast Guard Western Hemisphere Strategy.

RDC POC: Ms. D.J. Hastings **CG-926 Domain Lead:**

LT Steve Hager



Non-Lethal Impact Munitions (NLIM)

Mission Need: Capability to enforce maritime law with non-lethal systems.

Project Objectives:

- Participate in the NLIM Working Group:
 - Contribute to the selection of non-lethal weapons for the Coast Guard.
 - Contribute to the selection and prioritization of Key Performance Parameters (KPP) and Key System Attributes (KSA) for non-lethal weapon systems for the Coast Guard fleet.
- Evaluate the selected NLIM rounds and weapons systems, against the KPP's and KSA's selected by the NLIM Working Group.
- Assist the working group in drafting Tactics, Techniques and Procedures (TTP).

Sponsor: CG-721

Stakeholder(s): CG-7d, CG-5RE, CG-MLE, FC-T, FC-A, JTF-E

5674

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Partnering with Technical Support Working Group (TSWG) and Joint Non-Lethal Weapons Directorate (JNLWD).
- Supports the Coast Guard Western Hemisphere Strategy.

RDC POC: Ms. D.J. Hastings **CG-926 Domain Lead:**

LT Steve Hager

Non-Compliant Vessel Stopping Using Less-than-Lethal Radio Frequency Technologies

Mission Need: Investigate more options for stopping non-compliant vessels.

Project Objectives:

- Gather different Radio Frequency Vessel Stopping (RFVS) technologies currently available and select most promising technologies for further evaluation.
- Identify mission requirements for possible CG applications.
- Identify weight, size and power issues for selected technologies and missions.
- Continue to monitor technology progression, including other applications of directed energy.
- Attend demonstrations by other government agencies of the various technologies and monitor applications to CG missions.
- Participate in testing the prototype on a CG platform.

	Key Milestone / Deliverable Schedule:	
	Project Start	Dec 14 ✓
*	Radio Frequency Vessel Stopping Summary Report FY15 4	Feb 16 ✓
	Identify the Components to Prototype	Nov 16 ✓
*	Radio Frequency Vessel Stopping Summary Report FY16	Feb 17
	Research Feasibility of Concept	Sep 17
*	Radio Frequency Vessel Stopping Summary Report FY17	Feb 18
	Build RFVS Prototype	Sep 18
*	Radio Frequency Vessel Stopping Summary Report FY18	Feb 19
	Demonstrate Feasibility	Sep 19
	Developmental Test & Evaluation of RFVS Prototype	Sep 20
	Project End	Oct 20

Sponsor: CG-721

Stakeholder(s): FORCECOM, PAC, LANT, MSRT

5678

Project #: Expected Benefit:

Inform follow-on acquisition/enterprise deployment

Notes:

- Partnering with Office of Naval Research, Naval Surface Warfare Center Dahlgren Division and Joint Non-lethal Weapons Directorate.
- Supports the Coast Guard Western Hemisphere Strategy.
- Investigate possible application to other missions and units.

RDC POC: Ms. D.J. Hastings **CG-926 Domain Lead:** LT Steve Hager

Evaluation of Helmet Wear for CG Personnel

Mission Need: Quantitative efficacy of boat helmet performance.

Project Objectives:

- Determine appropriate quantitative level(s) of protection for helmets worn by Coast Guard members during boat operations including: surf, heavy weather, pursuit, cutter boat launch and recovery, etc.
- Recommend mitigation strategies to achieve increased level(s) of protection for helmets worn by Coast Guard members if warranted.

Key Milestone / Deliverable Schedule:

Project Start	29 Oct 14 ✓
Stakeholder Risk Based Decision Making Workgroup	
Established	. 20 Jan 15 ✓
Head Protection Survey Distributed	17 Dec 15 ✓
Head Protection Survey Results/BFAC Meeting	19 May 16 ✓
Head Protection Devices RFI Issued	18 Oct 16 ✓
Helmet Protection Levels for CG Boat Operators	Feb 17
Project End	Mar 17

Sponsor: CG-731

Stakeholder(s): CG-741, CG-751, CG-MLE, CG-1

5806

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

• Supports the Coast Guard Human Capital Strategy.

RDC POC: Mr. Brian Dolph **CG-926 Domain Lead:**

LT Steve Hager

Define and Communicate Exclusion Zones

Mission Need: Capability to physically mark and clearly communicate the boundaries of an area of exclusion, including both fixed and moving security zones.

Project Objectives:

- Review user needs, consider short-term and longer-term solutions.
- Investigate solutions on the market to determine the best possible solutions to evaluate.
- Select and test prototype solution(s) that will unambiguously mark fixed and moving security zones.

Key	<u>y Milestor</u>	<u>ne / Deli</u>	verable	Schedule:

	Project Start
	Unit Visit/Market Research Request for Information (RFI) 6 Aug 14 ✓
*	Phase 1 Summary of Current Market Research 21 Oct 14 🗸
	Sponsor Change to CG-721 6 Mar 15 ✓
	Manufacturing Delay of Test Articles
	Demonstration of Capabilities
*	Phase 2 Report on Short-Term Field Evaluation Jan 17
	Go/No-Go Decision Point
	Conduct Long-Term Solution Field Evaluation Dec 17
*	Phase 3 Report on Long-Term Solution Field Evaluation Apr 18
	Project End

Sponsor: CG-721

Stakeholder(s): CG-MSR, MSRT, LANT, PAC

Project #3 5921

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Leverages previous work on Project Unambiguous Warning Devices.
- Supports the Coast Guard Western Hemisphere Strategy.
- Potential partnership with National Urban Security Technology Laboratory (NUSTL).

RDC POC: Ms. D.J. Hastings

CG-926 Domain Lead:

LT Steve Hager

Arctic Operations Support

Mission Need: Provide support for expanded operational and resource capabilities assessments in the Arctic.

Project Objectives:

- Based on previous years' demonstrations and evaluations, continue to support projects that will develop capability improvements in the execution of Coast Guard missions in the Arctic.
- Continue to nurture joint efforts and interagency cooperation between government sectors and civilian entities on the North Slope and abroad.
- Facilitate and provide support to other Arctic projects, including Department of Homeland Security (DHS) Science & Technology (S&T) Office of University Programs (OUP), in accomplishing their testing objectives.
- Continue to monitor technology progression.

	Key Milestone / Deliverable Schedule:		
	Project Start	10 Oct 13	✓
*	Delivered 3 Prior Year Products		✓
	Identify Available Assets for Testing	12 Feb 16	✓
	Site Visit	10 Jun 16	✓
	Test Plans Finalized	30 Jun 16	✓
	Conduct Technology Evaluations	1 Sep 16	✓
*	Arctic Technology After Action Report 2016	30 Nov 16	✓
	Test Plan Finalized	Jun 17	
	Conduct Technology Evaluations	Aug 17	
*	Arctic Technology After Action Report 2017	Nov 17	
	Project End	Dec 17	

Sponsor: CG-5PW

Stakeholder(s): D17, PAC, CG-7, DHS S&T OUP

6210

Project #: Expected Benefit:

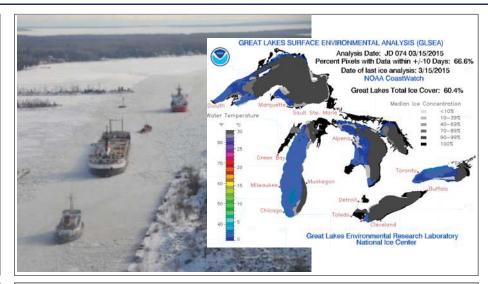
Influence Mission Support efficiencies

Notes:

- Project will leverage other organizations with Arctic interests/efforts to the maximum extent possible.
- Follow on to 2012/2013/2014/2015 and 2016 efforts.
- Supports the Coast Guard Arctic Strategy.
- Partner with CG-DCO-X for engagement with Arctic Evergreen project.
- Collaborate with DHS S&T OUP for principle investigator engagement.

RDC POC: Mr. Scot Tripp **CG-926 Domain Lead:**

Mr. Shannon Jenkins



Ice Condition (ICECON) Risk Assessment Tool(s)

Mission Need: Method to forecast and share ice conditions.

Project Objectives:

- Develop ice condition classification methodology.
- Develop ship classifications for Great Lakes.
- Validate ice and ship classifications with observed conditions.
- Develop ICECON nowcast and forecast methodology.
- Adjust forecast methodology with icebreaker activity.
- Provide ICECON forecast system for decision support.

Kev	Milestone	/ Deliverable	Schedule:

Project Start	1 Oct 16 ✓
ICECON Workshop	29 Nov 16 🗸
ICECON and Ship Classification Briefing	Jun 17
ICECON Forecast Model Briefing	Jun 18
ICECON Model Validation	Dec 18
Final ICECON Forecast Model Briefing	Jun 19
Project End	Jul 19

Sponsor: CG-5PW

Stakeholder(s): CGD1, D9, D17, LANT, PAC, DHS S&T OUP

6512

Project #: Expected Benefit:

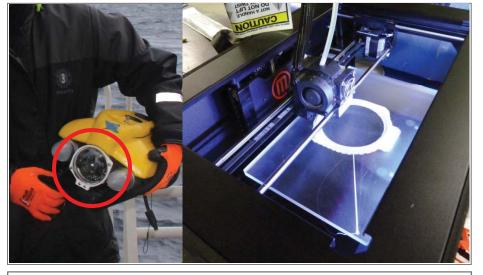
Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Collaboration with Arctic Domain Awareness Center (ADAC).
- Supports the Coast Guard Arctic Strategy.

RDC POC: Mr. Mark VanHaverbeke **CG-926 Domain Lead:**

CDR James Small


Evaluation of Three-Dimensional (3D) Printing Technology for Coast Guard Applications

Mission Need: Assessment of the potential for 3D printers to improve mission readiness by reducing logistical support lead times.

Project Objectives:

- Research the advancements made with the spiral development of 3D printing technology with respect to Coast Guard applications.
- Identify CG units that are best suited to implement additive manufacturing, conduct training, and trail 3D printing technologies.
- Research cost, logistical, and performance issues that could be addressed with 3D printing and additive manufacturing.
- Work with Surface Forces Logistics Center and Aviation Logistics Center to develop the required process for approving 3D printed parts for operational use.
- Document findings and provide recommendations for decision makers.

Key Milestone / Deliverable Schedule:	
Project Start	11 Jan 16 ✓
Identify Units for 3D Printing Trial	23 Feb 16 ✓
Provide 3D Printers to Units	25 May 16 ✓
Conduct 3D Printing Trial	28 Jun 16 ✓
Develop Process for New Component Approval	Jan 17
Investigation of 3D Printing Technology for Coast Guard Applications Report	Apr 17
Underway Additive Manufacturing Demonstration	Jun 17
Roadmap for Integration of Additive Manufacturing Report	Mar 18
Project End	Mar 18

Sponsor: CG-44

Stakeholder(s): CG-41, CG-43, CG-45, CG-DOL, DIUx

7758

Project #: Expected Benefit:

Influence Mission Support efficiencies

Notes:

- Partnering with the Chief of Naval Operations's Rapid Innovation Cell, Naval Warfare Development Command.
- Will work through CG-STIC for integration into the fleet.
- Partner with Oak Ridge National Lab.

RDC POC: Mr. Jason Story **CG-926 Domain Lead:**

LT Steve Hager

Corrosion Control and Monitoring

Mission Need: Research and mitigate corrosion impacts on cutters by increasing mission support efficiencies and reducing costs.

Project Objectives:

- Identify and benchmark current U.S. Coast Guard (USCG) corrosion mitigation strategies.
- Research the recent advancements in commercial anti-corrosion coating technologies with respect to USCG surface fleet applications.
- Coordinate with U.S. Navy and other Government/military services to gather their corrosion mitigation strategies.
- Stand up a USCG Corrosion Integrated Product Team (IPT) with representatives from Surface Forces Logistics Center (SFLC), RDC, HQ Units, AREAS, Product Lines, and other stakeholders to down-select promising corrosion technologies.
- Based on the Research, compile a report and provide recommendations in a Corrosion Roadmap.
- Conduct operational and laboratory testing and evaluation of selected methods in Phase II, based on selected cutter class.

Key Milestone / Deliverable Schedule:

Project Start	1 Oct 16 ✓
Benchmark USCG Corrosion Strategies	Apr 17
Conduct Market Research	Apr 17
Review Request for Information Results	June 17
Review Research Results and IPT Efforts	Aug 17
Corrosion Control Roadmap	Oct 17
Conduct Operational & Laboratory Testing	Aug 18
Project End	Sep 18

Sponsor: CG-45

Stakeholder(s): SFLC, CG-41, CG-43, CG-44, CG-751, LANT, PAC

7760

Project #: Expected Benefit:

Influence Mission Support efficiencies

Notes:

- Potential partnership with similar Navy and Oak Ridge National Lab efforts.
- Will leverage substantial ongoing research by other government agencies on this topic.
- Supports the Coast Guard Western Hemisphere and Arctic Strategies.

RDC POC: Mr. Mike Coleman **CG-926 Domain Lead:**

LT Steve Hager

Evaluation of WMEC 270' Pitch/RPM Schedules

Mission Need: Improved energy efficiency in the operation of cutters to help meet energy conservation goals and Greenhouse Gas (GHG) reduction goals.

Project Objectives:

- Assess pre-determined pitch/Revolutions per Minute (RPM) combinations through comprehensive underway data collection with an operational cutter.
- Analyze results and compare with prior (1998) fuel savings projections.
- Deliver recommendations for implementation.

Key	Milesto	ne / Del	<u>liverab</u>	<u>le Sche</u>	dule:
Proje	ect Start				

...... 4 Nov 13 ✓

Interim Letter Report - Evaluation of 270' WMEC

Data Analysis..... Feb 17

Develop Recommendation to Schedule Changes Feb 17

Evaluation of 270' WMEC Pitch/RPM Schedule Changes..... Mar 17

Sponsor: CG-46 Stakeholder(s): SFLC

Project #: Expected Benefit:

7805

Direct Product Line/Core Technology Support (Tech

refresh, DMS, etc)

Notes:

• Supports the Coast Guard Energy Renaissance Initiative.

RDC POC:

CG-926 Domain Lead:

Mr. Jay Carey LT Steve Hager

Maritime Counter Unmanned Aircraft Systems

Mission Need: Methods to Search, Detect, Classify, Identify, Mitigate, and Defeat illicit use of unmanned aircraft systems in a maritime environment.

Project Objectives:

- Collect key performance parameters (KPPs) for cUAS for the non-Transport Protection System & Port, Waterways, & Coastal Security (PWCS) missions, to include NSSE events.
- Identify technologies that satisfy KPPs & assist DARPA / DHS S&T in market research, including advances from the academic community.
- Conduct preliminary testing on maritime range to down-select for operational test & evaluation.
- Conduct cUAS limited user evaluation at an operational PWCS unit.
- Assess organic cUAS capabilities onboard the National Security Cutter (NSC), Fast Response Cutter (FRC), and Offshore Patrol Cutter (OPC).
- Influence TTP development in collaboration with FORCECOM.

	Key Milestone / Deliverable Schedule:
	Project Start
	Phase I: Maritime cUAS Test w/ CG-MSR, DARPA, and DHS S&T
	Conduct Test & Evaluation at a Maritime Range Feb 18
	Conduct Test & Evaluation in an Operational EnvironmentOct 18
*	CUAS Test & Evaluation Report for the Non-TPS PWCS Mission
	Phase II: Organic Capabilities Assessment
	Identify Organic cUAS Capabilities for AssessmentFeb 19
	Conduct Organic cUAS Capabilities Test & EvaluationAug 19
*	CUAS Test & Evaluation Report for the NSC, FRC, & OPC Oct 19
	Project End
•	★ Indicates RDC product

Sponsor: CG-MSR

CG-731, CG-721, CG-751, DCMS-34, CG-2, CG-6, **Stakeholder(s):** C3CEN, SFLC, PAC, LANT DARPA, DIUx, DHS S&T

7812

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- This effort will leverage partnerships with Department of Homeland Security Science and Technology Directorate and Defense Advance Research Project Agency.
- Supports the Coast Guard Western Hemisphere and Cyber Strategies.

RDC POC: LT Joseph DiRenzo **CG-926 Domain Lead:**

LT Steve Hager

Line Handling Safety Glove Research

Mission Need: An analysis to determine the effectiveness of wearing gloves has on mitigating risk of injury when handling trail lines during helicopter hoist operations.

Project Objectives:

- Identify glove parameters that may reduce hand entanglement injuries.
- Perform risk assessment of gloved verses non-gloved trail line handling evolutions.
- Perform market survey of existing glove technologies.
- Determine what, if any, glove systems can provide an effective level of protection to helicopter trail line handlers.
- Determine if resultant data suggest a change in policy contained in the Boat Crew Seamanship Manual and other related publications.

Key .	<u>Miles</u> 1	tone /	<u>Deliv</u>	<u>erab</u>	le S	Sched	lule:
Duois	at Ctant						

Trail Line Handling.

Project End.

Sponsor: CG-731

Stakeholder(s): CG-113, CG-711, FORCECOM, PAC, LANT

Project #: 7936

Expected Benefit:

Improved Doctrine/CONOPs/TTPs

Notes:

RDC POC: LT Carlon Brietzke CG-926 Domain Lead: CDR Jay Armstrong

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

7 Dec 16 ✓

7 Dec 16 ✓

Other Government Laboratory Research

Mission Need: Leverage Other Government Agency Laboratory research to support RDC efforts to further CG missions.

Project Objectives:

• Use appropriate *Other Government Laboratory Research* projects to enhance CG mission accomplishments, strategic analysis, and effectiveness. The partnerships will mutually support other Government labs national research goals.

Key Milestone / Deliverable Schedule:

 Sponsor: CG-926

Stakeholder(s): CG-2, CG-5R, CG-5P, CG-6, DHS S&T, CG CYBERCOM, LANT, PAC

Project #: 8602

Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

• Support all CG strategies and action plans.

RDC POC: Mr. Brian Dolph

CG-926 Domain Lead:

CDR James Small

Surface Branch Support

Mission Need: Maintain RDC Branch competency and knowledge; provide rapid response; and provide external liaison.

Project Objectives:

- Maintain RDC competency and technical knowledge in understanding present and future CG Port Security and Law Enforcement mission performance gaps. Partner with Joint Non-Lethal Weapons Directorate and Domestic Nuclear Detection Office to leverage efforts.
- Maintain competency and technical knowledge in Vessel Technology, Alternative Energy, Energy Efficiency, and Acquisition Programs Support.
- Support CG Weapons of Mass Destruction program by providing subject matter expertise and other government agency leveraging.
- Coordinate Arctic projects.

Key Milestone / Deliverable Schedule:	
Project Start	ec 07 ✓
FY18-19 Idea Submission Review	ec 16 ✓
FY18 Assessment of Prospective Portfolio	1ar 17
REACT Report: Stand-off Chemical Threat Detection M	[ar 17
REACT Report: Over The Side Boat Launch and Recovery	
(BL&R) Operations for Offshore Patrol Craft (OPC) A	pr 17
FY18 Project Execution Plan (PEP) Ramp Up A	ug 17
FY18 Portfolio Approval A	ug 17
REACT Report: Liquefied/Compressed Natural Gas for	
Western River Tenders S	ep 17
New PEPs/Proposals As Rec	quired
Conduct Market Research As Rec	quired
Technology Conferences As Rec	quired
Project End	TBD
Indicates BDC product	

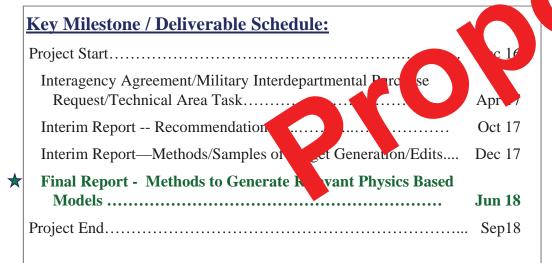
Sponsor: CG-926
Stakeholder(s):

Project #: Expected Benefit:
Add to general R&D knowledge base

Notes:

RDC POC: Mr. Rich Hansen CG-926 Domain Lead:

LT Steven Hager



Library of Visual, Night Vision Goggles, RADAR, and Thermal **Detection Signatures**

Mission Need: A library of SAR and LE targets of interest to maximize benefits of physics-based modeling.

Project Objectives:

- Research current state of modeled search objects.
- Determine approach to potentially group multiple types of similar search objects.
- Determine level of fidelity needed for physics based models.
- Prioritize objects for inclusion.
- Provide recommendations for the generation of models to include into Search and Rescue Optimal Planning System (SAROPS) and RDC sensor performance models.

CG-SAR asor:

Stakeholder(s): CG-711, ATC Mobile, LANT, PAC

2016-31

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Supports the Coast Guard Western Hemisphere Strategy.
- Potential for collaboration/partnership with Department of Homeland Security Science and Technology Office of University Programs, CG Academy, and U.S. Customs and Border Protection.

RDC POC: LT Dillon Sapp **CG-926 Domain Lead:**

Ms. Holly Wendelin

Airborne Oil Spill Remote Sensing and Reporting

Mission Need: Tactics, Techniques, and Procedures (TTP) for optimizing the use of existing CG airborne C4ISR systems to support oil spill response operations.

Project Objectives:

- Baseline current CG airborne capabilities for Detecting, Mapping and Reporting (DMR) oil spills.
- Join with Bureau of Safety and Environmental Enforcement (BSEE) to explore oil thickness remote detection capability.
- Conduct airborne oil spill DMR testing.
- Document issues in CG oil spill DMR within context of hardware, operator training and environmental conditions; then work with Aviation Training Center (ATC) Mobile to develop TTPs.

Key Milestone / Deliverable Schedule:

Project Start.... 29 Jul 14 Key Decision Point to Develop Joint Project w/BSEE. .. 8 Oct 14 ✓ Task 1, 2 & 3 White Paper..... CG Sensor Field Evaluation A....... 24 May 15 ✓ CG Sensor Field Evaluation B..29 Jul 16✓

USCG Airborne Spill Remote Standard Reporting.......9 Nov 16 ✓

Sponsor: CG-711

Stakeholder(s): BSEE, CG-MER, ATC Mobile, FORCECOM

7609

Project #: Expected Benefit:

Improved Doctrine/CONOPs/TTPs

Notes:

- CG Sensor Field Evaluation A & B will be joint testing with the Advanced Mission System program to leverage the upgraded capability of the next fixed-wing mission system.
- BSEE is co-funding this project.
- Supports the Coast Guard Energy Renaissance Initiative.

RDC POC: Mr. Evan Gross **CG-926 Domain Lead:** Mr. Shannon Jenkins

Research of Tethered Aerial Surveillance and Communication Systems (TASCS) for USCG Operations

Mission Need: Mobile aerial platforms deployable from shore, small boats, and cutters that extend sensor and communication range.

Project Objectives:

- Research developments in TASCS technology and identify prospective solutions in the market.
- Develop TASCS technology/USCG capability Quality Function Deployments (QFD) and conduct Pugh Concept Scoring.
- Complete deployment/integration studies and develop test cards for cutter, small boat, and land/ice based operations.
- Complete demonstration of representative technologies in cutter, small boat, and land/ice operational scenarios.
- Conduct an RDC technology transition review.
- Provide a comprehensive report on the state of the market, operational utility, and transition readiness of TASCS technology.

Key Milestone / Deliverable Schedule:

Project Start	6 Oct 15 ✓
Market Research/Integration Analysis	. Nov 17
TASCS Demonstration (Cutter)	Nov 17
TASCS Quality Function Deployments (QFDs)	Jan 18
TASCS Demonstration (Land/Ice)	Jan 18
TASCS Demonstration (Small Boat)	Apr 18
RDC Technology Transition Review	Jun 18
Operational Utility of TASCS Technology Report	Aug 18
Project End	Sep 18

Sponsor: CG-761

Stakeholder(s): CG-711, CG-731, LANT, PAC

7610

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Collaboration and technical exchange with DHS Science and Technology Directorate (S&T), Borders and Maritime Division (BMD) – Remote Aircraft for Public Service (RAMPS) Project.
- Supports the Coast Guard Western Hemisphere Strategy.

RDC POC:			
Mr. Evan Gross			

CG-926 Domain Lead:

Ms. Holly Wendelin

Evaluation of ESS and NVG LRCs in SAROPS

Mission Need: Electro-Optical/Infrared Sensor System (ESS) and Night Vision Goggles (NVG) Lateral Range Curves (LRC) in Search and Rescue Optimal Planning System (SAROPS) require evaluation and refinement.

Project Objectives:

- Conduct a detailed evaluation of the modified ESS SAR Mode LRCs as recommended by CG-SAR in the "Specifications for Implementing Electro-Optical/Infrared Sensor System (ESS) SAR Mode Lateral Range Curves in SAROPS" document dated Feb. 23, 2016.
- Conduct an evaluation of methods for estimating the algorithms for NVGs to account for improvements in technology.
- Recommend changes to SAROPS that will enable efficient and effective employment of ESS/NVG-equipped assets in SAR missions.

	a aosi)	\(\frac{1}{5-40}\)
Section	Georgiage (

Key	<u>Milestone</u>	<u>Deliverable</u>	Schedule:

Assessment of SAROPS Changes to Refine NVG LRCs...... 25 Oct 16 ✓

Recommended SAROPS Improvements to Optimize ESS and NVG.

Project End...... Apr 17

Sponsor: CG-SAR **Stakeholder(s):** CG-711

Project # 7611

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

Supports the Coast Guard Western Hemisphere Strategy.

RDC POC:
Ms. Monica Cisternelli

CG-926 Domain Lead:

LT Steve Hager

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

Apr 17

Cockpit Laser Strike Protection

Mission Need: A reliable and unburdensome mechanism for protecting CG aviators against laser strike hazards.

Project Objectives:

- Investigate Government and industry developments in the area of cockpit laser filtering technologies.
- Conduct a USCG airborne asset windshield configuration and coating logistics study.
- Conduct an aviation external indicator wavelength study.
- Develop Cooperative Research and Development Agreement(s) (CRADA) with developers of cockpit laser strike solutions.
- Perform optical performance evaluations in the RDC General Engineering Laboratory Support (GELS) laboratory.
- Perform environmental, adhesion, installation, and logistics related evaluations.
- Analyze results and report on cockpit laser strike protection solutions.

Key Milestone / Deliverable Schedule:

CRADA(s) with Technology Developers	29 Jul 16 ✓
Optical Performance Evaluation	Jul 17
Degradation and Adhesion Evaluations	Jul 17
Cockpit Laser Strike Filtering Technology	Nov 17
Project End	Dec 17

Sponsor: CG-113

Stakeholder(s): CG-711, CG-731, CG-721, CG-41, ALC

7755

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

Supports the Coast Guard Western Hemisphere and Human Capital Strategies.

> **RDC POC:** LT Dillon Sapp

CG-926 Domain Lead:

LT Steve Hager

Robotic Aircraft for Maritime Public Safety (RAMPS)

Mission Need: Better understanding the risks, benefits and limitations of operating existing Commercial off the Shelf Small Unmanned Aircraft System (sUAS) technology in a maritime environment for cutter forces other than the National Security Cutter.

Project Objectives:

- Develop requirements, standards and Concept of Operations.
- Evaluate realistic maritime security and first responder scenarios.
- Create a knowledge resource database.
- Guide future platform and sensor development to meet maritime first responder requirements.
- Evaluate sUAS payloads in different environmental areas focusing on logistics, maintenance, and data dissemination with CGC assets.
- Conduct an assessment for potential demonstration and evaluation facilities with special use air space establishing an Federal Aviation Administration approved Certificate of Waiver or Authorization for Department of Homeland Security (DHS) use.

	Key Milestone / Deliverable Schedule:	
	Project Start	30 Oct 13 ✓
	RAMPS Request For Information (RFI) Release	10 Oct 14 ✓
	RAMPS Course Validation Phase I-A	28 Apr 15 ✓
	RAMPS Phase I-A Demos 01-05	10 Jun 16 ✓
+	RAMPS Compilation Report Phase 1A	3 Oct 16 ✓
	RAMPS Phase I-B Issue Payload RFI	Jan 16
+	SUAS Site Evaluation Study Report	Jun 17
	RAMPS Phase I-B Payload Demos 01-03	Dec 17
	RAMPS Capabilities Demos 01-05	Oct 18
1	RAMPS Compilation Report Phase 1B	Jan 19
	Project End	Feb 19

Sponsor: DHS S&T, CG-711

Stakeholder(s): CG-751, CG-761, CG-771, CG-931, JTF-E

Project #: Expected Benefit: 7807

Direct Acquisition Support (MAR, MNS, CONOPS, ORD, AA, LCCE, T&E, etc.)

Notes:

- Partnership with DHS Science and Technology Borders and Maritime Division.
- Establish Cooperative Research and Development Agreements with industry partners for sUAS demonstrations.
- Supports the Coast Guard Western Hemisphere Strategy.

RDC POC: Mr. Stephen Dunn **CG-926 Domain Lead:**

LT Steve Hager

Assessment of Unmanned Maritime Vehicles for CG Missions

Mission Need: Economical, effective, persistent Maritime Domain Awareness (MDA) to support CG missions.

Project Objectives:

- Understand state-of-the-market autonomous sensors and platforms.
- Evaluate effectiveness of sensors and platforms for CG mission support.
- Model and evaluate full-scale application.
- Prepare rough order of magnitude business case.
- Conduct technology demonstration.
- Identify system development needs (sensors, processors, and vehicles) for CG application.

Sponsor: CG-761

CG-25, CG-731, CG-MLE, DHS S&T OUP, **Stakeholder(s):** DHS S&T BMD, JIATF-S, JTF-E

Project #: Expected Benefit:

7808

Improve operational performance/efficiency/mission

execution/resiliency

Notes:

- Partner with ONR/Naval Undersea Warfare Center or National Oceanic and Atmospheric Administration.
- Project derived from Congressional language.
- Anticipate leveraging/partnering with new DHS Science & Technology Office of University Programs Center for Maritime Research.
- Supports the Coast Guard Western Hemisphere Strategy.

RDC POC: CG-926 Domain Lead: Mr. Mark VanHaverbeke LT Steve Hager

> For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

Key Milestone / Deliverable Schedule: Project Stort

roject Start	4 Nov 13 ✓
Observe Office of Naval Research (ONR) Tech Sea Trials	. 8 May 14 🗸
Market Research Report	24 Jul 14 🗸
KDP: Demonstration/Phase 2 for "FY 15" Determination	5 Sep 14 ✓
The Applicability of Persistent Marine Sensors and Platforms to Coast Guard Missions	30 Oct 14 ✓
Technology Demonstration/Execution of Plan	27 Jun 16 🗸
Unmanned Maritime Vehicle for Coast Guard Missions Demonstration Test Report	Jan 17
Evaluate UMV Sensors and Systems	Jan 17

Requirements for USCG Missions.......Mar 17 Project End....

Persistent Unmanned Maritime Vehicle System Capability

★ Indicates RDC product.

Apr 17

Advanced sUAS Sensor Investigations

Mission Need: Small Unmanned Aircraft System (sUAS) advanced sensors to meet USCG Wide Area Surveillance needs.

Project Objectives:

- Evaluate current and near term state of the market sensor capabilities using RDC sUAS Final Report Modeling and Simulation supplement as a baseline.
- Obtain and test applicable sensor technologies from shore based test site.
- Conduct analysis of results to determine impact of improved sensor capabilities on USCG mission performance.
- Validate modeled results that NextGen sUAS sensors can significantly increase the target detection capability of National Security Cutter over baseline sUAS sensor configurations tested in 2014.

Key Milestone / Deliverable Schedule:	
Project Start	30 Jul 15 ✓
Review NextGen Modeling Results Government Furnished Information.	12 Oct 15 ✓
Select NextGen Sensors for sUAS Integration	9 Nov 15 ✓
Integrate NextGen Sensors on Test Assets	0 Aug 16 ✓
Evaluate NextGen Sensors on Target Set	29 Sep 16 ✓
Post Test Modeling	Mar 17
Advanced sUAS Sensors Investigations Final Report	Apr 17
Project End	May 17

Sponsor: CG-711

Stakeholder(s): CG-931, CG-761, FORCECOM, JTF-E, JTF-W, CBP

Project #: Expected Benefit:

7810

Improve operational performance/efficiency/mission execution/resiliency

Notes:

 Supports the Coast Guard Western Hemisphere and Arctic Strategies.

RDC POC: Mr. Evan Gross

CG-926 Domain Lead:

LT Steve Hager

Joint Requirements and Analysis Subject Matter Expertise Support

Mission Need: Prioritize capabilities assessments across DHS Components to inform leadership of potential trade space, tradeoffs and offsets in the allocation of program resources.

Project Objectives:

- Provide capabilities and requirements analysis expertise to five discrete Science and Technology (S&T) Directorate Portfolio Teams and help them complete the Capabilities and Requirements (C&R) Phase of the DHS Investment Process.
- Examine how portfolio management can be used to determine the capabilities baseline across Components, establish future requirements by the identification of gaps, identification of overlaps and duplication within missions and portfolios, and determination of lifecycle costs and affordability of alternatives for DHS management's consideration.
- Provide objective, systematic analysis to support department-wide decisions on critical investments in capabilities.

			Service Delivery
Internettona		(Governance
Subjected Audili		9	Lines of Business
Resource Optimization Reporting salaran Reporting	ion / Asset Mgmt. / Project Mgmt. ng / Portfolio Mgmt.	Privacy S8M/S1-5	Plans Strategic Plans Shared Strategy
ards / Con	Configuration / Asset Mgmt. Program / Project Mgmt. Capital Planning / Portfolio Mgmt.	Security / Privacy	Information AMM/A19 Systems & Applications IMM/E5 Networks &
Stand Read Stand			Infrastructure
Application		_	Standards
			Authoritative Reference

Key	Milestone /	<u>Deliverable</u>	Schedule:

1		
	Project Start	1 Apr 15 🗸
	Conduct Project Kick-Off Meeting	16 Sep 15 ✓
	Submit Information Sharing Portfolio Capability Analysis Study Plans (CASP)	6 Nov 15 ✓
	Submit Information Sharing Portfolio Capability Analysis Reports (CAR)	29 Jan 16 ✓
	Award Contract for Non-Intrusive Inspection (NII) CAR	3 Nov 16 ✓
	Conduct Kick-Off Meeting	14 Nov 16 ✓
	Submit CBP NII CAR for Review	Mar 17
	Deliver Final CBP NII CAR	Mar 17
	Project End	Mar 17
1		

Sponsor: DHS S&T CDS Group **Stakeholder(s):** DHS S&T Portfolio Teams

Project #: Expected Benefit:

7934

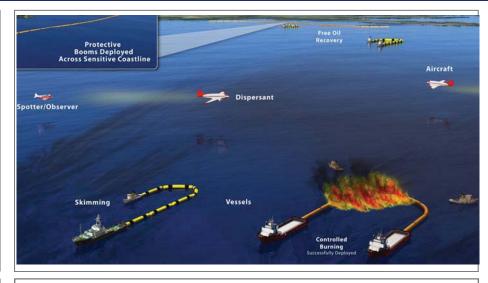
Improve operational relationships and relationships are also become a second relationships.

Improve operational performance/efficiency/mission execution/resiliency

Notes:

• Funded via Inter-Agency Agreement (IAA) from DHS, S&T Directorate, Operations and Requirements Analysis (ORA) Division, Capabilities Development Support (CDS) Group.

RDC POC: CG-926 Domain Lead: Ms. Elizabeth Weaver Mr. Curtis Catanach


Equipment Surge Risk Assessment Tool

Mission Need: A consistent and repeatable methodology for determining the level of risk associated with moving oil spill response resources from donor areas to a Spill of National Significance (SONS).

Project Objectives:

- Develop a risk-informed, conceptual model of a decision-support process and tool that can help Area Committees, Regional Response Teams and Federal On-Scene Coordinators understand and assess what types and amounts of their spill response resources can temporarily be sent to SONS without putting their own locales in jeopardy.
- The conceptual model will:
 - Enhance a response planner's understanding of the representative system.
 - Facilitate efficient conveyance of system details between stakeholders.
 - Provide a point of reference for system designers to extract specifications.
 - Document the system for future reference.

Key Milestone / Deliverable Schedule:	
Project Start	1 Oct 15 ✓
Conduct Technical Kick-Off Meeting	2 May16 ✓
Conduct Stakeholder Interviews	0 Aug 16 ✓
Develop Requirements & Conceptual Model	Jan 17
Validate Conceptual Model with Stakeholders	Mar 17
Contractor Delivers Draft Report	Apr 17
Conceptual Model of a SONS Equipment Surge Risk Assessment Tool/Process	Apr 17
Project End	May 17

Sponsor: **CG-MER**

Stakeholder(s): NSFCC, PAC, LANT

7935

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

• Collaborate with National Strike Force Coordination Center to establish requirements.

> **RDC POC:** Mr. Scott Fields

CG-926 Domain Lead:

Mr. Shannon Jenkins

Analysis of Methods and Underway Time to Develop and Maintain Crew Proficiency

Mission Need: Improve the development and maintenance of crew proficiency.

Project Objectives:

- Determine minimum underway time currently required to build and maintain cutter crew proficiency.
- Identify operational knowledge and skills dependent on underway practice, vs. those that could be maintained with other methods ashore (e.g., simulators).
- Leverage U.S. Navy (USN), U.S. Air Force (USAF), and Canadian CG practices to develop and maintain proficiency.

Key	<u> Milestone /</u>	Deliverable	Schedule:

Project Start	23 Dec 15 ✓
Stakeholder Meeting	17 Mar 16 ✓
Minimum Underway Hours for 270' Training/Drills Brief	Apr 17
Aviation Minimum Flight Hours for Crew Proficiency Brief	May 17
Minimum Underway Time for Training/Drills to Develop an	
Maintain Cutter Crew Proficiency	Oct 17
Development and Maintenance of Cutter Crew Proficiency: Alternatives to Underway Training and Drills	
Development and Maintenance of Cutter Crew Proficiency:	Sep 18
Development and Maintenance of Cutter Crew Proficiency: Alternatives to Underway Training and Drills	Sep 18

Sponsor: CG-751

Stakeholder(s): DCO-81, LANT, PAC, FORCECOM, CG-1B

Project #3 8204

Project #: Expected Benefit:

Improved Doctrine/CONOPs/TTPs

Notes:

- Leverage USN, USAF, and Canadian CG practices.
- Supports the Coast Guard Human Capital Strategy.
- Partnerships with Coast Guard Academy and Afloat Training Organization.

RDC POC: Dr. Anita Rothblum

CG-926 Domain Lead:

LT Steve Hager

University Research Partnership

Mission Need: Leverage University research to further CG missions.

Project Objectives:

- Collect and report out the status of University research that could benefit Coast Guard operations. Active work includes Arctic, Coastal Resiliency, and Cyber research topics.
- Continue to provide oversight on Coast Guard-posed research questions including:
 - AMU//USD: Phase II Cyber Research.
 - Stevens Institute: Phase III Cyber Research.
 - University of Illinois: Critical Infrastructure Resiliency Research.

Key	Milestone /	Deliverable	Schedule:

Project Start	29 Jun 16 ✓
University Research Summary FY16 Q3&4	18 Oct 16 ✓
UNC Maritime Risk Symposium on Cyber Strategy	15 Nov 16 ✓
University Research Summary FY17 Q1&2	Apr 17
University Research Summary FY17 Q3&4	Nov 17
University Research Summary FY18 Q1&2	Jun 18
University Research Summary FY18 Q3&4	Dec 18
Project End	. Jan 19

Sponsor: CG-926

Stakeholder(s): DHS S&T, CG CYBERCOM, LANT/PAC

8601

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency.

Notes:

• Partnering with universities for this effort.

RDC POC: LT Keely Higbie **CG-926 Domain Lead:**

Mr. Shannon Jenkins

Aviation Branch Support

Mission Need: Maintain RDC Branch competency and knowledge; provide rapid response; and provide external liaison.

Project Objectives:

- Maintain/develop Branch technical competencies and infrastructure in CG-relevant aviation/Test and Evaluation technology.
- Support Aviation Strategic Project Portfolio Alignment.
- Report on development & test of Thermal Oscar target.
- Report on analysis of CG airborne spill surveillance.
- Seek opportunities to support CG/Department of Homeland Security aviation programs that close capability gaps and improve mission performance.

	Key Milestone / Deliverable Schedule:
	Project Start
7	Thermal Oscar Design/Test Report and Prototype
7	Evaluation of HC-130H Search and Rescue Ary may y from Deepwater Horizon Oil Search spot 7 Dec 10 ✓
7	HC-144 Radar Predictions for law Enforcen. ∠E) Mission Scenario
7	REACT Report: Enhanced SAR L. veness with Unmanned Aerial Vehicle Swarm Search Capabilities 27 Apr 15 🗸
7	Small Unmanned Aircraft Systems (sUAS) Operated from the National Security Cutter (NSC) - Business Case
	Analysis (BCA)
	Project End

Stakeholder(s):

Project #: Expected Benefit:

9992 Add to general R&D knowledge base

Notes:

RDC POC: LT Dillon Sapp

CG-926 Domain Lead:

LT Steve Hagar

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

★ Indicates RDC product.

Systems Branch Support

Mission Need: Maintain RDC Branch competency and knowledge, provide rapid response, and provide external liaison.

Project Objectives:

• Maintain and enhance Branch competencies.

Key Milestone / Deliverable Schedule:

- Staff roles include: Human Systems Integration, Acquisition Analysis, Cost Modeling, and Risk Analysis subject matter experts.
- Provide CG-9 a core competency for analysis approaches that increase efficacy and efficiency for acquisition decision-making.
- Manage the CG Science and Technology Innovation Center quest for improved transition likelihood.
- Collaborate with the instantiation of the revised CG Innovation program.

Project Start	3 Dec 07 ✓
Science & Technology Innovation Center Full Operational Capability Memo	31 Dec 15 ✓
FY18-19 Idea Submission Review	8 Dec 16 ✓
FY18 Assessment of Prospective Portfolio	Mar 17
FY18 Project Execution Plan (PEP) Ramp Up	Jul 17
FY18 Portfolio Approval	Aug 17
Annual Maritime Risk Symposium	Nov 17
New PEPs/Proposals	As Required
Conduct Market Research	As Required

Technology Conferences...... As Required

Project End

Sponsor: CG-926
Stakeholder(s):

Project #: Project #: Add to general R&D knowledge base

Notes:

RDC POC: Mr. Tim Hughes

CG-926 Domain Lead: CDR James Small

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

★ Indicates RDC product.

TBD

Science & Technology Innovation Center (STIC)

Mission Need: Increase the unity of effort, share knowledge, create a culture of innovation and transition technology to end-users.

Project Objectives:

- Establish a collaborative relationship between the U.S. Coast Guard's Research and Development Test and Evaluation (RDT&E) Program Office and the Department of Homeland Security (DHS) Science & Technology (S&T) Directorate to share and advance technologies that will be mutually beneficial to both parties.
- Provide Tactics, Techniques and Procedures for use in development of requirements for new technology evaluations and transitions.
- Evaluate/validate Coast Guard requirements for STIC technologies.
- Deploy new technology meeting STIC exit criteria to the field as quickly as possible.

Key Milestone / Deliverable Schedule:	
Project Start.	21 Jul 15 ✓
Determine Staffing Requirements	19 Aug 15 ✓
Draft Plan of Actions and Milestones	17 Sep 15 ✓
Initial Operating Capability	30 Sep 15 ✓
Draft Standard Operating Procedure	6 Oct 15 ✓
Identify Initial Projects	14 Oct 15 ✓
Establish Funding Stream	4 Jan 16 ✓
Initial Projects Underway	4 Jan 16 ✓
Execute Task 001 and Task 002	Jul 17
Fully Staffed (RDC)	Aug 17
Full Operational Capability	Sep 17
Project End	TBD

Sponsor: CG-926, DHS Research Development Partnerships Stakeholder(s): DHS S&T, Homeland Security Enterprise, CG-7

Project #: 99952

Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Supports the Coast Guard Western Hemisphere Strategy.
- Align with DHS S&T Integrated Project Team gaps and prioritize.

RDC POC:	CG-926 Domain Lead:
Mr. Scot Tripp	Ms. Wendy Chaves

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

Indicates RDC product.

FY17 Science & Technology Innovation Center (CG-STIC) Tasks

Purpose:

To establish a collaborative relationship between the U.S. Coast Guard Innovation Center and the Department of Homeland Security Science and Technology Directorate to share and advance technologies that will be mutually beneficial to both parties.

Task	Title	Objective	Office Supported	Funding Type	RDC POC	CG-926 Domain Lead	Due/ Delivery Date
99952001	Maritime Object Tracking Technology (MOTT)	MOTT enabling CG assets to increase tracking precision while decreasing detection time to re-acquire objects of interest in a maritime environment. MOTT design, prototypes, technical data package and tactics, techniques, and procedures will be available for the homeland security enterprise.	CG-5R	DHS S&T	Mr. Scot Tripp	Ms. Wendy Chaves	Feb 17
99952002	Port Resiliency Technology Transfer	After action report on the performance and utility of an installed underwater imager after one year of use. The report will address installation, maintenance, and any issues that develop within installation period.	Sector Buffalo, NY	DHS S&T	Mr. Scot Tripp	Ms. Wendy Chaves	Mar 17

FY17 Short Term Analytical Support Efforts (REACT Reports)

Purpose:

Provide short term analytical support to CG decision makers with a means to access quick, inexpensive analyses to investigate a wide range of technology issues relating to current or planned CG operations or procurements. Larger analytical support projects will typically require funding to cover the cost of RDC labor & overhead and other direct costs.

Branch Title		Objective	Office Supported	RDC POC	CG-926 Domain Lead	Due/ Delivery Date
M&S COE	Literature Review & Analysis of Insurance/Banking Risk Practices & Methodologies Applied to USCG Operations	Research currently-employed insurance risk techniques that can be applied to USCG risk analysis and decision making, including application to risk decision-making in maritime cyber issues.		Mr. Timothy Hughes	LT Steve Hager	Jan 17
C4ISR	Portable Vessel Exhaust Gas Sensor	Investigate existing technologies, required procedures and applicable processes within the CG, EPA and/or other government agencies to remotely measure gas emissions of sulfur oxides, nitrogen oxides, and particulate matter to determine adherence to low sulfur fuel requirements.	CGD11	Mr. Al Arsenault	Ms. Holly Wendelin	Feb 17
Surface	Stand-off Chemical Threat Detection	Improved stand-off detection capability when responding to accidental or intentional release of hazardous chemical agents.	CG-721	Mr. Rich Hansen	LT Steve Hager	Mar 17
Surface	Over The Side Boat Launch and Recovery (BL&R) Operations for Offshore Patrol Craft (OPC)	Identify potential new/alternative over the side boat launch and recovery systems for potential use onboard Major Cutters.	CG-751	Mr. Rich Hansen	LT Steve Hager	Apr 17
Surface	Liquefied/Compressed Natural Gas for Western River Tenders	Research currently-employed insurance risk techniques that can be applied to USCG risk analysis and decision making, including application to risk decision-making in maritime cyber issues.	CG-7513	Mr. Rich Hansen	LT Steve Hager	Sep 17

FY17 Project Portfolio

Non-CG RDT&E Funded Projects

Non-Compliant Vessel Less-Than-Lethal Technologies **Procurement Support**

Mission Need: Capability to provide security and enforce maritime law with less-than-lethal technology.

26 Jun 15 ✓

Project Objectives:

- Provide Coast Guard operators additional tools for the Use of Force continuum's Step II (Warn), Step III (Disrupt), and Step IV (Disable) tactics.
- Assist in the development of Non-Major Acquisition paperwork documenting the Less than Lethal Technologies that are all applicable to all Coast Guard missions and the maritime environment.

Key Milestone / Deliverable Schedule:

Project Start....

Acquisition Document 1: MNS Memo 1			
Acquisition Document 2: PM Charter	Mar 18		
GO/NO GO Decision Point to Continue	Apr 18		
Acquisition Document 3: Requirements Document	Mav 19		

Proiect End.

Additional Documentation to be Determined after Decision Point

Sponsor: CG-721

Stakeholder(s): MSST, MSRT, LANT, PAC, JTF-E

5677

Project #: Expected Benefit:

Inform follow-on acquisition/enterprise deployment

Notes:

- Leverage past work, Other government Agency's efforts, and other current Non-Compliant Vessel projects.
- Supports the Coast Guard Western Hemisphere Strategy.

RDC POC: Ms. D.J. Hastings **CG-926 Domain Lead:**

LT Steve Hager

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

(+2 years)

Polar Icebreaker Acquisition Support

Mission Need: Acquire a new polar icebreaking capability.

Project Objectives:

Prepare acquisition support documents including:

- Preliminary Operational Requirements Document (P-ORD).
- Operational Requirements Document (ORD).
- Alternatives Analysis (AA).

Key	Milestone	/ Deliverable	Schedule:

	Project Start
	AA Study Plan Review
7	AA Study Plan 12 Dec 14 ✓
7	P-ORD 6 Jan 15 ✓
7	AA
	Begin ORD Clearance
7	ORD
7	Analysis of Operational Requirements 13 Jan 16 ✓
7	AA Refresh
	Project End

Sponsor: CG-932

Stakeholder(s): CG-751, PAC-3

7930

Project #: Expected Benefit:

Direct Acquisition Support (MAR, MNS, CONOPS,

ORD, AA, LCCE, T&E, etc.)

Notes:

RDC POC: Mr. Mark VanHaverbeke

CG-926 Domain Lead:

LT Steve Hager

General Engineering Laboratory Support (GELS)

Mission Need: Test and Evaluation of Aids to Navigation (AtoN) to improve performance, lower costs and extend maintenance intervals.

Project Objectives:

- Provide a laboratory and test and evaluation services in support of the CG AtoN program.
- Conduct test and evaluation of AtoN to ascertain conformance with established regulatory and certification criteria.
- Evaluate the viability of emerging technologies to reduce CG operating/maintenance costs or alleviate (AtoN signal) problem areas.
- Assimilate geographic and environmental modeling capability into GELS for appropriate sizing of lights and support equipment.
- Update and document solar sizing programs.

2 Model F, Secial F 3 FL - code 200, fixes 4 Detector wavelengt 5 Min Intensity	for, lettersity - cod	le 501, 4NM	nautical mi	ed					
4 Detector wavelengt	h correction factor o								
E M. Laurie		- 0.56			8004				
	55,63								
6 Max Intensity	72.45								
7 five Intensity	64.53								
	hyi 51.62								
9 90th percentile	68.29	Targety 6	0.00						
. 10									
11 Vertical Divergence	8.50	Target-	.00						
12 Intensity og +35'									
13 Intensity at 3.5	34.80	Tanget-	0						
W boothin									
S injut years									
in input samps	84								
1	3-2-1-0 1 2 3 4 5 Angle Tev 19(pt in 1800)		kedenselly (red)	ec Sogness D degrees D Degrees	A		The physical and the state of the	CL MOON	an analysis of the control of the co
	\$ 700 processes \$\frac{3}{3}\$ Vertical Divergence \$\frac{1}{2}\$ Vertical	1 Vertical Blverspence 5.06	9 - 900 percentle	70h percentle 62.75 Targer (0.00	Target (0.00) Target (0.00)		1	5	

Key	<u> Milestone /</u>	Deliverable	Schedule:

Project Start	circa 72 ✓
Ongoing Project, Historically 2-3 Deliverables/Year	✓
GELS FY15 Activity Summary 1st and 2nd Qtr	13 Apr 15 ✓
GELS FY15 Activity Summary 3rd and 4th Qtr	12 Oct 15 ✓
GELS FY16 Activity Summary 1st and 2nd Qtr	6 Apr 16 ✓
GELS FY16 Activity Summary 3rd and 4th Qtr	. 9 Nov 16 ✓
GELS FY17 Activity Summary 1st and 2nd Qtr	Apr 17
GELS FY17 Activity Summary 3rd and 4th Qtr	Oct 17
Project End	TBD

Sponsor: CG-43 **Stakeholder(s):** SILC Miami

Project #: Expected Benefit:

2784 Direct Product Line/O

Direct Product Line/Core Technology Support (Tech refresh, DMS, etc)

Notes:

• Use of RDC's Light Evaluation Laboratory capable of measuring light intensity and chromaticity.

RDC POC: CG-926 Domain Lead: Mr. Vinnie Reubelt Mr. Shannon Jenkins

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

★ Indicates RDC product.

Maritime Safety, Security, Communication, and Navigation **Standards**

Mission Need: Development and advancement of national and international standards effecting USCG interests.

Project Objectives:

• To preserve the integrity of existing, and support the development and advancement of national and international standards effecting USCG interests – through participation in standards committee meetings.

Key Milestone / Deliverable Schedule:

Project Start	Oct 2015 ✓
IEC TC80 WG17 CMDS Standards Meetings (3)	Sep 17
IEC TC80 WG6 Interface Standards Meetings (3)	Sep 17
IEC TC80 WG15 AIS Standards Meetings (5)	. Sep 17
NMEA 0183 Interface Standard Meetings (3)	Sep 17
NMEA 2000 Interface Standard Meetings (5)	Sep 17
NMEA OneNet Interface Standard Meetings (8)	Sep 17
RTCM Special Committee Standards Meetings (10)	Sep 17
GMDSS Task Force Meetings (1)	Sep 17
Inputs to NMEA 0183/2000/OneNet Standards	Sep 17
Inputs IEC Interface Standards &, AIS Standards	Sep 17
U.S. National Committee Support	Sep 17
Project End	Oct 17
A	

Sponsor: C4IT SC

Stakeholder(s): CG-65, CG-761, CG-NAV, C3CEN

7205

Project #: Expected Benefit:

Influence international standards

Notes:

• Supports the Coast Guard Cyber Strategy.

RDC POC: Mr. Lee Luft **CG-926 Domain Lead:**

Ms. Holly Wendelin

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil

Indicates RDC product.

Financial Management System Improvement Initiative (FMSII) Operational Test Agent (OTA) Support

Mission Need: An OTA is required for the new FMS to conduct independent Operational Test and Evaluation (OT&E).

Project Objectives:

- Develop high level test strategy for the new FMS.
- Assess the risks to operational mission goals that may occur once the new system is deployed.
- Develop the Operational Test and Evaluation (OT&E) Test Plan describing the resources, procedures, responsibilities and scenarios for testing.
- Conduct OT&E in accordance with the DHS approved Test and Evaluation Master Plan (TEMP) and Test Plan and create final OT&E report.

	Causes for Action	
	Core Accounting	
	System (CAS)	
	replacement	
Coast Guard		Coast Guard
decisions	(1.2.b) (1.2.b)	Business
(FMTTF)		Model
	X	
Federal best		Audit
practices		Sustainability
(FSIO)		, sastantoni,
	Federal requirements	
	(OBM A-11/123/127/136,	
	Treasury FMS)	

Key	Milestone /	Deliverable	Schedule:
<u> </u>			

Project Start	4 Apr 14 ✓
Develop TEMP	24 Apr 14 ✓
Risk Assessment	21 Jan 15 ✓
OT&E Final Test Plan	Jun 17
CG FMSII User Acceptance Testing (UAT)	Jun 18
OT&E Report	Aug 18
Post OA Support	Aug 18
Project End	Sep 18

Sponsor: CG-86

Stakeholder(s): CG-926, CG-933

9507

Project #: Expected Benefit:

Direct Acquisition Support (MAR, MNS, CONOPS, ORD, AA, LCCE, T&E, etc)

Notes:

• Due to on-going Coast Guard re-planning for FMSII, dates for future milestones and deliverables are in flux and will be updated when re-planning concludes.

> **RDC POC:** Ms. Kim Babcock

CG-926 Domain Lead:

Ms. Holly Wendelin

Shipboard Compliance of Ballast Water Discharge Standards (BWDS)

Mission Need: The tools to quickly and reliably determine vessel compliance with the BWDS.

Project Objectives:

• Determine the availability and capabilities of existing technologies that could be utilized for compliance verification of the BWDS.

Key Whestone / Denverable Schedule.	
Project Start	12 Jan 11 ✓
Proceedings of Ballast Water Discharge Standards Compliance Subject Matter Expert (SME) Workshop	.7 Sep 11 ✓
Market Research Assessment: Verification Technologies for BWDS Compliance	17 Oct 12 ✓
Prototype Development of Compliance Tools	.15 Jul 16 ✓
Independent Field Testing of Prototype Compliance Verification Technologies	May 17
Compliance Technology Transition Plan	. Aug 18
Project End	Oct 18

Sponsor: CG-OES Stakeholder(s): USEPA-GLNPO, CG-CVC

410131

Project #: Expected Benefit: Influence international standards

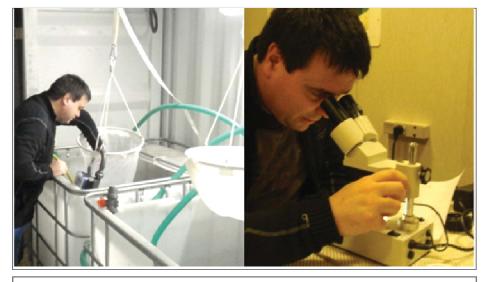
Notes:

- Funded by Great Lakes Restoration Initiative.
- Supports CG's Energy Renaissance Action Plan.

RDC POC: Ms. Gail Roderick **CG-926 Domain Lead:**

Mr. Shannon Jenkins

For more information, call (860) 271-2600 or e-mail RDC-Info@uscg.mil


Key Milestone / Deliverable Schedule

Analysis Support for the Mandated Periodic & Practicability Reviews of Ballast Water Standards

Mission Need: To determine the practicability of implementing Ballast Water Discharge Standards (BWDS) more stringent than the current standards.

Project Objectives:

- Develop a plan for determining the practicability of implementing more stringent ballast water discharge standards.
- Conduct a practicability review that examines all aspects of the prevailing ballast water management program requirements, standards, and assess the program's effectiveness in preventing invasions.

Key	Milestone /	Deliverable	Schedule:

Project Start2	28 Jan 13 ✓
Phase I: BWDS Practicability Planning Meeting22	2 May 14 ✓
KDP: Conduct BWDS Practicability Review	3 Jun 14 ✓
Recommendations for Evaluating Multiple Filters in Ballast Water Management Systems for U.S. Type Approval7	' May 15 ✓
Ballast Water Discharge Standards Practicability Review Plan	4 Aug 16 ✓
Practicability Review of Ballast Water Discharge	
Standards	Apr 17
Project End	Jun 17

Sponsor: **CG-OES**

Stakeholder(s): USEPA - GLNPO

410133

Project #: Expected Benefit:

Influence international standards

Notes:

- Funded by Great Lakes Restoration Initiative.
- Supports CG's Energy Renaissance Action Plan.

RDC POC: Ms. Gail Roderick **CG-926 Domain Lead:**

Mr. Shannon Jenkins

Illinois Waterway Marine Safety Risk Research

Mission Need: Provide technical support in determining marine safety risks; recommend mitigation strategies.

Project Objectives:

- Assist in developing appropriate safety tests for new Aquatic Nuisance Species control measures at Romeoville (Chicago Sanitary & Ship Canal CSSC)) and Rockdale (Brandon Road Lock and Dam (BRLD)) Illinois.
- Participate in United States Army Corps of Engineers (USACE) prototyperelated testing as CG technical lead.
- Analyze results and determine marine safety-related risks.
- Develop marine-safety risk assessment model and determine appropriate risk-mitigation measures.
- Make recommendations to CG operational commanders.

	Key Milestone / Deliverable Schedule:	
	Project Start	1 Jun 16 ✓
*	Preliminary Marine Safety Risk Assessment, Brandon Road Lock & Dam Invasive Species Control Measures	5 Dec 16 ✓
*	IL Waterway Barge Entrainment Control Measures; Prelim Risk Assessment	May 17
	Participate in USACE Safety Testing (CSSC)	Sep 17
*	CSSC Safety Testing Research Results and Analysis- New Barrier I.	Dec 17
*	Brandon Road Lock and Dam Quantitative Marine Safety Risk Assessment	Feb 18
*	Barge Entrainment Quantitative Risk Assessment	Mar 18
	Project End	Apr 18

Sponsor: USEPA-GLNPO, CGD9

Stakeholder(s): MSU Chicago, CG SLM, USACE, LANT

Project #: Expected Benefit: 410136

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Project under Great Lakes Restoration Initiative/Great Lakes Mississippi River Interbasin Study.
- Supports the Coast Guard Energy Renaissance Action Plan.

RDC POC: Mr. M. J. Lewandowski **CG-926 Domain Lead:**

Mr. Shannon Jenkins

Scalability of Ultraviolet-based Ballast Water Management Systems (BWMSs)

Mission Need: Research and study prevailing mathematical models that can be adequately used to interpolate or extrapolate data for common engineering designs of Ultraviolet (UV)-based BWMSs in order to determine whether or not a USCG Type Approval should be granted.

Project Objectives:

- Perform a literature research and review on mathematical models that may be used to predict the performance of common architectures of UV-based BWMSs:
 - Based on research, identify prevailing models currently in use that have the potential to predict the performance of a larger scaled UV-based BWMS through interpolation and extrapolation of data test results of a smaller sized UV-based BWMS.
 - Research, evaluate, and compile each model's strengths/drawbacks and appropriateness for all common UV-based BWMS architectures.
- Develop Guidance Document for modeling UV-based BWMSs that will assist MSC in determining if a model proposed in its USCG Type Approval application is appropriate for the UV-based BWMS used.

Key Milestone / Deliverable Schedule:	
Project Start	23 Mar 16 ✓
Begin Literature Review	20 Jun 16 ✓
Literature Review Results	30 Dec 16 ✓
Begin Scalability Guidance Document Development	30 Dec 16 ✓
Interim Scalability Guidance Document	May 17
Final Scalability Guidance Document	Jun 17
Project End.	. Jul 17

Sponsor: **MSC**

Stakeholder(s): CG-OES, USEPA-GLNPO

410145

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Partnering with Great Lakes Restoration Initiative (GLRI) under the Clean Water Act 33 USC 1251-1387.
- Supports CG's Energy Renaissance Action Plan.

RDC POC:	
Mr. Alexander Balsley	

CG-926 Domain Lead:

Mr. Shannon Jenkins

Research and Development of Quality Assurance Protocols for Ballast Water Testing Independent Laboratories (IL) Mission Need: USCG needs to assure that the ILs are meeting established scientific standards for Ballast Water

Management Systems (BWMS) Type Approval.

Project Objectives:

- Research how audit procedures and protocols are used by other Federal Agencies, Industry, and Academia to ensure Quality Assurance/ Quality Control (QA/QC) programs of contracted laboratories maintain a high standard of quality.
- Develop robust, science-based technical QA protocols that can be used as by the sponsor to verify the efficacy of ILs' QA/QC programs supporting BWMS type approval.
- Evaluate the QA protocols by auditing USCG-accepted laboratories and make minor adjustments as necessary.
- Document research activities and test results in a final report.

Key Milestone / Deliverable Schedule:			
Project Start	7 Jun 16 ✓		
Literature Review	Mar 17		
Subject Matter Experts Workshop	May 17		
Initial QA Protocol Development	Aug 17		
Initial Trial QA Protocol Test at Naval Research Laboratory	Oct 17		
Test at Non-US ILs.	Apr 18		
Final Report and QA Protocols	Sep 18		
Project End	Sep 18		

Sponsor: CG-ENG-3

Stakeholder(s): CG-OES-3, USEPA-GLNPO

410146

Project #: Expected Benefit:

Improve operational performance/efficiency/mission execution/resiliency

Notes:

- Partnering with Great Lakes Restoration Initiative under the Clean Water Act 33 USC 1251-1387.
- Supports the Coast Guard Energy Renaissance Action Plan.

RDC POC:	
Ms. Gail Roderick	

CG-926 Domain Lead:

Mr. Shannon Jenkins

