
Defense AT&L: July-August 2010	 42

There is an overwhelming amount of
open source software available today
that can be used throughout the soft-
ware development life cycle. Nowa-
days, it is generally not a matter of

whether one should use OSS, but rather, where

Defense AT&L: July-August 2010	 42

Kennedy is a professor of software engineering at DAU. He served in the U.S. Air Force as a network intelligence analyst and he has more
than 10 years of experience in information technology. He has a bachelor’s and master’s degree in computer science.

Evaluating Open Source Software
Matthew Kennedy

	 43	 Defense AT&L: July-August 2010

one should use it. If one were to start a new software devel-
opment project, he would probably begin by looking for vari-
ous types of software to aid in development, such as an in-
tegrated development environment, version control system,
and a bug tracking tool, to name a few. If he looked exclusively
for OSS, he could use Eclipse for the integrated development
environment, Subversion for the version control system, and
Bugzilla for the bug tracking tool. Those products are avail-
able for download and are open source. Looking outside the
development environment, one’s deployed system may re-
quire a database. A person could use a proprietary database
such as Microsoft® Access, Microsoft Sql Server, Oracle®, or
an open source option such as MySql. When looking to fill a
technological need, OSS may be a viable option.

In July 2008, the U.S. Air Force Office of Advanced Systems
and Concepts funded Georgia Tech Research Institute to cre-
ate and release an open source version of FalconView. Used
by the Department of Defense since the 1990s, FalconView
is a comprehensive mapping tool that supports various map-
ping formats and includes ample map analysis tools. With
both government and private applications moving to open
source development, the proper evaluation of OSS through-
out the program is imperative to making informed deci-
sions that could affect the life cycle of the project. What are
some of the factors that must be considered when choosing
whether to use OSS?

What is OSS?
According to a DoD chief information officer memorandum
of 2009, “Clarifying Guidance Regarding Open Source Soft-
ware (OSS),” OSS is “Software for which the human-readable
source code is available for use, study, reuse, modification, en-
hancement, and redistribution by the users of that software.”

That definition of OSS could apply to various terms used
throughout federal and DoD guidance and directives. The
Federal Acquisition Regulation/Defense Federal Acqui-
sition Regulation Supplement defines commercial com-
puter software as “Any item, other than real property,
that is of a type customarily used by the general public
or by non-governmental entities for purposes other than
governmental purposes, and (i) Has been sold, leased,
or licensed to the general public; or (ii) Has been of-
fered for sale, lease, or license to the general public.”

Chapter four of the Defense Acquisition Guidebook defines
non-developmental software as “Any software that is not
legacy software for the program, or is not developed as part
of the effort being accomplished by the developer team. NDS
includes COTS software, government furnished software,
open source software, and software being reused from an-
other program.”

These definitions show that although OSS is not explicitly
defined in DoD guidance and directives, the terms already
in place clearly fit.

Some open source software projects are as big as, if not
bigger than, their proprietary counterparts. According to
its website, MySQL, an open source database application,
has had more than 100 million copies of its software down-
loaded or distributed throughout its history and is currently
on release 5.1.

Open source software is generally thought to be free as in
it has no costs. Though that is true in most cases, gener-
ally the term “free” is used in reference to the liberty of
interested parties to freely distribute the source code. That
is an important aspect to keep in mind when considering
the use of OSS—there may be a cost.

Like proprietary software, OSS comes with licenses such as
the GNU or Apache license. This article does not cover the
licensing associated with OSS; however, it is important that
the proper legal representative reviews the license prior
to making the final decision. This assures that the manner
in which interested parties intend to use the OSS is in ac-
cordance with the license. 	

Is OSS an Open System?
There is no direct correlation between an open system
and OSS. Open source specifies that the human-readable
source code of the application is available. In contrast,
an open system, as defined by the Open Systems Joint
Task Force, is specified as “A system that employs modu-
lar design, uses widely supported and consensus based
standards for its key interfaces, and has been subjected
to successful validation and verification tests to ensure the
openness of its key interfaces. “

The question as to whether OSS meets the definition of
an open system must be addressed per DoD Directive

	 43	 Defense AT&L: July-August 2010

As with most software,
OSS has multiple versions,

releases, and security
updates of which one’s

program is not in control.
The need for life cycle

configuration management
is vital in ensuring system

compatibility.

Defense AT&L: July-August 2010	 44

5000.01: “A modular, open-systems approach shall be
employed, where feasible.” Because there are generally
many contributors to open source projects, they tend
to have a modular design; however, this is not always
the case. Open Office has 450,000 members that have
joined the project, so enforcing a modular design is para-
mount for continued success. Without a modular design,
it would be extremely difficult to modify the source code
of such a large application with so many contributors.

Another part of the open system definition is using con-
sensus-based standards for key interfaces; this is also
referred to as using open standards. Open standards play
a critical role in our systems with modifiability, maintain-
ability, and increased competition. Open standards have
no direct correlation to OSS. Though most OSS projects
use open standards, it is not required. Each OSS project
must be assessed individually to determine if it is, indeed,
an open system.

Are the Releases Controlled?
As with most software, OSS has multiple versions, re-
leases, and security updates of which one’s program
is not in control. The need for life cycle configuration
management is vital in ensuring system compatibility. A
strategy needs to be developed to determine how one’s
program will handle periodic releases of the OSS soft-
ware. Depending on the software, each release may re-
quire configuration, interface and installation, or system
changes to remain compatible with the rest of the system.

What is the Maturity of the Open Source
Community?
Similar to a standard commercial company, the maturity
and size of the open source community can vary greatly.
Open source projects can be started by a single devel-
oper who has made its source code available and gained
additional support as the project grew, or by corporations
who fund and assist in the development of the project.
Open Office, an open source office suite, is sponsored by
Sun® Microsystems and has other corporate contributors

such as Google® and IBM®. The Open Office project con-
tains 30,000 source files and 9 million lines of primarily
C++ code, according to the Open Office website, and
it contains many of the features included in Microsoft
Office.

Many factors affect the maturity of the open source com-
munity supporting the project. Navica® has developed an
Open Source Maturity Model®, which is freely available
and will assist in the assessment of the open source proj-
ect. The Open Source Maturity Model provides a variety
of templates to assess different areas of the open source
project such as documentation, integration, product soft-
ware, professional services, technical support, and train-
ing. Those items are then further decomposed to help
assess each area of the open source project.

Do You Need to Modify the Source Code?
The major difference between proprietary software and
OSS is the ability to view, modify, and distribute the ap-
plication source code. Code modification may lead to
some undesired effects on the life cycle of the system.
Modifying the source code would force the program to
keep a private copy that is different from the open source
project’s repository. That may work without issue for the
initial release, but remember, just like proprietary soft-
ware, OSS periodically releases new versions, patches,
and upgrades. Once one breaks off from the primary proj-
ect, he or she is now responsible for any upgrades and
associated testing as the releases may not be compatible
with the modified version.

Code modification may not be as easy as one might think.
Take the Open Office project mentioned previously. If
someone required a code modification and provided the
development team with 9 million lines of code, a seem-
ingly trivial modification may turn out to be a daunting
task. Unfamiliarity with the application or programming
language may cause additional complications. Most OSS
uses a modular design so it can be easier to locate the
code segment for which the modification is needed; how-
ever, the effects on the application may still be unknown.

One possibility is to make the modifications to the source
code and submit the update to the OSS project’s com-
mittee for review and possible incorporation within the
next software release. If accepted, the update would go
through the project’s revision, testing, and review process
during subsequent releases, and one would no longer
need the old version of the software. Similar to most com-
mercial software, the open source community does what
is best for the community and not one’s specific program.
Therefore, there is no guarantee one’s changes will be
included in the next software baseline. As with any soft-
ware application, when new functionality is added, the
project is now responsible for maintenance, testing, and
bug fixes for the added piece of functionality.

Defense AT&L: July-August 2010	 44

OSS may not provide a
solution that will satisfy

everyone’s requirements.
Users may have to sacrifice

functionality for a faster
time to field.

	 45	 Defense AT&L: July-August 2010

While modifications provide an added level of complexity,
OSS does provide several alternatives over commercial
software. One alternative may be deciding there is only a
need to use a portion of the source code within the project.
If the OSS is modular in design, it may be easy to extract
only the functionality needed to incorporate into the ap-
plication. That may be the best option if only a small piece
of the OSS functionality is required. As with proprietary
software, there is a point where “too much of a good thing”
can turn bad. If one takes several pieces of different sys-
tems and includes them in his system, the system may be-
come difficult to maintain, especially when each addition
is in a different programming language, contains differ-
ent interfaces, and may require additional dependencies.
This can be exemplified by using a car analogy. Consider
buying a Chevy Camaro but realizing that it will require
the engine in the Ford Mustang and the electronics of the
Audi A4. After integrating the required functionality of the
other automobiles, the owner would have a system that
met all of his requirements. However, if the vehicle needed
maintenance, the owner would no longer be able to take
it back to the Chevy dealership because a modification to
the electronics system may adversely affect the engine
because the components were not initially design to work
together. In addition, if Audi releases an electronics up-
grade, the owner may be unable to use the new software
due to compatibility issues with the nonstandard engine.

Is OSS the Full Solution?
As with most proprietary products, OSS may not provide
a solution that will satisfy everyone’s requirements. Users
may have to sacrifice functionality for a faster time to field.
Gen. David Petraeus, commander of U.S. Central Com-
mand, recently said in an interview, “Never underestimate
how important speed is.” Additionally, he pointed out that
in most cases, the soldiers are willing to accept an 80
percent solution. This is where constant user involvement
is imperative in order to help make an informed decision.
The user decides if less functionality provided sooner out-
weighs the time needed to develop the functionality from
the ground up.

Conversely, OSS comes with a variety of features and
could include many more features than are required by
one’s program. This inundation of extra features may re-
quire additional training, testing, and/or information as-
surance assessments to use the software in an operational
environment. Removal of those features is also an option,
but one must remember the risks mentioned in the modi-
fication section.

Does OSS Offer Maintenance and Support?
OSS may also contain a maintenance and support element
that is available for a cost. MySQL offers an enterprise
package that includes the software, support, and addi-
tional monitoring tools. Depending upon the needs of the
program, one may consider a support package in which

the cost would need to be added into the life cycle cost
of the system.

Overall Evaluation of OSS
If one chooses to modify the source code and keep his own
version, OSS can easily morph into government off-the-
shelf software, losing most of the value of leveraging from
the OSS community. At that point, the program becomes
responsible for having developers available for mainte-
nance and support. One may also find himself maintaining
a great deal more features than what is required for the
program. Most OSS projects make the executable (in-
staller) available for download. If one were to only down-
load the executable, he will be left with what is essentially
a proprietary product but with the added benefit of having
access to the source code. Modifying the source code may
be a researcher’s best option as long as he is prepared for
the possible future consequences.

The items identified in this article are only a few of the con-
siderations for evaluating OSS for use within a program.
Other factors that may need consideration are security,
prerequisites, reliability, and performance. The DAU Best
Practices Clearinghouse (<https://bpch.dau.mil>) con-
tains a forum to enable the sharing of best practices when
evaluating OSS throughout DoD.

Remember, the open source community is available be-
cause projects make their source code available. Making
someone’s code available may allow for external reviews
and could improve code quality. The Defense Information
Systems Agency has developed an online open source re-
pository at <www.forge.mil> called SoftwareForge. Soft-
wareForge hosts open source and community software
projects within the DoD. If public availability it not an op-
tion, SoftwareForge may be a more secure alternative.

The author welcomes comments and questions and can be
contacted at matthew.kennedy@dau.mil.

	 45	 Defense AT&L: July-August 2010

SoftwareForge hosts open
source and community

software projects within the
DoD. If public availability it

not an option, SoftwareForge
may be a more secure

alternative.

