The Growth of U.S. Natural Gas: An Uncertain Outlook for U.S. and World Supply

For

2015 EIA Energy Conference June 15, 2015 | Washington, D.C.

By

John Staub, Team Lead, Exploration and Production Analysis

eia | U.S. Energy Information Administration

Independent Statistics & Analysis www.eia.gov

Outline

- Changes in U.S. natural gas
 - Why resource estimates change
- Why resource estimates produced with different methods should be different and are valuable
- What we need to know about a play to get a fairly accurate estimate
 - Intersection of geology, technology & above-ground factors (i.e. economics, regulations, taxes)
- What we know internationally

History is easy... cumulative U.S. dry natural gas production since 1930 is 1,200 Tcf

U.S. natural gas production (dry) trillion cubic feet

Source: EIA

U.S. shale gas production was 5% of total U.S. dry gas production in 2004, 10% in 2007, and is now 56% in 2015

Sources: EIA Natural Gas Monthly data through December, STEO through May2015 and Drilling Info.

eia

Shale resources remain the dominant source of U.S. natural gas production growth, with a range of longer-term outcomes

U.S. dry natural gas production trillion cubic feet

Source: EIA, Annual Energy Outlook 2015

Future domestic natural gas prices depend on both domestic resource availability and world energy prices

Average Henry Hub (HH) spot prices for natural gas

Source: EIA, Annual Energy Outlook 2015

John Staub | EIA Conference June 15. 2015

Projected U.S. natural gas exports reflect the spread between domestic natural gas prices and world energy prices

U.S. natural gas imports and exports

Source: EIA, Annual Energy Outlook 2015

Resource estimates for U.S.

John Staub | EIA Conference June 15, 2015

Oil and natural gas resource categories reflect varying degrees of certainty

Stylized representation of oil and natural gas resource categorizations (not to scale)

Source: U.S. Energy Information Administration

Note: Resource categories are not drawn to scale relative to the actual size of each resource category. The graphic shown above is applicable only to oil and natural gas resources.

http://www.eia.gov/todayinenergy/detail.cfm?id=17151

Shale gas is 45% of the 354 Tcf total U.S. natural gas proved reserves as of 1/1/2014

Proved shale gas reserves of the top six U.S. shale gas reserves states, 2008-13 trillion cubic feet

Source: U.S. Energy Information Administration, Form EIA-23L, Annual Survey of Domestic Oil and Gas Reserves, 2008-13. (figure 13)

Technically recoverable natural gas resources reflect new information, a combination of assessments and EIA updates

U.S. dry gas resources

trillion cubic feet

Source: U.S. Energy Information Administration, Annual Energy Outlook 2015 and prior editions Note: Resources are as of January 1 of two years prior to the "edition" year of the AEO (e.g. AEO2015 is 1/1/2013).

Industry and NGO understanding of U.S. shale gas resources has increased substantially in the past decade

Source: Potential Gas Committee (2015)

Marcellus

John Staub | EIA Conference June 15, 2015

Adding geology improves EUR estimate quality, offers higher resolution

County	Average EUR (bcf)	Average EUR weighted by GIP tier (bcf)	County	Average EUR (bcf)	Average EUR weighted by GIP tier (bcf)
ALLEGHENY	3.74	4.09	SUSQUEHANNA	6.14	4.92
ARMSTRONG	0.91	2.72	TIOGA	2.98	2.49
BEAVER	2.74	2.44	UNION	2.80	0.30
BEDFORD	1.16	0.85	VENANGO	0.83	2.49
BLAIR	1.34	1.23	WARREN	1.84	2.28
BRADFORD	5.70	3.94	WASHINGTON	2.45	3.69
BUTLER	1.74	2.72	WAYNE	7.49	1.34
CAMBRIA	1.46	2.43	WESTMORELAND	1.85	2.84
CAMERON	0.33	2.69	WYOMING	8.85	3.42

EUR: Estimated ultimate recovery per well

Source: Energy Information Administration analysis, July 2014

Pennsylvania Marcellus – dry gas in the Northeast, wet gas in the Southwest

Source: Range Resources, Marcellus extent and Range Resources gas in-place outlines

Two additional years of data show increase in productivity of wells, and sub-county detail captures economic drivers

Source: EIA, Annual Energy Outlook 2015

Distribution of EURs in the Marcellus

Cumulative dry natural gas production (i.e. EUR, Estimated ultimate recovery per well) billion cubic feet

Estimates of Marcellus resources for Pennsylvania with no excluded areas

Table 1. Estimates of EUR and area for Pennsylvania contour areas in the Marcellus

Contour	Area	Average EUR	Resource Est.	Area	Resource
(bcf/sq mi)	(sq mi)	(bcf)	(TCF)	(%)	(%)
150-175	304.8	9.19	12.0	1.2	3.9
125-150	1408.3	5.59	33.8	5.3	10.9
100-125	1886.6	3.59	29.1	7.2	9.4
75-100	2,941.4	3.05	38.6	11.2	12.5
50-75	11798.7	2.55	129.4	44.8	41.8
25-50	6259.3	2.28	61.5	23.8	19.9
0-25	1734.2	0.68	5.1	6.6	1.6
		Total->	309.5		

Source: U.S. Energy Information Administration, Office of Energy Analysis, Petroleum, Natural Gas and Biofuels Analysis

Source: EIA http://www.eia.gov/workingpapers/pdf/geologic_dependencies.pdf October 2014

Technically recoverable tight/shale oil and gas resources in several shale gas regions

	A no o susida	Average	Average EUR	<u>Unproved</u> Technically Recoverable Resources		Proved reserves	Cumulative production
Play	Area with Potential ¹ (mi ²)	Spacing (wells/mi²)	Natural Gas (Bcf/well)	Natural Gas (Tcf)	NGPL (Bbls)	Natural Gas (Tcf)	1990-2013 (Tcf)
Barnett-Core	363	8.0	1.621	4.7	0.2		
Barnett-North 1,61		8.2	0.467	6.2	0.2 26.0		12.6
Barnett-South	5,368	8.0	0.154	6.6	0.3		
Fayetteville-Central	2,065	8.0	0.973	16.1	0.0	12.2	4.6
Fayetteville-West	773	8.0	0.700	4.3	0.0	12.2	1.0
Haynesville-Bossier-LA	1,883	6.0	4.279	48.3	0.0	16 1	87
Haynesville-Bossier-TX	1,521	6.0	2.735	25.0	0.0	10.1	0.7
Marcellus Foldbelt	869	4.3	0.323	1.2	0.0		
Marcellus Interior	17,200	4.4	1.897	143.8	5.5	64.9	7.8
Marcellus Western	2,688	5.5	0.255	3.7	0.2		

1 Area of play that is expected to have unproved technically recoverable resources remaining

2 Includes lease condensate

The Marcellus is the largest shale gas play over the long-term

Dry shale gas production by selected plays trillion cubic feet

Cumulative production trillion cubic feet

	(1990- 2013)	(2014- 2040)
Marcellus	8	147
Haynesville/Bossier	9	79
Other	9	63
Eagle Ford	2	52
Barnett	13	38
Utica	0	27
Fayetteville	5	26
Woodford	3	17
Bakken	1	8
Antrim	3	2
Total	52	459

Source: EIA, Annual Energy Outlook 2015

The shale gas <u>technology story</u> is only beginning, with much yet to be written

- <u>Technology</u> is creating new resources out of rocks
- Production data provides a rearview mirror perspective
 - see the changes, but with a delay
 - EIA does not anticipate step changes in technology applications
 - EIA does recognize and incorporate long-term technological change
- <u>Annual re-estimating</u> of U.S. plays is necessary
 - new data is providing significant new detail of what production is possible
- Broad implications exist for world wide oil and gas production

TRR Does Not Reflect the Expected Future

- TRR is a comparative benchmark metric, but its magnitude is difficult to interpret physically
 - Good estimator of relative potential of different plays
 - Consistent under-estimator of total volume of gas that will be extracted in future
- TRR intentionally ignores sources of significant, coupled uncertainties (conservative estimate):
 - Future technology improvements Although continuous incremental improvements can be modeled a la Moore's Law for microprocessors, the emergence of disruptive technologies is difficult to predict
 - Economic considerations The price of natural gas can drive investments, leading to greater recoverability than estimated in TRR
 - Political/Regulatory environment Changes can change access to and/or economic feasibility of certain plays

Accounting for interference may require substantially more wells than a noninterfering expectation

recovery percentage of in-place hydrocarbons

Source: EIA illustration

International

John Staub | EIA Conference June 15, 2015

World natural gas production will diversify

Natural gas production trillion cubic feet

Source: EIA International Energy Outlook 2013, Reference case

Map of 106 basins assessed for shale oil and shale gas resources in 46 countries

Source: EIA/ARI Supplement 2015 Preliminary Release

Algeria's pipeline infrastructure proximity to shale basins

Source: EIA, ARI, IHS_EDIN

Technically recoverable shale gas resources are about 30% of total world natural gas resources

Wet natural gas

	(trillion cubic feet)
United States	•
Shale gas	665
Non-shale	1,766
Total	2,431
Shale as a percent of total	27%
Total World	
Shale gas	7,299
Non-shale	15,583
Total	22,882
Shale as a percent of total	32%

Source: EIA; EIA/ARI 2013; O&GJ Dec. 2012 and USGS 2012

Countries producing shale gas oil in 2014

Source: US EIA, Canada National Energy Board, Fact Global Energy, Chevron, Yacimientos Petroliferos Fiscales

Areas of uncertainty in the outlook

- Global development of tight oil and shale gas resources
 - EIA is gathering geology and production information, and conducting outreach
- Increasing global trade of natural gas and HGL in addition to oil
 - EIA is integrating the representation of oil and natural gas supply and other hydrocarbons
- Impact of geopolitical tensions on energy supply
 - EIA exploring options for representing these uncertainties in the outlook

Why long-term projections might could will be wrong

- Different relative fuel prices
- Faster / slower demand growth
- Changing policies and regulations
- Changing consumer preferences
- Faster / slower technological progress
- Technological breakthroughs

For more information

U.S. Energy Information Administration home page | www.eia.gov

Annual Energy Outlook | www.eia.gov/forecasts/aeo

Short-Term Energy Outlook | <u>www.eia.gov/forecasts/steo</u>

International Energy Outlook | www.eia.gov/forecasts/ieo

Today In Energy | <u>www.eia.gov/todayinenergy</u>

Monthly Energy Review | www.eia.gov/totalenergy/data/monthly

State Energy Portal | <u>www.eia.gov/state</u>

Drilling Productivity Report | www.eia.gov/petroleum/drilling

Supplemental Slides

Comparison of methodologies

- Volumetric approach
 - Volume of rock
 - Identify share of area with potential
 - Estimate oil and gas in-place based on pore space
 - Apply geology and above-ground risk factors to "de-risk" the developable resource
 - Multiply by a recovery factor (informed from U.S. experience)
 - Generally 20% to 30% for natural gas

- Performance approach
 - Areal extent of shale
 - Identify share of area with potential for development, using detailed information on geology within individual formations that are being assessed.
 - Number of wells per unit area
 - Estimated average production over the life of a well (estimated ultimate recovery (EUR)) from similar types of shale formations in U.S.

Distribution of EURs in the Barnett

Cumulative dry natural gas production (i.e. EUR, Estimated ultimate recovery per well) billion cubic feet

Distribution of EURs in the Fayetteville

Distribution of EURs in the Haynesville

Cumulative dry natural gas production (i.e. EUR, Estimated ultimate recovery per well) billion cubic feet

- Gas in place (GIP)
 - Total amount of gas that exists in reservoirs (including shale) in a field (field: geographic area, geologically related)
 - GIP cannot be directly measured, only inferred from maps of geologic parameters
- Technically recoverable resources (TRR)
 - Amount of gas that could be produced from a field using currently available technology and production practices, but regardless of economic viability
 - Includes historical production, known proved reserves, plus estimate of areas not yet tested
- Economically recoverable resources
 - Amount of gas that would be produced economically from a field using currently available technology and production practices, and assuming current economic (e.g., costs, prices) conditions continue without change
- Estimated ultimate recovery per well (EUR)
 - Estimate of total gas that will be produced by any given well
 - Based on historical production data and decline curve fit

For more information

Subject matter experts for this presentation:

Dana Van Wagener, Senior Analyst, Exploration and Production Analysis Team Dana.Van-Wagener@eia.gov, 202-586-4725

Troy Cook, Senior Petroleum Engineer, Exploration and Production Analysis Team Troy.Cook@eia.gov, 202-586-4493

John Staub, Team Lead, Exploration and Production Analysis Team John.Staub@eia.gov, 202-586-6344

Faouzi Aloulou, Economist, Exploration and Production Analysis Team Faouzi.Aloulou@eia.gov, 202-586-1344

Resource and technology assumption changes from Reference to High Resource case

Shale gas specific (L48)	High Resource case	Other resources	High Resource case	
New plays	Focused on tight oil in plays not considered in the Reference case	Offshore	50% increase in undiscovered resources	
Well spacing	100% more wells/area (50% reduction in acre spacing)	Alaska: undiscovered resources	50% increase in undiscovered resources	
Interference effects (diminishing returns)	IP rate increased 20%, but decline curve shifted to lower estimated ultimate recovery (EUR) to 80% of Reference once drill # of Ref case wells in county			
Technology: production	Well EURs 50% larger 1% increase/year with no end date			

 τv

Ongoing work to improve projections

- Leverage the Bayesian inference approach already used by AEO modelers (EIA currently operates at higher levels of resolution than many other organizations active on this issue)
- Incorporate geologic dependencies to inform model assumptions of future well performance
 - presented to American Statistical Association in November 2013
 - prototype is under construction
- Conduct geo-statistical analysis to improve empirical measures of optimal well spacing and the profile of diminishing returns from infill drilling
- End result: separate impact of incremental technological change from geologic information when describing potential changes in resource size estimates

Play-level EURs are based on historical well performance

- Individual well performance analyzed (2008-2013)
- Historical production fit to hyperbolic decline curve

$$Q_{t} = \frac{Q_{i}}{\left(1 + b \times D_{i} \times t\right)^{\frac{1}{b}}}$$

where, 0 < b < 2 and $0 < D_i < 1$

- Step 1: Solve for Qi, b, and Di with 0.001 < b < 2 and 0 < Di < 1
- Step 2: If not converged, set b = median b determined in previous step then solve for Qi and Di with 0 < Di < 1
 - median b by drill_type, vintage_year, field, and county
 - use lowest available disaggregated median
- **Step 3**: If still not converged, set b = median b by drill_type and vintage_year from Step 1
- Extend production through 360 months -- convert to exponential decline when annual decline rate reaches 10%

Top ten countries with technically recoverable shale resources

Shale gas			Shale oil			
Rank	Country	Trillion cubic feet	Rank	Country	Billion barrels	
1	China	1,115	1	Russia	75.8	
2	Argentina	802	2	United States*	78.2	
3	Algeria	707	3	China	32.2	
4	United States*	596	4	Argentina	27.0	
5	Canada	573	5	Libya	26.1	
6	Mexico	545	6	UAE	22.6	
7	Australia	429	7	Chad	16.2	
8	South Africa	390	8	Australia	15.6	
9	Russia	287	9	Venezuela	13.4	
10	Brazil	245	10	Mexico	13.1	
	Total for 46 countries	7,550		Total for 46 countries	418.8	

- Excluding U.S. proved shale reserves (10 billion barrels of tight oil and 159 trillion cubic feet of natural gas)
- Source: EIA, USGS and ARI 2015 Preliminary Results

eia

Composition of natural gas plant liquids

State	ETHANE	PROPANE	BUTANE	ISOBUTANE	PENTANES PLUS
AK ALASKA	0%	1%	28%	11%	59%
AL ALABAMA	41%	27%	11%	7%	15%
AR ARKANSAS	7%	27%	19%	12%	35%
CA CALIFORNIA	0%	44%	0%	29%	26%
CO COLORADO	39%	29%	11%	6%	15%
IL ILLINOIS	40%	40%	3%	12%	5%
KS KANSAS	31%	38%	8%	11%	12%
KY KENTUCKY	3%	63%	18%	5%	12%
LA LOUISIANA	41%	29%	10%	8%	13%
MI MICHIGAN	37%	30%	10%	12%	11%
MS MISSISSIPPI	33%	33%	14%	7%	13%
MT MONTANA	0%	49%	25%	8%	19%
ND NORTH DAKOTA	2%	52%	24%	5%	17%
NM NEW MEXICO	45%	29%	9%	5%	11%
ОН ОНЮ	1%	51%	18%	13%	17%
OK OKLAHOMA	36%	34%	12%	6%	13%
PA PENNSYLVANIA*	43%	32%	10%	5%	10%
TN TENNESSEE	39%	36%	11%	4%	9%
TX TEXAS	43%	29%	5%	12%	12%
UT UTAH	21%	35%	13%	9%	23%
WV WEST VIRGINIA	2%	57%	18%	8%	15%
WY WYOMING	33%	33%	16%	3%	15%

*Ethane was adjusted from the published volumes to account for the ethane rejected.

Source: EIA analysis of various sources for input into Annual Energy Outlook 2015 modeling

John Staub | EIA Conference June 15, 2015