Data – the Foundation for the Highway Economic Requirements System

U.S. DOT Datapalooza 2015
Conditions & Performance Session
June 17, 2015

HERS Capabilities

- Projects overall conditions & performance of nation's Federal-Aid highways over 20 years at alternative potential levels of investment.
- Identifies and evaluates potential improvements to sections using engineering criteria & benefit-cost analysis (BCA)
- Estimates investment needs relative to user-specified targets - e.g. average speed, minimum BCR (benefit-cost ratio)

Evaluated Improvements

Pavement preservation	rehabilitationreconstructionresurfacing, etc.
Capacity expansion	adding lanesmajor wideningnew highwayconstruction

Selected HERS Outputs – 2013 C&P Report

- Assume VMT grows at recent trend rate
- Estimates of real growth in investment on highway preservation and capacity expansion:

Investment target	Annual % growth in investment, 2010-2030
Fund all cost-beneficial improvements	+ 3.95
Maintain overall conditions & performance at 2010 level	-0.95

Operational improvements

- Ramp metering, variable speed limits, incident management systems, upgraded traffic signals, etc.
- HERS estimates incidence and impacts of current and future deployments
 - But does not subject these deployments to BCA.

Non-modeled improvements

- Safety improvements
 - > Rumble strips
 - ➤ Saftey edges
 - Median treatments
 - ➤ Signalized intersection improvements
 - ➤ Guardrails, etc.
- Other improvements –e,g. landscaping

HPMS Sample Database

- Section-level data on Federal-Aid highways: arterials, urban collectors, & rural major collectors
- 106,000 sample sections in 2010
- Large enough sample for each state to allow estimation similar to national level
 - HERS-ST model

HPMS Inputs to HERS: Inventory Items

- Number of through lanes
 - Peak vs Counter-peak
- Turn lanes
- National Highway System identifier
- Speed limit

HPMS Inputs to HERS:

Traffic

- AADT
 - Base year level
 - Forecast for 20th future year*
 - Vehicle composition LDV, SU truck, Combo truck
 - Directional & "K" Factors
- Traffic Control Devices
 - Number of intersections by type (traffic control)
 - Signals: predominant type
 - Stop signs number

HPMS Inputs to HERS: Geometric

- Widths lanes, median, shoulders
- Types medians & shoulders
- Grades horizontal & vertical
- Number of intersections by type (traffic control)
- Widening feasibility*

HPMS Inputs to HERS: Pavements

- Surface & base types and thickness
- Improvement history
- Pavement roughness & PSR
- New distress measures:
 - Rutting
 - Faulting (rigid pavements)
 - Fatigue Cracking
 - Transverse Cracking

Other Data Inputs

- Improvement Costs by Type
 - Estimates for reference year (currently 2002)
 - Price indexing to update to base year
- Data used to estimate model equations
 - Naturalistic Driving Study speed cycles
 - National Household Travel Survey
 - Data used to estimate models of speed and travel time reliability (HCM, SHRP2)

HERS Database – Projections & Parameters

- Fuel Costs
- Vehicle Fuel Efficiency
- Improvement (construction) costs
- Value of travel time savings per hour
- Induced demand

Volatile Gasoline Prices

AEO Gasoline Price Projections: Reference & Low-Oil Price Cases

Highway Construction Cost & Consumer Price Indices (2003 Base Year), 1990–2010

Big Data Challenges

- Benefit-cost optimization gets computationally challenging when the problem includes:
 - Funding constraints
 - Options for implementing a project now versus later
 - Many possible combinations of improvement options
 - Induced demand
- FHWA developing a testbed for advanced computational algorithms
 - Highway Intertemporal Simulator

Value of Travel Time (2002)

	Medium Auto	5-Axle Comb.
Business Travel		
Value per Person	\$23.20	\$20.80
Avg. Vehicle Occupancy	1.15	1.12
Vehicle Depreciation	\$1.45	\$6.16
Inventory Costs	\$0.00	\$1.78
Total Business	\$28.36	\$32.24
Personal Travel	\$28.36	
Value of Time	\$10.60	
Avg. Vehicle Occupancy	1.53	
Total Personal	\$16.22	
Percent Personal	91%	
Weighted Average	\$17.31	