NOTICE

                     This  document is  a  preliminary draft.   It has  not been formally
                released by  the  United States Environmental Protection Agency (EPA) and
                should not at  this stage  be construed to represent Agency policy. It  is
                being  circulated  for  comment on  its  technical  accuracy  and  policy
                implications.
L

-------
I

-------
U&3~
                      U.S. ENVIRONMENTAL PROTECTION AGENCY
.    ,                            WASHINGTON, D.C.

      y       •            - : - -
                   TECHNOLOGIES AND  COSTS  FOR THE  REMOVAL OF
                          SYNTHETIC  ORGANIC  CHEMICALS
                          FROM POTABLE  WATER SUPPLIES
    M            "              TABLE OF  CONTENTS
    n                          - - —
 1.    INTRODUCTION                                         .            1-1
           Purpose and Scope                                           1-1
           Definition of Technology Categories                         1-2
           Organization of Document                                    1-3

 2.    DESCRIPTION OF SOCs            '                                  2-1
           Each Chemical                                               2-1
                Chemical/Physical  Properties
                Uses
           Potential Source of Entry                                   2-15

 3.    AVAILABLE TECHNOLOGIES                                           3-1
           Activated Carbon                                            3-1
           Aeration                                                    3-1
           Reverse Osmosis                                         '3-2
           Oxidation                                                   3-2
           Conventional  Treatment           ,                            3-3
           Summary of Available Technologies                           3-3

 4.    MOST  APPLICABLE TECHNOLOGY --  GRANULAR ACTIVATED CARBON         4-1
           Process Description                                         4-1
           Treatability Studies                                        4-6
           Estimation of Carbon Usage Rates                            4-21
           Summary                                                     4-23

 5.    OTHER APPLICABLE TECHNOLOGY  -- PACKED COLUMN  AERATION            5-1 ,
           Process Description                                         5-1
           Treatability Studies                                        5-5
           Off -Gas Treatment                                           5-16
           Secondary Effects of Aeration                •                5-18

 6.    ADDITIONAL TECHNOLOGIES                                     -     6-1
           Powdered Activated Carbon                                   6-1
                Process  Description                                     6-1
                Treatability Studies                                   6-2
       5;                         HEADQUARTERS LIBRARY
       -                         ENVIRONMENTAL PROTECTION AGENCY
       CO
                                  WASHINGTON, D.C. 20460

-------
                         TABLE OF CONTENTS (continued)
          Diffused Aeration
                Process Description
                Treatability Studies
          Boiling
          Oxidation
                Ozone Process Description
                Treatability Studies
                Additional Oxidation Techniques
          Reverse Osmosis
                Process Description
                Treatability Studies
          Conventional Treatment
                Process Decription
                Treatability Studies
7.   COSTS
          Basis for Costs
          Granular Activated Carbon
          Packed Column Aeration
          Summary
8.   REFERENCES
Appendix  Description
                              LIST OF APPENDICES
   A      Estimation of Carbon Usage Rates
   B      Summary of GAC Isotherm Studies
   C      Summary of Pilot and Full-scale GAC Studies
   D      Carbon Usage Rate Comparison
   E      Flow-Chart for Developing GAC Facility Costs
   F      GAC Costs for Individual Phase II SOCs
   G      Packed Column Facility Design Backup

                                LIST OF TABLES

Table
 No.      Description

1-1       SOCs for which MCLS Are Being Considered

3-1       Summary of Treatment Data For the 28 SOCs

4-1       GAC Isotherm Constants for SOCs

4-2       Carbon Usage Rates, Model Predictions
   Page

   6-7
   6-8
   6-9
   6-10
   6-11
   6-11
   6-13
   6-16
   6-20
   6-20
   6-22
   6-26
   6-26
   6-26

   7-1
   7-1
   7-2
   7-5
   7-7

   8-1
Fol1owi ng
	Page	

   1-2

   3-2

   4-8

   4-8
                   B
                                                                                      0

-------
TABLE OF CONTENTS (continued)
w
Table
No.
7-8
7-9
to 7-24

Figure
No.
2-1
2-2
2-3 ,
2-4
*
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
4-1
^-2
LIST OF TABLES (continued)
Description
Henry's Coefficients Used to Estimate Equipment
Size and Cost for Packed Column Aeration
Estimated Cost for Removing SOCs by
Packed Column Aeration
LIST OF FIGURES
Description
Acryl amide, Alachlor
Aldicarb
Atrazine
Carbofuran, Chlordane
Di bromochl oropropane , o-Di chl orobenzene ,
Cis-l,2-DCE, Trans-l,2-DCE
1,2 Di chl oropropane, 2,4-D
Epichlorohydrin, Ethyl benzene
EDB
Heptachlor, Heptachlor Epoxide
Lindane, Methoxychlor
Monochl orobenzene, PCBs
Pentachlorophenol, Styrene
Toluene, Toxaphene
2,4,5,TP, Xylenes
Schematics of Carbon Contactors
Carbon Mini -Column System

Following
P.aae
7-6
7-6

Following
Paae
2-2
2-2
2-2
2-4
2-4
2-6
2-6
2-8
2-8
2-10
2-10
2-12
2-12
2-14
2-14
4-4
4-10

-------
I
                                     TABLE OF CONTENTS  (continued)
                                            LIST OF FIGURES
                                                                                                  I
             Figure                                                             Following
               No.      Description                                              	Page
             4-3       Ratio of FieldrDistilled  vs.  Distilled Water Usage Rates    4-22
             5-1       Schematic of Packed Column  Aeration                         5-4
             5-2       Schematic of Vapor-phase  GAC  System                         5-18
             6-1       Diffused Air Basin                                          6-8            •
             6-2       Ozone Oxidation  Process Schematic                           6-14
             6-3       Reverse Osmosis  Treatment Plant                             6-22
             6-4       Conventional  Treatment Schematic                             6-26
             7-1       Total Costs Versus Usage  Rate,  Flow Category Nos.  1-4       7-4
             7-2       Total Costs Versus Usage  Rate,  Flow Category Nos.  5-8       7-4
             7-3       Total Costs Versus Usage  Rate,  Flow Category Nos.  9-12      7-4
             7-4       Comparison of Costs--Packed Column Aeration versus          7-8
                       GAC  Adsorption
                                                                                                  D

-------
TABLE OF CONTENTS (continued)

Table
No.
4-3
4-4
4-5
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
LIST OF TABLES (continued)
Fol
Description
Removal by GAC at the Water Factory 21
Treatment of SOCs by Granular Carbon/Filtration
Carbon Usage Rates with Background TOC
Henry's Law Coefficients for SOCs
Packed-Column Pilot Study Results-Glen Cove, New York
Packed-Column Pilot Study Results - Arizona
Packed-Column Pilot Study Results - Berkeley
Packed-Column Pilot Study Results - Arizona
Packed-Column Pilot Study Results - Gainesville
Packed Column Pilot Results - Iowa City
Full Scale Packed Column Aeration Data
Control of SOCs Using Powdered Activated Carbon
2,4-D Solid Phase Loading
Treatment of SOCs by Powdered Activated Carbon - Bowling
. Green, Ohio
Treatment of SOCs by Powdered Activated Carbon - Tiffin,
Ohio
PAC Performance
Control of SOCs in Distilled Water Using Diffused Aeration
Treatment of SOCs in Spiked Ground Water Using Diffused
Aeration
Treatment of SOCs in Distilled Water Using Ozonation
Control of SOCs in Spiked Ground Water Using Ozonation
Ozone Reaction Rate Constants

lowing
Paae
4-20
4-20
4-23
5-2
5-8
5-10
5-12
5-12
5-12
5-14
5-16
6-2
6-4
6-6
6-6
6-8
6-10
6-10
6-14
6-14
6-14

-------
TABLE OF CONTENTS (continued)

Table
No.
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
7-1
7-2
7-3
7-4
7-5
7-6
7-7
LIST OF TABLES (continued)

Following
Description Paae
Soc Reactivity
Treatment of SOCs in Distilled Water with Permanganate
Treatment of Trans and Cis 1,2-Dichloroethylene with
Permanganate
Treatment of SOCs in Distilled Water with Hydrogen Peroxide
Treatment of SOCs by Ultraviolet Irradiation
Treatment of SOCs by Ultraviolet Irradiation and Hydrogen
Peroxide
Results of Ozone and Hydrogen Peroxide Pilot Study
Removal of SOCs by Various Reverse Osmosis Membranes
Reverse Osmosis Mean Operational Conditions
Treatment of SOCs in Ground Water Using Reverse Osmosis
Jar Testing of Spiked Ohio River Water
Methoxychlor Removal
Methoxychlor Removal Via Lime Softening
Plant Design Capacities and Average Flows
Cost Indices for Late 1987
General Assumptions Used in Developing
Treatment Costs
GAC System Design Parameters
Base Costs for GAC Contactors, Carbon Charge
and Backwash Pump
Estimated Cost for Removing SOCs by GAC
Packed Column Design Parameters
6-16
6-18
6-18
6-18
6-18
6-18
6-20
6-22
6-22
6-22
6-28
6-28
6-28
7-2
7-2
7-2
7-4
7-4
7-4
7-6
                                                             I
                                                            I

-------
          TABLE 1-1

PHASE II SOCs TO BE REGULATED.
Acrylamide
Alachlor
Aldicarb
Aldicarb Sulfone
Aldicarb Sulfoxide
Atrazine
Carbofuran
Chlordane
Dibromochloropropane  (DBCP)
o-Dichlorobenzene
cis-l,2-Dichloroethylene
trans-1,2-Dichloroethylene
1,2-Dichloropropane
2,4-D
Epichlorohydrin
Ethylbenzene
Ethylene dibromide (EDB)
Heptachlor
Heptachlor epoxide
Lindane
Methoxychlor
Monochlorobenzene
Polychlorinated biphenyls  (PCBs)
Pentachlorophenol
Styrene
Tetrachloroethylene
Toluene
Toxaphene
2,4,5-TP (Silvex)
Xylenes (Total)
  -  0-xylene
  -  m-xylene
  -  p-xylene

-------
I

-------
                               1.  INTRODUCTION

Purpose and Scope
     The 1986  Amendments to  the Safe Drinking  Water  Act  (SDWA)  require  the
United States Environmental Protection Agency (EPA) to set maximum contaminant
levels  (MCLs) for several contaminants found  in  drinking water.   The MCLs are
to be established based upon:
     1.   Health goals
     2.   Effectiveness of treatment technologies in removing the contaminants
     3.   Level of treatment that is affordable for the water supply systems
     In order  to establish  the  MCLs, the  SDWA  Amendments emphasize  a shift
from   "generally  available"  treatment   technologies  to   "best  available
treatment"  (BAT) technologies.   All public water systems will be required to
come as  close  as possible  to meeting the  MCLs  by using the BAT technology.
EPA is currently establishing MCLs for a number of synthetic organic chemicals
(SOCs)  which might occur in contaminated water supplies.  A list of SOCs to be
regulated is shown in Table 1-1.
     The purpose of this document  is to  assist EPA in defining BAT technology
for removing SOCs  from water  supplies.   Additionally, the document  can also
assist water utilities in selecting appropriate  treatment methods to meet the
regulations.  The treatment and compliance methods available to a community
searching  for  the  most  economical  and  effective  means to  comply with  the
proposed SOC MCLs include modification of  existing treatment systems, instal-
lation  of  new  systems,  and  the use  of  nontreatment alternatives,  such as
regionalization  or  alternate  raw water sources.  The  major  factors that must
be considered in selecting a compliance method include:
     1.   Quality and type of water source
     2.   Degree of SOC contamination
     3.   Specific compound(s) present in water source
     4.   Economies of scale and the economic stability of the community being
          served
     5.   Treatment and waste disposal requirements
                                      1-1

-------
I
            The .Information  in  this  document provides an evaluation of the various treat-
            ment methods in use today for the removal of different concentrations of SOCs,        •_
            as well  as relative costs.  Some  methods are more  complex  or more expensive
            than others.  Selection of a technology by a community may require engineering
            studies  and/or pilot-plant  operations to  determine the  level of  removal a
            method will provide for that system.

            Definition of Technology Categories                                                   _
                 The methods  that can be applied  for SOC removal are divided into three        »
            categories:
                 Most Applicable Technologies	
                 Technologies' that are  generally  available,  have  a  demonstrated highly
            effective capacity to remove SOCs, and for which reasonable cost estimates can
            be developed for a wide range of influent/effluent conditions.
                 Other Applicable Technologies                                                    "
                 Those additional methods not  identified as  generally  used  for  SOC re-
            moval, but which may  have  applicability for  some water supply  systems when
            considering site-specific conditions, such as the type of SOC.
                 Additional Technologies
                 Technologies which  experimentally have been  shown  to have potential for        p
            removing SOCs  but  for which insufficient  data exist  to fully  evaluate the
            teci.  -ogy.
                  rior to implementing a technology,  site-specific  engineering studies of
            the fvithods  identified to remove SOCs should  be made.   The  engineering study
            shou.::  select  a  technically   feasible   and  cost-effective  method  for  the
            specific location where  SOC' removal  is  required.   In  some cases,  a simple        _
            survey may suffice, whereas in others, extensive chemical analysis, design and
            performance  data will be  required.  The  study  may  include  laboratory tests
            and/or  pilot-plant  operations  to  cover  seasonal  variations,  preliminary
            desi-ns ar.i estimated capital and operating costs  for full-scale treatment.
                                                   1-2

-------
Organization of Document
     This document has  been  organized into seven sections which  are outlined

below:
     1.   Introductiont   Discusses  purpose and  scope  of the  document,  lists
          the SOCS under  consideration and presents  the organization of  the
          document.

     2.   Description of SOCs;  Presents the  chemical  structures,  names, .uses
          •and chemical/physical properties for each SOC.

     3.   Description of  Available  Technologies;  Summarizes the  available
          technologies for SOC removal, provides process descriptions of each
          available technology and  ranks  the technologies according to  their
          applicability  for SOC treatment  (most  applicable,  other applicable,
          and additional technologies).

     4.   Most Applicable Technologies;  Summarizes the available treatability
          information  to  date  for  the   most  applicable  technologies  and
          develops design criteria  for each SOC that can be  removed by  these
          technologies.

     5.   Other  Applicable  Technologies:   Summarizes  the  available  treata-
          bility information to date for the other applicable technologies  and
          develops design criteria  for each SOC that can be  removed by  these
          technologies.

     6.   Additional   Technologies;    Summarizes  the   available  treatability
          information to date  for any additional technologies that  show  some
          potential for  removing SOCs.

     7.   Costs;  Develops cost  information for the applicable  technologies.
          Also presents  cost for the removal of Tetrachloroethylene by GAC  and
          PTA.

     8.   References
                                      1-3

-------
1

-------
                                                FIGURE 2-1
 ACRYLAMIDE
         STRUCTURAL FORMULA
                H
V
                               •N

   i



r
                                    H
                          H
.ChemicoJ Nome:  2- Propenamide

 Common/Trade Names:  Propenamide, Acrylic amide, Propenoic
                     acid amide, Ethylenecarboxamide, Akrylamid
ALACHLOR
       STRUCTURAL FORMULA
                  -CgH5
                        CH2OCH3

                        COCH2CI
                  C2H5

Chemical Name :'  2 - Chloro- 2' 6'- diethyl-N-
            .  methoxymethylacetanilide
Common/Trade Names:  Metachlor; CP 50144, Lasso, Lazo,
                    Alanex

-------
 r
D

-------
                            2.  DESCRIPTIONOF SOCs

     This  section  provides the names, uses,  chemical/physical  properties and
chemical structures of  each of the 29 SOCs.  The potential routes of entry of
these SOCs into the environment are also presented at the end of this section.

ACRYLAMIDE
     Chemical/Physical Properties
          Molecular Weight:             71.08
          Melting Point:                84-5 C
          Vapor Pressure:               2 mm Hg at 87 C
                                        10 mm Hg at 117 C
          Solubility in Water:          2.15 x 10  mg/L (30 C)
     Uses
     Acrylamide is principally used in the synthesis of water-soluble polymers
which are used as flocculants in potable water treatment and wastewater treat-
ment  plants, papermaking  aids, thickeners,  and additives  for  enhanced oil
recovery.  It is also  used  frequently as  a component of photopolymerizable
systems.  Acrylamide monomer is marketed as a chemical grouping agent and soil
stabilizer utilized in dams,  foundations,  and tunnels.  The structural formula
of acrylamide is shown on Figure 2-1.

ALACHLOR
     Chemical/Physical Properties
          Molecular Weight:             269.77
          Melting Point:                40-41 C
          Vapor Pressure:               2.2 x 10   mm Hg at 25 C
          Solubility in Water:          140 mg/L (23 C)
                                        242 mg/L (25 C)
     Uses
     Alachlor is  a preemergence  selective  herbicide  used in  several  crops,
including soybeans, corn and peanuts.   It is resistant to photodecomposition,
with  no ultraviolet  absorption  above 280 nm.   The  structural formula  of
alachlor is shown on Figure 2-1 .
                                      2-1

-------
ALDICRRB                   •  ••
     Chemical/Physical Properties
          Molecular Weight:             190.25
          Melting Point:                99-100 C
          Vapor Pressure:               1 x 10   mm  (25 C)
          Solubility in Water:          6,000 mg/L  (25 C)
     Uses
     Aldicarb  is  a systemic  insecticide  used mostly  on  cotton.   It  is also
used as an insecticide on potatoes, peanuts, and sugar beets, and as a rtemato-        '•)
cide in  soils.  The  structural formula of  aldicarb is  shown  on Figure 2-2,
along with two of its breakdown products - sulfoxide and  sulfone.

ATRAZINE
     Chemical/Physical Properties
          Molecular Weight:      '       215.68
          Melting Point:                171-174
          Vapor Pressure:               3 x 10"
          Solubility in Water           70 mg/L at 25 C
Melting Point:                171-174 C
Vapor Pressure:               3 x 10~  mm Hg at 20 C
     Uses
     Atrazine is a preemergence herbicide used for season-long weed control in
corn, sorghum, and other crops.  In noncropped areas, it is applied at highest
rates for  nonselective weed control.   The  structural formula of  atrazine is
shown on Figure 2-3.
                                                                                      B

-------
                                           FIGURE 2-2
ALDICARB
      STRUCTURAL FORMULA

              CH3           0

        CH_S —C —CH =N-0-C-NH-CH3

               I
 Chemical Name: 2 methy.  -2 (methylthio) propionaldehyde-

             0- (methylcorbomoyl) - examine

 Common/Trade Names:  UC 21149, Temikt Ambush
 ALDICARB BREAKDOWN PRODUCTS


      ALDICARB  SULFOXIDE


            0 c^3           ?
        CH3-S-C—CH=N —0—C —NH—CH3

              CH
       ALDICARB  SULFONE
         CH.-S-C-CH-

             0  CH3

-------
 I
I

-------
                                                   FIGURE 2-3
ATRAZINE
        STRUCTURAL  FORMULA
                         Cl
     HN-
      I
H3C—CH
                          N
                                   H

                                  •N
	CH9—CH,
                 CH,
Chemical Name:  2 - Chlorp-4 - ethylamino-6-isopropylamino
               S " triazine

Common/Trade Names :  G-30027®, Gesaprirn ®, AAtrex®,
                      Atranex®, Crisazlne®, Vectal® SC, •
                      Atratol®A, Candex®, Fenamine®,
                      Fenatrol®, Geigy 30, 027, Gesoprim,
                      Hugazin®, Inakor®, Primatol, Primafol A,
                      Primaze®,Radazin®, Strazine, Weedex® A,
                      Zeazin®,  Cekuzina®-T

-------
i

-------
CABBOFURftN
     Chemical/Physical Properties

          Molecular Weight:             221.3
          Melting Point;           -     150-152 C
          Vapor Pressure:               2 x 10   mm  (33 C)
          Solubility in Water:          700 mg/L  (25 C)

     Uses

     Carbofuran is  a systemic  insecticide  widely used to  control corn root-
worms.   It is  also used  as an  ascaricide  and  nematocide.   The structural
formula of carbofuran is shown on Figure 2-4.


CHLORPANE

     Chemical/Physical Properties
          Molecular Weight:             409.8
          Melting Point:                106 C
          Vapor Pressure:               1 x 1C
          Solubility in Water:          75 cis:25 trans mixture - 0.056 mg/L
     Uses

     Technical chlordane consists of  60  to 75% isomers of chlordane and 25 to
                                                                             V.
40% of related compounds  including  two isomers of heptachlor  and  one each of

enneachloro  and  decachlorodicyclopentadiene.    The   solubility  of  technical

grade chlordane has been  reported as 9 ug/L.  This pesticide  is used against

coleopterous  pests,  termites,  wood-boring beetles,  and  in  ant  baits.  ' The

structural formula of chlordane is shown on Figure 2-4.
                                      2-3

-------
DIBROMOCHLOROPROPANE

     Chemical/Physical Properties                                                      j

          Molecular Weight:             236.36
          Boiling Point:           -     196 C
          Vapor Pressure:  '             0.8 mm Hg  (21 C)
          Solubility in Water:          1,000 mg/L  (25 C)

     Uses

     Dibromochloropropane  (DBCP) is  primarily  used as a. soil fumigant against

nematodes,  and is used  on  a  variety  of  crops, including  cotton, soybeans,         •

fruits, nuts,  okra, and  snap beans.   The  structural formula of dibromochloro-

propane is shown on Figure 2-5.


O-DICHLOROBENZENE.
     Chemical/Physical Properties
          Molecular Weight:             147.01
          Melting Point:                -17 C
          Boiling Point:                179 C
          Vapor Pressure:               1 mm Hg  (20 C)
                                        1.5 mm Hg  (25 C)
                                        1.9 mm Hg  (30 C)
          Solubility in Water:           100 mg/L (20 C)
                                        145 mg/L (25 C)

     Uses

     o-Dichlorobenzene is  used as  a solvent  for  waxes, gums,  resins,  tars,

rubbers oils, and asphalts.  It is also an insecticide for termites and locust

borers and is  a  fumigant.   It  is also  used as  a degreasing agent for metals,
leather,  wool, and  is  an  ingredient  of  metal  polishes.   Technical  grade

contains p-dichlorobenzene  (17%)  and m-dichlorobenzene ' (2%).   The structural

.formula for o-dichlorobenzene is shown on Figure 2-5.
                                       1-4

-------
                                                    FIGURE 2-4
 CARBOFURAN
         STRUCTURAL FORMULA
    H3C—NH—C—0
              II
              0

Chemical Names :  2,3- Dihydro - 2,2 - dimethyl- 7- benzo- f uranol
                methylcarbamate; 2, 3-Dihydro-2,2-dimethyl-
                7- benzo - f urany Imethyicarbamate

Common/Trade Names:  furadan;  NIA 10,342; ENT 27,164
CHLORDANE
        STRUCTURAL FORMULA
                 Cl
          Cl
Chemical Name :  1,2,4,5,6,7, 8, 8 - octachlor - 2, 3,3a,4,7,7a -
               hexahydro - 4,7- methano- I H - indene
Common/Trade Names:  Chlordon®, Belt®,Chlor KU®tCorodane®,
                     Kypchlor®, Niran®, Octochlor®,0rthokjor®,
                     Synk lor®. Topic lor 20®,Velsicol
                     Chlorogran®, Prentox®, Penticklor®

-------
I

-------
                                             FIGURE 2-5
DIBROMOCHLOROPROPANE
       STRUCTURAL FORMULA
              Br  Br Cl
              I   I   I
          H —C—C —C—H
              I   1   I
              H  H   H
.Chemicol Name : 1, 2 - dibromo- 3- chloropropane
 Common/trade Names :  DBCP, Nemafume®, Nemanax v5),
                   Nemaset®, OS 1897, Fumazone, Nemagone
 o-DICHLOROBENZENE
            STRUCTURAL FORMULA
                    Cl
 Chemical Name :  1,2- dichlorobenzene
 Common/ Trade Names : None

-------
I
D

-------
CIS - 1,2-DICHLOROETHYLENE  .
     Chemical/Physical Properties
          Molecular Weight:             96.95
          Melting Point:                -80.5 C
          Boiling Point:                60 C
          Vapor Pressure:        •       210 mm Hg  (25 C)
          Solubility in Water:          800 mg/L (20 C)
     Uses
     Cis-l,2-Dichloroethylene  is  used as  a  solvent  for  fats,  phenol,  and
camphor; it  is  also  used to retard fermentation.  Other  uses are for refrig-
eration and as  an additive  to dye  and  lacquer  solutions.   The structural
formula of cis-l,2-dichloroethylene is shown on Figure 2-6.

TRANS-1,2-DICHLOROETHYLENE
     Chemical/Physical Properties
          Molecular Weight:             96.95
          Melting Point:                -50 C
          Boiling Point:                48 C
          Vapor Pressure:               200 nun Hg  (20 C)
          Solubility in Water:          600 mg/L (20 C)
     Uses
     Trans-1,2-dichloroethylene  is used as 'a solvent .for fats,  phenol,  and
camphor; it is also used to retard fermentation.  Other uses are for refriger-
ation and  as an additive to dye and lacquer solutions.   The structural formula
for trans-1,2-dichloroethylene is shown on Figure 2-6.               .  •

-------
 1,2-DICHLOROFROPANE         ;
      Chemical/Physical Properties
          Molecular Weight:             112.99
          Melting Point:                -100 C
          Boiling Point:                96.8 C
          Vapor Pressure:               42 nan Hg  (20 C)
                                        50 mm Hg  (25 C)
                                        66 mm Hg  (30 C)
          Solubility in Water:          2,700 mg/L  (20 C)
      Uses   "                                                                          •
      1,2-Dichloropropane is used as  an oil and fat solvent, a degreaser and a
 component in  dry  cleaning  fluids.   It is also  a  lead  scavenger for antiknock
 fluids  and is  a  soil fumigant  for  nematodes.    The  structural  formula of
 1,2-dichloropropane is shown on Figure 2-7.

 2,4-D
     Chemical/Physical Properties
          Molecular Weight:             221.04
          Melting Point:                136-140 C
          Solubility in Water:          540 mg/L  (20 C)
     Uses
     2,4-D is used  as  an herbicide  for control of broadleaf plants  and as a
plant growth-regulator.  It is also  used  for  forest brush control.  Technical
 2,4-D has  been reported to contain hexachlorodioxins,  at less than  10 ppm.
 The structural formula for 2,4-D is shown on Figure 2-7.
                                      2-6
                                                                                      D

-------
                                                 FIGURE 2-6
 cis-1,2-DICHLOROETHYLENE
         STRUCTURAL FORMULA
                   C!       Cl

                    \ = C/
                    /     \
                   H       H
 Chemical Names: cis-1, 2-dichloroethylene; cis-l, 2-dichtoroethene



 Common/Trade Names:  cis-acetylenedichloride, NC1-C5I58I
trans - 1, 2 -DICHLOROETHYLENE
             STRUCTURAL  FORMULA
                 Cl        H


                  >=<
                 H        Cl
 Chemical Names : trans - I, 2 - dichloroethylene; trans - I, Z-dichloroethene



 Common/Trade Name •  trans-acetylenedichloride

-------
E

-------
                                               •  FIGURE 2-7
1.2-D1CHLOROPROPANE
            STRUCTURAL FORMULA


                    Cl  Cl

                     1   I
               CH, —C —C—H

                     I   I
                     H   H
Chemical Name :   1, 2 - dichloropropane

Common/Trade Names : propylenechloride, propylenedichloride
2,4-D
        STRUCTURAL  FORMULA
                          H

                        — C—COOH

                          H
 Chemical Name :  (2,4- Dichtorophenoxy ) acetic acid


 Common/Trade Names "•  Hedonal, Innoxol

-------
 I
D

-------
                                                 FIGURE 2-6
EPICHLOROHYDRIN
            STRUCTURAL  FORMULA
            CH2— CH — CH2— Cl

Chemical Names :  3 - Chloropropene - 1 , 2 - oxide ; ( Chloromethyl )
                oxirane ; 3 - Chloro -1,2- epoxypropone ;
                (Chloromethyl)  ethylene oxide; oC-Epichlorohydrin;
                I,- 2 - Epoxy - 3 - chloro propane ;
                2,3- Epoxypropylchloride
Common/Trade Names :  Glycerol epichlorohydrin; NCI - C0700I ;
                    SKEKLG; ECH
 ETHYLBENZENE
             STRUCTURAL  FORMULA
                             CH2CH3
 Chemical Name =  ethylbenzene

-------
I
B

-------
EPICHLOROHYDRIN
     Chemical/Physical Properties
          Molecular Weight:
          Melting Point:
          Boiling Point:
          Vapor Pressure:

          Solubility in Water:
                                         92.53
                                         -26 C
                                         116/117  C
                                         12  mm  Hg {20 C)
                                         22  mm  Hg (30 C)
                                         60,000 mg/L (20 C)
      Uses

      Epichlorohydrin  is used as  a solvent for  natural and synthetic resins,
 gums,  cellulose,  esters  and  ethers,  paints,  varnishes,  nail  enamels and
 lacquers,  and  as  a cement  for celluloid.   Epichlorohydrin is also used in the

 manufacture  of epoxy  resins formed  by the  reaction  of  epichlorohydrin and
 bisphenol  A to produce diglycidyl esters  of  bisphenol  A.   The structural
 formula for epichlorohydrin is presented on Figure 2-8.
ETHYLBENZENE
     Chemical/Physical Properties

          Molecular Weight:
          Melting Point:
          Boiling-Pointt .—	
          Vapor Pressure:

          Solubility in Water:
     Uses
                                       106.16
                                       -95 C
                                       .136.25 C
                                       7 mm Hg (20 C)
                                       12 mm Hg  (30 C)
                                       140 mg/L  (15 C)
                                       152 mg/L  (20 C)
     Ethylbenzene is used in the manufacture  of styrene and acetophenone.  It
is  also a  constituent  of  asphalt  and  naptha.   The  structural  formula  of
ethylbenzene is shown on Figure 2-8.
                                      2-7

-------
ETOYLENE DIBROMIDE
     Chemical/Physical Properties                   •                                  -|
          Molecular Weight:           '  187.88
          Melting Point:                10 C
          Boiling Point:                131-132 C
          Vapor Pressure:               11 mm Hg  (25 C)
          Solubility in Water:          4,310 rag/L  {30 C)
     Uses
     Ethylene dibromide  (EDB)  is a widely used  fumigant and highly effective        •
against a variety of insects and nematodes.  It is often used in the treatment
of  fruits  and vegetables.   The structural  formula of  EDB  is shown  on Fig-
ure 2-9.
                                                                                      fi
                                      2-8

-------
                                                    FIGURE 2-9
  EDB
          STRUCTURAL FORMULA

               Br  Br
                I   I
            H — C—C —H

                II
                H   H
Chemical Name •'  1,2- Dibromoethane

Common/Trade Names :  EDB, ethylene dibromide, ethylene bromide,

                    Dowfume W85

-------

-------
                                                  FIGURE 2-10
 HEPTACHLOR
         STRUCTURAL FORMULA
                 Cl
 Chemical Name:  1, 4, 5,6,7, 8,8 - Heptachlor - 3a, 4, 7, 7a
               tetrahydro -4,7-methanoindene

 Common/Trade Names: E 3314, Vetsicol 104, Drinox, Heptamul
HEPTACHLOR  EPOXIDE
        STRUCTURAL FORMULA
                 Cl
          Cl
Chemical Name:  1, 4, 5, 6, 7, 8, 8 - heptachloro - 3,3 -epoxy -
               3a, 4, 7f 7a - tetrahydro - 4,7 - methanoindene
Common/Trade Names:  Velsicol 53-CS-I7;  ENT 25,584

-------
i

-------
HEPTACHLOR
     Chemical/Physical Properties
          Molecular Weight: .      '      373.53
          Melting Point:           --.     95-96 C
          Vapor Pressure:               3 x 10   mm Hg (21
          'Solubility in Water:          0.056 mg/L (25 C)
     Uses

     Heptachlor is  an insecticide used on  cotton for control of  boll weevil

and  bollworms.   Technical  product contains  72% heptachlor  and  28%  related

compounds.  The structural formula of heptachlor is shown on Figure 2-10.


HEPTACHLOR EPOXIDE

     Chemical/Physical Properties
          Molecular Weight:             389.83
          Melting Point:                157-16C
          Vapor Pressure:               3 x 10
          Solubility in Waters         '0.350 mg/L
Melting Point:                157-160 C
Vapor Pressure:               3 x 10~  mm Hg at 25 C
     Uses

     Heptachlor epoxide  is  a degradation product  of heptachlor.  The  struc-

tural formula of heptachlor epoxide is shown on Figure 2-10.
                                      2-9

-------
LINPANE
     Chemical/Physical Properties                                                     ,
          Molecular Weight:             290.85
          Melting Point:           .     112.5 C
          Boiling Point:                323 C   _&
          Vapor Pressure:             '  9.4 x 10~  mm Hg {20 C)
          Solubility in Water:          17 mg/L (24 C) {99% purity)
     Uses
     Lindane is a commercial  insecticide  containing  at least 99% of the gamma        -»
isomer of 1,2,3,4,5,6-hexachlorocyclohexane.  It has  been  used in both domes-         •
tic  and commercial  settings  for  numerous agricultural  applications  and  in
sprays and dusts for livestock and pets.  The structural formula of lindane is
shown on Figure 2-11.

METHOXYCHLOR
     Chemical/Physical Properties                                                     "™
          Molecular Weight:             345.65
          Melting Point:                98 C
          Solubility in Water:          0.04 mg/L (24 C)  (99% purity)
                                        0.26 mg/L (25 C)
     Uses
     Methoxyclor is  an  insecticide used  in  the  home and  garden,  on  domestic         6
animals for fly control, for elm bark-beetle vector of Dutch elm disease,  and
for blackfly larvae in  streams.  The  technical product contains 88% of the p,
p'-isomer, the  bulk  of  the remainder being  the  o, p-isomer.   The structural
formula of methoxyIchor is shown on Figure 2-11.
                                     2-10

-------
                                                    FIGURE 2-11
LINDANE
              STRUCTURAL  FORMULA
                   Cl     Cl
                     \	/
               Cl—^     \—Cl

                     )    (
                          Cl
Chemical Name:  gamma (3) isomer of 1,2,3,4,5,6-
               Hexachlorocyclohexane

Common/Trade Names:  5-HCH, 5 benzene hexochloride, gamma
                     benzene hexachloride, gamma hexachlor,
                     ENT 7796, Aparsin, Aphtirta, 3 BHC,
                     Gammalin, Gamene, Gamiso,  Gammaexane,
                     Gexane, Jacutin, Kwell, Lindafor, Lindatox,
                     Lorexane, Ouelado, Streunex, Tri-6, Viton

METHOXYCHLOR
        STRUCTURAL  FORMULA
       CH3O
OCH3
Chemical Names:  1, t1 ( 2,2,2-Trichloroethylidene)-bis
                £4-methoxy benzene] ;  I, t, I - trichloro- 2,2-bis
                ( p- methoxy-phenyl) ethane;  2, 2-di-p-anisyl-
                1,1, t - trichloroethane
Common/Trade Names:  DMDT, methoxy-DDT, Marlate

-------
I
E

-------
 MONOCHLOROBENZENE
             STRUCTURAL  FORMULA
                                                FIGURE 2-12
 Chemical Name •  chlorobenzene
 Common/Trade Names:  phenylchloride, benzene chloride
POLYCHLORINATED BIPHENYLS
             STRUCTURAL  FORMULA
             XXX     X
             X      XX     X
              X represents H or Cl
Common/Trade Names:
PCBs, chlorinated biphenyls, chlorobiphenyls,
Aroclor, Clophen, Fenclor, Kanechlor,
Phenochlor, Pyralene, Santotherm

-------
B
El

-------
MONOCHLOROBENZENE
     Chemical/Physical Properties
          Molecular Weight:-             112.56
          Melting Point:                -46 C
          Boiling Point:                132 C
          Vapor Pressure:               8.8 mm Hg (20 C)
                                        11.8 mm Hg (25 C)
                                        15 mm Hg (30 C)
          Solubility in Water:          500 mg/L (20 C)
     Uses
     Monochlorobenzene  is  used in  the manufacture of  aniline,  insecticides,
phenol, and chloronitrobenzene.  It has also been used as a solvent for paints
and as a heat transfer medium.  The structural formula of monochlorobenzene is
shown on Figure 2-12. '

POLYCHLORINATEO BIPHENYLS
     Chemical/Physical Properties
                                        Aroclor 1242      -       Aroclor 1254
          Molecular Weight:                  258                      326
          Boiling Point (C):              325-366                  365-390
          Vapor Pressure (mm Hg @ 20 C):   0.001                   0.00006
          Solubility in Water  (mg/L):      0.24                    0.056
     Uses
     PCBs are  mixtures  of chlorinated biphenyls.  The  degree of chlorination
is usually indicated by the commercial name.  The Aroclor name includes .-a four
digit  number.   The  first  two digits  indicate  that  the mixture  contains  bi-
phenyls  (12),  triphenyls  (54), or both (25,44); the last two digits  give  the
weight  percent of  chlorine  in the  mixture  (e.g. Aroclor  1242  contains  bi-
phenyls with approximately 42  chlorine by weight).   It has  been reported that
PCBs  are soluble  in water  at  0.04-0.2  ppm.   PCBs are  used  in  electrical
capacitors,  electrical  transformers,  vacuum   pumps,   and  gas-transmission
turbines.  PCBs were formerly used in the  United States as hydraulic fluids,
plasticizers,  adhesives,  fire  retardants,  wax  extenders,  dedusting  agents,
pesticide extenders,  inks, lubricants, cutting oils,  heat  transfer  systems,
and  in carbon-less  reproducing paper.  The  structural  formula  of PCBs  are
shown on Figure 2-12.
                                     2-11

-------
PENTACHLOROPHENOL

     Chemical/Physical Properties                                      ;                •

          Molecular Weight:             266.35
          Melting Point:           -     188-191 C
          Vapor Pressure:               1.1 x 10~  mm Hg (20 C)
          Boiling Point:                Decomposes at 309-310 C
          Solubility in Water:          5 mg/L  (0 C)
                                        14 mg/L (20 C)
                                        35 mg/L (50 C)

     Uses                                                              .                I

     Pentachlorophenol is  a fungicide and bactericide used  in the processing

of  cellulosic  products,   starches,  adhesives,  leathers,  oils,  paints,  and

rubbers.  It  is incorporated  into  rug shampoos and textiles  to control mildew

and used in food processing plants to control mold and slime.  It is also used
in  the preservation of  wood and  wood products.   The  structural  formula  of
pentachlorophenol is shown on Figure 2-13.


STYRENE

     Chemical/Physical Properties

          Molecular Weight:             104.14
          Melting Point:                -31 C
          Boiling Point:                145.2 C
          Vapor Pressure:               5 mm Hg (20 C)
                                        9.5 mm Hg  (30 C)                :
          Solubility in Water:          280 mg/L (15 C)
                                        300 mg/L (20 C)
                                        400 mg/L (40 C)

     Uses

     Styrene  is used  in  the manufacture  of polystyrene  plastics,  synthetic
rubber,  ABS  plastics,  resins,  insulators, and protective coatings (styrene-

butadiene,  latex,  alkyds).   The structural  formula of styrene  is shown  on

Figure 2-13.
                                     2-12

-------
 PENTACHLOROPHENOL
        STRUCTURAL  FORMULA
                 OH
                      '  Cl
                 Cl
Chemical Name :  Pentachlorophenol
Common/Trade Names: Dowicide 7®, DP-2  Centimicrobial, EC- 7,
                    EP 30,  Fungiben, Grundier, Arbezol, Lauxtol,
                    Lipoprem, PCP, Penchlorol, Penta, Pentacon®
                    Penwar®, Permasan,  Preventol P, Prilfox,
                    Sontaphen 20®
STYRENE
        STRUCTURAL FORMULA
                   —CH2
Chemical Name :  Ethenylbenzene

Common/Trade Names:  S tyro I, styrolene, cinnamene, cinnamol,
                     phenylethylene, vinyl benzene

-------
1
G
B

-------
TOLUENE

     Chemical/Physical Properties

          Molecular Weight:             92.13
          Melting Point:                -95 C
          Boiling Point:   .             110.6 C
          Vapor Pressure:               10 mm Hg  (6.4 C)
                                        22 mm Hg  (20 C)
                                        40 mm Hg  (31.8 C)
          Solubility in Water:          470 mg/L  (16 C}
                                        515 mg/L  (20 C)

     Uses

     Toluene is used  in the manufacture of benzoic  acid, .benzaldehyde, medi-

cines, dyes, perfumes, and explosives  such as  trinitrotoluene (TNT).  It also

serves as a solvent for paints, resins, gums, and PVC joints, and as a diluent

and thinner in nitrocellulose  lacquers.  The  structural formula of toluene is

shown on Figure 2-14.


TOXAPHENE
     Chemical/Physical Properties

          Molecular Weight:             412
          Melting Point:                65-90 C
          Boiling Point:                Decomposes above 120 C
          Vapor Pressure:               0.2-0.4 mm Hg (20 C)
          Solubility:                .   3 mg/L (25 C)
     Uses
     Toxaphene is  a complex mixture of at least 175 compounds of  which  the
structure of fewer than 10 are known.  An approximate overall empirical formula

is  CIOHIQCIS"   Toxaphene  is  a  chlorinated camphene  that  is 67-69  percent
chlorine.  It is widely  used as a  foliage insecticide on a variety of food,

feed, and fiber crops.  The  largest use is on  cotton crops.  Other major uses
are for cattle and swine and on soy beans,  corn,  wheat,  peanuts,  lettuce,  and
tomatoes.  The structural formula of toxaphene is shown on Figure 2-14.
                                     2-13

-------
2,4,5-TP

     Chemical/Physical Properties

          Molecular Weight:
          Melting Point:
          Solubility in Water:
             269.53
             179-181 C
             140 mg/L (25 C)
     Uses
     2,4,5-TP  (Silvex)  has  been used for  woody plants on crop  areas  such as

pastures and rangelands.  It  is also used for weed control  on  rice and sugar
cane.  The structural formula of 2,4,5-TP is shown on Figure 2-15.
XYLENES
     Chemical/Physical Properties
                             o-xylene
     Molecular Weight:
     Melting Point:
     Boiling Point:
     Vapor Pressure:

     Solubility in Water:

     Uses
106.16
-25 C
144 C
5 mm Hg (20 C)
9 mm Hg (30 C)
175 mg/L {20 C>
                   m-xylene
106.16
-48 C
139 C
6 mm Hg (20 C)
11 mm Hg (20 C)
                   p-xylene
106.16
13 C
138.4 C
6.5 mm Hg (20 C)
12 mm Hg (30 C}
198 mg/L (25 C)
     O-Xylene is used  in manufacture  of phthalic anhydride, and insecticides.
O-Xylene also  serves as a  solvent for resins,  lacquers,  enamels,  and rubber
cements.  M-Xylene  and p-xylene are found in  high octane gasoline.  P-Xylene
is used  in  the manufacture of  terephthalic  acid.   The structural formulas of

the xylenes are shown on Figure 2-15.
                                                            I
                                      2-14
                                                                                       i

-------
                                                    FIGURE 2-14
TOLUENE
             STRUCTURAL FORMULA
                      CH3
Chemical Name: Methylbenzene
Common/Trade Names :  Phenylmethane,  Tolnol
                     Metacide
TOXAPHENE
        STRUCTURAL FORMULA
        This chlorinated camphene is 67-69 per cent
        chlorine, where n is usually equal to 8.

Common/Trade Names:  Chlorinated camphene, camphechlor,
                     polychlorocamphene, synthetic 3956,
                     Alltox,  Geniphene, Motox, Penphene,
                     Phenacide, Phenatox, Stroban -T,
                     Toxakil

-------
I
B

-------
                                                  FIGURE 2-1S
2,4,5-TP
             STRUCTURAL  FORMULA
                          C!
 Chemical Name :  2 - t 2,4, 5 - trichlorophenoxy) propionic acid

 Common/Trade Names:  Fenoprop, Garlon, Kuron, Silvex
    XYLENES
              STRUCTURAL FORMULA
     CH,
 CH
CH
             CH-
                             CH;
     ortho
meta
 CH3

para
 Chemical Names:  o^ 1, 2-dimethylbenzene ; m- 1, 3 - dimethylbenzene ;
                p-1, 4-dimethylbenzene
 Common/Trade Name :  xylol

-------
I
0

-------
Potential Sources of Entry


     Many of the SOCs have  agricultural  applications  and are transported into

drinking water supplies by runoff and by percolation.   The following SOCs have

agricultural applications:

       -  alachlor         ,    -     -  EDB
       -  aldicarb                   -  heptachlor
       -  atrazine                   -  heptachlor epoxide
       -  carbofuran                 -  lindane
       -  chlordane                  -  methoxychlor
       -  DBCP                       -  monochlorobenzene
       -  1,2-dichloropropane        -  2,4,5-TP
       -  o-dichlorobenzene          -  toxaphene
       -  2,4-D

     Another source of. contamination is industrial point discharge in the form

of waste effluent,  spills or leaks, or  runoff  from maintenance applications.

The following SOCs are used as industrial, organic solvents:
          1,2-dichloropropane        -  epichlorohydrin
       -  cis-1,2-dichloroethylene   -  monochlorobenzene
          trans-1,2-dichloroethylene -  toluene
       -  o-dichlorobenzene          -  o-xylene

     The  following  SOCs  are used in   industrial  manufacturing   (with  the

specific industries in parenthesis):

       -  acrylamide (polymers)
       -  cis-1,2-dichloroethylene  (refridgerant, dye, and lacquer)
       -  trans-1,2-dichloroethylene (refridgerant, dye, and lacquer)
       -  epichlorohydrin  (epoxy resins)
       -  ethylbenzene (styrene and acetophenone)
       -  monochlorobenzene  (aromatics)
       -  PCBs  (electrical)
       -  styrene (polymer)
       -  toluene (medicine, dye, and perfume)
       -  o-xylene  (phthalic anhydride and insecticides)

     M-xylene  and p-xylene  are  components  of  high  octane  gasoline  and  can
enter drinking  water supplies as  a result of  gasoline  spills.   Pentachloro-
phenol  is  an  industrial fungicide  and  can  enter the  drinking water  after

maintenance applications.
                                     2-15

-------
 I
1
a
i

-------
                                       TABLE 3-1

                       SUMMARY OF TREATMENT DATA FOR THE 29 SOCs
                            Activated
                             Carbon
                                         Aeration
Reverse              Conventional
Osmosis   Oxidation    Treatment
Acrylainide
Alachlor
Aldicarb
Aldicarb Sulfone
Aldicarb Sulfoxide
Atrazine
Carbofuran
Chlordane
DBCP
1,2-Dichloropropane
cis-1,2-Dichloroethylene
trans-1,2-Dichloroethylene
o-Dichlorobenzene
2,4-D
EDB
Epichlorohydrin
Ethylbenzene
Heptachlor
Heptachlor epoxide
Lindane
Methoxychlor
Monochlorobenzene
PCBs
Pentachlorophenol
Styrene
Toluene
2,4,5-TP
Toxaphene
o-Xylene
m-Xylene
p-Xylene
                               B.
                                             B
                                                                   B
                           B
                           B, F
Note:
P,F
P,F
P,F
B,F
-" B,P
B,P,F
B,P,F
- B',P
B,P,F
.- B,P
B,F
B,P
B,P,F
B
B,F
B
B,P,F
B,F
, B,P
B,P,F
B,P,F
' B
• B,P
~- B
B,F.
s B
,'•' r B : -
; "B,F


B
B

p
B,P
B,P
B,P,F
B,P

B,P
B,P,F




B
F

F
B,P


B,P,F
B,P,F
B,P,F


B
B


B
B
B
B
B
B
B


B,P
P'
B



B


B
B
B


B B, F
B B, F


B
B
B
B
B B
B
B
B
B B
B B, P
B
B
P

B
B F
B
B,F
B - , F
B ' F
B F
     "B" denotes treatment data available from bench-scale testing.
     "P" denotes treatment data available from pilot-scale testing.
     "F" denotes treatment data available from full-scale testing.
     o-xylene, m-xylene and p-xylene are counted as one compound  (total xylenes)

-------
I

-------
                          3<  AVAILABLE TECHNOLOGIES

     This section provides  an  overview of the various technologies which have
been considered  for  removing the 29 SOCs from drinking water.  The results of
a literature  review  of the  treatment technologies used to  remove  each of the
29 SOCs from drinking water are presented in Table 3-1.  The level of develop-
ment of each technology is indicated by the type of evaluations that have been
performed:  bench  (B) , pilot  (P), and  full-scale  (F)  testing.   Bench-scale
testing will generally indicate whether or not a technology is feasible; pilot
testing is  used in  establishing feasibility and  design  criteria; full-scale
testing provides an evaluation  of the  process  under typical  operating con-
ditions .
                                                       * '•
Activated Carbon
     Activated carbon  has been used to treat all  29  SOCs,  with the exception
of  epichlorohydrin,  for which  no  treatability information  has  been  found.
Extensive  bench-scale testing either  in  the  form  of  isotherm  or  dynamic
minicolumn  testing   has  been  performed,  along  with some  pilot  and  several
full-scale  evaluations.   Several  of  the  full-scale installations  involved
either partial replacement of  media filters with carbon or powdered activated
carbon (PAC) addition in conjunction with coagulation/sedimentation.
     Extensive testing of carbon absorption has proven it  to be effective in
the removal of most of the SOCs.   Therefore,  it can be 'regarded  as  the most
applicable  technology in removing SOCs from drinking water.

Aeration
     Aeration has been used to treat 15  of  the  29  SOCs,  mostly  in  pilot-scale
testing  of air  stripping  equipment.   These  compounds represent  the  more
volatile SOCs, many of which are chlorinated solvents.
     In  several of  the  full-scale evaluations,  the  SOC removal  has  been
incidental  as these  units  were  not  specifically designed for SOC  removal.
Aeration has been shown  to  be  effective in removing  volatile SOCs and should
thus be  considered   as an  applicable  technology.   However, transfer of  SOCs
                                      3-1

-------
from water  to air might be a concern  depending on proximity to human habita-
tion, treatment plant worker exposure, local air quality, local meteorological         •
conditions, daily quantity of processed water and  contamination level. •

Reverse Osmosis
     Reverse  osmosis  (RO)  along  with other  membrane  technologies  such  as
ultrafiltration  (UF) have been  tested  for removing 15 SOCs from water.  Test-
ings have  been primarily bench scale, although some  pilot-scale evaluations         •
have been recently conducted.                                                          ™
     While some removals have been reported,  especially for pesticides, it is
not always clear whether the removal is  a result of rejection by the membrane
or  adsorption onto  the membrane.   Some  bench-scale  testing  indicates  that
adsorption  of particular SOCs  may  occur,  and that  once adsorption  has  oc-
curred, desorption may be difficult.                                   .,
     Because there is limited treatability information on RO, much of which is        '"
bench scale,  and because there  is some question as to  the  mechanism by which
SOC removal occurs, RO should be considered an additional technology which re-
quires further development.

Oxidation                                                              ;               n
     Oxidation has been used to  treat 20 of  the  29 SOCs,  primarily through
bench-scale evaluations. The oxidation techniques which have  been  evaluated
include  ozone,  chlorine,   chlorine  dioxide,   hydrogen  peroxide,   potassium
permanganate, and ultraviolet light, either alone  or  in combination  with  some
of the other oxidants.
     While oxidation  may  be effective  in degrading certain  SOCs,  especially        «
those with unsaturated bonds, there is considerable concern about the degrada-
tion products  formed by the oxidation of each of the SOCs.   These reaction
products may be  toxic  in  themselves  and  may resist further  degradation,
requiring excessive oxidant dosages for further destruction.  Because there  is
limited treatability information  on oxidation,  much of which is  bench scale,
oxidation  should be  considered  as an  additional technology  that  requires
further development.
                                      3-2
                                                                                      I

-------
Conventional Treatment
     Conventional  treatment  (coagulation/sedimentation/filtration)  has  been
used  to  treat  10 SOCs,   six  of  which  have  been evaluated  in  full-scale
installations.   The removals for most  of the SOCs have  been poor,  typically
less than  10 percent removal.   It should also be  noted  that influent concen-
trations  in much  of this .testing  have  been very  low,  typically  less  than
5 ug/L.
     Since  conventional treatment  is  of limited effectiveness in  removing
SOCs,  it  should be considered as an additional technology  of  limited appli-
cability.

Summary of Available Technologies
     Based  on  the  review  of treatment  data for  the  29 SOCs,  the  available
technologies have been divided into the three general categories as follows:
     Most Applicable Technologies
          Granular Activated Carbon .
     Other Applicable Technologies
          Packed Column Aeration
     Additional Technologies
          Powdered Activated Carbon  (PAC)
          Diffused Aeration
          Oxidation
          Reverse Osmosis
          Conventional Treatment
More detailed  descriptions of each of  these  technologies  and their  removal
efficiencies for the 29 SOCs are presented in the following sections.
                                      3-3

-------
I
I

-------
                                                        FIGURE 4-1
              RAW WATER INLET
       APPROX.
       FREEBOARD
FILTERED
WATER
OUTLET 	f=p

 LATERALS

SUPPORTS
                         TOP BAFFLE
                             SURFACE WASHER
                                          SUPPORT LAYERS

                                      CONCRETE
                                      SUB-FILL
                   PRESSURE CONTACTOR
SURFACE WASHERS
SUPPORT LAYERS
            NORMAL WORKING L£V£L
                           WASH
                         GAC  BED

OPERATING FLOOR
                           fjlK- INLET

                            V BACKWASH OUTLET
                            ,	BOTTOM CONNECTION
                    GRAVITY CONTACTOR
         SCHEMATICS OF CARBON CONTACTORS

-------

-------
                                                  TABLE  4-1
soc

Alachlor
Aldicarb
Atrazine
Carbofuran
Chlordane
cis-1,2-
  Dichloroethylene
D8CP
o-Dichlorobenzene
1,2-Dichloropropane
2,4-D
Ethyl benzene
EDB
Heptachlor
Heptachlor Epoxide
Lindane
Methoxychlor
 lonochl orobenzene
 'C8  (Aroclor 1254)
Pentachlorophenol
Si 1 vex
Styrene
Tetrachloroethylene
Toluene
Toxaphene
 trans-1,2-
   Dichloroethylene
 o-Xylene
 m-Xylene
 p-Xylene
                                    GAC ISOTHERM  CONSTANTS  FOR  SOCs
                                         .CO  .
                                                                   1,2,3
                                                                                ,1/n
   K
(mq/g)(L/mg)
1/n
MOI. we. <~
269.8
190.3
215.7
221.3
409.8
97.0
236.4
147.0
113.0
221.0
106.2
187.9
373.5
389.8
290.9
345.7
112.6
326.0
266.4
255.5
104.0
165.8
92.1
412.0
97.0
106.2
106.2
106.2
aroon type
F4
F4
F4
F4
F3/F4
F4
F4
• F4
F4
ANA/F4
F4
F4
F3/F4
F3/F4
F4
NS/F*
F4
. F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
F4
IS
6.20
6.3-6.6
7.60
4.30
5.30
6.6-8.0
6.2-6.6
5.6-5.8
6.1-7.3
.
5.6-6.9
6.2-7.1
.
-
4.2-6.9
_
6.50
7.00
4.6-6.8
7.00
9.40
5.1-7.6
4.6-6.7
7.00
6.3-6.7
6.3-6.45
6.70
6.90
0.26
0.40
0.36
0.41
0.33
0.59
0.51
0.38
0.59
0.27
0.53
0.46
0.92
0,75
0.43
0.36
0.35
1.03
0.34
0.38
0.48
0.52
0.45
0.74
0.45
0.47
0.75
0.42
1275.0
360.0
787.0
673.0
346.0
30.5
465.0
865.0
46.6
194.0
507.0
53.9
1110.0
2020.0
606.0
223.0
418.0
13270.0
1062.0
479.0
1083.0
341.2
356.0
1182.0
50.5
603.0
410.0
740.0
483.55
133.01
294.88
276.41
190.33
11.72
229.35
263.49
19.06
64.46
176.69
21.85
1025.91
1596.14
299.75
112.99
101.06
13723.80
443.53
205.55
333.80
142.98
95.91
938.62
.13.99
183.69
234.03
201.51
 Notes:
             "-" = Not Reported.
         1.  Source:  Miltner (1987a),  (1987b)
         2.  Data not available for acrylamide,  aldicarb sulfone,
           •  or aldicarb sulfoxide
         3.  For distilled water at room temperature
         4.  Carbon type legend:
                       F4 = Filtrasorb 400
                       F3 = Filtrasorb 300
                       ANA = Aqua Nuchar A
                       NS » Nuchar Special

-------
1
g

-------
                                                        TABLE 4-2 (Continued)
         Name
                                                                       Carbon Usage (Ibs/KGal)
Styrene
Tet rachIoroethyIene
Toluene
Toxaphene
trans-1,2-Dichloroethylene
m-Xylene
o-Xylene
p-Xylene
Inf (ug/D 10.00
Eff (ug/L) 2.00 5.00 20.00
Usage Rate 0.00238 0.00231
Jnf (ug/L) 50.00
Eff (ug/L> 1.00 5.00 50.00
Usage Rate 0.0151 0.0147
Inf (ug/L) 500.00
Eff (ug/L) 100.00 2000.00 3000.00
Usage Rate 0.0617
Inf  ' 10000.00
Eff {ug/L} 1000.00 10000.00 15000.00
Usage Rate 0.0742
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.163 	
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.169
50.00
2.00 5.00 20.00
0.00566 0.00557 0.00539
100.00
1.00 5.00 50.00
0.0214 0.0208 0.0195
3000.00
100.00 2000.00 3000.00
0.170 0.158
10.00
1.00 5.00 10.00
0.00365 0.00278
200.00
5.00 100.00 200.00
0.261 0.248
20000.00
1000.00 10000.00 15000.00
0.0913 0.076S 0.0705
20000.00
1000.00 10000.00 15000.00
0.238 0.225 0.217
20000.00
1000.00 t 0000. 00 15000.00
0.252 0.238 0.230
200.00
2.00 5.00 20.00
0.0119 0.0117 0.0115
500.00
1.00 5.00 50.00
0.0471 0.0469 0.0447
5000.00
100.00 2000.00 3000.00
0.226 0.215 0.211
50.00
1.00 5.00 10.00
0.00614 0.00554 0.00509
500.00
5.00 100.00 200.00
0.435 0:420 0.414
50000.00
1000.00 10000.00 15000.00
0.118 0.106 0.102
50000.00
1000.00 10000.00 15000.00
0.392 0.377 0.373
50000.00
1000.00 10000.00 15000.00
0.433 0.418 0.413
Notes:
       2.
       3.
Model-predicted carbon usage rates developed through application of
CPHSDN to distilled-water isotherm study results and were adopted from:
(a)  Niltner, R.J. et al.  Final Internal Report On Carbon Use Rate Data.
         COW - U.S. EPA, Cincinnati, OH, June 30, 1987.
(b)  Miltner, R.J. et al.  Interim Internal Report On Carbon Use Rate Data.
         OOU - U.S. EPA, Cincinnati, OH, June 30, 1987.

Distilled-water isotherm constants not available for Acrylamide,
Aldicarb sulfone,  Aldicarb suIfoxide, and Epichtorohydrin

Isotherm-predicted carbon usage rates developed through
application of freundlich's equation, as shown in Appendix A.

-------
I
I

-------
                                                        TABLE 4-2
                                                                     1.2
                                                   CARBON USAGE RATES
Compound Name




Alachlor










Aldicarb










Atrazine










Carbofuran










Chlordane
    1,2-Diehloroethylene
DBCP
o- D i chIorobenzene
 1,2-D i chIoropropane
 2,4-D
Carbon Usage (Ibs/KGal)
Inf (ug/L)
Eff 
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate

0.60
0.000611

1.30
0.0113

1.00
0.000996

5.00
0.00315

0.50
0.00126

5.00
0.223

0.10
0.00188

50.00
0.00766

2.00
0.0702

5.00
0.0152
10.00
2.00 6.00
0.000597 0.000573
50.00
10.00 20.00
0.0109 0.0106
5.00
3.00 5.00
0.000950
20.00
40.00 50.00
...
5.00
2.00 5.00
0.00130
50.00
70.00 100.00
...
2.00
0.20 1.00
0.00186 0.00176
100.00
600.00 800.00
— —
10.00
5.00 10.00
0.0669
50.00
70.00 100.00
...

0.60
0.00206

1.30
0.0172

1.00
0.00451

5.00
0.00555

0.50
0.00220

5.00
0.300

0.10
0.00300

50.00
0.0268

2.00
0.142

5.00
0.0255
50.00
2.00
0.00202
100.00
10.00
0.0168
50.00
3.00
0.00445
50.00
40.00
0.00493
10.00
2.00
0.00212
100.00
70.00
0.272
5.00
0.20
0.00299
700.00
600.00
0.0243
50.00
5.00
0.139
100.00
70.00
0.0239

6.00
0.00199

20.00
0.0165

5.00
0.00442

50.00
...

5.00
0.00204

100.00
...

1.00
0.00296

800.00
--"

10.00
0.136

100.00
---

0.60
0.00346

1.30
0.0458

1.00
0.00706

5.00
0.00847

0.50
0.00667

5.00
0.402

0.10
0.00600

50.00
0.0336

2.00
0.190

5.00
0.0843
100.00
2.00
0.00341
500.00
10.00
0.0453
100.00
3.00
0.00700
100.00
40.00
0.00796
50.00
2.00
0.00650
200.00
70.00
0.379
20.00
0.20
0.00598
1000.00
600.00
0.0316
100.00
5.00
0.187
500.00
70.00
0.0813

6.00
0.00336

20.00
0.0447

5.00
0.00696

50.00
0.00786

5.00
0.00636

100.00
0.371

1.00 [
0.00582 |
t
1
I
800.00
0.0307

10.00
0.184

100.00
0.0807

-------
E

-------
                                                          TABLE 4-2 (Continued)
            Name

   Ethyl  benzene



   EDS


            3
.   Heptachlor



   Heptachlor epoxide



   lindane



   Methoxychlor
Carbon Usage (Ibs/KGal)
  Monoch I orobenzene
  PCS (Aroclor 1254)
  Pent ach I orophenol
  2,4,5-TP (Sit vex)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate

50.00
0.0163

0.01
0.00672

0.03
0.00389

0.03
0.000572

0.02
0.000408

100.00
0.0321

60.00
0.0185

0.05
0.000710

20.00
0.00266

5.00
0.00704
-100.00.- 	
700.00 800.00
— ...
0.50
0.05 1.00
0.00659
0.10
0.40 1.00
— ...
0.10
0.20 1.00
—
0.50
0.20 1.00
0.000380
260.00
400.00 500.00

100.00
100.00 400.00

S.OO
0.50. S.OO
0.000710
50.00
200.00 400.00
... ...
50.00
50.00 100.00
...
I
50.00
0.0436

0.01
0.0342

0.03
0.00468

0.03
0.00116

0.02
0.000612

100.00
0.0430

60.00
0.0618

0.05
0.000698

20.00
0.0128

5.00
0.0110
700.00
700.00 800.00
... ...
10.00
0.05 1.00
0.0341 0.0332
1.00
0.40 1.00
0.00468
1.00
0.20 1.00
0.00106
1.00
0.20 1.00
0.000583
400.00
400.00 500.00
... ...
600.00
100.00 400.00
0.0613 0.0588
10.00
0.50 5.00
0.000698 0.000698
500.00
200.00 400.00
0.0122 0.0115
100.00
50.00 100.00
0.0103

50.00
0.0520

0.01
0.0821

0.03
0.00562

0.03
0.00212

0.02
0.00228

100.00
0.0793

60.00
0.0866

0.05
0.000665
'

20.00
0.0205

5.00
0.0303
1000.00
700.00
0.0464
50.00
0.05
0.0820
10.00
0.40
0.00562
10.00
0.20
0.00209
10.00
0.20
0.00227
1000.00
400.00
0.0757
1000.00
100.00
0.0861
50.00
0.50
0.000665
1000.00
200.00
0.0196
SOO.OO
50.00
0.0294

800.00
0.0449

1.00
0.0809

1.00
0.00562

1.00
0.00197

1.00
0.00221

500.00
0.0747

400.00
0.0838

5.00
0.000665

400.00
0.0192
i
1
1
100.00
0.0289 |

-------
1
B

-------
           4.   MOST APPLICABLE TECHNOLOGY -  GRANULAR ACTIVATED CARBON
      Most applicable technologies  are  those technologies  which have   demon-
 strated highly  effective capacities  to  remove  the  29 SOCs,   and  for which
 reasonable  cost  estimates  can  be  developed  for a  wide  range of  influent/
 effluent conditions.  As indicated  in Section 3, the only  technology which  is
 considered  to be most applicable for all of the 29 SOCs  is granular  activated
 carbon (GAC)  adsorption. According to the 1986 amendments to the Safe  Drink-
 ing Water Act, Congress  specified in Section  1412(b)(5)  of  the Act that:
      Granular activated  carbon is feasible.for the control  of synthet-
      ic organic  chemicals, and any  technology, treatment technique, or
      other  means found  to  be the  best available for  the  control of
      synthetic  organic  chemicals  must  be at  least as  effective in
      controlling synthetic  organic chemicals  as  granular activated
      carbon.

      The use  of  GAC for  drinking water  treatment in the  United States has been
 limited to  primarily  taste  and  odor control applications.  However,  since the
widespread detection of  organics in drinking water supplies, much research and
many pilot-scale  studies have been undertaken to evaluate the effectiveness  of
GAC  for controlling organic compounds.  Based on past research and pilot-scale
work,  GAC represents one unit  process with  the ability  to  remove a broad
spectrum  of organic chemicals from water.  Although GAC is considered to  be
the best available broad spectrum removal process, it exhibits a wide range  of
effectiveness in  adsorbing- organic compounds.
Process Description                      •
     The  application of  granular  activated carbon  adsorption  for  removing
organic compounds  from  drinking water  supplies involves the  following major
process design considerations:
       -  Carbon Usage Rate - pounds of carbon per volume of water treated
       -  Empty Bed Contact Time
       -  Pretreatment
       -  Contactor Configuration  - downflow  versus  upflow,  pressure  versus
          gravity,  single-stage versus multi-stage or parallel versus series
                                      4-1

-------
          Method of GAC Regeneration - on-site versus off-site

     Carbon Usage Rate                                                               *
     This basic design parameter.-indicates  the  rate at which  carbon will be
exhausted  or replaced,  thus affecting  the operating  cost of  the  treatment
system.  For a  full-scale  GAC  installation the  carbon usage rate is  often the
decisive factor in the selection of on-site  carbon regeneration or  replacement
of spent carbon with virgin carbon.  It also impacts any costs associated with
carbon   handling,   such   as  storage,   dewatering,   attrition   losses  and       •
transportation.   The  carbon  usage  rate  for   a given  type  of  water" and
contaminant(s)  can be estimated by different methods.  These methods  include:
          Isotherm test
       -  Model .predictions
       -  Minicolumn Test
       -  Pilot-scale test
          Operating full-scale installation
A detailed discussion of each method is provided later in this section.
     Empty Bed Contact Tim«?
     The empty  bed contact time  (EBCT)  provides  an indication of the quantity
of carbon which will be on-line at any one time, and thus reflects the capital
cost for the system.  The EBCT is also an important design parameter  as it has       _
a significant impact on the carbon usage  rate for each  SOC.  The carbon usage
rate  will  reflect the  equilibrium  capacity  of  the  GAC under  raw  water
conditions  for  a  particular  SOC,  and  a  given influent concentration  if
sufficient EBCT is provided, organic preloading  will  impact the prediciton of
the  actual carbon  usage  rate  (Summer   1988,  and Crittendan,  1988).   Thus
organic preloading impacts the  actual  amount of carbon which is on line at a
given time, and the overall empty bed contact time.
     Pretreatment
     GAC systems may require some kind of pretreatment  to  prevent  clogging of
the carbon bed and to minimize the organic loading on the carbon.  Cloqoing of
the bed could be caused by suspended solids  in the raw  water or by precipita-
tion of  iron  and manganese on the  carbon.   The former is  typical  of surface       ™
water systems while iron and manganese in the soluble form may  be  encountered
in ground water nystems.   Clogging may  also be caused by  biological growths
                                      4-2
                                                                                     1

-------
 when the carbon  bed life is  long.   Disinfection with  chlorine  prior to GAC
 adsorption  should be avoided  because chlorine by-products  formed during the
 reduction  of chlorine on  GAC  are adsorbed by  carbon,  and therefore, compete
 with the organics for adsorption  sites.   In  addition,  if carbon  regeneration
 is  anticipated,  adsorption of  these byproducts could possibly  result in the
 formation  of hazardous substances during regeneration  processes.  Filtration
 ahead of the GAC system is a common solution to  prevent clogging of the bed.
 GAC  systems  are  sometimes ,added  to  the end  of  a conventional  treatment
 process.
      When the background organic  levels  in the raw water are high, the carbon
 is  used  at a  faster rate,  necessitating more  frequent  replacement.   This
 increases the operating  cost of the  system.  Pretreatment  can be provided to
 reduce the  organic loading on  the carbon, thereby decreasing the  carbon usage
 fate.  The  need for pretreatment should, however, be justified on  the basis of
 costsi   Examples  of processes which may be used  for  pretreatment include
 conventional treatment, ozonation, and packed column aeration.
      Contactor Configuration
     Based  on the estimates of carbon usage  rate and contact time,  a concep-
 tual  process  design can  be developed by  evaluating  various contactor config-
 urations.  The two basic modes of.contactor operation are upflow and downflow.
 Upflow expanded bed  contactors  allow suspended solids to pass through the bed
 without  producing a high pressure drop.   This  configuration is not generally
 considered  for use in water treatment where  the  level of suspended solids is
 relatively  low.   Downflow  fixed  bed contactors  offer  the  simplest  and most
 common  contactor configuration for  SOC  removal  from drinking water.   These
 contactors can be operated either under pressure or by gravity.
     The choice of pressure or gravity is generally dependent upon the hydrau-
 lic constraints of a given system.  Pressure contactors may be more applicable
 to  ground water  systems  because  pumping of  the ground  water  is  required.
 Gravity  contactors  are  generally more suitable  for  surface water systems  if
 sufficient  head  is available.   Gravity contactors, when used,  will typically
be placed downstream  of  surface water filtration systems.   Diagrams  of  pres-
 sure and gravity systems  are presented on Figure 4-1.
                                      4-3

-------
      GAC  contactors  may  be  configured  to  operate in  series  or parallel.'
 Parallel  flow necessitates complete  carbon replacement  at SOC  breakthrough;
 whereas,  operation in  series allows  for utilization  of the  carbon  in each
 contactor  almost  until  exhaustion  because  only   the  carbon  in  the  first
 contactor is replaced when SOC breakthrough  occurs.  Although GAC is used more
 effectively  in series  operation,  more contactors  are  required  to treat the
 same  quantity  of  water  for a  similar EBCT.  Therefore, a cost  analysis  should
 be  performed  to  determine whether the  higher  capital  costs  involved with
 series  operation  are offset  by  the lower carbon replacement  or  regeneration
 cost.  The decision between a series  or parallel mode may hinge on the  design
 criteria characteristics of the SOC to  be treated, i.e., carbon usage rate and
-EBCT.
     Method of GAC Regeneration
     Another basic consideration in evaluating the  design of a GAC system for
 SOC removal is the method  of  carbon regeneration.  The two basic  approaches to
 regenerating the carbon are:
     1.   Off-site-disposal or regeneration
     2.   On-site-regeneration
     Based on  information from  GAC manufacturers,  on-site  regeneration gen-
 erally does  not  appear to be economical for  systems where the  carbon usage       —
 rate is less than 1,000 to 2,000 pounds per day.
     Adams et  al.  (1986)•demonstrated that a  regeneration  facility having an
 operating reactivation  capacity of  12,000 pounds of  GAC per day could- provide
 a cost-effective alternative  to carbon  replacement.   Moreover,  utilization of
 the facility's excess capacity for  a  regional reactivation system showed that
 off-site reactivation would be more economical for the participating utilities       _
                                                                                     B
 than either carbon replacement or on-site reactivation.
     Under  the throwaway  concept  of  off-site  disposal,  virgin carbon  is
 generally purchased in  bags,  drums, or bulk  truckloads.   Large surface water
 treatment plants  employing GAC for  taste and  odor  control often  employ the
 throwaway  approach and purchase  carbon in  bulk  quantities.    Ground  water
 systems and  smaller  surfacp  water  systems  generally do  not have  the  carbon       ~
 requirements  necessary  to make bulk  shipment . practical.  Once  the;  carbon
becomes exhausted, it is generally  slurried by gravity to a draining bin where
                                      •1-4
                                                                                     i

-------
the free water  is  removed and returned for treatment.  The  drained carbon is
then manually drummed and shipped for landfill or"incineration.
     The  advantages  to  off-site  disposal   lie   mainly  in  its  technical
simplicity;  and,  as  such,  it  is a  sound  approach  for  applications  with
relatively small carbon usage rates  (generally less than  500 pounds per day).
The need  to dispose  of the  spent carbon, however,  Is a  concern especially
since  toxic  or  hazardous  materials  are  adsorbed  on  the  spent  carbon.
Incineration of the spent carbon to ensure proper ultimate disposal may become
necessary.
     The off-site  regeneration approach is somewhat similar  to the throwaway
concept  from a  carbon handling  standpoint;  however-, off-site  regeneration
begins to assume  some of the economies associated  with on-site regeneration.
However, the number of handling steps  and resulting carbon attrition and loss
are a  major disadvantage when compared  to other alternatives.   The off-site
reactivation approach has generally proven most cost effective in applications
where  the  carbon usage  rate  falls. in the 500  to  2,000-pound per  day range
{Kornegay, 1979).
     GAG Equipment
     The major equipment typically found in a GAC installation includes:
       -  Carbon  Contactors -  either  common wall concrete  or  lined  steel
          vessels.  In either case, provisions for underdrainage, backwashing,
          and removing the spent carbon must be made.
       -  Carbon Storage -  additional  storage facilities may  be  required for
          handling of virgin, regenerated and spent carbon, depending upon the
          size and type of facility.
       -  Carbon Transport Facilities - includes piping, valves, and pumps.
       -  Carbon Fill - the actual initial carbon charge depends  on the type
          and volume of carbon required for treatment.
     Having outlined the GAC process and  the  pertinent design criteria,  brief
descriptions of the testing methods and SOC removal  case studies are presented
below.
                                      4-5

-------
Treatability Studies
     Treatability studies  r:an  be grouped into four classifications:  isotherm
evaluations, mini  column  tests,  pilot-scale tests and  full-scale tests.  In
addition, computer models  can be used to predict breakthrough profiles., carbon
usage  rates,   and  bed  lives using  the results  of  these studies.   For the
purpose  of  this document  the  Constant Pattern Homogeneous Surface Diffusion
Model  (CPHSDM)  (Hand et.  al.,  1984)  was  utilized  to predict  usage rates
(Miltner et. al. 1987).   The model predictions were  based on distilled water
isotherm data, and the following assumptions:
       -  Plug flow exists in the bed
       -  Constant hydraulic loading
       -  Surface diffusion is the limiting  intraparticle mass transfer phase
       —  Local  liquid-phase  mass  transfer rate  is described  by a  linear
          driving force approximation
       -  The adsorbent is in  a fixed  position in the adsorber and is assumed
          to be spherical
       -  The  adsorption  equilibria  can   be  described  by  the  Freundlich
          isotherm equation
       -  Background matrix has no effect on adsorption equilibra and kinetics
     Isotherm  evaluations are  batch  tests which  yield  the equilibrium  or
maximum  SOC  loading  on   a  particular  carbon  at  a given  SOC  equilibrium
concentration.  Model  predictions use  isotherm data  to  estimate  carbon usage
rates  and bench-scale test design parameters.   Bench scale tests  use  a mini
column to estimate  carbon usage  rates  under  flow-through  conditions,.   Pilot
tests are conducted with larger columns than those used in minicolumn testing,
thus requiring significantly greater quantities of water and longer run times.
Full-scale   tests   evaluate   the  performance   of   GAC   in  actual   field
installations.  Further discussion of each method is provided below.
     Isotherm Evaluations
     Adsorption isotherms  are  useful screening tools  for determining prelimi-
nary  carbon requirements,  and  evaluating  the  relative  adsorbability of  a
particular compound in comparison with other compounds.  The analytical proce-
dure that is  generally followed  for  isotherm testing is  outlined by  Pandtke
and  Snoeyink   (1983) .  The procedure  involves placing  a  measured weight  of
1
.B
fi
                                      4-6
                                                                                      D

-------
pulverized  carbon  in  a . fixed  volume  of  aqueous  solution  of  known  SOC
concentration and agitating  over a sufficient time to reach equilibrium.  The
resultant liquid-phase  SOC concentration  is then measured and the equilibrium
capacity  (or  loading)  is calculated  from the amount  of  SOC  adsorbed and the
known weight of carbon  in solution.   These steps are repeated for a series of
known  weights  of  carbon   for  a  given  initial  SOC  concentration.   The
relationship  between   equilibrium   capacity   and  equilibrium  liquid-phase
concentration  has  been found  to  generally follow the  Freundlich  isotherm
relationship:
               X/M = KC 1/n
where:
          X/M = equilibrium capacity  (mg SOC/g carbon)
          X   = amount of SOC adsorbed from solution  (mg/L)
          M.  = weight of carbon  (g/L)
          K   = capacity at 1 mg/L SOC concentration
          C   - SOC equilibrium concentration  (mg/L)
          1/n = exponent
     K  and  1/n  are  typically referred  to  as  Freundlich  constants.   K is
related to the adsorption capacity of GAC for an SOC, and 1/n is one indicator
of  the  adsorption  intensity.   The  following  equation,   derived  from the
Freundlich equation  and  a mass balance  for column operation,  can be  used to
estimate carbon usage rates  in pounds of carbon per thousand gallons of  water
treated :
          Carbon usage (lbs/1,000 gal) =    C    x 8.34
where :
          C      = SOC influent concentration to column  (mg/L)
        .  K, 1/n = Preundlich isotherm parameters
          8.34   = conversion factor from g/liter to lbs./l»000 gal
     A  sample  calculation  using this method is  shown in  Appendix A.   This
method assumes  that  a GAC  system  is  operated until the SOC concentration in
the effluent equals that of the influent, i.e., the GAC is in equilibrium with
the  untreated  contaminant  concentration.   Thus,   the  carbon  usage  rate
calculated in  this  manner represents  the  maximum amount of SOC adsorbed per
unit weight of carbon for the existing water quality conditions.
                                      4-7

-------
     The  United  States  Environmental  Protection  Agency's  Drinking  Water
Research  Division  (USEPA-DWRD)  is  currently performing  isotherm tests  on a
wide  range  of  SOCs (Miltner, 1987).  The  test results  indicate  that carbon
performance  is  a function of the--types of water and  carbon  used.   Isotherm
testing for  SOCs  is also being  conducted by Malcolm Pirnie,  Inc.  in conjunc-
tion with the USEPA-DWRD.
     Additional  isotherm evaluation  have  been reported in  the  literature.
Dobbs  and  Cohen   (1980)  have  performed   extensive  isotherm  testing  with
Filtrasorb  300  (F-300),  a  granular activated  carbon manufactured  by Calgon
Corporation.  The  granular  activated carbon was pulverized and  screened for
classification  such that  only the portion which passed a 200 mesh (0.0736 mm)
but was  retained by  a  400   mesh  (0.0381   mm)  screen was  used for isotherm
testing.   Isotherm constants  for  PCBs  have 'been  evaluated by  Weber  and
Pirfaazari (1982).  Canonie Environmental Services Corporation  (1981)  conducted
isotherm  tests  on  DBCP  and  EDB  to  evaluate  the  feasibility   of treating
contaminated ground water by carbon adsorption.
     Isotherm test  results  from various studies are presented in Appendix B.
The isotherm constants, K and 1/n,  are functions of several factors  including
contaminant  and water  types  and  the  background  organic  matrix.   isotherm
constants for the 28 SOCs determined from tests conducted with distillesd water
are summarized in Table 4-1.   Based on these constants, carbon usage  rates for
each SOC  were  developed  using  the CPHSDM  model.   The  CPHSDM  could not  be
utilized.   If the Freundlich  1/n isotherm  valve was  greater than  0.9.   The
carbon usage rates for  these  compounds  were estimated  using the  procedure
described in Appendix  A.  The carbon usage rates  for different influent  and
effluent SOC concentrations  are presented in Table 4-2.
     The carbon usage rates presented in Table  4-2  can be used to compare the
relative adsorbability of the SOCs.   Although all of  the contaminants  in the
table  are  adsorbable,  the   SOCs  exhibit   different  degrees  of  adsorption
capacity such that they may  be further classified as either  strongly  adsorbed,
moderately adsorbed or weakly adsorbed.
     In general, compounds can be classified as strongly,  moderately  or weakly
adsorbable.    These regions   can be  approximated   by  using  the compound's
Preunlich K value as shown below:
e
                                      4-8

-------
           Region              K (mg/g)  f(L/mg)1/n]
           Strong                   > 500
           Moderate                 100-500
           Weak                     < 100   .

      While adsorption  isotherms are  useful  for obtaining  preliminary  data
 concerning adsorbability of SOCs, they  have  certain  drawbacks that limit their
 applicability:
        -   Isotherm tests cannot be reliably  used  for  GAC facility  scale-up
           since  the test does not provide any information on the dynamics  of
           column operation.
      Multicomponent isotherms  can  be  conducted  to  describe the  competitive
 interactions  in  a mixture.   Since the mass transfer  zones  of  various  compounds
 seperate   with  respect  to  their  adsorbability   (chromatographic   effect),
 multicomponent isotherme cannot predict  the capacities observed in  fixed-bed
 operation.
      As  a result,  bench-scale or pilot-scale tests are  usually required  to
 develop the necessary design criteria.
      Mini  Column Tests
      Minicolumn  tests are conducted  in  an attempt to simulate the operation  of
 a  full-scale  GAC  adsorption  system.    Minicolumn   tests  are  used  for the
 following:
       -   Determine•the  feasibility  of  carbon  treatment  for a  given water
       -   Estimate carbon usage  rates
       -   Develop preliminary process design criteria
       -   Provide preliminary estimate  of system  economics
      A  limited number of column studies  have been  conducted to evaluate the
 removal  of SOCs  from  drinking  water.  A  typical  minicolumn  apparatus  is
 illustrated on Figure 4-2.  Water spiked  with  the specific compounds is passed
 through the column and  the  effluent  is  monitored  to obtain  a breakthrough
 curve.
      Environmental  Science   and  Engineering, '  Inc.   {ESE,   1981)   used  a
 microcolumn measuring 2.25 mm in diameter and 70 mm long to study the removal
 of  several synthetic  organic chemicals  by granular activated  carbon.   The
 carbon was sieved to  a particle size of  200 x 325-mesh.   Three separate sets
 of  tests  were performed  to determine  carbon  usage  rates  for dibromochloro-
propane (DBCP),  ethylene dibromide  (EDB) (ESE,  1983),  and monochlorobenzene
 (ESE, 1981).
                                      4-9       .

-------
     In testing  DBCP  and EDB, deionized water  spiked  with either DBC3? or EDB
was used as the  influent.   In the monochlorobenzene testing, the influent was
well  water spiked  with monochlorobenzene  (203  mg/L),  benzene  (53.1 mg/L),
p-dichlorobenzene (24.5 mg/L)  and-o-dichlorobenzene (23.1  mg/L)  to simulate a
wastewater  stream.   The results  of the three  sets of mini-column, tests are
summarized below.
     Contaminant
     DBCP

     EDB


     Monochlorobenzene
     NR = Not Reported
Concentration
Influent
ug/L
93
51
96
.45
90
Effluent
ug/L
7.6
0.33
6.3
5.5
8.9
Volume
Treated
ml
2,360
15,015.
3,000
3,930
3,280
Bed
Volumes
Treated
24,503
165,465
31,805
41,325
35,831
Carbon
Usage Rate
(lb/1,000 gal)
0.18
0.03
0.14
0.11
.0.13
203,000
10
NR
                     10.4
     In a mini column study by DeFilippi e_t al,  (1980) a waste stream contain-
ing 118 mg/L  alachlor was passed through  a  column with a  diameter  of  3/8 in
and a  length  of 11  in.   The column  contained 7 grams  of  granular activated
                                                             2
carbon  and was  operated at  a  loading  rate  of 1.1  gpm/ft .   The 'effluent
concentration was  0.22 mg/L after 2.6  liters  had passed through the column.
The usage  rate  at this  effluent  concentration was then estimated  to be 21.7
lb/1,000 gal.
     Steiner  and Singley  (1979)  conducted  a  mini-column  study to  test the
removal  of   methoxychlor  by  GAC.    Water   containing  1,5,   and  10  mg/L
methoxychlor was passed  through columns with a diameter  of  19 mm and a length
of  265  mm  at  a loading  rate  of  0.5  gpm/cu ft.  No methoxychlor was found in
the column effluent  after a 250 ml sample  was  passed through the column.  The
column  size  and  other  related  details  of  the testing  procedure  were not
discussed.
     Even  though minicolumn tests provide  a  quick method of predicting carbon
usage rates,  there are  several  uncertainties  in the  scale-up procedure that
restrict the widespread  use of this technique.  For example, it  is likely that
mass transfer coefficients  could vary  with  particle  radius  and SOC influent
                                                            I
                                     4-10

-------
 FIGURE 4-2
 I-
 UJ
 tfl
O
o
2

-I

O
Q.

-------
I
D

-------
concentration.  Therefore, results from minicolumn studies in which pulverized
carbon  is  used may not  be  suitable  for scale-up to  a full-scale GAC system.
Also, since  the length of the test  is  very short,  generally on  the  order of
several days, minicolumn tests do mot account for possible biological effects
and  preadsorption of  background TOC.   For  these  reasons,  it  is  generally
recommended  that  mini-column scale-up  be  verified  with pilot  or full-scale
studies until more research is available in these areas.
     Pilot-Scale Tests
     Before a full-scale GAC system is installed, preliminary on-site analysis
should  be  performed  on  the water of concern.  Pilot-scale tests  may be used
for  this purpose.  The empty bed contact time and the carbon usage rates are
the  important  design  criteria obtained from  a field  pilot study.  Additional
design criteria that can be developed from a pilot-study include:
       -  Bed depth
          Effect of hydraulic loading
       -  Number of contactors required
       -  Contactor configuration
       -  Carbon type
       -  Carbon life/replacement frequency
       -  System economics
     Case-studies of pilot-scale  testing for SOC removal  from' drinking water
are  listed below.
     USEPA-DWRD -  The U.S. Environmental  Protection  Agency's  Drinking Water
Research  Division  (USEPA-DWRD)   conducted  several  pilot-scale  studies  to
determine  the   effectiveness  of   carbon  adsorption  for the  removal  of  cis-
1,2-dichloroethylene and  other industrial  solvents  (such as trichloroethylene
and  1,1,1-trichloroethane).   Love and Eilers  (1982) - summarized  these studies
and  results  of  other  work dealing with the removal of solvents from drinking
water.
     Contaminated wells  in  New  Hampshire and Connecticut  contained a mixture
of solvents with total organic chemical  (TOC)  concentrations  ranging  from 0.3
to 0.7  mg/L.   The USEPA-DWRD installed pilot-scale carbon  adsorption columns
1.5  inches  in  diameter  containing  30 inches  of GAC.   In  the New  Hampshire
study, cis-l,2-dichloroethylene was  also present at  an average  concentration
of 6 ug/L.   Trichloroethylene was also present at concentrations  ranging from
120  to 276 ug/L.   The  effluent  concentrations of all contaminants were below
                                     4-11

-------
detectable limits (0.1 ug/L) until the column was  shut down after 18 weeks
operation due to clogging caused by precipitated iron.
     In     the    Connecticut    study,     the     ground    water    contained
cis-1,2-dichloroethylene   (2   ug/L)   1,1,1-trichloroethane   (38   ug/1),  and
trichloroethylene (4 ug/1).  The GAC  was exhausted during the  second year of
service.   Cis-1,2-dichloroethylene and 1,1,1-trichloroethane levels exceeded  a
concentration of 0.1 ug/L in the effluent after  25 and  11 weeks, respectively.
The  results  of  these  studies  with  respect to cis-l,2-dichloroethylene are
summarized below:
                                                                        I
Site
New Hampshire
Connecticut
Conpound
cis-1,2-dichloroethylene
cis-1,2-dichloroethylene
(2)
(3)
Average
Influent
Concentration
(ug/L)
6
2


EBCT
(Min)
9
8.5


Bed Volumes
Treated
14,200 '
29,600

Carbon
Usage Rate
(lb/1,000 gal.)
.254
.122
    1.  Bed Volumes treated to 0.1 ug/L cis-l,2-dichloroetnyljene
    2.  Influent contained an average of 177 ug/L of tridUoroethylene.
    3.  Influent, also contained an average of 38 ug/L 1,1,1-trichloroethane and 4 ug/L
        trichloroethylene.
     Suffolk County,New York -  Moran  (1983)  reported that in Suffolk County,
over 1,000 private wells were  contaminated with aldicarb  levels above the New
York State Health Department guideline of  7 ug/L.   The Suffolk County Health
Department monitored the performance of  19  commercially available  home GAC
units  installed in residences  as part of  a  study program from  October 1980
through  December  1983.   Each  system  consisted of  a  filter tank  10  in.  in
diameter  and 40 in. in height  containing  approximately 29  pounds of a Type GW
12 x  40 mesh  carbon.  The ground water concentrations of aldicarb  and other
pesticides, such as carbofuran, oxamyl and  dacthal, varied between wells.  The
average influent aldicarb concentration ranged from 21 to  262 ug/L for all the
wells.  The  water  also  contained high levels  of  iron and manganese  but was
free  of microbial  contamination.   As of  December 1983,  eight  locations had
breakthrough at the 7 ug/L level.    A summary of the  performance of the eight
systems is presented  below.
                                      4-11
                                                                                        I

-------
Volume
Averaae Influent Concentration (ug/L) Treated
Location
1
2
3
4
5
6
7
8
Note:
1.
Gulf
Aldicarb
21
105
53
262
105
151
64
36

Based en
Carbofuran Oxamyl Dacthal (gal)
3
25
42
9 15
24
57
25 26
-

effluent concentration
South Research Institute -
- ' 28,000
53,500
112,500
26,000
82,700
445 21,000
74,000
51,500
-
of 7 ug/1 aldicarb.
Commercially available home
Carbon* '
Usage Rate
(lb/l,OOQqal)
1.04
0.54
0.26
1.12
0.35
1.38
0.39
0.56


water treat-
ment systems  were tested under a USEPA  contract to compare the efficiency of
more than 30  units in  removing synthetic  organic  chemicals.   Bell  et al.
(1984)  described  results  for  ten  units that were tested with' a spiked  surface
water containing  chlordane  (50 ug/1), p-dichlorobenzene  {10  ug/L),  and hexa-
chlorobenzene  (10 ug/L).  The home  units were tested at the rated capacity as
specified by  the  manufacturer and the average  percent reduction was reported
for the  beginning and end  of the test.   Results from the  seven  units which
provided  an  initial 99 percent reduction of hexachlorobenzene  are  presented
below.   The other four units  achieved less  than 85 percent hexachlorobenzene
removal at the beginning of the test.
                                     4-13

-------
                                                      Average Percent
Unit
Aqualux CB-2
CuTligan, Model SC-2
Unit
Everpure QC4-THM
Seagull IV
Aquacell
Hurley Town and Country
Filbrook


rpj
1
1



2<
1
1
1
2
3
Weight of
Activated
i Carbon, Pounds
2.5
3.7

Weight of
Activated
i Carbon, Pounds
1.7
0.7
0.9
2.0
0.2
Rated
Capacity
(gal)
2,000
4,000

Rated
Capacity
(gal)
1,000
1,000
2,000
4,000
300
Reduction Range
(Beg in- End)


Hexachlorobenzene Chlordane
99-54
99-45
Average Percent
Reduction Range
(Begin-End)
99-89
95-83



Hexachlorobenzene Chlordane
99-99
99-99
99-80
99-50
99-40
99-99
99-98
99-89
99-79
99-45
Carbon
Usage Rate
(lb/1,000 gal)
1.25
0.925

Carbon
Usage Rate
(lb/1,000 gal)
1.7
0.7
0.45
0.5
0.7
    Notes:
             Mention of trade names or commercial products does not constitute endorsement or
             recommendation for use.
         1.   Type:
             1 = Line bypass units:  cold water bypass through the filter unit
                to a separate tap
             2 = Faucet-mounted: attached to faucet with a bypass valve for
                drinking water
             3 = Pourthrough:  water is poured through unit into a container below
     New York State -  O'Brien and Gere  Engineers (1982)  reported the.-results
of  a pilot  plant  removing  polychlorinated biphenyls  (PCBs)  from  the Hudson
River  which supplies  water to  a population of  approximately  100,000  in the
area  of  Waterford  and   Poughkeepsie.   The system  consisted  of  with   four
columns,  each with a diameter of  four  inches and  a  height of 6  ft  containing
8.6 pounds of GAC.   This  configuration allowed sampling  at empty bed contact
times  (EBCT) of  7.5,  15,  22,  and 30 minutes.   The  influent to  the GAC system
was  a  sand filter  effluent spiked  to a   PCB  concentration  of 1  ug/L,   The
                                                        2
columns were operated  at  a loading rate of  3.7  gpm/ft  .  The PCB concentration
in  the column  effluent  was  consistently  below  0.1 ug/L  for  an EBCT of 7.5
minutes during  25  weeks  of operation.   The influent  dosage  of PCBs  was  then
increased to 10 ug/L  for  a one  week period.   The PCB concentration  in the
column  effluent  was  still  below 0.1 ug/L  for  an EBCT of  7.5 minutes.  Exact
I
B
                                       4-14

-------
usage rates could not be calculated because PCS breakthrough had not occurred,
however, the actual usage was less than 0.1 lb/1,000 gal.
     Lake Constance, Switzerland  - A pilot-scale column  filled  with  GAG to a
depth of  75  cm was tested  to  treat Lake Constance water spiked with 50 ug/L
lindane.  Morgeli  (1972)  reported that  three different  carbons  were used in
the column for 16-hour  tests at a flow through  velocity of 15 m/hr  (49.2 ft/
hr>.  The  effluent lindane  concentrations  for the three carbons were 0.023,
2.6, and 0.08 ug/L.
     ThunderBay,  Ontario - Jank  (1980)   reported on  the  performance of  a
pilot-scale  carbon column  used to  remove pentachlorophenol  (PCP)  from  the
effluent  of  the  Abitibi-Northern Wood  Preservers  Limited activated sludge
wastewater treatment plant  in Thunder Bay,  Ontario.  The  carbon system con-
sisted  of three" columns  measuring  100  mm  in diameter  and three meters  in
length.  The  columns  each  contained  6.8 kg  (15.0 Ib)  of  Filtrasorb 400  and
were preceded  by a sand  filter containing an 11 kg  (24.2 Ib)   top  layer  of
anthracite filtering media.  The carbon column reduced PCP concentrations from
3.6 to 0.03 tng/L, as shown below.  No additional PCP breakthrough had occurred
after 42 days of operation.
                                   PCP Concentration        TOC
     	'Stream	        	mg/L	        mg/L
     Biological System Influent           8.4                768
     Activated Sludge Effluent            3.6                 52
     Carbon System Influent               3.4                 54
     Carbon System Effluent              0.03                 13
     Lathrop, California -  The Occidental  Chemical Company (Canonie Services,
1981)  conducted pilot-scale studies to determine the effectiveness of granular
activated carbon in treating ground water contaminated with organics.   The two
columns each had a diameter of  14  inches  and  a height of 96 inches containing
four cubic feet of 12 x 40  mesh carbon.   The  influent contained  a combination
of EDB,  DHCP  and sulfolane.   The results of this study are presented below.
                                                               Carbon
                     Concentration (ug/L)       Volume         Usage Rate
Contaminant
EDB
DBCP
Sulfolane*
Influent
9.1-10.8
1,400-1,500
2,000-3,000
Effluent
<1
10
1,800
Treated (L)
>654,900
302,800
151,400
(lb/1,000 gal)
<0.69
• 1.5
3
     * Date presented for <*ouilibrium condition

-------
     Ohio -  Pirbazari  et al  (1983)  reported the results of  activated carbon
column pilot testing conducted  on settled  Ohio River Water  containing 1-2-
dichloroethane and  dibromochloroproparie.   The glass column had  a diameter of
4 cm  and contained 400  grams of  12 x 14 mesh  carbon.   Water  with  a DBCP
influent concentraiton of 18 ug/L was passed through the column at 100 ml/min,
which provided an EBCT of  10  minutes.   The DBCP was not detected (<1 nig/L) in
the effluent for 166  days, resulting  in a  carbon usage  rate  of  less than
0.01 lb/1,000  gal.   Water  with  a dichloroethane  influent concentration of
21 ug/L was  fed to the column at a rate of 200 ml/min., which provided an EBCT
of 5 minutes.  Dichloroethane  was not detected  (<1 ug/L) in  the effluent for
12 days and  the bed was exhausted after 35 days - resulting in a carbon usage
rate between 1.93 lb/1,000  gallons at breakthrough  and 0.66 lb/1,000 gallons
at exhaustion.
     A summary of the GAG pilot-scale studies is presented in Appendix C.
     Full-Scale:
     Full-scale operations  utilizing GAG  to  remove  SOCs  have  included mobile
units for the treatment of hazardous waste  spills and facilities  for waste-
water  and  surface  water   treatment.   In  addition,  the U.S.  Environmental
Protection Agency's Drinking Water Research Division (USEPA-DWRD) is currently
conducting full-scale  studies on surface  water at Jefferson  Parish,  La.  and
ground waters at Wausau,  Wi. and  the  Great Miami Aquifer  (Miltner,  1987).
These full-scale studies are ongoing and complete data has yet to be published
in the literature.  Results currently available have been included with other
case studies presented in Appendix C.
     Hazardous Material Spills Treatment Trailer
     The Oil and Hazardous  Materials  Spills  Branch of  the USEPA constructed a
mobile treatment unit  to  respond to spills of  hazardous  materials to control
and  remove   the  toxic chemicals.   The  Hazardous Materials Spills  Treatment
trailer  was   developed  and .housed  at the Industrial  Environmental Research
Laboratory in Edison, New Jersey.
     The main features of  the  trailer  include  three  mixed-media filters for
the removal  of suspended materials  and  three activated carbon columns for the
removal of soluble  organic  chemicals.   Each of  the  mixed-media  filters has a
                                     4-16

-------
diameter of 3.5 feet and a height of 6.7 feet and contains 2 ft. of anthracite
on  top of  a 1.5 ft. thick layer of  red flint sand.  Each carbon column has a
diameter of 7  feet 'and  a height of 8.7  'feet and contains 1,230 pounds of 18 x
40 mesh GAG. -The treatment capacity of the system  is 300,000 gpd.
     Over  a  two year period,  the  trailer  system responded  to six incidents,
four of which  were  spills  of one  or more synthetic organic chemicals.  Lafor-
nara  (1978) reported  the  details  of each  incident  and  the cleanup operations
which utilized the Hazardous Materials Spills Treatment  trailer.
     Polychlorinated biphenyls  (PCS)' Spill -  Seattle,  Washington --A spill of
265 gallons of PCB into  the Duwamish  Waterway occurred when  an  electrical
transformer was dropped while  being  loaded onto a commercial barge.  The PCBs
formed  pools  at  the  bottom  of  the waterway.   The  PCB material  was  pumped
through  presettling tanks  and the  supernatant  water  was  treated  with the
trailer's mixed media filters in series with the carbon  adsorption columns. An
EBCT of 30  to  40  minutes  was provided.  A  total of 600,000  gallons of water,
containing approximately  PCB  concentrations  of 400 ug/L, were  treated.   The
mixed-media filters reduced  the  PCB  concentration to  3 ug/L while  the PCB
concentration  in  the activated  carbon effluent  was below  detectable  limits
(0.075 ug/L>.
     Toxaphene Incident -  The Plains,  Virginia - Toxaphene  was  dumped into a
privately-owned pond in The Plains, Virginia.* The  spring-fed pond was located
at  the head waters  of Broad  Run,  a  tributary to the  Manassasus Reservoir,
which  serves as the source of water supply for 40,000  people.   The  pond was
approximately  100 feet  by 100 feet  with  a maximum depth  of 7.5 feet.  'The
toxaphene  concentration was  36 ug/L in the  water  phase with pure toxaphene
remaining as a  separate phase on the pond  bottom.  Water was  pumped directly
from the  pond to the mixed-media  filters and  through the activated  carbon
columns at a rate of  70,000  gallons per day, which resulted in'an EBCT of 26
minutes.  A total of  251,000 gallons were  treated and  the  toxaphene concen-
tration was reduced from 36 to 1 ug/L.
     Mixed Pesticide Incident - Strongstown,  Pennsylvania -  A  pesticide blend
of  "Termide" and  water (2.5 gallons of  "Termide,"  240  gallons of water)  was
applied to  a  local  home  and  contaminated a nearby trout  stream causing  a
significant  fish   kill.   The  water had  a  combined  chlordane,  heptachlor,
                                     4-17

-------
 aldrin,    and   dieldrin    concentration   of    38.6 ug/L.     Approximately
 104,000 gallons were treated at 100 gpm through one  mixed-media filter and  one
 carbon  column at  an  EBCT  of 17 minutes.  The  chlordane concentration  was
 reduced from  13  to 0.35 ug/L.   The heptachlor concentration  was reduced from
 6.1  to 0.06 ug/L.   After treatment,  the  trailer  effluent  contained less than
 1  ug/L of total pesticides.
      Pentachlorophenol  Incident -Haverford,  Pennsylvania - A  waste fuel  oil
 containing pentachlorophenol (PCP) had  been injected into a  20 ft. deep well
 for  disposal.  In  1976,  it was discovered that this  PCP/oil  waste was migrat-
 ing  into the ground water  and discharging into a  small tributary of the Dela-
 ware River.
      In order to  contain  this  spill,   trenches  were dug to   intercept  the
 PCP/oil before it  reached the  stream.  A total of  220,000 gallons were col-
 lected and treated.  After reducing the  oil concentration to  less than 50 mg/L
 by settling and  diatomaceous  earth filtration,  the  water was  passed through
 the   three  carbon   columns  providing   an  EBCT   of  26 minutes.    The   PCP
 concentrations were  consistently  reduced from approximately  10 mg/L  in  the
 influent to the carbon columns  to  less than 1 ug/L in the effluent.
      The  carbon adsorption  columns of the Hazardous Material  Spills Treatment
 trailer performed   effectively  in  removing   the  various synthetic  organic
 chemicals.   The results of these cleanup operations are presented below:
                                                                        Carbon
                                                                        1
QCJflpOUnd
PCB
TtKaphene
Chlordane
Heptachlor
Pentachlorophenol
location
Seattle, WA
Ihe Plains, '
Strongstown,
Strongstown, PA
Haverford, PA

Quantity
Treated
(gal)
600,000
251,000
104,000
104,000
220,000
Contact Influent
Time Cone.
(min) (ug/1)
30-40 3M.
26 36(1)
17 13
17 6--1m
26 10,000 l)
Effluent
Cone.
(ug/L)
<0.075
1
0.35
0.06
<3.9
72
59.2
59.2
<82.3
Notes:
    1.  Influent to mixed media filter.
    2.  Treatment of water containing a mixture of chlordane (13 ug/L), heptachlor (6.1 ug/L),
        dieldrin (11 ug/L), and aldrin (8.5 ug/L).
    3.  Influent to treatment process included settling, 2 diatonaceous earth filters smd
        carbon columns.

-------
     Orange County Water District
    - Water  Factory  21. is an- advanced wastewater treatment  plant operated by
 the Orange_County Water District (OCWD) in California.  The plant effluent is
 injected  into  .the OCWD aquifer to.prevent saltwater intrusion.  The treatment
 processes include lime treatment, air stripping,  recarbonation, decarbonation,
 chlorination,  filtration,  granular  activated carbon adsorption (GAC),  reverse
 osmosis, and final chlorination.  Lime  treatment  and recarbonation are  located
 prior  to  the carbon adsorption  columns in the process  train.   The 17 carbon
 adsorption  columns  in  service at Water Factory 21 are each have a diameter of
 12 ft  and a height  of. 24 ft and contain 45 tons of 300-mesh carbon.  The EBCT
 of each column is 34 minutes.  The  columns  are operated in parallel and were
 operated  in an  upflow  mode  until  late  1977.  They were  switched  to the
 downflow mode  in late 1977  to decrease the carryover  of  carbon fines.  This
 was done to protect the reverse osmosis membranes from  fouling.
     McCarty and Reinhard  (1980) discussed  the effectiveness of  the  GAC for
 organic  removal  during a   two-year testing  period.    The trickling  filter
 effluent  from   the  'regional wastewater  treatment plant  was the  influent to
 Water  Factory 21  from  October  1976 to February  1978.  The wastewater treatment
 plant   switched  processes   from  trickling  filtration  to  activated  sludge
 treatment  in  March  1978  and its  effluent became  the  feedwater  for Water
 Factory 21.  This change resulted  in significant differences  in the  organic
 characteristics of  the influent waters to Water  Factory 21.  GAC performance
 for  each  period  is presented  in  Table 4-3.   A  significant decrease.- in the
 carbon usage  rate  was observed  in  the  second period  due to  lower   organic
 loading on the  carbon.

     Mount Clemens, Michigan
     The water treatment plant  in  Mount Clemens  has  utilized GAC  to remove
 synthetic organic chemicals  from their  raw water  source at Lake St. Clair for
 10 years.   Hansen  (1977)  reported  that  the eight  filters had  been  changed
 three  times (in 1968,  1970,  and 1974).  Each filter  contains 18 inches of GAC
 on top of 12  inches  of sand.  The  GAC originally was  installed  to minimize
 taste  and odor  problems.  Analysis has shown that pesticides were also removed
by the GAC.   The pesticides enter the lake during periods of runoff throughout
 the growing  season.   During April   1976,  water samples contained heptachlor
                                     4-19

-------
 epoxide,  lindane,  and  other  pesticides.   At  that time,  the carbon  in  the
 filters was  14 months old but  effectively  reduced  the  levels as shown below:
                         Influent Concentration         Effluent Concentration
     Contaminant         	(ng/L)	         	(ng/L)	
     Heptachlor epoxide           220                           NO
     Lindane                       5                           ND
     Fremont, .Ohio
     In  the  agricultural region of  northwestern  Ohio,  the  concentration of
 pesticides was  monitored in the river  waters  and in the  finished drinking        I
 water produced by three  water  treatment plants.   During this EPA study,  Baker
 (1983) reported that GAC reduced the levels of pesticides at the Fremont, Ohio
 treatment plant located on the Sandusky River.  A  16.5  in. deep GAC  filter  cap
 using  Filtrasorb  300 was placed upon  the rapid  sand filters  at  the water
 treatment plants.  The filter loading rate of 1.2  gpm/ft  (Hade 1984) provided
 an  EBCT  of  9 minutes.   The results  from  the  GAC  filter  cap  are presented       •*
 below:
                         Influent Concentration        Effluent Concentration
     Pesticide           	(ug/L)	        	(ug/L)	
     Alachlor                   0.7-5.0                       0.1-0.7
     Atrazine                   0.5-8.0                       0.5-1.5
                                                                                      P
    • Additional monitoring  of  the plant at  Fremont  indicated  continuing
 removal of SOCs after the filter cap  had been in service for approximately 30
months.  The performance of  the  18  inch  filter  cap during May-October 1984 is
 summarized in Table 4-4 (Miltner and  Fronk,  1989).  Removal  of  alachlor and
 atrazine was still being achieved after 30 months of operation.
     l«athrop, California
                                                                                      B
     In 1977, the ground water in the San Joaquin Valley,  California was found
 to  be contaminated with pesticides   from. the  Occidential Chemical  Company
 (Dahl, 1985).   The  water  contained  many  contaminants,  with DBCP and  EDB
present  in   the highest  concentrations.   GAC was found to  be effective  in
removing  the contaminants   during  previous  pilot testing.   In  1982,  the
 chemical  company  .installed  a  treatment  system for the ground water.   The        ""*
ground water was  withdrawn at  a  rate  of  500   gpm  and  passed  through  an
activated carbon  system  after  which  it  was injected into  the  lower aquifer.
                                     4-20
                                                                                     D

-------
          On

 O  1>  4> O
J3  CT  AJ O
 1.  15  10 O
 1O  » (t   «
O 3    «-






















c
o

^
ID
U



at
10
c
ID
~»
1
eo
r-
•~
j^
o
ID









0)

tQ

O>
ID
c
«
o
L.

1
<*-
»-
Ul


^
^
t.


c
1


c






Q)

ID
tr

ID
O
1
a:
*
w
§
U



.r
c
o

4J
10
U
4J
C
o
U
c
•
10
01
o
o
o

^—
"*%.
£
o
0> «- ro O r»- J-



CM T- in r» eo
rf O * M r- «—
CM 0 0 O 0 0

       U Of
      ^  8
      «-  c
      l^  O
       S i:
      t-  C
      IK  O
       c  u
      —  c
          o
         U
                         LTl
                         JT
               eo

               US
3
 •
o
             o
             o
                   o
                   o
               J-     r-
o
o
            °
            o
u>

d
                                                                  Oi
                                                                 -C
                                                                  U
                                                                   .
                                                                 (J
                                                                 o
                                                                 JJ
                                                                  Q.
                                                                  V
                                                                  U
                                                                  X
                                            3

                                            C
                                                                 JJ
                                                                 ID
                                      C
                                      V
                                      U
                                          §•   •
                                         •O  T3
                                      U  4)  0)
                                         OJ  4-1
                                      C  I-  O
                                      ID  O  O
               a
               o
o
o
 4)
 C
 O
 N
 C
 4)

 O
 V.
 o


 U

•5

 o
                                   V
                                   c
                                   U
                                   M
                                   c
                                   4)
                                         c
                                         V
                                  •—     X
                   c
                   V

                   c

                   .n

                   x:
                   «j
                   o
                                                     c
                                                     o
                                                                  I.  O  O
                                                                  •P  C  C
                                           <§£§

-------
 I
 B
i

-------
                                   TABLE 4-4

           TREATMENT OF SOCS BY GRANULAR ACTIVATED CARBON/FILTRATION

                        FREMONT, OHIO MAY-OCTOBER, 1984
    SOC
Concentration
   (ug/L)
Percent
Removal
                                                      Confidence
                                                         Level
              Occurence
                 Days
alachlor
atrazine
DBA
DIA
simazine
     3.70
     4.83
     0;43
     0.27
     0.39
72  ±  15
47  ±  17
.69  ±  31
82  ±  15
62  ±  27
99
99.9
99
93
99
13
17
 9
 4
11
DEA  = diethyl atrazine (metabolite)
DIA  = diisopropyl atrazine (metabolite)

-------
I

-------
The  GAG  column  size  and carbon  content and  operating conditions  were not
reported.  The influent DBCP and EDB concentrations ranged from 77 to 184 ug/L
and 8 to  19 ug/L, respectively.  The chemical concentrations in the water were
reduced below 1  ug/L for EDB -and.:below detectable limits  (0.1 ug/L)  for the
17 other  contaminants.  The usage rate  during this period  averaged 0.31 Ib
carbon/1,000  gal.

     Greenport, New York
     Available  performance  data  of  existing   GAG   contactor from  start-up
(August 1980) through  November  1986  was evaluated (Divarka and- Bartilucci and
Malcolm  Pirnie,   Inc., July  1987).    The GAG  contactor  operated under the
following conditions:
       Flow (gpm) 450
       Carbon charge (Ibs) 20,000
       EBCT (minutes)  12

     Based on an aldicarb breakthrough criteria of 6 ug/L, carbon usage ranged
from 0.15 to  0.17 lbs/1,000 gallons through three carbon changes in the period
from August 1980  through  July  1984.   Since  aldicarb levels in the  well were
decreasing over  time,  the  GAC  was  changed  only once  (October  1985)  in the
period between July 1984 and November 1986.

Estimation of Carbon Usage Rates
     The  presence  of  other  adsorbable organic  compounds and natural  and/or
anthropogenic organic  matter in  the water matrix  impacts the adsorption  of
specific  organic compound  of  interest.   In a given  water  matrix,  organic
compounds compete for  the available  active sites on  the carbon.   This results
in reduced  capacities for  all  the  compounds when  compared to  their  single
solute capacities.  Competitive interactions  impact  weakly adsorbing compound
more than the strongly adsorbing  compound.  Further,  competitive  interactions
among organic compounds in  a water matrix depends on number of compounds and
their concentrations.
                                     4-21

-------
     Natural or  anthropogenic  organic matter  is more weakly  adsorbing  than  the
 specific  organic compounds,  and therefore, moves  faster through the bed,  and
 preloads  the  carbon.   This  preloading of  carbon  impacts  the  capacity  and
 kinetics  of the  specific organic compounds  (Zimmer  (1987), Crittenden  (1988)).
 Strongly  adsorbing compounds, which move  slowly  through the bed,  experience
 greater reduction  in capacity  and kinetics when compared with weakly adsorbing
 compounds.  The  impact of background  organic matter depends  directly on  the
 number of compounds, their concentrations  and the concentration of  background       ,_
 organic matter in  a water matrix.                                                     •
     As  the  equilibrium and kinetics  of  a  specific  organic  compound   is
 directly  related to its GAC  usage  rate, competitive  interactions with other
 organic compounds  and background organic matter are important factors.
     A comparison  of usage rates predicted using distilled water isotherm data
 and actual field data was performed in order to determine the magnitude of  the
 impact the background  matrix may have  on  the estimation of the carbon usage       "~M
 rates.  In  order  to develop this  comparison,  CPHSDM usage rate predictions
using distilled  water  isotherm data were  made for those ftield. studies where
                                                          I     .,>
 the following information was available:                     	"
       -  EBCT
          Influent/Effluent concentration
       -  Superficial velocity
          Temperature
The ratio of field to distilled water isotherm usage rates was then calculated
 for  each  available  influent/effluent  combination.   The data  used for  this
 comparison along with  the  ratio of field  to  distilled  water usage  rates  are
presented in Appendix D.  These ratios were then  plotted versus the distilled
water isotherm usage rates as  shown in  Figure 4-3,   A regression analysis was
performed on the data,  and yielded the following multiplier  function:
                    Y = 0.7443 x ~ *
          where:     Y = multiplier
                    X = distilled carbon usage rate (lbs/1000 gal)
The  multiplier  function was  used  to  adjust the  estimated distilled  water
isotherm  usage  rates   previously   presented  in  Table  4-2.   The  multiplier
function was used  in a manner such that the  adjusted carbon usage  rates  was
                                     4-22

-------
*
















-



















I
•


...



















.
/
/
/
/
/
/
/
/
/
/
/
/
/
/
J . 8 8 $
•




^
/
/
/
/

/
/
/
/
/
/
/
/
/
/
/
/















3 ID CM »
OliVU

-/ 	
/
/








-
























It) (Mr
d d c
\
FIGURE 4-3
t-«





CO
o

T-


(/)

J—
-" <
2 S w
• LLl MI
0 0 - H
 Q ^
^» i fr\ ff
— J C/J 1C
~ Q UJ rr LU
8 UJ 01 LU [-
r^ i **^ ^f
2 g fe>l
,8 8 §
0 . < _l
o OC i_

O co CO
n K Q
h- <

>< 	 t LLJ
g LU O
O IL ^
• LU W
0 o ^
gs
§ si
-° " Q
>° S3
= 1
UJ O
H

-------
s
I
I

-------
equal to  the  multiplier times the distilled  water carbon usage  rate.   These
adjusted  carbon  usage rates are  presented in Table 4-5  and will be used to
develop GAC costs in Section 7.

Summary
     The  various  studies  reviewed in this  section indicate that  all  29 SOCs
(with the exception of epichlorohydrin) to  be regulated under  Phase II  can be
removed by GAC.   The  economy  of the process  is dependent on the  carbon usage
rate.  Certain  volatile organics  and chlorinated aromatics  have  relatively
poor adsorbabilities, which result in higher carbon usage  rates.   Because of
their volatile nature,  these  SOCs may be removed  more  economically by  packed
column aeration,  as discussed in Sections 5 and 7.
     Adsorption isotherm tests  aid in defining the relative adsorbability of
each SOC  present  in the water.   These  data  should be  used along  with model
predictions  to  predict minicolumn   sizing.   Since  itiinicolumn  scale-up  is
currently  uncertain,  pilot or full  scale data   should  be obtained.   Since
carbon usage rates are dependent on  the  organic matrix, natural waters  rather
than distilled water should be used whenever possible.   Carbon usage rates are
also dependent upon the following parameters:
       -  hydraulic conditions
       -  biological action
       -  contactor configuration
       -  operating conditions
       -  level of pretreatment
     Since  carbon usage rates are  dependent on  several variables,  further
research  should be conducted to better define the  usefulness of data obtained
from.all phases of treatability studies.
                                     4-23

-------
1
B
B

-------
                                                         TABLE  4-5
                                                                               1.2,3
                                          CARBON  USAGE RATES WITH  BACKGROUND TOO
Compound Name




Alachlor










Aldiearb










Atrazine









Carbofuran










Chlordane
    |, 2-D ? eh Ioroethylene
DBCP
o-D1chIorobenzene
1,2-0 i chIoropropane
2,4-D
- 	 Carbon Usage (lbs/KOal>
inf (ug/L)
Eff (ug/L)
'Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
0.60
- 0.0208
1.30
0.0852
1.00
0.0263
5.00
0.0459
0.50
0.0306
5.00
0.3603
0.10
0.0358.
50.00
0.0706
2.00
0.2060
5.00
0.0983
10.00
' 2.00 6.00
0.0206 0.0202
50.00
10.00 20.00
0.0837 0.0826
5.00
3.00 5.00
0.0257
20.00
40.00 50.00
5.00
2.00 5.00
0.0299
50.00
70.00 100.00
2.00
0.20 1.00
0.0356 0.0347
100.00
600.00 800.00
10.00
5.00 10.00
0.2013
50.00
70.00 100.00
0.60
0.0374
1.30
0.1044
1.00
0.0546
5.00
0.0604
0.50
0.0386
5.00
0.4159
0.10
0.0449
50.00
0.1293
2.00
0.2897
5.00
0.1263
50.00
2.00
0.0371
100.00
10.00
0.1032
50.00
3.00
0.0543
50.00
40.00
0.0570
10.00
2.00
0.0379
100.00
70.00
0.3966
5.00
0.20 '
0.0448
700.00
600.00
0.1234
50.00
5.00V
0.2867
100.00
70.00
0.1224
6.00
0.0368
20.00
0.1023
5.00
0.0541
50.00
5.00
0.0372
100.00
1.00
0.0446
800.00
10.00
0.2837
100.00
0.60
0.0481
1.30
0.1676
1.00
0.0679
5.00
0.0741
0.50
0.0660
5.00
0.4791
0.10
0.0627
50.00
0.1443
2.00
0.3335
5.00
0.2251
100.00
2.00
0.0477
500.00
10.00
0.1667
100.00
3.00
0.0676
100.00
40.00
0.0719
50.00
2.00
0.06S2
200.00
70.00
0.4656
20.00
0.20
0.0626
1000.00
600.00
0.1401
100.00
5.00
0.3312
500.00
70.00
0.2212
6.00
0.0474
20.00
0.1656
5.00
0.0674
50.00
0.0715
5.00
0.0645
100.00
0.4608
1.00
0.0618
800.00
0.1381
10.00
0.3283
100.00
0.2204

-------
I
B
B

-------
TABLE 4-5 (Continued)
         Name

Ethyl benzene



EDB


          4
Heptachlor



Keptachtor epoxide



lindane



Methoxychlor



     hlorobenzene


                  4
PCS (Aroclor 1254)



P entachIorophenoI



2,4,5-TP (Sitvex)
               Carbon Usage (Ibs/KGat)
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
Inf (ug/L)
Eff (ug/L)
Usage Rate
50.00
0.1017
0.01
0.0663
0.03
0.0509
0.03
0.0201
.0.02..
( '0.0171 J)
100.00
0.1411
60.00
0.1081
0.05
0.0224
20.00
0.0423
5.00
0.0678
100.00
700.00 800.00
0.50
0.05 1.00
0.0656
0.10
0.40 1.00
0.10
0.20 1.00
0.50
0.20 1.00
0.0165
260.00
400.00 500.00
100.00
100.00 400.00
5.00
0.50 5.00
0.0224
50.00
200.00 400.00
50.00
50.00 100.00
50.00
0.1637
0.01
0.1455
0.03
0.0556
0.03
0.0283
0.02
0.0208
100.00
0.1626
60.00
0.1937
0.05
0.0222
20.00
0.0905
5.00
0.0841
700.00
700.00
10.00
0.05
0.1453
1.00
0.40
0.0556
1.00
0.20
0.0271
1.00
0.20
0.0203
400.00
400.00
600.00
100.00
0.1930
10.00
0.50
0.0222
500.00
200.00
0.0883
100.00
50.00
0.0813
800.00
1.00
0.1435
1.00
1.00
1.00
500.00
400.00
0.1891
5.00
0.0222
400.00
0.0860
100.00
0.0000
50.00
0.1782
0.01
0.2222
0.03
0.0608
0.03
0.0379
0.02
0.0393
100.00
0.2185
60.00
0.2281
0.05
0.0217
20.00
0.1136
5.00
0.1373
1000.00
700.00
0.1687
50.00
O.OS
0.2221
10.00
0.40
0.0608
10.00
0.20
0.0377
10.00
0.20
0.0392
1000.00
400.00
0.2137
1000.00
100.00
0.2274
50.00
0.50
0.0217
1000.00
200.00
0.1112
500.00
50.00
0.1353
800.00
0.1660
1.00
0.2206
1.00
0.0608
1.00
0.0366
1.00
0.0387
500.00
0.2123
400.00
0.2245
5.00
0.0217
400.00
0.1101
i
1
I
100.00 |
0.1341

-------
D
I
I

-------
                                                        TABLE 4-5 (Continued)
         Name
 Styrene
Tetrachloroethylene
Toluene
Toxaphene
trans-1,2-0ichloroethylene
m-Xylene
    lene
p-Xytene
Notes:
Carbon Usage (Ibs/KGal)
Inf (ug/L) 10.00
Eff (ug/L) 2.00 5.00 20.00
Usage Rate 0.0401 0.0395
Inf (ug/L) 50.00
Eff (ug/L) t.OO 5.00 50.00
Usage Rate 0.0980 0.0967
Inf (ug/L) 500.00-
Eff (ug/L) 100.00 2000.00 3000.00
Usage Rate 0.1936
Inf (ug/L) 5.00
Eff (ug/L) 1.00 5.00 10.00
Usage Rate 0.0434
Inf (ug/L) 50.00
Eff (ug/L) 5.00 100.00 200.00
Usage Rate CflL,267p' — —
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate 0.2116
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000,00
Usage Rate '6^3096 ' ---
Inf (ug/L) 10000.00
Eff (ug/L) 1000.00 10000.00 15000.00
Usage Rate ^03151 — —
50.00
2.00 5.00 20.00
0.0610 0.0605 0.0596
100.00
1.00 5.00 50.00
0.1160 0.1144 0.1108
3000.00
100.00 2000.00 3000.00
0.3160 0.3050
10.00
1.00 5.00 10.00
0.0493 0.0432
200.00
5.00 100.00 200.00
0.3888 0.3793
20000.00
1000.00 10000.00 15000.00
0.2340 0.2148 0.2065
20000.00
1000.00 10000.00 15000.00
0.3718 0.3619 0.3556
20000.00
1000.00 10000.00 15000.00
0.3822 0.3718 0.3657
200.00
2.00 5.00 20.00
0.0872 0.0866 0.0858
500.00
1.00 5.00 50.00
0.1699 0.1694 0.1657
5000.00
100.00 2000.00 3000.00
0.3626 0.3540 0.3508
50.00
1.00 5.00 10.00
0.0634 0.0604 0.0579
500.00
5.00 100.00 200.00
0.4977 0.4893 0.4859
50000.00
1000.00 10000.00 15000.00
0.2649 0.2515 0.2468
50000.00
1000.00 10000.00 15000.00
0.4733 0.4644 0.4620
50000.00
1000.00 10000.00 15000.00
0.4966 0.4882 0.4854
       1.  Carbon usage rates.developed from predictions  presented in Table  4-2  and application of safety factors
           to account for background TOC and possible competition from other SOCs

       2.  Model-predicted carbon usage rates developed through  application  of
           CPKSDM to distilled-water isotherm study  results  and  were  adopted from:
           (a) Miltner,  R.J.  et  al.   Final  Internal  Report  On Carbon Use Rate Data.
                    ODW -  U.S.  EPA.  Cincinnati,  OH,  June  30,  1987.
           (b) Miltner,  R.J.  et  al.   Interim Internal Report On Carbon Use  Rate Data.
                    ODW -  U.S.  EPA,  Cincinnati,  OH,  June  30.  1987.

       3.   Distilled-uater isotherm  constants not available  for  Acrytamide,
           Aldicarb  sulfone, Aldicarb sulfoxide, and  Epichlorohydrtn

       4.   Isotherm-predicted carbon  usage rates developed through
           application  of  Freundlich's  equation, as shown in Appendix A.

-------
I
I

-------
           5-  OTHER APPLICABLE TECHNOLOGY - PACKED COLUMN AERATION

     As indicated in Section  3, packed column aeration has been identified as
another  applicable  technology.  :- Other  applicable  technologies  are  those
technologies  which  are  not  identified as generally  utilized for  removal of
SOCs,  but which may  have applicability  for  some  water supply  systems when
considering site-specific conditions,  such as type of SOC.

Process Description
     Air stripping has been used  effectively in water treatment to reduce the
concentration  of  taste  and  odor  producing  compounds  and certain  organic
compounds.  Aeration, or  air  stripping, may  be described as the transfer of a
substance from solution  in a  liquid to solution  in a gas.   The driving force
for mass transfer is a concentration gradient.  A concentration gradient tends
to move the  substance  in such a  direction as  to equalize concentrations and,
thereby, eliminate the gradient.
     The  driving force  for  mass transfer  is  the  difference between actual
conditions in the  air stripping  unit  and conditions  associated  with equili-
brium  between the  gas  and  liquid phases.   According  to  Henry's  Law  the
equilibrium concentration of  a  solute  in air  is  directly proportional to the
concentration  of the solute  in  water at a  given  temperature.   Henry's  Law
states that the amount of gas that dissolves in a given quantity of liquid, at
constant  temperature  and total  pressure,,  is directly  proportional to  the
partial pressure of  the  gas  above  the  solution.   Thus,  the  Henry's  Law
Coefficients describe the relative tendency for a compound to separate between
gas and liquid.   Henry's Law Coefficients can be used to  give  a preliminary
indication of the effectiveness for removing a specific SOC.
     Henry's  Law Coefficients,   are  presented  for  several  of  the  SOCs  in
Table 5-1 based  on both  theoretical calculations and  field data.   The magni-
tudes of  the coefficients • for  the  various  compounds  are  functions of  their
solubility in the liquid phase  and  their  volatility.  A high Henry's  Law
Coefficient  indicates   equilibrium   favoring   the  gaseous  phase;  i.e.,  the
compound generally is more easily stripped  from water than one with  a  lower
                                      5-1

-------
 Henry's  Law  Coefficient.   The  theoretical  Henry's  Law Coefficients  were
 estimated from vapor pressure, solubility and molecular weight as follows:
               V  x MW   _. ,
           H =  p      x 73.1
                 sol
           where:  H   = Henry's coefficient  (atm)
                   V   » vapor pressure  (ram Hg)
                    P
                   MW  = Molecular Weight  (g mole  )                                  ••
                                         -1                                           *
                   sol = solubility (rag L  )
       Field  data  were available  for ten  SOCs  (Cummins and  Westrick,  1987).
 The Henry's  Law Coefficients  at  ambient temperature were generally 50 percent
 of  the  value  "estimated  from  vapor  pressure  and  solubility  data  at  a
 temperature  of  20 C.   The  50  percent  reduction  may be   due  in  part  to
 temperature and matrix effects.                                                      •
      As  a  first  approximation,  SOCs  having Henry's  Law . Coefficients  below
 1 atm, at room temperature or above, probably would not be effectively removed
 by  packed  column  aeration.   Based  on  the  above  criterion,  seven SOCs  in
 Table 5-1  would  not  be  amenable   to  packed  column  aeration.   Two  other
. compounds,  chlordane  and  epichlorohydrin,' may be amenable to aeration,  while
 sufficient information is  not available for  2,4-D,  methoxychlor  and- 2,4,5-TP
 to evaluate their potential removals by aeration.  Treatability studies,  which
 incorporate  mass   transfer   characteristics  through  model  prediction   or
 pilot-scale tests, are utilized for determining the feasibility of SOC removal
 via packed column aeration.                                           ,
      The mass  transfer coefficient  relates  the driving force (concentration
                                                                                      ^a
 gradient) to the actual  quantity of material transferred from liquid to air.
 The mass transfer  coefficient is a  function  of  the physical/chemical proper-
 ties of an individual SOC, the type  of  packing material used, and the gas  and
 liquid loading rates.  In packed columns, packing materials provide large void
 volumes and  high surface  areas.   The water flows downward by gravity and  air
 is  forced upward.   The untreated water  is  usually distributed on the top of       ~"
 the packing with distribution trays  and the  air is  moved through  the tower by
 forced  or  induced  draft.   This  design  rosults  in  continuous  and  thorough
                                       5-2

-------
                                                  TABLE 5-1
                                     HENRY'S LAW COEFFICIENTS FOR SOCs
                                                                      1

Compound
Toxaphene
/Trans-1 ,2-Dichloroethylene
/Cis-1 ,2-Dichloroethylene
VTetrachloroethylene
/• Ethyl Benzene
J Toluene
j p-Xylene
-i m-Xylene
; o-Xylene
Heptachlor
Honochl orobenzene
j 1,2-Dichloropropane
Styrene
4 o-Dichlorobenzene
PCB (Arochlor 1242)
J Ethyl ene df bromide (EDB)
PCB Aroelor 1254
. Heptachlor Epoxide
3 Dibromochloropropane
Chlordane
Epichlorohydrin
Pentachlorophenol
Lindane
Aery 1 amide
Alachlor
Carbofuran
Aldicarb
Atrazine
2,4-D
2,4,5-TP
Methoxychlor
MW
(g/mole)
412
96.95
96.95
165.83-
106.16
92.13
106.16
106.16
106.16
373.53
112.56
112.99
104.14
H7.01
258
187.88
326
389.83
236.36
409.8
92.53
266.35
290.85
71.08
269.77
221.3
190.25
215.68
221.04
269.53
365.65
Vapor Pressure
(mmHg)
0.2-0.4
200
200
14
7
22
6.5
6
5
0.0003
8.8
42
5
1-
0.001
11
0.00006
0.003
0.8
0.00001
12
0.00011
9.40E-06
2
2.20E-05
0.00002
1 .OOE-04
3.00E-07
NA
NA
NA
(Tref)
20C
14C
25C
20C
20C
20C
20C
20C
20C
25C
25C
20C
20C
20C
20C
20C
20C
25C
21C
20C
20C
20C
20C
87C
2SC
23C
25C
20C



Solubility
(mg/L)
3
600
800
150
152
515
198
NA
175
0.056
500
2700
300
100
0.24
4310
0.056
0.35
1000
0.056
60000
14
17
2.15E-06
140
700
6000
70
540
140
0.04
(Tref)
25C
20C
20C
25C
25C
20C
25C

20C
25C
20C
20C
20C
20C
NA
30C
NA
25C
25C
NA
20C
20C
24C
30C
23C
25C
25C
25C
20C
25C
24C
Henry's Coefficient (atmj.
(Vp/Sol)1 J
1004-2008 /
1180
886
566/
179 y
144
127
NA
111 1<
73 "-'^~~
72
64
63
54
39 /
18
13
12
7
3
1
7.65E-02
5.88E-03
2.42E-03
1 .S5E-03
2.31E-04
1.16E-04
3.38E-05
NA
NA
NA
Field Data1'
136(3)
150<3)
83
274
174 -'
162
150
137
125
42
75
50
-
39 

-------
I
1
i

-------
contact  of the liquid with  the gas and minimizes  the  thickness  of the water
layer  on the packing, thus promoting efficient mass transfer.
     The design of air stripping equipment has  been  developed extensively in
the chemical engineering industry for handling concentrated organic solutions.
The procedures used in the  chemical engineering literature  can be applied to
water  treatment for  trace  organics removal.   The rate  at  which  a volatile
compound is removed from water by aeration depends on the following factors:
       - Air:water ratio
       - Packing height
       - Available area for mass transfer
       - Temperature of the water and the air
       - Physical chemistry of the contaminant
The first three factors may be  controlled in the design of  an air stripping
unit, while the other two factors are set for a  specific water supply.
     The air  flow  requirements for a packed column depend on the Henry's Law
Coefficient for the particular compound(s)  to be removed from the water.  In
an  ideal aeration  system,   the minimum  air:water ratio  which  will  achieve
complete removal  of  a  contaminant proportional to  the reciprocal  of  the
Henry's  Law  Coefficient.   The greater  the Henry's Law  Coefficient,  the less
air is required to remove  the compound from water.   Because  aeration systems
are not  ideal, the actual air:water ratios required.to achieve a given removal
efficiency are greater than the theoretical minimum airrwater ratios.
     The packing height is  a  function  of the depth of  the  packing material.
An increase in the depth of packing material results in a greater contact time
between  the air and the water, and consequently, will result in higher SOC re-
movals.
     The available  area for mass transfer  is  a function of  the  packing mat-
erial. .  Various  sizes and types of packing material are available including
1/4 to  3-inch  sizes  of  metal, ceramic  or  plastic material.    In  general,
smaller  packing material provides  a greater available area for mass transfer
per volume of  material,  thus  increasing  the   mass  of contaminant  removed.
However,  smaller packing  increases the air pressure  drop through  the  packed
column.
     The  fundamental  concept of mass  transfer   states that  the rate of mass
transfer  per  unit  of reactor  volume is  first  order  and proportional to  the
                                      5-3

-------
difference   between   the   operating  concentration   and   the  equilibrium
concentration as follows  (Treybal, 1980):                                              .

     J = KLa *  (X - X*) *  (1000 L nT3)	 Eq 1

     Where:

          J = Mass transfer  rate per unit reactor volume
              (ug VOC m   reactor volume sec~ )

          X = Concentration  of VOC in  liquid phase  (ug L~ )

         X* • Equilibrium concentration of VOC in liquid phase  (ug L~ }'               *

        KLa = Mass transfer  coefficient (sec~ )

     A general  equation relating packing height  to mass transfer coefficient,

removal efficiency, Henry's  coefficient,  air loading,  and  liquid loading can
be obtained by  applying conservation  of mass  to  a differential reactor volume
element and integrating.   The resulting equation for packing height is shown        --m
as Eq 2.

     Packing Height:

                L      R        ( (Xt/Xb)*(R-l)  + 1 )
          Zt =	*	* In	 	 Eq 2
               KLa   (R-l)               R

                                                                                       D
          Where:

               Zt - Packing height (ml
                L = Liquid loading (m  m   sec  )
              KLa - Mass transfer coefficient (sec  )
               Xt = Top of packing contaminant concentration  (ug Li  )
               Xb = Bottom of packing contaminant concentration  (ug L~ )
                R - Stripping factor  (dimensionless)

                              G     H                                   .               *
                         R 8	*	
                              L     Pt                    -

                                  3 . -2    -1
                G = Air loading (m  m   sec  )
                H = Henry's Law Coefficient (atm m  water m   air)
               Pt = Atmospheric pressure (1 atm)

     Equipment Required                                                               ""

     A diagram  of  a  typical packed tower  installation is illustrated  on

Figure 5-1 and consists of the following:
                                      5-4
                                                                                       Q

-------
                                                             FIGURE 5-1
•
            DEMISTER MAT


           CONTAMINATED
           INFLUENT
     PACKING MATERIAL
                             EXIT AIR
                             AND SOC
n n n
             ORIFICE PI-ATE DISTRIBUTOR
                                         PACKING MATERIAL
                                         SUPPORT PLATE
                                     INCOMING AIR
                                              BLOWER
                            EFFLUENT
                       PACKED COLUMN
         SCHEMATIC OF PACKED COLUMN AERATION

-------

-------
       -  Packed  Tower:   Metal  (steel or  aluminum),  plastic,  fiberglass  or
          concrete is used for the outer shell.  Internals (packing, supports,
          distributors,  mist  eliminators)  are  generally made of metal  or
          plastic.
       -  Blower:  Typically  centrifugal type, either  metal or plastic  con-
          struction.  Noise control may be  required  depending on the size and
          system location.
       -  Effluent Storage:  Generally provided  as a concrete clearwell below
          the packed tower.
       -  Effluent Pumping:  Generally required because effluent is usually at
          atmospheric pressure.  Vertical  turbine pumps mounted on clearwell
          are typical.
     In ground  water applications,  water  is  generally pumped  directly  from
wells to the  top  of the packed tower.  The effluent flows from the bottom of
the  tower  into a  clearwell from  where  it  is usually pumped into  the  dis-
tribution system.  Depending  upon the hydraulic  constraints of an individual
location, this effluent  repumping  may or may not  be required.   Similarly,  in
surface  water  applications,   the  system  hydraulics  dictate  the amount  of
pumping that is required.                                                 .

Treatability Studies;  Pilot Scale Tests
     The feasibility of  removing SOCs from  drinking  water using packed column
aeration has  been  studied in several pilot-scale  tests.  Seven of the twelve
studies reported in this  section were conducted by the United States Environ-
mental Protection Agency (USEPA)  through its Office of Drinking Water (ODW).
The remaining five studies were conducted by other consulting firms or indivi-
duals.
     Packed-Column Aeration Studies-USEPA
     Numerous packed-column  aeration pilot  studies have been performed  by
Cummins of USEPA.  Seven  of the available studies contain removal  information
on   at   least-  one   of  the    29   SOCs.    Data   on   the   removal   of
cis-l,2-dichloroethylene  are presented in each of these  studies.   The  study
locations,  testing dates and compounds removed (on the list of 29 SOCs) are  as
follows:
                                      5-5

-------
     Dedhantf HA
     Lansdale, PA
     Glen Cove, NY

     Hartland, WI
     Wausau, WI
     Lakes Wales, FL
     Bastrop, LA
August 24, 1982
August 10, 1982
August 20, 1982
December 14 & 16, 1982
September 23, 1982
September 28, 1982
April, 1984
February 1984
cis-1,2-dichloroethylene
1,2-dichloropropane
o-dichlorobenzene
cis-1,2-dichloroethylene
cis-1,2-dichloroethylene

cis-1,2-dichloroethylene
cis-1,2-dichloroethylene
EDB
Toluene
Ethylbenzene
o,ra,p-xylenes
     The pilot column used by Cummins in each of the above studies was 24 feet

in  height and 2  feet in  diameter.   It contained  18 feet  of plastic saddle

packing which was 1 inch in size  for  all  pilot runs, except  for six runs in

Glen Cove,  New  York where 2 inch  plastic  saddles  were used.  Eighteen sample
taps were installed at 1-foot intervals  along  the  column to permit the devel-
opment of concentration  profiles for contaminants  along  the entire height of

the column.   Operational information and results are presented for each site.

     Dedham/ Massachusetts  - The  ground water from Well No.  3  on University

Avenue in Dedham,  Massachusetts was found  to  be contaminated by a number of

organic   chemicals   including    low    levels   (less   than   15 ug/L)    of
cis-1,2-dichloroethylene,  1,2-dichloropropane   and  o-dichlorobenzene.    The
well,  which had  supplied 700  gpm to  the  Dedham  system,  was  taken out  of

service in  1982.   Water from the  University Avenue  well was pumped  by  fire

hose  to  the pilot column  during  the  study  conducted  by  Cummins (Cummins,
Dedham, 1982).   The raw water flow was controlled by  a gate valve.  The  water
was piped to the top of the column,  distributed over the top of the packing
through an  orifice plate and allowed  to cascade down through the column.   A

low pressure  blower was  used  to  draw air  up  through the  column.   Both the

water and 'air flow rates were  adjusted to  obtain  certain specified air:water

ratios.   Test  conditions  (liquid  loading  rate, air:water ratio)  and percent
removals  for  each of  the  three SOCs  of interest  are presented  below.   The

water temperature was approximately 53 F.
                                                                                      I
                                      5-6

-------
Liquid Loading
Rate
(gpm/ft )
12 	
vJ6 1_
25
35
51
56
Notes:
1 . Average
2 . Average
3 . Average
Air:
Water cis-1, 2-dich
Ratio ethylene
80 .99.7*
~I5> 98.7*
"27 91.8
16 75
8 53
5 32

influent concentration :
influent concentration :
influent concentration:
Percent Removals
loro- 1,2-dichlorc—
( ' propane
98.8*
97.7*
75*
54
34
20

11 ug/L
2.0 ug/L
3.0 ug/L

o-dichloro-
benzene
97.5*
(^91.0*-^
57
31
6.7
-




    *Compound stripped below detectable limit - removal efficiency based on
     regression analysis.

     The  results  indicate that  packed column  aeration  is effective  for the

removal of each of  the  three  SOCs.   Removals decreased as the air:water ratio
was lowered, as predicted by the empirical development.
     Lansdale,  Pennsylvania  -   The ground  water  from  Well  No.  8  on Third

Street in Lansdale,  Pennsylvania was found to be contaminated by  a number of

organic  chemicals,  including cis-l,2-dichloroethylene  at a  concentration of

approximately 160 ug/L.  The 100 gpm well was taken out of service in 1979.  A
total of  six runs  were  conducted by  Cummins  at the Lansdale site (Cummins,
Lansdale,  1982).   The  water   temperature  was   approximately   58 F.   Test
conditions  and performance  data  are  presented  below for  cis-1,2-dichloro-

ethylene:
          Id Loading           Air:
                                                 Percent Removal
                                             cis-1,2-dichloroethylene

                                                       99.6
                                                       98.2
                                                       91.8
                                                       82
                                                    "   50
                                                       30
     As in the study at Dedham,  the  above  results  indicate that  packed-column
aeration is effective for the  removal of cis-1,2-dichloroethylene.
Liquid Loading
Rate
(gpm/ft2)
11
16
24
33
' 47
65
Air:
Water
Ratio
83
44
28
17
9
5
                                      5-7

-------
     Glen  Cove,  New York - The ground water from Well No. 22 on Carney Street
in Glen  Cove,  New  York was found to be contaminated by several organic chemi-        '|
cals,  including  cis-1,2-dichloroethylene  at  a  concentration of  130  ug/L
(Ruggiero  and  Ferge,  1983).  The 2  mgd well was taken out of service in 1977.
A total  of 16  runs were conducted  by  Cummins  at the Glen Cove well  (Cummins,
Glen Cove, 1982),  over a  three  day period.  Test  conditions and performance
data  are  presented in  Table  5-2.   The  results again  indicate  that  packed
column aeration  is  effective for the removal of cis-1,2-dichloroethylene.  At        '•
similar  test conditions,  the  1-inch plastic saddles  achieved better results
than did 2-inch plastic saddles.
     Hartland, Wisconsin - The  ground  water from Well No. 3 on Progress Drive
in Hartland, Wisconsin, was found to be contaminated by  three organic chemi-
cals, including  cis-l,2-dichloroethylene at  a  concentration of 6 ug/X..   The
1,000 gpm  well was taken  out  of service in  1982.   A total of  six runs  were
                                                                                      -•
conducted  by Cummins  at  the  Hartland well  (Cummins,  Hartland,  1982).   The
water  temperature  was  51' F.    Test  conditions  and  performance  data  are
presented below:
     Liquid Loading
                              Water              Percent Removal
                              Ratio          cis-1,2-dichloroethylene
                                                                                      D
          11                  84                       99.8*
          17                  43                       98.0*
          24                  25   '                    92.9
          35                  16                       82
          49                   8                      .50
          65                   5                       42
    *Compound stripped below detectable limit - removal efficiency based on
     regression analysis                                                              •
     The results again indicate that of packed column aeration is effective in
removing cis-1,2-dichloroethylene from drinking water.
     Wausau, Wisconsin - The ground water from Well No. 3 on East Onion Street
in Wausau, Wisconsin was found to  be  contaminated by three organic chemicals,'
including cis-1,2-dichloroethylene  at a concentration of  27  ug/L.   The 2,000        _
gpm well was taken out of service in 1982.  A total of six runs were conducted
by Cummins at the Wausau well  (Cummins,  Wausau,  1982)j.  The water temperature
was approximately  51  F.   Test conditions  and  performance data  are presented
below:


                                                                                      B

-------
                                   TABLE 5-2

            PACKED-COLUMN PILOT STUDY RESULTS - GLEN COVE, NEW YORK
     Liquid Loading
        Rate
        (gpm/ft2)
Air:
Water
Ratio
   Percent Removal
cis-1,2-dichloroethylene
Day 1:  August 20, 1982; 1-inch Plastic Saddles,- Water Temperature = 61 F
          10.3
          16.2
          25.0
          33.9
          51.5
          66.3
 86
 46
 27
 17
  9
  6
          99.9
          99.3
          94.2
          85
          58
          40
Day 2:  December 14, 1982; 1-inch Plastic Saddles; Water Temperature = 58 F
          16.2
          25.0
          35.3
          50.1
 47
 26
 15
  8
          98.8
          94.3
          70
          46
Day 3:  December 16, 1982; 2-inch Plastic Saddles; Water Temperature = 59 F
          11.8
          19.1
          26.5
          39.8
          57.4
          76.6
 84
 48
 28
 16
  9
  5
          98.8
          95.8
          90
          76
          54
          39

-------
1
D

-------
Liquid Loading
Rate
	 	 .. . (gpm/ft2)
10
17
25
35
50
52
Air: . ' ,.
Water
V
Ratio .
85
45
25
15
9
5
.
Percent Removal
.. cis-l,2-dichloroethylene
99.5
97.4
86
74
35
24
     Once  again, the results  strongly indicate that packed-column aeration  is
an effective means for the removal of cis-l,2-dichloroethylene.
     Bastrop, Louisiana  - The  City  of  Bastrop, LA was  selected  for  field
evaluation due  to a  gasoline spill  which  occurred a  short distance from  a
municipal  well field.   As a  result  of the  contamination,  the  Liberty Street
well  #2 was taken  out of  service.   The principal  contaminants  in the  well
water were:
                                         Average Concentration (ug/L)
   SOC

   Benzene
   Toluene
   Ethylbenzene
   o-Xylene
   m-Xylene
   p-Xylene
                                                         190
                                                          62
                                                           9
                                                          10
                                                           2.9
                                                           6.9
The  well had  a  pumping  capacity of  1050  gallons  per minute   (gpm)  at  the
distribution system pressure and  1500  gpm at atmospheric pressure.  The water
temperature was 20°C.'  The  results of the  pilot testing  are summarized below
(Cummins, 1984):
Liquid
Loading
Rate
(gpm/Ft )
  9.1
  30.9
Air
Water
Ratio

 87

 25
                 Percent Removal
                 Ethyl-   ^.-~—--.
Benzene  Toluene/  benzene ;•. o-xylene  m-Xylene p-Xylene
>99.6
 98.2
>98.8
                              98.3
>92
                          >92
>95
                  >95
>83
                 >83
                                                                >90
                >90
  66.3       8.5      85.

-------
     Lake Wales, Florida - Pilot  testing was  conducted at Lake Wales, Florida
on  ground  water with  an  EDB  concentration of  1.7  ug/L  EDB.   The  water
temperature was  25  C.   The  results of the pilot testing  are summarized below
(Cummins, Lake Wales, 1984):
          Liquid
          Loading             Water          Percent Removal
          (gpm/Ft )           Ratio          	EDB	
             14.7              53                 90
             14.9              90                95.7                                 -|
              7.4             182                98.6                                 i
     These  results  indicate that  of packed  column  aeration is  effective in
removing EDB from drinking water.   However,  Cummins  did  note the presence of
an  unstrippable  portion of  EDB,  representing  a base concentration  of 0.017
ug/L.  The presence of this unstrippable fraction could not be explained.

Packed Column Aeration Studies - Others
     Arizona -  Malcolm  Pirnie, Inc.   (MPI),  (1985)   conducted  packed-column
pilot testing at an Arizona location.  The pilot column was 1 foot in diameter
and contained 9.5 feet of No. 1 Tri-Packs packing material.  Sample ports were
available at the raw water inlet and finished water outlet for taking influent
and effluent samples.                                                                 0
     A total of  nine runs were conducted.   The ground water temperature was
approximately 70°F.   Test conditions  and performance  data are .presented in
Table 5-3 for ethylbenzene, toluene, m-xylene, and o-, p-xylenes.  The results
indicate that  packed column aeration  is an  effective means of  reducing the
concentrations  of ethylbenzene,  toluene,  and  xylenes.   High removals  were
attained at reasonably low air:water ratios  (30-80).                                  Q
     Berkeley,  California - A pilot evaluation was conducted by Selleck et al.
(1983)  to  remove DBCP  and EDB  from drinking  water.  The  rectangular pilot
column had a cross-sectional area of 3.32 ft and  contained 13 feet of 2-inch
polypropylene intalox  saddles.  Liquid  loading rates, airrwater  ratios, and
influent  concentrations for  DBCP  were varied  throughout  the  test.   These
                                     5-10
                                                                                      i

-------
 c   «o
 4)   >
 O   O

 fe   i
O,  C£
             x ••-
             i  *>
             Q.  (O
             O  «
                             VDOt—


                             ro  B» * .
                                              vO  -9-  ^  CO
                                              r»    OD  o>
                                                          o  o>

                                                          tocn'
                                                          >-  co
                                     ^  1—  CM      ^*
                             ooooooooo
                 c  re
                 «  >
                 u  O
                 l.  E
                 4)  V
                 a.  cc
s
             6  £
                 o
                             o    CD
                             r»i  co  in  r"»  O
                             co  •_  vo       in
            oooomoooo
            •^ooin-a-tsmotvo
                 e  10
                 S  S
                 i  I
                a.  CB
             4>  O


             4)  4->

             3  <0
            r—  V.

             O  -P
            ^  c

                 4)
                 O
                 C
            ooooooooo
           \
S
                 c  09
                 at  >

                 S  I
            O  CO  •-

            m  •-  oo
                 oo  co

          i    i  en  eft

                  A  A



41
C
Kf
1
">.
£
4J
UJ


_l
^V
Ol
3

e
o
4->
ID
4->
C
4>

O
u
4J
4)
3

<*-
UJ

<4J
c
4)
3
•—
C

                             CM  in  en  CM
                                     m ID  O  O  O  O  O
                                              W   V   V   V   V
                                             •-  t-  t-  oo
                             mOcM  — oOo-9-cn
                             r-  o  o  cr>  v  v   v  jr  in
                                     o
                                 CM  CM
                             o  o  av vo  in i *-  o  VD  m
                             CD  ^  uV-s-  IM i r»  f*>  r«i  uj
        •a   c   o »-
        •"•••-   *J -X.
         3  -O   >9  S
         CT  <0   OS  D.

        •~   O       01
                         CN  1*1  *"•  IA  »*
                 C    -I

                 3   O
                CC  Z|
                             •>-  N  raid*  u-i  vO. r~  

-------
I
i
I

-------
results are presented in Table 5-4.  Higher  removals  of -DBCP were achieved at
higher  air to  water ratios  and  higher temperatures.   At -low  temperatures
higher air to water ratios were required to  achieve removals similar to those
obtained at higher temperatures.   This  illustrates the effect of temperature
on  air  stripping as predicted  by the empirical  development earlier  in this
section.
     Selleck also reported the results for EDB removal.  The water temperature
was approximately 64°F during the two runs that were performed.
     Liquid Loading      Air:           EDB Concentration
         Rate            Water               Influent            Percent
       (gpm/ft )         Ratio                ug/L	        Removal
          2.4            200                 16.0                >94*
          9.7            210                  9.1                >90*
    *Effluent EDB Concentration below estimated detention limit of
     approximately 0.9 ug/L.
     The results indicate that  packed-column aeration effectively removes EDB
from drinking water.
     Arizona - A pilot-study was  conducted by Malcolm Pirnie,  Inc.  {1987} to
evaluate the  feasibility  of removing  DBCP  from  well  water  at a  site  in
Arizona.   The  PVC  column  was 24  inches in diameter  with a  maximum  packing
height of  10 feet.  Results of  the  test  are summarized  in  Table 5-5.   In
general, the  test  results  indicated  that  high  air:water  ratios  (200:1  or
higher) were  required  for  effective  DBCP  removal.   The performance .of  two
types of packing materials were also compared,  leading to an optimized design
of the full-scale facility.
     Gainsville, Florida - ESE  (1983)  conducted pilot air stripping  tests for
EDB removal.  Feed water spiked with various concentrations of EDB was used in
the  study.   The pilot  system  consisted of  four,  1.5-foot  diameter  columns
operated in series, which allowed  for up to 50  feet of total packed column
height.  The cumulative height breakdown was as follows: •
                    Column 1 = 15 feet
                    Column 2 = 30 feet
                    Column 3 = 40 feet
                    Column 4 = 50 feet
                                     5-11

-------
     The  columns  were  packed  with  1-inch polypropylene  Intalox  saddles.
Effluent sample taps were present at the outlet of each individual column.            |
     A total  of eight runs  were conducted.  .Test conditions  and performance
data are presented  in  Table  5-6.  Higher air:water ratios yielded better EDB
removals as did  additional  packing  height.  The data indicate  that  packed
column air  stripping is  an effective means  of reducing the  EDB concentration
in water.
     Windsor  Locks,  Connecticut  -. A  pilot evaluation  was  conducted by the        |
Connecticut Water  Company (CWC,  1984)  to remove EDB  from well.water  at the
Windsor  Locks,  Connecticut  wellfield.   The pilot  column  was  1.2  feet  in
diameter and contained 15 feet of No. 2 Tripacks packing material.  A total of
eight runs  were conducted by CWC.   Test  conditions  and performance  delta are
presented below:
Liquid Loading      Air:
   Hate  _          Water     EDB Concentration (ug/L)       Percent                   *
  (gpm/ft )          Ratio     Influent       Effluent       Removal
     15              30       0.21           0.16           23.8
     15              60       0.74           0.40           45.9
     15             100       0.92           0.25           72.8
     15             150       0.75           0.14           81.3       ,
     25              30       0.65           0.38           41.5
     25              60       0.70           0.39           44.3                      B
     25             100       0.84           0.30           64.2
     25             150       0.82           0.20           75.6
     The data indicate that  air stripping is effective at low EDB concentra-
tions  (less than 1 ug/L).   Greater  removals  are achieved  at higher air  to
water ratios.
     Iowa City, Iowa  -   The University  of  Iowa (Mumford  £   Schnoor,  1982)        ._
     	                                                                 E
conducted research on  air  stripping  of volatile  organics  from water.   A
countercurrent  flow packed bed  stripper  was utilized   for the  research.   The
column was  4  ft high and 3.75 inches in diameter. The studies were conducted
with 1.5 ft of  1/4  inch  ceramic berl saddles which provided a void volume  of
64 percent.   The feed water,  tap water that had been aerated for a minimum of
16 hours and  injected with a 5-25 ml methanol spike containing the SOCs,.was        '""
prepared  in  50 liter  batches.   During  the 30 minute  treatment  runs,  five
                                     5-12
                                                                                      D

-------
                                             TABLE 5-4

                            PACKED COLUMN PILOT STUDY RESULTS -BERKELEY
Liouid



















Liauid









Liquid




Liquid



Loading: 2. 4 gpm/Ft
TEMP(°F)
69.3
69.3
68.4
67.8
67.3
67.3
66.1
57.0
56.5
55.9
55.9
55.8
51.6
51.4
51.3
50.4
50.2
50.2
2
Loading : 4.8 gpm/Ft
68.2
67.8
67.3
67.1
66.7
66.6
66.2
65.7
64.9
Loading; 7.25 gpm/Ft
TEMP<°F)
58.1
57.2
55.0
Loading: 9.7 gpm/Ft
64.4
63.9
63.1
Air: Water
Ratio
180
200
180
590
210
200
550
680
670
480
450
560
490
650
590
650
560
490

250
570
580
410
490
570
270
270
510
Air : Water
Ratio
320
340
330

220
220
220
DBCP Influent
Concentration (ug/L)
52.5
6.8
18.8
414
544
131
54.0
665
29.6
673
28.3
34.4
329
320
327
15.9
15.2
15.9

76.1
14.5
369
534
50.5
25.0
13.8
494
11.5
DBCP Influent
Concentration (ug/L)
101
771
9.84

772
85.3
12.2
                                                                                    ,1
                                                                                    .5
                                                                                    .9
Percent
Removal

 75.5
 88.6
 74.2
 94.0
 71.3
 76.2
 92.4
 88.7
 89.6
 86.6
 79.8
 86.
 83.
 86,
 86.6
 87.6
 83.2
 73.5
                                                                                 79.8
                                                                                 97.5
                                                                                 97.1
                                                                                 88.8
                                                                                 94.3
                                                                                 98.0
                                                                                 83.4
                                                                                 79.6
                                                                                 96.8

                                                                                Percent
                                                                                Removal

                                                                                  91.6
                                                                                  81.3
                                                                                  91.1
                                                                                  77.4
                                                                                  79.7
                                                                                  87.6
I

-------

-------
                                   TABLE 5-5
                PACKED COLUMN PILOT STUDY RESULTS - .ARIZONA
                                                            (1)
Liquid
Loading
Rate
jgpm/sf)_
No. 1 Jaeger
6.2
6.2 .
9.4
9.1
10.5
8.9
12.9
12.5
16.1
15.8
22.7
No. 2 Glitsch
22.6
16.1
13.5
9.8
6.4
6.1
16.4
13.2
10.0
10.0
11.1
Air
Water
Ratio
(cf:cf)
Tri -Packs s
199
377
107
215
173
284
76
186
75
132
80
Mini-Rings:
83
129
154
239
428
276
89
74
81
165
149
                                          DBCP Concentration
                                                 (ug/L)
Influent
0.20
0.25
0.25
0.26
0.07
0.23
0.24
0.25
0.24
0.26
0.31
0.25
0.25
0.31
0.26
0.30
0.26
0.26
0.26
0.25
0.25
0.15
Effluent
0.10
0.09
0.16
0.13
0.05
0.11
0.18
0.14
0.17
0.18
0.19
0.20
0.14
0.11
0.13
0.04
0.05
0.17
0.17
0.17
0.09
0.04
Percent
Removal
                                                                        50.0
                                                                        64.0
                                                                        36.0
                                                                        50.0
                                                                        28.6
                                                                        52.2
                                                                        25.0
                                                                        44.0
                                                                        29.2
                                                                        30.8
                                                                        38.7
                                                                        20.0
                                                                        44.0
                                                                        64.5
                                                                        50.0
                                                                        86.7
                                                                        80.8
                                                                        34.6
                                                                        34.6
                                                                        32.0
                                                                        64.0
                                                                        73.3
Note:
          All results are from the use of 9.5 feet of packing and a water
          temperature of 75 degrees F.

-------
I
Q

-------
                                 .TABLE 5-6

              Packed Column Pilot Study Results -Gainesville
Liquid
Run Loading Air: Water
Number (gpm/Ft ) Ratio
1 11.3 7.9
2 11.3 15.0
3 11.3 22.5
4 11.2 33.8
5 22.6 15
6 22.6 22.5
7 22.4 35
8(1) 11.2 88.3
66.5
64.5
65.3
.. EDB. Concentration (ug/L)
Effluent
Influent 15 Ft 30 Ft 40 Ft 50 Ft
195.5 162.5 127.5 103.5 79
102 61.4 32.0 19.9 12
107.5 47.7 18.9 9.08 4.6
88.6 . 27.7 8.4 3.05 1.2
91.3 54.5 34.4 22.8 15.3
90.7 40.6 19.2 9.52 5.06
92.6 24.7 8.6 3.15 1.19
88.7 4.54 0.53 0.095 0.02



Note:
      1.   Run 8 conducted at four different air: water ratios to determine
           the highest removal efficiency obtainable with the system.

-------

-------
samples  were taken  and pressure  drop was  measured until  steady  state  was
attained.  Test results are presented in Table 5-7.  The test results indicate
that  air  stripping  effectively removes  these  SOCs  from  water.   Removals
generally increased with increasing air to water ratio.
     Oklahoma State  University, Oklahoma  - Stover  (1982)  reported  on pilot
studies  for  the  treatment of contaminated well  water by air  stripping.   The
wells were  adjacent to an  industrial park  and  contained trans-1,2-dichloro-
ethylene and several other volatile  organic contaminants.   The  column was a
4-inch diameter glass column packed with 25 inches of 6mm glass raschig rings.
The study  was conducted at various  air to  water  ratios. and the  results  for
trans 1,2-dichloroethylene in Well No. 2 are as presented below:
Liquid
Loading Hate
gpm/ft
8.6
0.68
10.1
                    Air:
                    Water
                    Ratio
                    9.3
                    114.0
                    10.7
    Concentration (ug/L)
Influent
     40
     40
     16
Effluent
   11
    1
    3
Percent
Removal
  72.5
  97.5
  81.3
                                                   is  effective  in  removing
     The  results  indicate  that  air  stripping
trans-1,2-dichloroethylene from water.
     Full-Scale;
     Full-scale  data   are  available  from   several  installations.   These
facilities and  the  associated performance data for  SOC removal are described
below:
     Tacoma, Washington  -  Nadeau et al.  (1983) describe a large packed-tower
aeration system in Tacoma, Washington  designed to treat the water from one of
the city's largest production wells.  The well was shut down in 1981 after it
was found  to be contaminated with trans-1,2-dichloroethylene  (30-100 ug/L),
trichloroethylene (54-130 ug/L), tetrachloroethylene  (2-5 ug/L), and 1,1,2,2-
tetrachloroethane (17-300  ug/L).   The  full-scale  system was designed on the
basis of pilot-scale testing.  It  consists of five  packed columns,  each  12
feet in diameter and containing 21 feet of 1-inch plastic saddle packing.  The
overall height of each  column is  50 feet, including  the discharge  stack.   In
addition, each  tower is equipped  with a 60-hp  blower  capable  of  delivering
29,000 cfm through each column.
                                     5-13

-------
     The system is designed to treat a maximum flow of 3,500 gpm at an approx-
imate  ainwater  ratio of  300;1.   This relatively  high  value  ensures  the         •
removal of  1,1,2,2-tetrachloroethane,  the  least  strippable of  the  four com-
pounds.  In  addition,  virtually all trans-l,2-dichloroethylene  is removed by
the   system.   This   indicates   that   air  stripping   effectively   removes
trans-l,2-dichloroethylene from drinking water.
    • Orange  County,  California - McCarty et al.   (1977)  describe  the perfor-
mance  of  full-scale packed-column  strippers  and decarbonators for  volatile         •
organics removal at Water Factory 21.   This installation is a 15 mgd advanced         "
treatment plant operated by the  Orange  County Water District (OCWD)  in Orange
County, California.  It refines  the  quality of biologically treated municipal
wastewater  so that  it  can  be  injected to act  as  a  barrier to  saltwater
intrusion into OCWD aquifers.  The process  train  at Water Factory 21 includes
lime  treatment,  air  stripping,  decarbonation,  filtration, activated  carbon
adsorption, disinfection, and reverse osmosis for one-third of the flow.               *
     The initial  purposes of  the air  stripping  and  decarbonation  equipment
were the removal  of  ammonia  and carbon  dioxide,  respectively.   However, both
units  were  found to  be effective  for  trace organics  removal  as well.   An
evaluation of their effectiveness  on  trace organics  removal was  conducted
during two of the three periods  of  operation of the plant.  These operational         p
periods can be summarized as follows:
          Periods of Operation          Operations at Water Factory 21
               Jan.  1976 to             Trickling-filter influent,  no free
               Oct.  1976                residual chlorination,  no reverse
                                        osmosis, no injection.
          Periods of Operation          Operations at Water Factory 21                 *
               Oct.  1976 to             Trickling-filter influent,  forced
               Mar.  1978                air circulation in stripping tovrers,
                                        free residual chlorination, no re-
                                        verse osmosis, injection.
               Mar.  1978 to             Activated-sludge influent,  no forced
               May 1979                 air circulation in stripping towers,
                                        free residual chlorination, reverse
                                        osmosis, 'injection.
                                     5-14
                                                                                      I

-------
                  TABLE 5-7

PACKED COLUMN PILOT STUDY RESULTS - IOWA CITY

Liquid
Loading-
(gprn/ft)
Air:
Water
Ratio.
(ft /ftj)


Concentration
Influent


(mg/L)
Effluent
Trans-1 , 2-dichloroethylene
4.21
4.62
4.62
2.79
2.79
Toluene
4.21
4.62
4.62
2.79
1.63
Benzene
4.21
4.62
4.62
2.79
2.79
Chlorobenzene
4.21
4.62
4.62
2.79
2.79
1.63
o-Dichlorobenzene
4.21
4.62
4.62
2.79
1.63
25
50
50
100
100

25
50
50
100
200

25
50
50
100
100

25
50
50
100
100
200

25
50
50
100
200
5.4
114
3.2
105
7.3

3.4
39.7
5.3
37.1
2.7

8.4
105
10.5
92.5
11.8

13.3
22.8
9.2
29.6
7.8
3.6

14.2
5.3
27.8
24.0
11.0
1.7
27.9
0.9
16.6
1.5

0.9
9.1
1.2
2.8
0.1

2.8
24.2
2.9
9.3
2.9

4.6
6.4
2.6
3.3
1.8
0.1

5.7
2.9
8.3
6.2
0.7
                                                     Percent
                                                     Removal
                                                        69
                                                        76
                                                        72
                                                        84
                                                        80
                                                        74
                                                        77
                                                        77
                                                        93
                                                        96
                                                        67
                                                        77
                                                        72
                                                        90
                                                        75
                                                        65
                                                        72
                                                        72
                                                        89
                                                        77
                                                        97
                                                        60
                                                        45
                                                        70
                                                        74
                                                        94

-------
I
D

-------
»
         The two packed column air strippers at Water Factory 21 are both rectan-
    gular.   Each is 63 m  long and 19 m wide and  contains 7.6 m of polypropylene
    splash-bar   packing.    The  total  packing  volume  per  tower  is  therefore
    approximately 9,000 m .   The  flow  treated by  each  tower  is 7.5 mgd  at an
    air:water ratio of  3000:1.
         The decarbonators present at Water Factory  21  are much smaller than the
    stripping towers  and  were  not  specifically designed  to  remove  synthetic
    organic  chemicals.   Each  is 2  m square and  contains 2.4  m of polyethylene
    packing. The total packing volume per decarbonator  is therefore approximately
    19 m  .   The  flow treated by each decarbonator  is  2.5 mgd  at  an air:water ratio
    of 22:1.
         Available removal performance results  of the air strippers for five SOCs
    are presented below:
                            Air Stripper Concentrations (ug/L)  Percent
    Compound
    Ethylbenzene

    m-Xylene
    Styrene
    PCS (Aroclor 1242)
    1,2-dichlorobenzene

         The air  stripper results  indicate  that  packed  column  aeration  is
    moderately effective for removal of ethylbenzene  and styrene.  The removals of
    m-xylene and PCB (Aroclor  1242)  are fairly  low.   However, the low influent and
    effluent concentrations roust be taken  into  account when judging the removals.
    Actual performance  data were not available  for the decarbonator.
         Slat-Tray Aeration Facility  - Hess  et al.  (1981)  described  a slat-tray
    aeration unit installed in Norwalk, Connecticut  designed to treat the ground
    water from  a  wellfield  along  the Silvermine  River.   An  industrial  spill
    occurred in  this  river  and  such organic   compounds  as  trichloroethylene
    (predominately), tetrachloroethylene, cis-l,2-dichloroethylene,
    trans-l,2-dichloroethylene,   1,1-dichloroethylene,   and   1,1,1-trichloroethane
                                        5-15
Influent
0.23.
0.067
0.086
0.076
0.37
1.2
0.56
Effluent'
0.10
0.041
0.070
0.037
0.36
0.18
0.066
Removal
56.5
38.8
18.6
51.3
2.7
85.0
88.2

-------
and  infiltrated  the  wellfield.  All the compounds except for trichloroethylene
                                                                       I
were present  at  concentrations  less than 5 ug/L.  The  full  scale system is a
16-foot  high redwood  slat-tray aerator  with a  cross-sectional area  of 100
square  feet.   Two  3850-cfm blowers  provide  air  to  the  units.   Specific
numerical  removal  results were not available for trans-l,2-dichloroethylene,
except that the effluent levels were below detectable limits.
     An  overview of packed  column aeration  facilities  in use  in  the United
States was presented in a report entitled "Volatile Organic Chemical Treatment
Facilities" by the AWWA Organic Contaminant Committee, draft Nov. 1986.,  These
facilities  treated  flows ranging from  .05  to  15 mgd,  with   the  majority
treating up to 2.0 mgd.  These facilities were primarily single-tower designs.
As shown  on Table 5-8, removal  cis-l,2-dichloroethylene ranged  from greater
than  96  to greater  than 99 percent,  while  removal of  tetrachloroethylene
ranged from 90 to greater than 99 percent.

Off-Gas Treatment
     Potential air quality  problems related  to  the  emission  of contaminated
exhaust  air from  packed  column  aeration  systems exist.   This transfer  of
volatile  synthetic  organic  chemicals  from water  to air  might  be a concern
depending on  the proximity  to human habitation,  treatment plant worker expo-        •
sure,  local air quality,  local meterological conditions,  daily quantity  of
processed water, and contamination level.  Treatment options that are current-
ly available to remove organics from off-gas include:
       -  Thermal incineration
       -  Catalytic incineration
       -  Ozone destruction
       -  Vapor phase carbon adsorption                                •    .          ^
     Thermal incineration for packed column off-gas  control  has  the disadvan-
tage   of   high  energy  requirements.    Catalytic   incineration   has   lower
temperature  requirements   than  thermal  incineration but  is  currently  not
effective for  removing  chlorinated organics at low  levels.   Similarly,  ozone
destruction  also has  limited application  for vapor-phase  treatment at  the
present time.
                                     5-16

-------
ID  ID  01
4)  Q.  —

    C  10
    0  >
    o  o
    i-  e
    «>  v
    O.  EC
                888      g   « g  8  g   «      §  S  §
                                                              C5  rO  ^i
    to  O      O  C  rM  O  10
  t   «i   *       *»  o   *   *   **
    p*  Q      ro  z  r-  m  ro  ,
        CNJ      (sj      ,_*_(*-,
                o  o  o  tri  o  o O" o  <.  CM
                ,->-i-d-om
_J
£









01
c


ID
CL
c
U
u

0.

pjj
C£
JJ
^
O
U
CM

§
O
0

£
3
13

^



1

4) ^
N £
« -
^
CT U

1 _
z

-P
£ —
CTI 4J
*r< 1^
U — '
1
u
V
4J —
E o-
ID •-"
O
"7*
o^ *^-
•»- D1
"S4!
5 t
Dt
tn 1/1
jf ^£ m
U O V

G. G- -Q
n- •!- tJ
L. fc. ID
t- »- 01


* CM f-


m -* oo
CM CM «—





^ ^ ^
CO CM Z



in
in m h>
in a- *



o co m
O> r**. en

in
t^
u
ID
D.
1.
t-


CM


\£>
CM





^
fV)



•*
X
in


CO
CO

V)
V) J£
V U
t— ID
13 Q.
TJ —
in »-


.- <
•z.

CD * ft
^_ ^





ro ^
ro CM



o «n
CD ex-



es CM
O r>.
CM CM


in
o

•D
•o
ID

CM

»•

u>
fW



m

in
CM



o
vo



O
a-

II)
J<
u
ID
t.
^


^
2

O
CM





CO
CM



o
0



CD
£


m
V

•a
•o
ID


fO

in
j!
CM





ON
CM



in
er>



CM
CM

m
jil
u
ID
Q.
u


^


jy-
CM





CO
CO



o
o
*~


«n
CM

4/1 tO
JC Jf
U O
<0 ID
Q. Q.
l_ C_
H- >-


CM CM


.- m
<^ ^~





m ^
w *-



r*. f-
X X

CM CN


U> f*-
oo in
C1^ 1+1

                                                                                                 OJ
                                                                                                 o
                                                                                                 £
                                                                                                 a>
                                                                                                 t)

                                                                                                 "c
                                                                                                 c


                                                                                                 *•*
                                                                                                 o
                                                                                                 ID
                                                                                                                      I
                                                                                                                      o
                                                                                                                      jE
                                                                                                                      u
      •   o
     o  u
     s
     O   en

    tT  —
                                                  CM CM      ^  ^  —
rn  •»  in

o  O  o
cr>

O
        f^   ch  o  en

        »-   1-  CM  CM
                                                                                                »-       (A       O I—
                                                                                                 10       C       I-  I
                                                                                                          o       o m
                                                                                                                  ID
                                                                                                                  I.
                                                                                                                  jj
                                                                                                                  t>
4J

ID
                                                                                                 o.
                                                                                                 o
                 Q.  £L
 O   O   W

 O   O   irt
X)  JD   £
«J  4J   U
 ID   <3   l-
i  =  a
                                           ID
                                       « O.
 i/l  O.  •*•  4J  •—

•••   c  u  o  n^   3
 ID  •**   C  CL  >   ID
*>   S   tl  £   tO   W)
 c  -O  T>  «  Jf   *>
 3  ».   I.  L.   O   3
 O   ID   ID  O  '^*   ID
x  ca  u  =  z  3:
                               «  ID

                              •*-°-  5
                              U      Z
                              U  0}

                              z  1,  «"
                              *J  X   C
                                                                t.   a   3
                                                               O  =  O
                                                                                                         —       u  c
                                                                                                                 I
                                                                                                              o
                                                                                                             z

                                                                                                              ID

                                                                                                              ID
                                                                                                             O
                                                                                                 

-------
1
1
i

-------
     Pilot-study  with vapor-phase  GAC  adsorption  (Crittenden  et al,  1987)
indicates  that carbon adsorption is  currently the most  effective  method for
removing .low-level organics  from  the  packed  column  exit  air.   Vapor-phase
adsorption is  attractive  for  two reasons:   the vapor-phase mass transfer zone
(MTZ) is much  shorter than the  liquid-phase  MTZ and the cross-sectional area
requirement  of the fixed bed is much  smaller.   The  carbon usage rates for
vapor-phase adsorption are also  less than those  for liquid-phase.  A schematic
of the vapor-phase GAC system is illustrated on Figure 5-2.
     In  operating a  vapor-phase GAC system,  the relative  humidity of the
off-gas must be  reduced  to prevent condensation of water  vapor  in the carbon
pores.  This can  be accomplished by heating the air prior to entering the GAC
contactor.   The  competition  of water-vapor  adsorption and  gas-phase  SOC
adsorption onto  GAC  is also minimized  at  off-gas relative humidity  of  40 to
50 percent (Crittenden, 1987).   A major concern pertaining to vapor-phase GAC
systems  is predicting  the  contaminant breakthrough.   At present,  reliable
methods to estimate the vapor-phase GAC bed life are not available.  Possible
approaches including  monitoring  the GAC  effluent. air  quality   (either  on  a
continuous basis  or a batch mode),  using a mass balance around the contactor,
or a combination of the two approaches.
     A bed from  the  pilot plant  in Wausau containing trichloroethylene  (TCE)
and tetrachloroethlene  (PCE)  was regnerated three times  and  the TCE capacity
decreased from 80 to 60 percent  of  the  virgin capacity over the three cycles.
The reduction  in TCE capacity with successive adsorption/regeneration cycles
was due  to the buildup of a PCE heel  on  the GAC, since  PCE was not removed
well under the conditions used  (100 C,  1  atm).   The equilibrium model showed
that this  could  be  solved by using saturated  steam  50 C above  the boiling
point of PCE (121 C).
                                     5-17

-------
Secondary EJfects of Aeration
     In addition  to the removal of  volatile synthetic organic  chemicals  and        |
potential requirement for off-gas  treatment,  the  use of aeration technologies
may also result in additional secondary effects, some of which may be undesir-
able.  These  effects may include  introduction of bacteria  and  participates,
increased corrosivity, cold weather problems, oxidation of iron,  and bacterial
growth on' the packing  materials.    The. preliminary  findings  of USEPA  field
studies (Love, 1984)  indicate  no detrimental effects on water quality due to        |
increased particulates,  turbidity,  or bacteria following aeration.
     When water contains carbon dioxide, aeration tends to increase pM,  which
can be a beneficial  effect  for soft  waters.   The  addition of excess dissolved
oxygen, which can increase  corrosivity of  iron pipe material, usually can be
controlled  by  allowing  degasification.   Corrosion  control  and  carbonate
stability should be  a design consideration  in all aeration processes. , Proper
design can also lessen cold weather problems  (Love, 1984).  Excessive iron and
manganese can cause clogging, so it may be  advisable to remove these compounds
prior to aeration processes for volatile synthetic organic chemicals.          Jlfc
                                     5-18
                                                                                      i

-------
                                                   FIGURE 6-2
            CONTAMINATED
                AIR
                                         TREATED AIR
 RAW WATER
CLEAN
AIR
             PACKED
             COLUMN
       —er*1
      J     £1
HEATING
ELEMENT
BLOWER
 BLOWER
        TREATED
         WATER
               SCHEMATIC OF VAPOR-PHASE
                    GAC SYSTEM

-------
I
I
D

-------
                                  6. ADDITIONAL TECHNOLOGIES
i
              As  indicated  in Section 3, there are  several additional treatment tech-
         nologies   capable   of   removing •- SOCs   from  drinking   water.    Additional
         technologies are those which have been shown to have potential for SOC removal
         but  for  which either the  potential  is limited or insufficient data prevents
         full evaluation of the technology.  The following  additional technologies have
         been identified:
                   Powdered Activated Carbon  (PAC)
                   Diffused Aeration
                   Oxidation
                   Reverse Osmosis
                   Conventional Treatment
         Powdered Activated Carbon  (PAC)
              PAC  represents  another way of applying  adsorption  technology,  which has
         been  found to  be applicable  for SOC  removal.   PAC  may achieve  removal of
         certain SOCs  and may have  limited applicability in  locations having certain
         constraints (e.g. hydraulic,  space)  or where SOCs enter a surface water on an
         intermittent  (e.g.,  seasonal)  basis.  Generally, PAC  addition is found to be
         less efficient than GAC adsorption for, SOC removal, as PAC operates at a lower
         equilibrium capacity than GAC.
              Process Description
              PAC  traditionally  has been  used  in water  treatment  plants for removing
         trace  organic  compounds  associated with  taste  and  odor  problems.   Fewer
         studies have been conducted on the use of PAC for removing organics frequently
         found  in  ground water  supplies primarily because  preliminary  data  have in-
         dicated that very large dosages of PAC would be  necessary to  achieve satisfac-
         tory  removals.   Pilot and  full-scale studies  indicate  mixed  results  on the
         effectiveness of PAC, although most studies to date agree that PAC has limited
         applicability.
              PAC  requires as coagulation/sedimentation  facilities:   feed equipment,
         mixing  chambers,   clarifiers,   and   filtration.    Therefore,  unless  these
         facilities  are  already  in  place,  PAC is  not economically  suited__.to  the
         -treatment of ground water.   GAC  is the preferred activated carbon process for
         ground water systems.  In  addition,  the use of  PAC  entails additional sludge
                                               6-1

-------
handling.  More  stringent sludge disposal requirements may apply depending on
the type and level of SOC being  removed.
     The application of PAC for  the removal of organic compounds from drinking
water supplies involves the following major process design considerations:
       -  Carbon Usage Rate
       -  Contact Time
       -  Contactor Configuration - single or multi-stage
       -  PAC disposal
     These design  considerations are similar  to those  outlined  in Section 4        |
under GAG treatment with  the exception of contactor configuration.  Unlike GAC
adsorption, in which  the carbon approaches equilibrium  with the influent SOC
concentration, the  PAC approaches  equilibrium with the  effluent  SOC concen-
tration,  as  it  is removed  from  the  effluent  by a  settling  or  filtration
process.  For the same  influent  SOC concentration,  therefore, PAC will have a
lower adsorptive capacity than GAC.  However, if an SOC enters a surface water
source periodically, PAC can be brought  on-line on an  as needed  basis while        ™
GAC systems generally remain on-line.                                 ''
     Treatability Studies
     The treatability testing  of PAC for SOC  removal  has consisted primarily
of bench  scale  studies,  although  some  pilot and full scale evaluations have
also been performed.  The details of these evaluations are presented below.
     BenchScale;
     The EPA DWRD investigated the use  of PAC in water  treatment  for several
SOCs  using  spiked  Ohio  River  water  (Miltner,  1989).   Jar tests  simulated
coagulation,  flocculation and  sedimentation.  PAC  addition  was simulated by
the application  of PAC  stock slurries  after  the  addition  of  the  coagulant
during rapid  mix.  Stock slurries  of  PAC  were prepared  by adding  weighed
amounts of  commercially  available carbon.   The  results of  this study  are
presented in Table  6-1.   The results indicate  that these pesticides  ;are  not
strongly sorbed  to  particulates, or do not complex with humic  materials that
are in  turn sorbed  to.  particulates.   PAC applied  at  dosages  used  for  the
control of tastes  and  odors can be effective  if moderate percent  removal is
required.
     Lettinga,  et al. (1978) investigated the  use  of  flocculated PAC in water
treatment for several solutes,  including 2,4-D, at the Agricultural  University
                                      6-2

-------
                                                  TABLE 6-1
                              CONTROL OF SOCS USING POWDERED ACTIVATED  CARBON

soc
5
atrazine
atrazine
carbofuran
carbofuran
a Tachl or-
al achlor
lindane
lindane
heptaehlor
2,4-D
si 1 vex
SOC
Concentration
ug/L

125
85. *
61.5
53.9
43.6
88.8
73.5
31.8
7.0
61.3
53.9

PAC
Tvpe 5.7 8.6
3
F400
ROD
WPH
WPH
F400 55
F400
WPH
WPH 59
WPH
WPH
WPH


11.1*



45
70
73

84
79
53
69
50
Percent Removal
PAC Dose, mg/L
16.7 17.1 22.8 25.7

64
64

V
80 86
59
95
88
86
69
81


28.5 33,3 34.2

82
84
75
90

74
97
95
97
83
77
Notes:
     In jar test of spiked Ohio River water with 15-20 mg/L alum;  2 tnin mix;
     30 min flocculation; 60 min sedimentation,  pH range * 7.5-8.3
2.   Calgon WPH
3.   Calgon Filtrasorb 400, 200 x 400 mesh '
4.   Single solute unless noted
5.   With 98.4 ug/L linuron
6.   With 69.1 ug/L linuron, 62.2 ug/L dinoseb,  77.6  ug/L benomyl
7.   With 61.5 ug/L simazine
8.   With 87.4 ug/L metolachlor
9.   Acid form

-------
I
D

-------
   of  Wazeningen,  the  Netherlands.   Rate  and  equilibrium  experiments  were
   performed   to  compare   the   rates   of   adsorption  for   flocculated  and
   non-flocculated carbon-*—N0*i-fe"FND-A~722 and Norit W-100 were the two types of
   PAC which  were utilized.  The  coagulants  included  anionic (Superfloc A-150),
   nonionic (Superfloc N-100  and-Magnofloc  P.-351)  and cationic (Superfloc C-100)
   pplyelectrolytes.   The  flocculation  procedure  involved  the  addition  of  a
   freshly prepared  500 mg/L polyelectrolyte  solution  to a  well-stirred 10,000
   mg/L  carbon  slurry.   The  rate  experiments were performed  in  2-liter baffled
   vessels.   The adsorption  equilibrium experiments  were  performed  in  batch,
  •closed  250-mL vessels.   Accurately weighed  amounts of  carbon with  a  fixed
   volume  of  adsorbate  solution  of known  concentrations were  subjected  to  a
   contact time  of  24 hours or longer.  The  results  of the experiments revealed
   that  the  2,4-D  loading  on  the  flocculated  carbon  was  higher  than  for
   nonflocculated carbon.
i
        Tests were also performed  using a continuously  or intermittently stirred
   Upflow Flocculated Powered Carbon (UFPC)  absorber.
        The UFPC  adsorber consisted  of a  vertical cylinder with a  diameter of 7
   cm and  a  height of  60 cm and  filled with flocculated PAC.  The  solid phase
   loadings for  both the  adsorption  isotherm  (QI)  and  UFPC adsorber  (Qu)  are
   presented in Table 6-2.  This  data  confirms that  activated carbon effectively
   absorbs 2,4-D.
        Croll  (1974)  evaluated several  treatment options  for  the  removal  of
   acrylamide from water,  including conventional treatment,  oxidation  with four
   different oxidants,  and  PAC.   In the  PAC  experiments,  a Thames  River water
   sample was spiked with 6  ug/L of acrylamide and mixed with 8 mg/L of PAC.  The
   solution,  which had a pH of  5.0,  was mixed for  30 minutes  but only achieved a
   13 percent removal.
        Baker  (1983)  evaluated the  performance  of conventional  treatment  in
   combination with  PAC at  a  water  treatment  plant  in Bowling  Green,  Ohio.
  ' Alachlor and atrazine were two  of the contaminants which were monitored.   The
   conventional treatment involved alum coagulation,  lime/caustic  soda softening,
   recarbonation and  filtration.  Chemical dosages  were  not reported.
   The following  results were obtained for the  raw  water from the Maumee  River
   and the  plant finished water:
                                         6-3

-------
                   Maumee River
Compound       Concentration (ug/L)

Alachlor            0.87
Atrazine            1.26
Notes:
                                      Finished Water        Percent
                                   Concentration (ug/L)     Removal

                                        0.49                43
                                        0.74                41
     1.   Based on 5 sample analyses
     2.   Based on 6 sample analyses

The  findings  indicate  that PAC  was moderately effective  for alachlor  and

atrazine removal.

     Aly and Faust  (1965) evaluated  several  water treatment processes for the

removal of  four 2,4-D  derivatives  and their  parent compound,  2,4-DCP.   The

four derivatives included the sodium salt of 2,4-D and the butyl, isoctyl, and

isopropyl esters of 2,4-D.  Various amounts of AquaNuchar A, PAC were added to
1-liter solutions containing the  five compounds  at fixed concentrations.   The
slurries were stirred rapidly at  25  C  for 30 minutes.  The adsorbent was then

removed by vacuum filtration.  A  summary  of  carbon dosage required to achieve

an effluent concentration of 0.1 mg/L is presented below.
                                          Carbon Dosage (mg/L)
Sodium
Salt
306
153
92
31
Butyl
Ester
165
82
49
15
Isoctyl
Ester
179
89
53
16
Isopropyl
Ester
150
74
44
14
  Initial
Concentration
   (mg/L)

     10
      S
      3
      I
The results  indicate that the  sodium salt of  2,4-D is less  easily absorbed
than  the  2,4-D   esters.    Overall,   PAC  was  effective   in  reducing  the

concentrations of all four 2,4-D derivatives.
     Cohen, et al. (1960) examined the effectiveness of PAC for the removal of

several fish poisons, including toxaphene.  The Aqua Nuchar A PAC was added in

varying amounts to fixed concentrations of toxaphene present in a nix of hard,

highly mineralized spring water and distilled water (in a  1 to 4 ratio).  The

initial toxaphene  concentration was 0.30 mg/L.   The results  of  the isotherm

test are presented below:
                                                                                1
                                                                                     o
                                                                                e
                                      6-4

-------
                                   TABLE 6-2

                           2,4-D SOLID PHASE LOADING
               Initial
Experiment   Concentration
  Number        (mg/L)

     1            24
     2            19
     3            24
    - 4          11.2
     5          16.2

Flow
Rate
m/hr
2.6
2.4
2.4
4.B
4.8
Amount
of
PAC
(grams)
50
50
150
150
150
Solid Phase Load (mg/g)
C/C
o
2ui
79
74
106
98
105
=0.25

ad
88
86
88
77
84
C/C =
o
2H
92
85
118
108
127
0.5

21
97
95
97
88
92
C/C
o
SH
121
93
128
126
139
=0.75

21
103
100
103
92
97
Notes:
     1.   From upflow flocculated powdered carbon adsorber testing
     2.   Isotherm Testing

-------
I

-------
        Carbon                Effluent Toxaphene
     Concentration              Concentration      >•   Percent
         (mg/L)                	(mg/Lj	      Removal

          0                         0.30                 0
          1.0          •             0.18            4   40
          2.0                       0.16            -'•   47
          3.0                       0.085           .   72
          6.0                       0.058               81
-	  9.CT-       •          •     0.014               '95

Freundlich  parameters of  K = 160 mg/g  and 1/n  =  0.42 were  obtained.  The

results indicate that PAC  is effective for toxaphene removal.

     Pj.lot-Scale;
     Robeck, et al.  (1965)  evaluated a number of water treatment processes for

pesticide removal.  The pesticides  that were studied included endrin,  lindane,

and  the  butoxy ethanol ester of  2,4,5-T.' PAC  was tested for various  initial

concentrations  (1 to 10 ug/L) of  pesticide in distilled water and Little Miami

(Southwestern  Ohio)  River water.  The  distilled water  was spiked  with the
proper  concentration of  pesticide, then PAC "was added  and mixed  with the
water.   The   river   water  was   used  in   a  pilot  plant  consisting of   a

constant-head tank, a 600-gallon  pesticide mixing  tank and two separate.20 gpm

process  trains.'  Each  process  consisted of  a rapid-mix  tank,  flocculator,

sedimentation  tank,  sand  filter,  coal  filter,  and two GAC  beds  (per  train).
PAC  was added to the rapid-mix tank. . The Little Miami River had the following

water quality:
     Parameter       .  •    -           Range

     Turbidity  (units')                  5-250
     Temperature  (C)  .    .  .            2-27
   "  pH  (units)                         7.3-8.5
     Alkalinity (ppm as CaCO )          85-310
     Hardness  (ppm as CaCO )            130-330
     COD (ppm)                          5-35

     Based  on  carbon adsorption  isotherm data  developed . for the three  pesti-

cides, the results of the  pilot study are presented below:
                                       6-5

-------
                                              PAC Dosage  (mg/L) __
                                                                (ug/L) _
Influent Concentrations (ug/L)
10
1
Effluent Concentrations (ug/L)
Water Type
Distilled
River
Distilled
River
Distilled
River
1.0
1.8 '
11.0
2.0
29.0
2.5
14.0 ,
0.1
14
126
12
70
17
44
0.1
1.3
11.0
1.1
6.0
1.5
3.0
0.05
2.5
23.0
2.0
9.0
3.0
. 5.0
     Compound
     Endrin
     Lindane
     2,4,5-T ester
The   river  water   required  larger   PAC  dosages   for   similar  influent
concentrations than did the  distilled  water due to the extra organic material
present in the water.  This  organic  material competes with the pesticides for
adsorption sites- on the PAC.  Based on these  results,- PAC appears  to be an
effective process for endrin, lindane, and 2,4,5-T ester removal.
     Full Scale;
     The EPA DWRD has reported on the treatment of SOCs by PAC at water treat-
ment  plants  in  Bowling  Green  and  Tiffin,  Ohio  (Miltner,  July  1985) .   The
results for  the  Bowling  Green plant are  presented in Table  6-3;  the results
for the Tiffin  plant are presented  in Table 6-4.  The  results  indicate that
alachlor,  atrazine  and carbofuran were  removed  by  PAC and  percent removal
increased with increasing PAC dose.             '                      '
     Singley, et al.  (1979) reported  on the  use of PAC  at the  Sunny Isles
Water Treatment  Plant as  a short-term solution  for organics  removal.-  This
treatment plant,  one  of  three providing  finished water to the City  of North
Miami Beach, has a  design  capacity of 12.8 mgd but  treats  an average flow of
10 mgd.  The plant  is a  conventional lime softening  plant  using  three upflow
clarifiers.   The East  Drive  Well  Field  is  the source  of  raw  water.   In
September  1977,  several  complaints  of pesticide-like  taste  and odor  in the
finished water  led to an  extensive sampling  program.   The raw  and  finished
water contained  at least  42 SOCs ranging  in concentration  from  0.01  to 73
ug/L, including the following compounds (with average concentrations in paren-
theses) .
          dichlorobenzene (0.2 uq/L)
       -  ethylbenzene (0.5 ug/L)
       -  monochlorobenzene  (0.8 ug/L)
       -  toluene (0.3 ug/L)
       -  xylenes (0.2 ug/L)

                                      6-6
                                                                                     1

-------
                                   TABLE 6-3

                TREATMENT OF SOCS BY POWDERED ACTIVATED CARBON




soc
Carbon dose
alachlor
atrazine
DIA
simazine
Carbon dose
alachlor
car bo fur an
atrazine
DEA
simazine
BOWLING
1
Influent
Concentration
ug/L
=33 mg/L Hydrodarco B
0.97
2.39
0.10
0.24
=18 mg/L Hydrodarco B
8.21
1.26
8.11
0.24
0.37
GREEN, OHIO


Percent
Removal

94 ± 14
87 ± 4
100
100

62 ± 11
64 ± 16
67 ± 11
100
92 ± 13



Confidence
Level

99.9
99.9
99
99.8

99.9
99
99.9
99.9
99.9
Notes:
     1.   Influent to clarification process? carbon applied
     2.   DIA = deisopropyl atrazine (metabolite)
     3.   Removal also possibly affected by hyrolysis
     4.   DEA = deethy1 atrazine (metabolite)
                                                                        Sample
                                                                         Days
                                                                           6
                                                                           6
                                                                           5
                                                                           6
                                                                           6
                                                                           6
                                                                           6
                                                                           6
                                                                           6

-------
I
e
D

-------
                                    TABLE 6-4

                 TREATMENT OF SOCS BY POWDERED ACTIVATED  CARBON

                                  TIFFIN, OHIO
                  Concentration          Percent       Confidence        Sample
     SOC             (ug/L)               Removal          Level           Days
 Carbon  dose  =11  mg/L Calgon WPH
alachlor _
carbofuran
atrazine
DBA1?'
simazine
. 2.53
0.39
4,43
0.08
0.26
                                         41 ± 6           99.9              6
                                         59 ±29          98                6
                                         41 ± 8           99                6
                                         76 ±25          98                4
                                         63 ± 20          99                6
	    -      •               4
 Carbon  dose  =  3.6 mg/L Calgon WPH
 alachlor               1.49          .    36 ±  6           99.9              6
 atrazine               2.61              38+7           99               6
 simazine               0.10              63 ±  7           99               6
 Notes:
      1.    Applied to clarification process
      2.    Removal also possibly affected by hydrolysis
      3.    DEA = deethyl atrazine {metabolite)
      4.    Applied to filtration process

-------
 B
1
1

-------
     Activated carbon was chosen as the most feasible solution to the organics
problem. Specifically, GAC treatment  was  recommended as a long term solution,
however,  PAC was  chosen as  a  short-term solution.   Preliminary  laboratory
isotherm  studies  indicated  that  PAC would  be effective  in attaining some
reduction in  contaminant concentration.   A full-scale study was authorized to
evaluate PAC  while allowincr  the treatment plant to  operate at full capacity.
PAC  was added  at  the  wellfield  to  maximize  contact  time  and improve the
possibility of  successful treatment.  ' The pipeline  from the  wellfield to the
treatment" plant" is' 24"inches  in diameter and  16,500 feet long.   It  was de-
termined that a pipe  velocity of  5 ft/sec would be required  to  keep  the ICI
Hydrodarco-B  PAC in suspension.  Since  this  corresponded to a total wellfield
flow of 9 mgd, the average flow conditions of 10 mgd would be  suitable.
     The  study   evaluated the  effectiveness of organic  removal  versus PAC
dosage.  The  three PAC dosages  that  were evaluated included  30, 15,  and 7.5
mg/L.   The' PAC  contact   time  was estimated to be  approximately  two hours,
including the time the water spent in the transmission line and in the upflow
clarifiers.  The actual PAC concentrations varied from those that were
planned because  of variations  in plant flow and the difficulty  of  pacing the
PAC feed  with the actual flow.  The  PAC  feed  dosages  for successive two-day
periods  were 7.9, 14.3,  26.6  and  7.1  mg/L.   Increasing   the   PAC  dosage
increased the removal of the SOCs. However, since the PAC dosage had less of
an impact on  THM precursor removal, the  low  dosage of 7.1 mg/L was chosen for
the plant.   The "results  gathered  over a  14-month period  (March 1978  to May
1979)  are  presented in  Table  6-5.   The  results indicate  that  PAC treatment
ranged  from  being very  effective  to  ineffective.   Consistently good removals
were   obtained   for  dichlorobenzene   and   xylene.    Percent	removals  were
inconsistent  for ethylbenzene. monochlorpbejnizenje,and toluene, possibly due to
short circuiting in^ jhe^ plant^

Diffused Aeration
     Diffused   aeration   represents   another  method   of  applying  aeration
technology, which  was found to  be  applicable for SOC removal.  Diffused aera-
tion implements the principles of aeration less efficiently than packed column
aeration, however,  diffused  aeration  may achieve removal  of  certain SOCs and
may have  limited  applicability  in locations whichhave  certain  constraints
(e.g. hydraulic, space).   in addition to the information presented on diffused
                                      6-7

-------
 aeration,  a  brief  discussion  of  bench  scale  evaluations  of boiling  is
 presented at  the end of this  section.
                                                                                      5
     Process  Description
     Diffused aeration is often used to provide  dissolved oxygen, particularly
 in wastewater treatment.  A typical diffused aeration system  is illustrated on
 Figure 6-1.^  Air stripping is accomplished with  diffused-air  type equipment by
 injecting bubbles  of  air (usually compressed air)  into the water by means of
 submerged diffusers or porous plates.  Ideally,  diffused aeration is conducted
 counterflow with  untreated water entering  the  top of  the  contactor,  treated        L
 water  exiting the bottom,  fresh  air entering  the bottom,  and  exhausted air
 exiting  the  top.  Gas  transfer may  be  improved  by increasing  basin depth,
 producing smaller  bubbles, improving  contact basin  geometry,  or by  using a
 turbine to reduce bubble size and increase bubble holdup.
     This type  of aeration technique  is  adaptable to  existing  storage tanks
 and basins.   The air diffusers may  be  placed on the side of a tank to further        •
 induce  turbulence  and  to  assist  in  gas  transfer.   If  porous  tubes  or
perforated pipes  are  used,  they  may be  suspended at  about  one" half  of the
depth of the  tank to reduce compression heads. When porous diffusers are used,
 incoming air  should be  filtered carefully through  an electrostatic  unit or a
 filter so as  to minimize clogging.  Porous plates are located at the bottom of
 the  tank.    Static  tube  aerators  have  also   been  used  in  a  variety  of
applications and have provided adequate aeration when properly designed.
     The design of air  stripping  equipment has  been  developed  extensively  in
 the chemical  processing industry for handling concentrated  organic solutions.
The procedures found in the chemical engineering literature can be applied  to
water treatment for SOC  removals.   The rate at  which an SOC is  removed from
water by diffused aeration depends upon the following factors:
       -  Temperature  of the water and the air
       -  Physical and chemical characteristics  of contaminant
       -  Air-to-water ratio
       -  Contact time
       -  Available area for mass  transfer
The first two factors are fixed by  the  liquid stream  and the  contaminant; the
last three are dependent upon the  equipment and operating  conditions  and can
be evaluated  in a  pilot testing  program.   These  design considerations are
                                      6-8
                                                                                     B

-------
Compound




Dichlorobenzene
Ethylbenzene
Monochlorobenzene
Toluene
Xylenes
                                   TABLE 6-5
                                PAC PERFORMANCE
Concentrations (ug/L)
Influent
0.08
0.15
0.14
0.3
0.4
0.6
0.3
1.1
0.35
1.0
0.7
0.5 •
0.25
0.2
0.3
0.4
0.11
0.03
0.5
Effluent
0.05
0.01
0.017
0.007
0.02
0.4
0.2
0-8
0.3
0.1
1.0
0.5
0.15
0.1
0.1
0.1
o.oi •
0.003
0.2
Percent
Removal
38
93
88
98
95
33
33
27
14
90
-
0
40
50
67
75
91
90
60

-------
I
B

-------
                                                  FIGURE 6-1
            AIR SUPPLY
INFLUENT



	 	
s
^

jFUD —
i
f

'
••


t

*

»•

,-.




-
-
T



""™~
.-


!l
• ' • . •

II •-.-•-

li * '
r "•«.-!
•*., «< •. .,»»•»•*%* »»**•»•«•• •«''*»*i"*^«».i*'<- •>.••>••
-
t

•


*'."

* •

* 1
                                        EFFLUENT
              DIFFUSED AIR BASIN

-------
I
i

-------
similar  to those  outlined  in  Section 5, Other  Applicable  Technologies,  in
which  packed column  aeration  was  discussed.   The major  difference  is  the
substitution of contact time for the packing height parameter.
     Treatability studies        --•
     Diffused aeration was  evaluated  in several bench scale studies involving
many of the more volatile SOCs as well as two of the non-volatile SOCs.
     Bench-Scale;
     The EPA  DWRD  has reported on  the treatment of  several  SOCs  by diffused
aeration  (Miltner,  December  1985b).   Both distilled  water  and  ground water
were  spiked  with  SOCs  and  used  in  the  bench  scale  evaluations.   The
experimental  apparatus  was a countercurrent  contactor with  a stone sparger.
The water  flowrate  through the  system was 0.76 L/min,  which  resulted in a 13
minute contact' time.   The results for the test  runs  with distilled water are
presented  in Table 6-6; ground  water  results  are presented in Table 6-7.  The
results indicate that the more volatile SOCs can be removed by aeration, while
the  less  volatile  compounds  such as. carbofuran  and  atrazine  can  not  be
removed.   In  addition,  the percent removal  increased with  increasing  air to
water ratio.
     Love  and  Eilers  (1982)  performed several  bench-scale  diffused aeration
tests to evaluate  the removal of cis-l,2-dichloroethylene was from a contam-
inated ground water  source  in New Jersey.  The glass column had a diameter of
4 cm  (1.5  in)  and  a length of  1.2 m  (4 ft)  and equipped with a fitted glass
diffuser   at  the  bottom.   The  countercurrent  air  arid  water  flows  were
controlled by .rotameters.  The column was operated at" an airtwater ratio of
4s 1,  a  ten-minute contact  time,  and  a  water depth of  0.8  m  (2.6  ft).  The
average influent concentration of 0.5  ug/L was  reduced to less than 0.1 ug/L,.
a removal  of greater than  80 percent.  These results  indicate that diffused
aeration can remove cis-l,2-dichloroethylene from drinking water.
     Ruggiero  Engineers  (1984)  conducted  counter-current diffused  aeration
testing on several organic compounds at Glen Cove, New York.   Initial runs at
an air:water ratio  as  high as 30:1 yielded effective cis-l,2-dichloroethylehe
removals.  Greater than 50 percent removal was obtained for this compound even
at an  air:water  ratio  as low as 5:1.  In  general,  the best removals occurred
during the summer months when the water temperature  was  highest.   Additional
                                      6-9

-------
diffused  aeration  studies  were  conducted  during a  separate  phase of  the
project.  The  following results  were obtained during  the runs at  a contact
time of 10 minutes.                                                   I
                         cis-1,2-Dichloroethylene      Percent        -;
                          Concentrations  (ug/L)        Removal
                         Influent       Effluent    '    _{_%)	
           5:1             62             28             55
          10:1             43             14             67
          ISsl             37              8.6           77           \
The  results  indicate  that  diffused  aeration  is  effective  for  cis-1,2-       I
dichloroethylene removal, especially at higher airrwater ratios.      t
     Based  upon the  packed column  results  presented  in  Chapter 5 and  the
diffused aeration results presented in this section, packed column aeration is
a  more effective  than  is  diffused  aeration for  the  removal of  volatile
synthetic organic chemicals from water.   This could be  attributed to the fact
that diffused aeration  involves  two transfer steps - air or  oxygen  is first       ^
dissolved in water,  then dissolved gases  are transferred to  the  gas phase -
while packed column aeration only incorporates the second mechanism.  A packed
column can  also provide greater  contact between  uncontaminated air  and  the
contaminated water, allowing greater  contaminant  removals.  Diffused aeration
can provide sufficient removals in some situations  but  is  not as efficient as
packed column aeration.

Boiling
     The EPA DWRD has reported  on the treatment  of  several  SOCs  by boiling
(Miltner, July  1985).  As the water  temperature  increases,  the vapor pressure
of  SOCs  present   in  the  water, will  also  increase,   thereby  promoting
volatilization.  The  bench  scale testing  reported by the DWRD  confirms that
the removal of  volatile SOCs increases  with increasing  temperature.  At  a
temperature of  95~C, removals  ranged  from  25  to 57  percent  for  the  more
volatile SOCs.   Boiling for a period of ten minutes was required to achieve 99
percent removal or  greater  for  the majority of the SOCs  tested.  Boiling  was
not effective for the non-volatile SOCs which were tested due to the excessive
amount of energy that is required to heat water.   Boiling may be an effective
                                     6-10
                                                                                     Q

-------
                                              •ERBLE 6-6
 SCC




 cis-1,2-dichloroethylene









 trans-1,2-dichlaroet*ylaie






 toluene
ethyl benzene
chlorcbenzene







p-xylene




m-xplene
o-xylene
CCNTRX OF SDCs IN DISEHIH) WRIER USING DlFFUbt;
Influent
Henry's SOC
Coefficient Concentration
(atm) (ug/L)
.ene 415 263
196
201
ylene 361 217
220
361 47
130
51
51
221
361 . . 38
135
135
199
254 97
209
254 199

241 46
117
138
138
233
227 54
121
131
131
191
D AERHITCN


Percent Ranoval
Air-to-Water Ratio
5:1
59
57
63
85
85
742
59
70
70
72
682
73
74
75
67
57
74
2
74
58
72
73
73
672
48
62
65
66
10:1
82
69
76
96
93

74
84
86
82

84
85
84
85
71
83


75
83
86
85

67
76
79
77
15:1
88
73
82
97
95

79
90
90
87

90
89
88
90
80
87


79
90
89
88 •

73
85
84
83

-------
1
I
i

-------
                                             TKHEE 6-6
OCNIfl
sec

o-dichlorcfcenzene
alachlor
carbofuran
atrazine
Oj OF SCCS IN liT??njjJjr) WATCK
. Henry's
Coefficient
{abn)
134
107
11
0.0005
0.0002
USING LUttUatU AhKfflTC
Influent
soc
Oonoentration
(ug/L)
233
125
260
139
79
34
55
H (CU
Pen
ALT'
5:1
55
46
45


II2
Notes:
                                                                          Percent Removal
                                                                          Air-tcHfeter Ratio
                                                                                    10:1       15:1
                                                                                     69        79

                                                                                     63 .       77
                                                                                     61        70

                                                                                               122

                                                                                               202
     1.   Countercunent flow,  stainless steel sparger, water flew rate = .076 L/rain.,  13 min
          retention time
     2.   Denotes tests conducted using stone sparger

-------
I

-------
                                TABLE  6-7
                 TREATMENT OF  SOCS  IN SPIKED  GROUND WATER
                         USING DIFFUSED  AERATION

soc
1 , 2-dichloropropane
cis-1 , 2-dichloroethylene
trans-1 , 2-dichloroethylene
toluene
ethyl benzene
chlorobenzene
p-xylene
m-xylene
o-xylene
o-dichlorobenzene
ethylene dibromide
lindane
carbofuran
pentachlorophenol
atrazine
2,4-D3
silvex
Notes;
1. Great Miami Aquifer,
2. Countercurrent flow,

Henry ' s Law
Coefficient
(atm)
134
415
361
361
361
254
254
241
227
107
54
0.021
0.0005
0.0003
0.0002



Ohio
water flow rate =
Influent

SOC Percent Removals
Concentration Air-to-Water Ratio
(ug/L)
122
189
124
108
113
119
103
107
120
132
125
107
127
92
120
132
77

0.76 L/min,
15:1
77
84
92
87
88
85
88
84
82
52
50
2-
0
0
0
0
0

, 13 min.
3.
retention time
Acid form

-------
1
I

-------
emergency  treatment  for volatile SOCs  in a point  of use application  if. the
system were properly vented to remove off gases.

Oxidation
     Several  oxidants  are  available  for removing  SOCs from  drinking water,
including  ozone,  chlorine,  chlorine dioxide,  permanganate, hydrogen peroxide,
and ultraviolet  (UV) light, either by itself or in combination with any of the
'other oxidants.   The mechanism  for SOC  removal.by oxidation is the conversion
of  an  SOC into-, either intermediate reaction  products or carbon  dioxide and
water, which  are the complete destruction products.   Complete destruction is
not  always possible because  the intermediates which are  formed  may  be more
resistant  to  further  oxidation than the original  SOC.   In  addition,  these
intermediates may in some cases, be more toxic than the original SOC.
     Ozonation has been the most widely tested oxidant for the removal of SOCs
from drinking water  and,  as such,  will  be discussed  first.  Additional oxida-
tion technologies which have  been  evaluated  for  SOC removal will be presented
after this subsection on oxidation.  Since only limited data are available for
SOC removal via  oxidation,  further evaluations are  required before oxidation
can be considered as an applicable technology!,
     Ozone-Process Description                 . •
     Ozone was  originally  installed  for disinfection  purposes  at  a  water
treatment  plant  in France at the beginning of the  20th  century.   Since then,
the number of ozone  facilities for drinking water  treatment has .increased to
about  3,000  worldwide  in 1987.  Although  ozone has been employed for many
years  in Europe  to  improve drinking water  quality, ozone  technology  in the
U.S.- is  just beginning to gain  acceptance as  a viable water treatment option.
Approximately 40  U.S..water treatment plants currently use ozone processes for
disinfection,   color  .destruction,  taste and  odor control,  or THM  precursor
removal.
     Recently, ozone  has received more attention as a means  of  controlling
SOCs  in .drinking water.   The  use  of  ozone  in  the U.S.  for this  purpose
expected to increase  in the  future, spurred  in part  by changing  regulations
and  also by  technological  advances which  have  increased the  knowledge and
understanding of ozone's capacity to remove organics  from drinking water.
                                     6-11

-------
     Ozone  is the  most powerful  oxidant available  for water  treatment and
therefore has  a  greater capacity to remove SOCs  than do other-, oxidants.  The
reaction  mechanism  of  ozone  with  the  organics  in  water  is  still  under
investigation.   Hoigne  and Bader  (1979)  proposed  an  explanation  for  the
behavior of ozone in aqueous solutions.   They suggested that at low pH, ozone
remains in  solution directly and  selectively oxidizes pollutant species.  At
high pH,  ozone decomposes  at  a  fast  rate  (initiated by hydroxide  ions)  to
produce a variety of highly reactive intermediate species.  These intermediate
radicals, although  short lived and unselective,  are even more potent oxidants       I
for some  organics  than  molecular ozone.  Two primary routes  by  which ozone
reacts with organic compounds in water are s                         .
       -  Direct  oxidation,  involving  selective ,attack  ,of  molecules  by the
          ozone .molecule
          Indirect  oxidation, or  non-selective attack of organic molecules by
          various free radicals.        '                                              —

The degree  and rate  of oxidation  depend on several  factors, 'including the
organic compounds  to be oxidized, nature of  competing substances  present in
                                                r   .    "-               .'
the water, ozone dosage, pH, alkalinity and contact time.             ' "
     Fronk  (1987a)   investigated   the  effect  of  these  factors  on  reaction
pathways  and  ozone's  oxidation  capacity.   Several  -conclusions were' derived
with respect  to  the results for  three classifications of" organic compounds:
alkanes,  alkenes,  and  aromatics.  Alkanes   are  aliphatic   (straight-chain)
organics  which are saturated,  i.e.  they contain  no double bonds.   DBCP and
1,2-dichloropropane  are  examples of  SOCs   in  this  category.  Alkenes  are
aliphatic  organics  which  contain  double  bonds.   Cis-  and  trans-1,2-di-
chloroethylene  fall  into  this  classification.   Aromatics  are  benzene-like
compounds having unsaturation within a closed ring of carbon atoms.  Benzene,
toluene and.xylenes are examples of SOCs  in this category.
     Ozone  is  known to  react  at centers  of  unsaturation within  a molecule;
therefore,  alkanes  would be expected  to  react with ozone to  a lesser degree
thar: alkpnes  or  aromatics.   However,  at pH  values  above 9.0,  free radical
routes  dominate  and  the  oxidation reaction  is nonselective.   The following
additional observations were made:
                                     6-12

-------
       -  Alkenes and aromatics react readily over a wide pH range — implying
          removals occur by both oxidation mechanisms.
       -  Alkanes are oxidized at high pH only — indicating oxidation by free
          radical mechanisms only.
       -  Ozonation  in distilled  and ground  waters are  similar,  except  at
          higher  pHs,  where  radical  scavengers such  as bicarbonate  ion may
          limit the removal of alkanes in natural waters.
       -  Increased ozone  dosages improve reactions for all compounds except
          alkanes at low and neutral pH.
       -  Increasing   contact   time  does  not  appreciably  enhance  alkane
          reactivity, whereas alkenes and aromatics are  removed rapidly.

     Ozone-may also effect the  removal  of certain  SOCs by oxidizing them into
smaller  molecules which   are  amenable  to  aeration or bioactivated  carbon
adsorptionJ  The  exact nature of  ozone  oxidation by-products are not known at
the present time and present some concerns regarding their potential toxicity.
     Equipment    .          -
     A diagram  of the ozone  treatment  process  is  illustrated on Figure 6-2.
The major components of the system include an ozone production unit, a contact
basin, an ozone destruction unit  and  associated valves  and piping.  The ozone
production unit consists of gas handling, ozone generation, and cooling system
components.  The contact basin is design  is based  upon  the raw water flow and
required  detention  time.    The  ozone destruction  unit  eliminates  any excess
ozone before discharging to the atmosphere.                         . •-
     Treatability Studies                •      .
     The  majority of  ozone  treatability  studies for  SOC  removal to. date
consist  of  bench scale evaluations.   Ozone is  typically applied  to • aqueous
solutions of  individual  SOCs as  either a  gas. • or  as a' solution of ozone  in
water.  The degree of SOC removal depends upon the type of SOC, the amounts of
ozone applied and reacted, the ozone demand, pH, degree of mixing, and contact
time.
     Bench Scale;                     •  •
     The  EPA  DWRD has  reported  on  the  treatment of several SOCs by  ozone
oxidation (Miltner and Fronk 1985b;  Fronk  1987a).  Both distilled  water and
ground water were spiked  with SOCs and  used in the bench  scale evaluations.
                                     6-13

-------
 The  experimental  apparatus  was  a  countercurrent  contactor  with  a  stone*
 sparger.   The water  flowrate  through  the  system was  0.76 L/min,  which  resulted
 in a 13 minute contact  time.  The  results for  distilled water are  presented  in
 Table  6-8;  ground water  results  are  presented  in  Table  6-9.   The  results
 indicate  that ozone was effective in removing all the  compounds  tested,  with
 the   exception   of   1,2-dichloropropane,   and   ethylene   dibromide   (1,2
 dibromoethane)   which  are  saturated  aliphatic  compounds.    Only  moderate
 removals  of these  compounds were achieved by  high ozone dosages at pH valves
 above 9.0  As discussed earlier  in this section,  saturated aliphatic compounds       I
 generally are not  oxidized by ozone.   In  the testing with spiked ground water,
 the dichlorobenzenes  (ortho and  meta) were more resistant  to  ozone  oxidation.
 The percent removal  of ortho dichlorobenzene  was  64 percent at an  ozone  dose
 of 10.1  mg/L.  Removals of other  SOCs. generally  exceeded 84 percent  at.this
 ozone  dose.   For  most  of the  SOCs  tested,  percent  removal increased  with
 increasing ozone dosage.                          '                    ,               &
     Hoigne and  Bader (1983)  have  performed extensive bench scale evaluations
 of ozone  on a variety of SOCs.   In these  studies,  ozone solutions were  applied,
 to aqueous  solutions  of individual  SOCs.   Decomposition of ozone in water was
 inhibited by maintaining- a  low pH  (generally at pH =  2)  and by the addition of
 buffering agents.   At  this low  pH,  the  principal oxidation  mechanism was a       _
 direct reaction  rather  than the  free  radical reaction which occurs  at.  neutral
 or alkaline pH.                          .
     Hoigne has  developed  reaction rate  constants for  the rate of  disappear-
 ance of  ozone in  aqueous  SOC solutions  by  using high  SOC concentrations to
 ensure  that the  reactions  were   not  limited  by   SOC  concentration.   SOC
'concentrations used  in this  studv were  generally on the  order  of 0.2 milli-       _
            -3                                                                       H
 moles/L  (10   moles/L).  This corresponds  to   a concentration of  21 mg/L for
 m-xylene-.   Ozone disappearance followed first  order  kinetics,  that is the  rate
 of ozone  disappearance was proportional  to  the existing ozone  concentration.
 These reaction rate constants indicate the speed at which  ozone  reacts  with an
 excess  concentration  of   the   individual  SOCs.   Reaction  rate  constants
 developed in this manner are  summarized in Table 6-10.                               ~
     Hoigne has estimated  that  the  reaction  rate  constants  presented above
 should be greater  than  100 L/moles-sec to achieve approximately 25-50  percent
                                      6-14

-------
                                        FIGURE 6-2
           RAW
          WATER
         CONTACT
          BASIN
         PRODUCT

          WATER
  OZONE OXIDATION
PROCESS  SCHEMATIC
                                 OZONE

-------
I
D

-------
                                               r- in
                                               CO Ol
                                                                                      U1
                                                                                                     03
                                                                                                                     CO
                                                                                                                             CO
                                                                                                                                    CO
          VO
                  n    <|>
                    0)  m  •
                    c  0   cn
                    0 o   -
                    N
                    O
                                                                                      T
                                                                                       •

                                                                                      CD
CO

xO

w

CO
I
o

z
l-t
W
C  n)
4)  >
s  i
0)  0)
                                                              O O\
                                                              cn co
                                                                                                     O
                                                                                                     O
                                                                                                                                    CO
          in
                   1    0)
                    0)  cn

                    §5
                                   O

                                   VC
  «N

 C  <0
 0)  >
 u  o

 0)  Q>
ft.  PS
0)
<0  O  10  in
                                                                                                 0% o  c*i  co  O  cn
                                                                                                 in cn  t**  in  cn  ^
                                                                                                 rl rH  «-l  CN  r-t  t-l'
                                m
                                O,
                                0
                                               m
                                               cn
                                                               (U
                                                               C
                                                               (U
                                                                       HI
                                                                       o
in
CO
O  O
CN  VO
                                                                                                                 in  o
                                                                                                                 r-t  CM
                                                                                                                                 cn cn
                                                                                       0)
                                                                                       C
                                                                                       0)
                                                                                      4J
                                                                                      (U
                                                                                      o
                                                              CN
                                                                                      •o
                                                                                       I
                                                                                      (M
                                                                                       ul
                                                                                       C

-------

-------
                 CM
                4-1  •-"
                C   «

                O   O

                0)   V
                CU  «
                                                                                                                                                        co  r»
                              MM
                                          i-i     o
                                                                    co
                                                                                                      cnrn
                                                                                                                     o o     r-
                                                                                                                      •   •       •
                                                                                                                     01 CN     fH
                                                                                                                                                 r-i     in  tn
                                                                                                                                                  •       *   «
                                                                                                                                                 en     ft  t-i
'?
 vO

 b)

 O
•o
 ID

 C
                                          cr>
                                                                            CD
                                                                                                                                CO
                                          r>

                                          in
                                                                            \o
                          vc
                                                                               r-
                                                                               CTl
                                      m
                                             <-l  iH  (M •-!  iH  fH     >H
                                                                    (N  rH fN CM  pH
                                                                                              cn  o  o CD     invDO3CnnentMcnr>-in
                          o o  o
                          fNlOVO
                                                              inoo
                                                              HOJCM
                                                               «•«
                                                              fflfflCTI
oo
.HrH
  ••
CT>O
O
in
                                                                                                                          C o O
                                                                                                         _
                                                                                                         o
tn  o  o
  •    •   *
o  en  en
                           N

                           U
                          .a
                                                                             (U
                                                                             c
                                                                             0)
                                                                             N
                                                                            •c
                                                                             V
                                                                            .2
                                                                             O
                              0)

                              3
                                                                                                                 X
                                                                                                                  t

-------
1

-------
F






































CO
1
<£>

«
ffl

£4





























































^^
•O

3
C
-H
C
o
o


•H
z
o

SH
Z
O
N
O

o
z
M
w


K
a
EH
s

o
u
J

H
EH
UJ
M
Q
H

W
O
o


h
O

P4
2
U

g^
i— •
M
2
H





















C
01
U
hi
0)
o.
v£>
ro 0)
0) to
§a
N
O

f

C

o
0)


m
^
n 0)
0) tn
C 0
O Q
N
o

r
4J
C
0)
o

01
&


^
fc
0 0)
Hi 01
c o
0 0
N
O


C
o
•H
u
a
BiJ
W C
01
u
c
o
u

^

r































10
>
o
E
9)
05

3
1
IfeW


SJ
l_|
n)

O
Q)
cc


_— __
*J

O^
£
<*•«


N)
,—4
10

o
e
0)
(K



-
.J

CT>
•^^







,^.
M.
W1
**-»







X



























u
o
Wl
t-H CD r» . rH en O O
cn cr* en en co CN o
r4




o r- in o i-t m \D
f4 ,_t i-H CM <-t



-

*3*
CO






fSk
«
in



-



i— I ^* ro O
!••• in r~ co






•
r- in r^ in
* * * *
^H r-4 iH <3 c
M 10
0) 0 fc
C M 3
0) £ U-l
i-H U O
>. -M W ^J
X . T3 M Wi
1 1 01 10
O 0 — 0
*J
0














0^
0^






VO
•
TJ*




























r-

c
tfm\
N
3
^4
4J
(0










4>
E
•H
•^
4J
O
o m W
r- en £
c
o
u
c
•H
E

i— t cr* <*")
• • rH
r* vo
»
c
•H
E
^^


^0
P1*
*
0

It

01
4-1
id
^4

g
^
H-*

^1
0)
4-1
10
3

in CTi »
mm u
v^ Bl
^^ U?
M
(0
a
CO

01
c
O
^J
(0

te
u
O
»H
U-l

£j
C'
01

^4
3
U

0)
4->
c
3
0
U

0
.C rH
O «
10 (A
M 3)
O 4J
O














































CT
C
•H
a
a
•H
hi
4->
10

D>

(4
O
H
O
(0
3

^3
^x
o
JJ,
E
^**

to
10
CP

VM
U-l
0
1

*— ^
^|
5)
^)
03
J

^4
"^
n
O

r
*•*

0)
c
O hi
N 4)
0 4J
<8
•0 3
Q)
_J ^^^
^^ ^^
a o"
10
O*
II E

•»"•» if>
(4 *
V (N
^j
<


m T


























































hi
0)
4->
13

h3
Vv
r
O

0f
E

CO

0


in

II

01
c
o
N
O

•0
«
••"I
^
a



in

























































hi
0)
4J

^
^^
e*

rjt
E

^"
CM

O
4J

CO
i-H

II

0)
c
o
N
O

•0
0)

"a
a



vC









































0)
3
^^
ro
£>

•o
0)
4J
U]
•H
rH

O
4J

'O
01
4J
(0
3
•o1
id

110
U)
0>

£j
3

*
^*
•
r-

o
4J

GO

in

II

01

c
10
hi
p7
a


r^







-------
I
fi
Q

-------
 c  «
 o>  >
 U  0
 fc  e
 0)  01
ft  «
                                                             r--  co
                                                             CO  Cn
                                          o
                                          o
                                                                                           i-J O
                                                                                           Cn O
                                                                                                         o  o
                                                                                                         en  o
                                                                 O

                                                                 O
n  O
en  o
vD

en    a)
  O  V)
  c  o
  o  o
$
                       VO
                        •

                       00
v£>  O
  *   •
oo  r-
^  O             U5          H *
  •    •               •           •   •
o  en             co          o en
                                                                                                       O  en
                                                                                                                          O
                                                                                                                            •

                                                                                                                          P-
                                                                                                                                     o en
  r-
4J  .H
c  ffl
o>  >
u  o
M  g
q>  oi
CM  «
                               CO
                                                                   co      o
                                                                   r-      o
                                                                             tr r» N
                                                                             co v \o
(N
 VD f)



^
4J rH
C (0
gg
M E
O 0>
Qi tK
*
0> in
c o
0 0
N
o


GO ^H co r^ r^ PO
rt en


•

• • • • • •
O iH O tH i-l (N
'




. c
o
•-4
4J
2 nJ
•U ~^
C Cn
C
o
o




ini-tm tMfMcocn r» -cnin
oit-io r>*.-icnr"- O covo
l-«rHT-t«HiH «-l rHr-l
,



I in m
oo en r-
                                                                                                                              S
                                                                             cn  o


                                                                             O  iH
                                                                                            fN  •-!      C4 fH

                                                                                            cor-

                                           en
                                                                  cn

                                                                                                                           m  o
                                                                                                                           en  r-i
                                                                                                                            •   •
                                                                                                                           en  o
                                                                                                                                      O V







1
C £
IT! 4J
X 0)
(0






V

<0
0,
o

Cu
o

o
•C
U (11
•H C
 -H 01
^^

g
0> 0)
C -I
0) >i
^H 4=
>1 *J
£ 0)
5 0
<-t
0
J-t


4)
C
0>
H
C
0>
•Q

^H
^"i
x

0)


0)
c
0)
N
C
0)
,2
o
M
O
1-1
£
O


                                                                                                                                       0)


                                                                                                                                       0)
                                                                                                                                       X
                                                                                                                                       I

-------
1
c

-------
•
  4J
      ra
fO  O
o»  o
                        t#)  o  Cft
                        cn  o  co
                                           CO
                                                                 vo
                                                                         <£>
                                                                                CO
                                                                                               en
vo





-



f\l
^
£
3
C
••-I
4J
C
o
u

z
6
H

rt
Z
8
o
o
ff> Z
• M
ft w
r o
W
J K
CD U

f i (tf
•••!
*
O
b]

M
tb


z
H
cn
8
W
BM
O

. T
S
2
o
o












k
>


f

O Q)
0) (0
a o
o o
N
O
r-
4J FH
C A)

» J •!•
M E
0) 0)
04 a
in
fT a)
0) (0
c o
o a
N
o

r-
4J iH
C 18

u o
0) (!)
0. OS

*
QJ CO
§«§
N
o


c
o
•H
4J .

K t4
4J ^N.
c tn
C 3
O "*
. !


sc
a




-












i
!


u
o
w
iHV H ^ O iH^O"" VO m in i-l vD
ocn.ocncn ocncn co cn co GO .co
fH iH H iH iH 2
c
•H
4J
o
i— i vo vo cn cn cn (0
I*- n cn ^ r* cn 4-)
c
o
u
c
'e
m m m co vo co o
• • • • • • H
ro o f» «N o» (N
^
C
'6
•>„
J

nncsjcn r»r- o oco vo
cocncocomr^ o nin r-
i-i •
o
u
.. &
4>J
fC
(^ ^0 |—4 ^0 |n^ yQ \Q ^ iO W|
• »*•' •• * **
CMr-irJiH^Mf-l fH CMtH g
^
14^1

Vj
0)
4J
18
»

r^vO o o f> (SVDCO p» r~ mr~ CM CM "••
O *fl* CM vo r^* co cn o CM t— i *3* f^~ f) ^ • V4
t-^rH r-liHi-lr-li-l iH «>

M
s,
«
1 in m O c
r- r- -HO
• .C 4J
cn cn O M

a! o
VU iH
•H IM
3
< K
at
••-I M
(U i-i § 3
C O -H 0
0) C E fc
N 0) 0)
C -C . 4J 4J
ai CU (8 C
XI O «> 3
O C M U 0
ft fl O U U
en tt> o M a> v< ^
C C ' rH 3 C O £
i-ii-i u oNjctuam i-icsi
>i >i M .wja(8tj>i4->«
X X -C UHM«J«-I1'CM
1 1 | 0)<0. (BtftCMQ4-4J
o z



^^
M
CD

•B
tn
^8
cn

UH
*O

1

^««
M
0)
4J
n)
j
^»^
ro
O

O>
*""*'

0)
C
o
N
O

13
0)
•H M
^^ O

Qi' <8
(8 M £
i! £ J
"M or
» o
• •
O^ CM n
— v u

WWW
O o o
'O *O *O

d} d} CJ
o o o
N N tsl
O O O


m *r .n

















































4->
m
*3-
•j
•*%^
r
O
i"

i-l
*
co
A


C
•H
a
•2*
V.4
4-)
CO

n

CT*
o
T3
<]>
^l
OU
Q)
O
U

«H
(8
O

S

4-1
C
Q)
M
O
&


f-





























0)
3
t—l
«
^

•o

cn
3
•n

m
u>
w
c
3

%
CM
oo'
O
4J

VO
•
r-

=

Di
C **H
fjj
-H
s: u
CU AI


CD C^





-------
I

-------
                                  TABLE 6-10

                         OZONE REACTION RATE CONSTANTS
     SOC

     Styrene
     trans-1,2-Dichloroethylene
     cis-1,2-Dichloroethylene
     p-Xylene
     m-Xylene
     o-Xylene
     Ethylbenzene
     Toluene
     Chlorobenzene
     Tetrachloroethylene
SOC
Cone.
1
(mM)
0.007
hylene 0.03-0.1 •
lene 0.06-0.2
0.2-0.5
0.2-0.5
0.03-0.8
0.25-1
0.4-4
0.8-3
0.7



£H
2
2
2
2
2
1.
2
• 1.
2
2









7-5

7


Reaction Rate
   Constant
 (L/Mole-sec)

     300,000
       5,700
         800
         140
          94
          90
          14
          14
           0.75
           0.1
Note:
     1.   millimoles/L (10   moles/L)

-------
I
i

-------
          breakdown  in  a  ten minute  contact time  at  an  ozone "dosage of  0.5  mg/L.
i          However, free radical  reactions  that may occur at  higher pH values have  not
          been considered.          "  "	"""	
               Legube (1983)'  has investigated the  mechanism  of  the  reaction of  ozone
          with soluble  aromatic pollutants,  including ethylbenzene,  monochlorobenzene
          and styrene.  The  formation of  breakdown products was also measured  during
          these studies.   Ozone  gas  was introduced  into a 3  liter bubble column with
,          solution  recirculation.   Analysis  of   ozone  in  the  off   gas   permitted
1          calculation of the ozone demand  (ozone  consumed/SOC removed) for each  of  the
          compounds.   The  removal attributable  to air  stripping was also assessed in
          separate experiments by bubbling  air through the  column at  the same flowrate
          as  ozone.   Ethylbenzene  and  monochlorobenzene  and  consequently  the  ozone
          demand were both  significantly removed  by air stripping could not  be estimated
          for these  two SOCs.   The results for the  oxidation of styrene are presented
          below:
                                                        •  —4
               Initial Styrene Concentration      1.1  x 10  moles/L (11 mg/L)
               pH                                 5.0           .    -
               Ozone  Application Rate             197  mg/hr  at 12.8  L/hr
               Ozone  Demand                       0.9  moles  ozone/mole styrene
               (at zero  percent
                styrene  remaining).
          Styrene oxidized to  benzaldehyde and hydrogen  peroxide,  which might  further
          react to form  benzoic acid.
               Gilbert (1979a) summarized  the results from a  number  of  researchers on
                                                     f
          the ability of ozone to remove several SOCs  from  drinking water.  The  results
          of this' summary  for the SOCs  of concern  are presented  in Table  6-11.   The
          results indicate  that  dichlorobenzene  and heptachlor were  completely  removed
          by oxidation while heptachlor epoxide was only partially removed at  an  applied
          ozone dose  of 17 ppm.  Lindane  was not appreciably removed until  very high
          levels  of ozone  were  applied.  Neither  heptachlor epoxide nor  lindane  appear
          amenable to ozonation.  No  assessment  of  the impact  of  air  stripping  was
          provided.
               Buescher  (1964)  evaluated  the effect of  several  oxidants,   including
          ozone,  on the removal  of lindane from  drinking water.   Ozone gas was  bubbled
          into aqueous solutions of lindane in a  pyrex pipe  with a diameter of 3  in  and
                   9
                                               6-15

-------
a length of 4 ft.  The solutions were prepared by spiking distilled, cleionized'
carbon filtered water and two river water samples with lindane.  Air stripping
           -  •
had  no effect  on  lindane removal.   The  ozone absorbed  into  solution was
approximately ten  percent of the. ozone  applied.   The results  of the testing
are summarized below:
                                        Distilled River Sample 1 River Sample 2
Initial Lindane Concentration (mg/L)        8            2.2              0.55
Ozone Application Rate (mg/hr)            840          840              840
Total Ozone Applied (mg)                 1,900          950            1,200
Lindane Removal (percent)                  75           90            '95
These  results  agree with  the previous  work reported  by Gilbert,  i.e.  high
doses of ozone are required to remove lindane.  Since lindane is a substituted
cyclohexane with.no sites of unsaturation, only slight reactivity toward ozone
is expected  for the direct oxidation mechanism.   The effect  of pH  was not
investigated.
                                                                      i
     Yocum (1978) evaluated the  oxidation of styrene by  ozonation  using a 20
liter stirred tank reactor with  ozone fed as a  gas.   The test conditions and
results are summarized below:                                          ;
          Initial Styrene Concentration      130 mg/L
          pH                                 5
          Ozone Application Rate             150 mg/min at 11.5 L/min                __
          Ozone Demand         •              1.9 mole ozone/mole styrene             "
          (at zero percent
           styrene remaining
Styrene was  rapidly  oxidized  to benzaldehyde  while  further breakdown  was
slower  and  dependent  upon  pH  and  temperature.   This  was consistent  with
Legube's results.   However,  the estimated  ozone demand was about  twice that
found by Legube.                                                                     g
     Additional Oxidation Techniques
     In addition to ozone,  additional  oxidants  have been evaluated for remov-
ing SOCs from drinking water,  these  include potassium permanganate, chlorine,
chlorine dioxide,  hydrogen peroxide and  ultraviolet  (UV)  light.     Advanced
oxidation processes  (AOPs) involving UV  light and hydrogen peroxide, UV light
and ozone, and  ozone and hydrogen peroxide have also been  tested.   AOPS are
defined as those oxidation techniques which involve the generation of hydroxyl
radicals in sufficient quantity to affect water purification.  Based upon
                                     6-16

-------
                                  TABLE 6-11

                                SOC REACTIVITY
SOC

Dichlorobenzene

Heptachlor

Heptachlor epoxide

Lindane

Lindane

Lindane

Lindane
  Initial      Ozone
Concentration   Dose
   (mg/L)      (mg/L)
     30

      2

      2

      2

 0.04-0.1

   0.01

   0.05
 NR

 17

 17

 17

0.4-3

 11

149
  Ozone
Consumption
  (mg/L)

     60

     NR

     NR

     NR

     NR

     NR

     97
 Percent
Degredation

     100

     100

      26

       0

       0

      10

     100
Sources  Gilbert 1979

NR - Not Recorded

-------
I
D

-------
         bench scale results these  additional  oxidation techniques have been evaluated
         for removing  only  a'few of the SOCs  from drinking water.   Again,  it is noted
         that an  evaluation of breakdown--products of  any oxidation process  should be
         made before considering oxidation for SOC removal.
              Potassium Permanganate
              The EPA  DWRD  has reported on the treatment of  several SOCs by potassium
         permanganate  oxidation  (Miltner,  December  1985).   The results  of  bench scale
         testing  using   spiked  distilled   water   are   presented  in  Table  6-12.
         Permanganate  dosages  ranged  from  8.7 to 11.4  mg/L and reaction times ranged
         from  22 to   29  hours.   Trans-  and cis-l,2-dichloroethylene,  styrene,  and
         heptachlor appear  to be  amenable  to  permanganate  oxidation.   Removals  in
         excess of 84 percent were achieved for these four SOCs.
              Potassium  permanganate  was   used  to  oxidize  trans  and  cis  1,2 di-
         chloroethylene in  bench scale  testing using  filtered Ohio  River water  and
         ground water  from Landsdale,  Pennsylvania.   The  results  of  this study  are
         summarized  in Table  6—13.   These results  indicate that  the trans isomer is
         oxidized more rapidly than the 'cis  isomer  for similar permanganate  dosages.
         The degree of  removal  for  the  cis  isomer  is also  highly  dependent  on
         permanganate   dose.   Permanganate  dosages of  0.5 and  2 mg/L achieved  10  and
i         80 percent   removals,   respectively,   at   the   cis   isomer  at   an   initial
         concentration of 388  ug/L after 24 hours.
             Chlorine
              In bench scale  testing  using spiked Ohio  River water, chlorine  did  not
         effectively oxidize alachlor, atrazine or carbofuran  (Miltner,  January 1989).
         Chlorine dosages ranged from 3 mg/L and 6 mg/L, and reaction times  ranged from
         two to six  hours.   These results are presented below:
Concentration Free Chlorine (mg/L)
Pesticide
Alachlor
Atrazine
Carbofuran
(ug/L)
31
65.8,
50.0
Dose
6
6
3
Residual
4.9
1.3
1.2
Time
thr)
5.83
5.33
6
Percent
Removal
- 5
2
-11
              Chlorine Dioxide
              In bench scale  testing using  spiked Ohio River water,  (Miltner,  January
         1989)   alachlor,  atrazine,  and  carbofuran  were not  oxidized  by   chlorine
                                              6-17

-------
dioxide at dosages  of 1.5 mg/L to 6.0 mg/L and at reaction times ranging from
two to six hours.  A  summary of the results are presented belows
Concentration
Pesticide (ug/L)
Alachlor 61
Atrazine 65.8
Carbofuran 50
Hydrogen Peroxide
Free Chlorine (mg/L)
Dose
3
6
1.5

Residual
1.9
3.6
1

Time
(hr)
2.5
6.25
6

Percent
Removal
9
10
- 3

     The  EPA ODW has  reported  on the  treatment of several  SOCs  by hydrogen        I
peroxide  oxidation   (Miltner, December 1935b).   The  results of  bench  scale
testing using spiked distilled water are presented in  Table 6-14.  Hydrogen
peroxide  dosages  ranged  from 7.9  to 12.4 mg/L and  reaction  times  ranged from
21 to 26.5 hours.  None  of  the  SOCs which were tested appeared to be amenable
to hydrogen peroxide oxidation.
     UV Light                                                                        .m
     The  EPA  DWRD has  reported  on the  treatment of several  SOCs  by UV light
oxidation  (Miltner,  December 1985).  The  results of bench  scale  testing are
presented in  Table 6-15.  UV light effectively removed all  of  the SOCs which
were evaluated and removals  increased with increasing  contact time.  Removals
in excess of 95 percent were achieved for all the SOCs which were evaluated at
a contact time of five minutes.
     UV/Hydrogen Peroxide
     The EPA DWRD has reported on the oxidation of several SOCs by UV light in
combination with hydrogen peroxide (Miltner, July 1985).   The results of bench
scale testing are presented in  Table 6-16.  The results of  UV  light alone as
well as  with hydrogen peroxide provided  a  basis for the  comparison of  the
effectiveness of UV  light and hydrogen  peroxide.   The  removal of toluene from       -•
spiked distilled water and cis-l,2-dichloroethylene from ground water improved
with  the  addition  of  hydrogen  peroxide.   No  noticeable  difference  in
performance was observed for the other SOCs which were evaluated.
     UV/Ozone
     UV  catalyzed  ozonation  has  been  found  to  oxidize  certain  organic       ..
compounds  more  rapidly  than ozonation  alone.  However,  this  technology  is
still in the developmental stage.
                                     6-18
                                                                                      D

-------
                                  TABLE 6-12

            TREATMENT OF SOCS IN DISTILLED WATER WITH PERMANGANATE


soc
trans-1 , 2-dichloroethylene
cis-1 , 2-dichloroethylene
chlorobenzene
o-dichlorobenzene
1,2-dichloropropane .
ethylene dibromide
toluene
styrene
ethyl benzene
o-xylene
m-xylene
p-xylene
alachlor
carbofuran
car bo fur an
lindane
silvex
methoxychlor
2,4-D
heptachlor
.
Concentration
(ug/L)
140
241
107
139
154
248
171
140
• 197
139
134
156
58
109
37
100
10
24
102
24

Mn04~
(mg/L)
10
10
11.4
11.4
10
10
10
10
10
10
10
10 •
10
10
10
10
8.7
10
8.7
10
1
Time
(Hours)
22.75
22.75
28.75
28.75
22.5
24
22.75
24
22.75
22.75
22.75
22.75
22.33
(2)
(2)
22.5
24
22.5
24
22.5
•
Percent
Removal
100
98
3
4
0
7
11
93
10
12
13
5
-22
32
13
-22
9
-13
6
84
Notes:
     1.
     2.
Reaction stopped with thiosulfate or sulfite
Reaction stopped by SOC extraction at approximately 24 hours


-------
i

-------
                                  TABLE 6-13

                TREATMENT OF TRANS AND CIS 1,2-DICHLOROETHYLENE
                               WITH PERMANGANATE
      SOC

Ohio River

  trans
Concentration
    (ug/L)
      109
                                           MnO -
2
2
 1
 4
                         Percent
                         Removal
 95
100
  CIS
                            163
                       2
                       2
                       2
              1
              4
             24
               8
              25
              65
Landsdale, PA
  CIS
  CIS
                            3S8
                            388
                       2'
                       2
                       2
                       0
                       0
 .5
 .5
                                             0.5
 1
 6
24
 1
 6
24
 15
 30
 80
  5
  6
 10

-------
1

-------
                         TABLE 6-14
TREATMENT OP SOCS IN DISTILLED WATER WITH HYDROGEN PEROXIDE
I
soc
cis-1 , 2-dichlore thylene
.
trans-1 , 2-dichloroe thylene

1 , 2-dichloropropane
ethyl benzene

carfaofuran

toluene
o-xylene

m-xylene


p-xylene
chlorobenzene
o-dichlorobenzene
ethylene dibromide
methoxychlor
alachlor
2,4-D
silvex
Notes;
1. Reaction in dark
2. Reaction stopped
3. Reaction stopped
4. Acid form
Concentration
ug/L
213
107
201
161
126
' 80
73
'109 '
37
79
- 93
47
141
129
49
98
231 '
124
206
24
58
• 85
7-9

at 20 C
with thiosulfate or
by SOC extraction at

H2°2
mg/L
8.5
8.5
8.5
7.9
7.9
8.1
8.0
10.0
10.0
11.0
12.4
• 11. p .
8.1
8.0
11.0
12.4
8.5
8.5
10.0
10.0
10.0
9.1
9.1


sulfite
approximately

Time
Hours
25
23.5
25
21
21"
24
24
(3)
C3)
26
26.5
26
24
24
26
26.5
25
23.5
24
22.5
22.33
24
24


•
24 hours

Percent
Removal
-9
-2
-2
-11
-2
11
-6
3
2
20
-24
14
11
-5
19
-2
-6
2
-13
' -16
-6
' 10
7






-------
I
I

-------
                                  TABLE  6-15
                TREATMENT OF SOCS BY ULTRAVIOLET  IRRADIATION


soc
cis-l,2-dichloroethylene .
cis-1 , 2-dichloroethylene


toluene
chlorobenzene


o-dichlorobenzene


ethylene dibromide


SOC
Concentration
(ug/L) *
47.53
53.0


51.7
10.2


4.0


13.2


Contact
Time
(min)
2.25
1.5
2.25
5.0
2.25
1.5
2.25
5.0
1.5
2.25
5.0
1.5
2.25
5.0

Percent
Removal
73
87
94
95
69
93
100
100
100
100
100
61
80
100
Notes:
     1.   flow-through cell; 28°C; -UV intensity J85 uwatt/cm  at cell wall
     2.   Testing performed in distilled water unless otherwise noted.
     3.   Elkhart, Indiana ground water.

-------
I
i
i

-------
                                  TABLE 6-16
                 TREATMENT OF SOCS BY ULTRAVIOLET IRRADIATION
                            AND HYDROGEN PEROXIDE
         SOC
cis-1,2-dichloroethylene
cis-1,2-dichloroethylene
toluene
chlorobenzene
o-dichlorobenzene
ethylene dibromide
                        SOC
                  Concentration
                     (ug/L)Z
                       53.0.
                       47.5'
                       51.7
                       10.2
                        4.0
                       13.2
Percent
Removal
 by UV

     94
     73
     69
    100
    100
     80
     H 02
Concentration
   (mg/L)

      10
      8.8
      10
      10
      10
      10
                                                                      Percent
                                                                      Removal
                                                                         by
 94
 92
100
 99
100
 78
     2.
     3.
flow-through cell; 2.25 min contact time; 28°C; UV intensity 85
uwatt/cm  at cell wall.
Testing performed in distilled water unless otherwise noted.
Elkhart, Indiana ground water.

-------
I
B

-------
      Arisman (1980)  evaluated the use  of UV/ ozone for  the  removal of PCB  at
 the  General Electric Capacitor Products Department in Hudson Falls, New York.
 A 75 gallon pilot plant with  thirty  40  watt  lamps was  used to treat industrial
 effluent  containing PCBs.   Ozone- gas  was diffused  through the  unit by gas
 spargers.   A summary of the results  of  this  study are  presented below:
          Flowrate                            0.8-3.5 L/min
          Influent Concentration              7-42 ug/L
          Effluent Concentration              0-4.2 ug/L
 No other effluent characteristics  were  given,  nor was  the effectiveness  of
 UV/ozone compared to the effectiveness  of ozone or UV  alone.

      Ozone/Hydrogen  Peroxide
      Bench   scale  tests  for   the  removal of  tetrachloroethylene  (PCE)  and
 trichloroethylene  (TCE) were  conducted by Glaze and  Kang,  1988.   Batch tests
 were  run  in a 70  liter  reacter spiked with  approximately  50  and 500 ug/L  of
 PCE  and TCE, respectively.   The  initial  alkalinity  of  the source water was
 200 mg/L as CaCO  and the TOC was 1.1  mg/L.  The  results of the ozone versus
 ozone /hydrogen peroxide system are shown  below:
                        Dosage Required for 95 Percent
                             Removal of TCE and PCE
Ozone
Process TCE
Ozone (1> 9
Ozone /Hydro- 4
gen Peroxide
Notes :
1. Ozone- dosage
2 . Ozone dosage
(mg/L)
PCE
33
12

15 mg/min,
15 mg/min,
Hydrogen Peroxide (mg/L)
TCE PCE
0 0
2 8

pH -8.0
Hydrogen Peroxide dosage •
Ozone and  hydrogen  peroxide accelerates the  oxidation  of TCE by  a  factor of
two to three and the  oxidation  of PCE by a factor of two  to  six depending on
the ozone  dosage.   Due  to an  apparent  mass  transfer effect,  increasing the
hydrogen peroxide  dosage rate  beyond a certain  level  does not  increase the
oxidation rate of TCE and PCE.
                                     6-19

-------
     Pilot scale studies were conducted by Aieta, ef. al., 1988 to demonstrate
the removal of PCE and TCE on a continuous basis.  A clear acrylic pilot ozone
contactor column with an ID of 7.5 inches and height of 75 inches was used.  A
four stage  turbine  mixer was used: in  the column, and each  turbine stage was
baffled by  stators  attached to the  column.   The gas turbine  was  driven by a
variable speed  drive mixer with  a G value  of  165 sec  .   Ozone  entered the
reacter through  a 4.5 inch diameter fine bubble  air stone,  .   The results of
the studies are  presented  in Table 6-17.  This pilot study  indicated that an
optimum hydrogen peroxide to ozone dosage ratio is approximately 0.4 to 0.5 by
weight.  PCE and TCE were reduced by 40 to 90 percent throughout the study.
     The studies presented  above suggest that oxidation could  be  a  useful
technology for the  removal of SOCs from  drinking water.   Current information
on  the necessary   reaction  conditions  and  kinetics  as well  as  potential
breakdown  products   is   inadequate.    The  applicability,   reliability  and
cost-effectiveness of oxidation are unknown until more detailed information is
available.   Further research  is   needed  in this area  before oxidation  can
become an applicable method for removing SOCs from drinking water.

ReverseOsmosis
     Reverse osmosis  (RO)  is a technology for which  limited  experimental data        _
                                                                                      X.2
is  available  for  the  removal   of  SOCs from  drinking  water.    Additional
evaluations of this  technology for SOC removal  will  be  required to assess the
suitability of RO for water treatment applications.
     Process Description                                              '
     Reverse  osmosis has  been  used primarily  for  removing  total  dissolved
solids  from water  and  for  desalination  of seawaters.   The  reverse  osmosis
process uses  a  specially  prepared membrane  which permits the flow  of  water
through  the  membrane  while  selectively  rejecting  the passage  of  salts
dissolved in the feed water.   This semipermeable membrane acts as  a barrier to
the salt but  not to water.  A high hydraulic pressure on  the  feed water side
produces a  pressure gradient which  enchances  the water  flow  through  the
membrane.   This pressure gradient  must be greater than the osmotic pressure of        ~
the feed water.   Only a portion of the feed  water passes  through  the membrane
                                     6-20

-------
                     2  I
                     £  J
to

lit
                                                                            t/i
                     *»  —

                     s.s
                     o  o
                     i.  E
                     V  O
                     a.  oe
«-»j  o  in  '*0
r-   O
                     .^ o
                     C  10
                     •i- O

                     K9  IA
                     Jf  10

                     <  a
    So  o
    r*  fs-
CM  CM  pg
00


CM
                                       m m in  o
                    o  CM    o oo
	        r^  rv  u>  f^ vo
CMCMCNCNZCMCNCMCMCN
                                                                                                                                       0
                                                                                                                                       N
                                                                                                                                    -
                                                                                                                                   3  C
                                                                                                                                   C  ID
                                                                                                                                       J->
                                                                                                                                       <0
                                                                                                                                   4J  C
                                                                                                                                   O  10
                                                                                                                                   <0  4)
                                                                                                                                   4J  E

-------
I

-------
           as recovered product water.  The remainder washes the rejected salts  from  the
           membrane surfaces and is discharged as a concentrated stream.
                While RO primarily  has  been used  in  desalination, it has  been used  to
           remove certain SOCs generally  those  whose  molecular weights are greater than
           120,  from  drinking water.   This removal  may not  be due  to  rejection,  but
           possibly to SOC  adsorption onto  the  membrane.  Continued adsorption  may lead
           to membrane .poisoning,  and  consequently  membrane  . replacement,  because  SOC
          .desorption is  generally  difficult  and usually  entails destruction of  the
           membrane.  In addition,  membrane  leakage  due to  sporadic  desorption  and/or
           permeation has been shown to  occur. ,
                The performance of an RO system for SOC removal depends upon  a  number of
           factors including pH, turbidity, iron/manganese content  of the raw water,  and
           membrane type.  Pretreatment is  sometimes  required  to prevent fouling  of  the
           membrane  system.   Design  of  a  pretreatment  system  is dependent  upon  the
           quality  and  quantity  of the  feed  water  source.   Pretreatment  for  reverse
           osmosis may include one  or more of the  following:   pH  adjustment,  filtration
           and  addition  scale  prevention  chemicals.   Existing  treatment  plants  may
           already   provide  much   of  the   pretreatment   required,    for   example,
           coagulation/filtration for highly  turbid surface waters or iron  removal  for
           well  waters.   Reverse  osmosis  may  be particularly  appropriate  for  small
           systems where the total volume  of waste concentrate  is low.
                Blending of treated water  and raw water to produce a mixed finished water
           of acceptable quality  may be a  factor  in  selecting a reverse osmosis  system
           because  reverse  osmosis  systems   generally  produce   high   quality  water.
           Blending, while  site specific,  is more economical than treating all of the  raw
           water.   The fraction of  the  raw  water to be treated will depend upon the  SOC
           removal  efficiency of  the  selected reverse  osmosis  membrane  and  the  SOC
           concentration in the raw water.
                Equipment
              v  A typical  process  schematic  for a reverse osmosis treatment  plant  is
           illustrated on Figure 6-3. The major components  of  this system include:
              " 1.  .Provision for  prefiltration including polymer . feed  system,  provi-
                     sions  for backwashing and backwash water storage
                                                          *
                2.   Storage and feed facilities for pH and  scale control
                                                6-21
I

-------
     3.   Reverse osmosis unit
     4.   Provisions for brine or wastewater storage and disposal or treatment        g
                                             i                         !
     51   Disinfection
     6.   Finished water storage
     Treatability Studies                                             ;
     Most  of  the  available  treatability  information  on  reverse  osmosis
pertains to bench-scale  applications.   However,  one full-scale application is       '•
also discussed.   Various operating conditions  and reverse  osmosis membranes
have been  employed  in  the  different  studies' which  are briefly  summarized
                                                                      i
below.                                          '               •
     Bench Scale;
     The EPA DWRD has reported the performance of cellulose acetate, polyamide
and  thin-film-composite  membranes for  removing  certain low molecular weight
SOCs (Fronk,  1987b). "'The  results of  bench scale  testing  are  presented in
Table 6-18; the operational conditions are summarized in Table 6-19.  One thin
film composite  membrane type  appeared to  be more  effective than  the  other
two membrane types,  achieving removals  in  excess  of  84 percent for  EDB and
chlorobenzene.   Thin-film-composite membranes removed volatile  organics more
effectively than traditional cellulose acetate or polyamide membranes.  It has        f|
been noted, however, that the recovery  of product water  for  all the membranes
which were evaluated was low, ranging from 5 to 18 percent.
     The EPA  DWRD also  reported on  bench  scale  reverse  osmosis  tessting in
Suffolk  County,  New York  (EPA-2).    The  results  of these evaluations  are
presented  in  Table  6-20.   Removals  exceeding  94 percent were  achieved  for
aldicarb   sulfoxide, ' aldicarb   sulfone   (metabolites   of  aldicarb),   and        Q
carbofuran.  Recovery of product water again was poor; the 50 percent recovery
achieved by the nylon amide membrane,  was  the highest of all  the  which were
membranes evaluated.
     Chian  et al.   (1975)  evaluated  a  cellulose  acetate  membrane  and  a
cross-linked  polyethylenimine  (NS-100)  membrane  for organics  removal.   In
addition to the membranes,  the  system consisted  of a test cell with 150 mL of
water  with an  atrazine concentration  of 1.102  mg/L  and a pump  capable of
providing 600 psi for the process.  During test runs, the cell was pressurized
                                     6-22

-------
                                                         FIGURE 6-3
CO
O

fc
5   ,

tu

CO

I
                                                  I-

                                                  <
                                                  LU


                                                  i
                                                  LU
                                                  CC
                                                  h-

                                                  CO
                                                  CO
                                                  O
                                                  s
                                                  en
                                                  O
                                                  LU
                                                  cn
                                                  oc
                                                  LU
                                                  >
                                                  111
                                                  CC

-------
I
B
I)
 D

-------









w
W

<
CQ


E
H
W
0
S

O
M
en

CO CL)
t>
H
*
u
.4 D
CQ O
0^ ^H
H K
m
CO
8
CQ
GLI
O
1
1
§
OS

















t
1

















(8
>
o
i
H
ft,









































CO
CO
o
ft
g
o
8

e
rH
-H
fa
g
•H

^















fll
W
cn
0
rH
3
rH
rH
8

to
rH
3
U
(U
rH

**






















U






CQ








"*




0)
•0
>p^

S3
JrN
r— 4
o
PL»




0)
i



4J
tr>
•H
0)
S



















03
o
o
w
I CN 1 1 1 1 1 Is- 1 > 1
n eo - -





| CM I 1 I 1 1  0 1 1 1 1 1 1 1 1
VO I-l








O O O O ' ^ Oi CM 1 4 t 1
rH ts>rVOOO.rH^%OOt~-

•



4)
0) C
c o>
0) fH
rH A

0) A 01
C 4-> 0 U
f3 4) M (U "O
o» o o n -H
O rl rH 01 E
JH O J3 NO
a, I-H o • a> c M
0 J3 -t 0) c 0> J3
M U TJ • C H
O -H 1 0) N 0 *O
rH T3 CN N C r4
xi - ea>oa>ij
UCNrHOlOJ C C J3 "~t C 0
•H •. cjaoiooj:!1'"' "
QrH Ul.dJrHrHrH V< U^H* W
1 1 C'3>i>,>,0"H>iU <"
< 2









J





















•
(0
4-> •
CQ U)
•  ^4 4-> 4->
3 0) O -H
fo (fl "O C
in S c o
rH O U
1 T! U
<0 C rH
3 4J (8
01 O O C
CT> >H C O
C Dl -H
(8 0) -P
IH •O M <8
C  (U J->
18 rH 03 IH
^ rH 0) O
4-> *H 4J VM
C 4J
QJ tO 4-1 O
CJ -H (8 C4
C T3 X 1
O 4-1 V0
U VH
O M 0)
4J 0) rH
C 01 4J J3
3  < 1 CO


« • • •
rH CN 1*1 ^3"





-------
1
B
I

-------
                                  TABLE 6-19

                 REVERSE OSMOSIS MEAN OPERATIONAL CONDITIONS1
Membrane
Type

Surface Area, m
Reject, L/min

Permeate, L/min

Peed, L/min   ••

Percent Recovery

Time to Steady S1

Time of Operation, hrs

TDS Percent Rejection
Cellulose
Acetate
sw2
1.8
e, psi 235
4.7
0.4
5.1
8
ate , hrs 1
, hrs 13
tion 95
Nylon
Amide
HP3
276
150
4.9
1.1
6.0
18
1
13
92
Thin Film Composite
A B
SW SW
1.9 1.9
200 200
9.5 9.4
1.5 0.6
11.0 10.0
14 6
3-14 13 5-46
16 284 257
99 99 94
C
SW
1.6
200
9.5
0.5
10.0
5
21
182
98
Notes:
    1.  for data presented in Table 6-19
    2.  SW - spiral wound
    3.  HP - hollow fiber

-------
I
C

-------










CN

W
M
W
O
E
W
O

H
W
os
>
«
C3
2
M
w
D
1-1
a:
&
<
3

Q

^
g
O

2
M

tn
o
8

fa
o

EH
2
W

C^j
g
DS
E-i
























•-I
<0
^
0
E
01


4J
c
01
u

 CMVDO^O
rio^cr^crv *^H "Co
iH ^ -

OOC^CT^  • rt • c*)
rH 10


<£ m
lOC^^DC^ • O * 00
r*" o en o^ CN 10 10 ro



c>J 1 -P
O X C H O
n o o a> P
a HH VM ^. > -a
o -i -i c on c
VJ 3 3 -rl U h O
O w en c E 01 01 O
^j frl ^C^ Ij i i
r- 1 io ^x. W *-
js A ja >H j * U 3 -— +J 3 -H
•H id 10 "H ' B VH ••
•OOOO «CJJ<«H-H W
1 -i-l -H J3 73 O O U <1J
•H (U
IH
rV ^*
tj . ll 1
O O ^D O
S^ 4J Q) Q) *
C C in 0)
S CN <0 Id U
0) >H rl II B
Z to A -O id
* -P CU VI) (11 O
>i ai E E -P S
4J E ID 73
c ID -d ^ 3 c
3 -H C Q) O
O *O S jQ *O O
CJ O -H Or
Af ^ *4-J QJ U
J* C H-l -H
rH Id rH S <*->
O M Cd O *U -H
< w

t-H fN CO TJ- in VO








-------
1

-------
          until 40 percent of  the test solution had  passed through the membrane.   The
!          following results were obtained for atrazine:
                    Membrane Type                Percent Removal of Atrazine
                    Cellulose Acetate                       84.0
                    NS-100                 •         -97.9
          The results indicate  that  reverse  osmosis  is  effective for atrazine  removal
          from water.  Proper membrane selection can ensure maximum removal.   The degree
l          to which atrazine is  adsorbed into  the membrane should be evaluated,
               Malaiyandi, et al. (1980)  evaluated  a reverse osmosis system for removing
          lindane  'from  aqueous  solution at  the  Environmental Health  Directorate  in
          Ottawa,  Canada.   Raw  water  with an  initial lindane concnetration  of  6.8 to 8.0
          mg/L was  fed  into radial  flow,  all-stainless  steel  RO cells  with  CA-316
          cellulose acetate membranes. •  The flow rate  into the RO system  was 1.5 mL/min,
          which corresponded to a system pressure of  6,200  to 6,900  K  Pa(900-1,OOOpsi).
»
          A recovery  of 20 percent  was  obtained.   225  mL of  feed  solution   was  sent
          through  the RO   system and 25-mL  aliquots  of both  feed and permeate  were
          sampled  for  analysis  at the end of  each run. Procedures were also carried out
          to strip lindane from the cellulose  acetate  membrane to quantify  the amount of
          lindane  which  was retained  by  the membrane.  The distribution (percent)  of the
          lindane  was:

                        Recycled Feed           36
                        Product Water           24
                        Membrane       "        40
                        TOTAL                    100
          Lindane  removal  by in-situ  stripping proved  to  be very difficult.  Destructive
          analysis of  the  RO membrane provided the  most  reliable estimate of  the  amount
          of lindane absorbed onto the membrane.
               Edwards  and  Schubert  (1974)   evaluated   the   selectivity  of  four  RO
          membranes  for  several derivatives of 2,4-D  in  aqueous  solution.  The membrane
          tests were performed  in batches in -a  commercial ultra filtration cell with a
                                                                     2
          capacity of  150  mL,  an effective membrane  area of 27.5  cm  ,  and a magnetic
          stirring bar mounted  near  the membrane surface.  The  ultrafiltration cell  was
          filled with  70 mL of 50 ug/L  solution  of the  sodium salt of 2,4-D  and  closed
                                               6-23

-------
after  air  purging.   A SO.psig driving  force  for reverse osmosis was supplied'
with a cylinder of  dry nitrogen.  Six  ten-mL  samples  were passed through the
                                                                                     9
membrane and  collected  for  analysis.   The four membranes achieved removals of
1  to  65 percent.   Equilibrium  adsorption of  the 2,4-D derivatives  onto the
membranes was believed to contribute to the overall performance.
     Cabasso,  et al.  (1974)  evaluated  the  rejection  of  several  classes of
organic  compounds  by three reverse osmosis  (RO) membranes.   Acrylamide and
o-xylene were two of the specific compounds.  The three polymeric RO"membranes
that were  tested included  two  asymmetric membranes of  cellulose  acetate and       1
ethyl  cellulose  and  a  thin barrier  polyurea membrane.   Measurements  of
permeabilities  for  acrvlamide,  o-xylene, and hydraulic  permeabilities  were
                                                                   '  . !.
measured.  The results of this bench scale study are presented below:
                    	Percent Removal	      •         j
     Compound       Cellulose Acetate   Ethyl Cellulose     Polyurea  '
                            '                   • •             -         r
                                                                      > -
     Acrylamide          79                  0              97                       ta
     b-Xylene            86                  -              -
                                                                      i
The results indicate that a higher  acrylamide  removal  is attained through the
use of the polyurea membrane.   In addition,  the  removal of  o-xylene with the
cellulose acetate membrane  is slightly better than that  of  acrylamide.   The
ethyl cellulose membrane was ineffective for acrylamide removal.      .
     Berkau  et  al.  (1980)   reviewed the treatability  of  the 129  priority
pollutants.  Based on this  review, it was reported  that Korneva et al.  (1976)
obtciined removals of 97  to 100 percent  for  monochlorobenzene.  It  was  also
reported  that   Hinden   et   al.   (1968)  obtained  52   percent  removal   for
hex^hlorobenzene.
     Hindin et al.  (1969) studied the performance of reverse osmosis cellulose
                  .                                                                   E
acetate membranes for the removal of several insecticides,  including lindane.
     Run  No.  2 was  conducted  at   a  membrane  loading of 0.073  L/cm^  day
              2                               '                        '
{0.125 gal./in   day).   The  following results  were  obtained using  spiked raw
water samples:
Run
No.
1
•>
3
Lindane Concentrations (mg/L)
Influent
0.683
50
500
Effluent
0.306
8
133
Percent
Removal
52
84 . "
73
                                     6-24

-------
          The results  indicate  fairly good  removals  for  lindane  at the  two  higher
\         concentrations.
1
              Pilot Scale:
              Regunathan,  et al.  (1983) evaluated  the performance of  two  point-of-use
          treatment devices  in removing various  organic,  inorganic,  microbiological,  and
          particulate contaminants  from  potable water.   One  device  consisted  of  a
          reverse  osmosis  unit,  prefilter,  and two  GAC beds.   The  device  was  field
.         tested in-Miami,  Florida  for the  removal of  THMs and other organics,  including
'.         endrin,  methoxychlor,' and lindane.'  The ground water  had the following water
          quality:
                    pH                         7.4
                   .TDS  (mg/L)    .            625
                    Alkalinity (HCO~3)        160               .
                    Sodium  (mg/L)             120
                    Sulfate  (mg/L)            230
                    Chloride (mg/L).           12
                    Silicate (mg/L  SiO2)      '5                    -
                                      r
          The results of this  pilot  study are summarized  below:
                                                       	Percent  Removal
                                   Influent            RO
              Compound
              Endrin
              Methoxychlor
              Lindane
          The RO device  eff<
          of  the GAC filters was  extremely  important in the overall  effectiveness  of  the
          device.
              A modified RO-carbon  device  was also  tested for its ability to remove  PCB
          (Aroclor  1242).    The small  carbon adsorber  was  used  with  the  RO membrane
          because  PCB is strongly  adsorbed.   An average influent PCB concentration of
          105 ug/L  was  reduced by more  than  95  percent by  the RO membrane alone,  and at
          least  99.7'percent by  the entire device.   The results  indicate  that reverse
          osmosis may be an  effective  treatment  method  for PCB removal.
              The  studies which  have  been  presented here indicate that reverse osmosis
          has  potential  as  a removal method  for SOCs.   However,  these studies are very
          limited  in both   the  level  of  which testing has been  performed and the
          contaminants used  for testing.   In  addition,  there  are.several disadvantages
                                              6-25
Influent
Concentration (uo/L)
2
1,000
40
tively removed endrin
RO Unit
Membrane
. J90
J90
40
and methoxychlor.

Overall
99-100
99-100
99-100
However ,





the role

-------
with the use  of RO for SOC removal including-membrane fouling and low-product-/
water  yield.    Reverse Osmosis  is an  additional  technology • which requires
further investigation  due to the  limited availability  of data and the stated
disadvantages of this process.    -.-    .     •

Conventional Treatment                                 -               '
     Conventional treatment, which consists of coagulation, sedimentation, and
filtration, is generally used to remove turbidity and color from surface water
supplies.   It  can  also  be used  for removal of  taste  and odor  producing        f
compounds depending upon  the nature of the  compounds.   Turbid water contains
suspended matter, both settleable solids which are particles large  enough to
settle  quiescently,  and  dispersed solids  which  are particles  that  do  not
readily settle.
     Process Description
     Coagulation involves two mechanisms:   the destabilization  of  dispersed        s
solids  (coagulation)   and the  agglomeration  of  destabilized  dispersed  and
suspended material  (flocculation).  Sedimentation, or  settling,  follows this
process  of   agglomeration.   Filtration  .provides  additional   removal   of
agglomerated  -•• solids    and    protection     against     upsets     in    the
coagulation/sedimentation process.                                                    _
     The effectiveness of  conventional  treatment  in  removing specific  SOCs
from drinking water depends  upon the attraction of, the individual SOCs  to
particulate matter  that is either naturally present in  the water  or  formed
during the coagulation process.   The  SOCs will be removed to the extent that
they are attracted to  the particulate material which is  removed.  SOCs which
are  hydrophobia,  i.e.  having  low  solubilities,  generally • would  be  more
                                                                                      B
amenable to  removal by conventional treatment than would  SOCs  with  higher
solubilities.   A flow  schematic  of a  typical conventional treatment  system is
illustrated on Figure 6-4, highlighting the major processes required. ,
     Treatability Studies
     Conventional treatment  processes have  been  evaluated  for  10 of  the  29
SOCs.   Bench  and  pilot  scale  studies  have  been  conducted   by  various        ~~
researchers to  evaluate  removal  efficiencies for  several SOCs.   Full scale
conventional  treatment  plants  have been studied  for  the  removal  of specific
                                     6-26

-------
    FIGURE 6-4
_J
Q.

K
Z
UJ
UJ
oc
z
O
P
z
UJ
O
O

-------
I
n
E
i

-------
SOCs  which are actually present in the  raw water.   In addition, the American
Water Works  Association  Research Committee  on .coagulation  has  published
recommendations and comments on the conventional  treatment process.
      Bench Scale;
      The  EPA  DWRD has reported  the  results  of  bench scale  conventional
treatment  of  several  SOCs (Miltner, January  1989).   Jar tests  were performed
with  alum, on spiked  Ohio  River water.   The  results of  these  tests  are
presented  in  Table 6-21.  The  data indicates  that these pesticides  are  not
strongly sorbed onto  particles  or  complexed with humic substances that are in
turn  sorbed to particulates, because  particulate  control  processes provided
minimal or no control.
      Croll,  et  al.   (1974)  evaluated  conventional  treatment  processes  for
acrylamide  removal.    The  process  train  consisted  of  alum  coagulation,
sedimentation  and  rapid sand gravity filtration, all  of which  were simulated
in bench-scale tests.  Several 400-ml samples of  Thames River water, which had
a pH  of  7.5 and contained 25 mg/L kaolin  suspension,  were  coagulated with an
alum  dosage of  32 mg/L.   A polymer containing 0.19 percent  acrylamide  by
weight was also added  at  a  dosage of 2 mg/L.   The samples were  rapid mixed
and  allowed to  settle  for  15  minutes.    The supernatant was  filtered at  a
liquid loading rate of 2 gpm/sf through a sand bed which had a 2.5 cm diameter
of.  and  a deoth of 30 cm.   A  removal of  only  seven percent of  the original
acrylamide was  obtained.  This  removal  indicates that conventional treatment
is ineffective for acrylamide removal.
      Steiner  and  Singley  (1979)   evaluated the coagulation/filtration  and
softening processes for removal of methoxychlor.  Jar testing was performed on
Gainesville, Florida  tap water which had the following modified water quality
parameters:
               pH  (units)                           8.00
               Total hardness as CaCO             100 mg/L
               Calcium hardness  as CaCO            52 mg/L
               Magnesium hardness as CaCO          48 mg/L
               Alkalinity as CaCO                  42 mg/L
               Total dissolved solids             190 mg/L
The  initial  methoxychlor  concentrations were  1,  5,  and  10  mg/L.   In  the
coagulation/filtration phase  of the  study,  the  turbidity  of  the raw  water
                                     6-27

-------
samples  was increased with  a stock  solution of kaolinite.   Coagulation was
performed with 30 mg/L of either  alum or  ferric sulfate at various pH values.
                                                                                      8
Jar tests were conducted with each of the two  coagulants  after an optimum pH
was established.  The following jar test conditions were used:         '
     -2 min rapid mix at 100 rpm, with 20 min settling time
     -30 rain slow mix at 40 rpm, with 20 min settling time             :
     After  settling,  the  samples were  filtered through  filter  paper.   The
results of  the coagulation/filtration study  are presented  in Table 6-22.   The
most effective pH values for methoxychlor removal were at a  pH of 6 for alum        I
and a pH of 4.5 for ferric sulfate.   Additional testing was  performed at a pH
of 6.  Removals were  obtained at all  initial methoxychlor concentrations but
the lowest  methoxychlor  concentration that was achieved was  0.173 mg/L.   The
settled water  turbidity was  less than 10 NTU  when ferric sulfate  was used;
settled water turbidity was not reported for alum.
     Raw water  samples  with  initial  methoxychlor concentrations of  5  and 10        »
mg/L  were  cloudy,  indicating  that  the solubility of  the compound  had  been
exceeded.  A methoxychlor solubility  of 0.62  mg/L has  been reported by Hapoor
et al. (1970).  This  may have affected the reported removals by coagulation/
filtration since some removal could have been due to phase separation.
     In the softening phase of the study,  the raw water hardness was increased
to 188 mg/L as CaCO_  by  the  addition of calcium chloride.  The water was then
treated by  a  cold  lime-soda  ash process at  pH  values  of 9.5  and  10.5.   Lime
and sodium  carbonate  were added at  dosages  of  35 and  75  mg/L, respectively.
Other raw water samples  were adjusted to  a raw water hardness of  192 mg/L by
the addition of magnesium and calcium in equal parts.  This water was softened
by a  lime  soda process  at a pH values of 11.0 and 11.3 at  the same initial
methoxychlor concentrations.  Lime and sodium carbonate were  added at dosages
of 100 mg/L and 78 mg/L respectively.  The initial methoxychlor concentrations
were 1, 5 and  10 mg/L.   The  results  of this  testing program are summarized in
Table 6-23.
     The results indicate that softening achieved varying degrees of removal
that generally  increased with increasing  initial methoxychlor concentration.
The results also indicate that softening achieved higher methoxychlor removals
at  higher  pH  values.    Adsorption   of  the  methoxychlor  onto  precipitated
                                     6-28

-------
                               TABLE 6-21
               JAR TESTING OF SPIKED OHIO RIVER WATER
                                                     (1,2)
                   Influent
Pesticide
Alachlor
Atrazine
Carbofuran
Concentration
(ug/L)
43.6
65.7
93.2
Dose
(mg/L)
15
20
30
Turbidity
(NTU)
42
7
18
Percent
Removed
4
0
-8
Note;

1.  Raw water pH ranged from 7.5 - 8.3
2.  Settled water turbidities below 1 NTU
3.  Technical grade Al (SO )   '  14H 0

-------
I

-------
                                  TABLE 6-22
                             METHOXYCHLOR REMOVAL
               8.5
               8.0
               7.5
               7.0
               6.5
               6.0
               5.5
               5.0
               4.5
                                 Effect of pH

                                Methoxychlor Residual'1'  (mg/L)
Alum
0.730
0.671
0.421
0.366
0.320
0.303
0.593
0.595
0.535
Ferric Sulfate
0.722
0.698
0.383
0.417
0.403
0.342
0.290
0.319
0.286
                          Effect of Initial Turbidity
     Coagulant
     Alum
     Ferric sulfate
           Intitial
          Methoxychlor
          Concentration
             (mg/L)

                1
                5
               10
                1
                5
               10
                                               Methoxychlor
                                              Residual  (mg/L)
Initial
Turbidity
23 NTU
0.265
0.668
0.702
0.258
0.342
0.381
Intitial
Turbidity
58 NTU
0.201
0.320
0.539
0.173
0.220
0.279
Notes;

     1.
     2.
Initial concentration of methoxychlor was 5 mg/L
Tests were performed at pH = 6

-------
1
B

-------
                                  TABLE 6-23
                    METHOXYCHLOR REMOVAL VIA LIME "SOFTENING
Initial
Methoxychlor
Concentration
(mg/L)
1
5
10
1
5 '
10
1
5
10
1
5
10


Softening
PH
9.5
9.5
9.5
10.5
10.5
10.5
11.0
11.0
. 11.0
.' 11.3
11.3
11.3

Methoxychlor
Residual
(mg/L)
0.400
2.622 ' -
3.260
0.379
1.303
1.342
0.217
0.257
0.297
0.160
0.205
0.297


Percent
Removal
60
48
67
62
74
87
78
95
97
84
96
97


Hardness
Initial
1882
188
188
188
188
188
192
192
192
192
192
192



Final
144
144
144
100
100
100
70
70
70
64
64
64
Notes{

     1.
     2.

     3.
Hardness expressed as mg/L CaCO,
Initial hardness increased from 100 to 188 mg/L via calcium chloride
addition
Initial hardness increased from 100 to 192 mg/L by the addition of
magnesium and calcium

-------
I
                                                            B
                                                            n

-------
magnesium hydroxide (MgOH ); a gelatinous compound, is one possibility for the
improved performance at higher pH values.
     Aly  and Faust  (1965)  examined  the  effect of, several water  treatment
processes, including coagulation/sedimentation,  on the removal  of  four 2,4-D
derivatives and their parent compound  2,4-dichlorophenol  (2,4-DCP).   The four
derivatives  included  the -sodium  salt  of 2,4-D  and the  isopropyl,  butyl and
isoctylesters of 2,4-D.  Each compound had an initial concentration of 1 mg/L.
Alum or  ferric  sulfate were added  at  dosages at 100 mg/L.   The samples were
rapidly mixed at a pH of 7.4 and were allowed to settle for 30 minutes.
     The following results were obtained:      ••' -   ' •
               Compound                      Percent Removal
               2,4-DCP                            0
               Sodium salt of 2,4-D               0
               2,4-D butylester              '     2^0
               2,4-D isoctylester                 2.9
               2,4-D ispropylester                3.0
The results indicate that conventional treatment consisting of coagulation and
        -,                 •        *      *•'
sedimentation is  not effective  for the removal of 2,4-D  from  water without
suspended material.
     Cohen et al.  (1960, 1961)  published a three part report on  the effects of
fish poisons in water  supplies.   Toxaphene was one of  the  compounds that was
studied.   Cohen et  al.  (1960)  examined  toxaphene  removal by a  number  of
processes,  including  alum  coagulation.   Treatment  of  unspecified  initial
concentrations  of  toxaphene with  alum dosages  as high  as 100 mg/L  did not
reduce the concentration significantly.  No data were  provided  on  the actual
testing.  Alum coagulation was not  effective in removing toxaphene,  or any of
the other fish poisons, from water.
     Cohen et al.  (1961)  examined  the  impact of a number  of water  treatment
processes on toxaphene odor  removal.  Once again, alum coagulation'was tested.
No significant impact" on odor was observed at an alum dosage of 90 mg/L.
     Huang (1972)  evaluated  the  effect of lime coagulation on the removal  of
several  pesticides,  including endrin  and  lindane.  At  an  unspecified  lime
dosage, solutions  containing initial  endrin  and lindane  concentrations  of  10
mg/L  were reduced by   35  and  less  than  10  percent,  respectively.   This
                                     6-29

-------
indicates that lime  coagulation  is not effective for either endrin or lindane'
removal.
                                                                                     "•
     Edwards  (1970)  looked at the impact of alum  coagulation,  settling, and
sand  filtration  on  the  pesticide- DDT and lindane.   At an  unspecified alum
dosage, an initial lindance  concentration of  10 mg/L was reduced by less than
20 percent.   This result  indicates that  alum  coagulation/sedimentation/sand
filtration is not effective for lindane removal.
     Pilot-Scale;        •*.••-.
     Robeck,  et. al.  (1965)  examined,  a  number of  treatment options ' for the       1
removal of six pesticides, including lindane, in dilute aqueous solution.  The
treatment  processes  included  coagulation and  filtration,  oxidation   {with
chlorine, potassium  permanganate,  or  ozone), PAC,  and GAC.   The pilot-plant
consisted of a constant head tank, a 600-gallon pesticide-mixing tank, and two
separate process trains, each with a 20 gpm line, rapidr-mix tank, flocculator,
sedimentation tank,  sand filter, coal  filter, and two GAC beds.  Conventional       "»
treatment consisted of alum coagulation, flocculation, sedimentation, 'and sand
filtration.   Some  runs were  conducted with  softening chemicals  (liine, soda ,A
ash,  and an  iron salt coagulant)  in place of  the  alum.   The  results  of the
pilot study are presented below:
                              	   Percent Removal	                _
     Pesticide                  Alum Coagulation            Softening                *
                                 Influent  (ug/L)         Influent (ug/L)
                               1          5_     10           10       J.
Endrin         ~                35        ND     35           ND
Lindane                       <10       <10    <10  .        <10       ;
2,4,5-T ester                  ND        ND     63           ND
                                                                      i>
     ND - No-Data                                       -              ,               B
The  results  indicate  that  alum  coagulation   is  not  effective in  removing
lindane.  The influent concentrations  of endrin and lindane did  not  affect
performance.  In addition, softening did not improve lindane removal..
     Full-Scale;
     Baker (1983) evaluated the effect of conventional water treatment on the
removal of  several  pesticides,  including alachlor and  atrazine, in the raw
water  of  northwestern  Ohio  rivers.   The  contaminant  concentrations  were
monitored in  the  raw water from the rivers and  the finished  water  from three
                                     6-30
                                                                                     II

-------
water  treatment plants  on these  rivers.   The  Tiffin,  Ohio water  treatment
plant uses alum coagulation-flocculation, sedimentation, and filtration in its
conventional treatment system.  A  summary  of  the results for an entire series
of summer sampling dates is shown below:
                                Concentration Ranges (ug/L)
          Compound            Influent                 Effluent
          Alachlor             0.5-5.0                 0.2-2.0
          Atrazine             1.0-8.0                 1.0-8.0
The  data  indicated  that  as  the  raw  water  concentrations  increased,  the
corresponding  finished  water  concentrations  increased  as well.  On  several
occasions, the  influent  levels were actually less  than  effluent levels.   The
removals obtained  for alachlor and atrazine  were generally less than  50 and
10 percent, respectively.  These  results suggest that  the conventional water
treatment processes of coagulation-flocculation,  sedimentation  and filtration
are not effective for removing alachlor and atrazine from drinking water.
     Additional information from three  water  treatment  plants in northwestern
Ohio  {Fremont,  Bowling  Green,  and Tiffin)  supports the  previous  conclusion
that alachlor and atrazine are  not effectively  removed  by conventional treat-
ment (Miltner, January 1989).  Percent removals of 24 and 14 were achieved for
alachlor and atrazine, respectively.  Full scale data  indicate  little removal
of these two compounds across  a conventional treatment  plant.   Data  from the
Fremont and Bowling Green plants  indicate the  effectiveness of softening in
removing carbofuran.  At influent  carbofuran  concentrations ranging  from 0.49
to 1.62 ug/L,  100  percent  removal was  achieved at  a pH of  10.9.  The Tiffin
plant,  which  utilizes  chlorination  but not  softening,  obtained  54 percent
removal at a pH of 7.9.
     Singley et al.  (1979) evaluated  the use  of PAC, as well as complementary
process such  as aeration and  improved  coagulation, for removal of  synthetic
organic chemicals in two studies at Florida water treatment plants.   One study
was performed at the Sunny Isles Water  Treatment Plant,  which is one  of three
facilities serving  the city  of North Miami Beach,  Florida.  This plant has a
design capacity of 12.8 mgd,  but usually treats an average flow of 10 mgd.  It
is a  conventional  lime  softening  plant utilizing  three upflow  clarifiers.
Malco 8173, an anionic  polymer,  is the coagulant  which is utilized.   After
                                     6-31

-------
 clarification,  the settled water  is recarbonated prior  to filtration by  six
 gravity sand filters  and  three dual  media  filters.   Prechlorination  before  the
 upflow clarifiers  insures  that a  chlorine  residual  is  carried  through  the
 filter gallery.
      In September  1977,  people  began  to  complain  about organic  (pesticide)
 tastes and  odors  in tap water  produced  by  the Sunny  Isles Plant.  Various
 regulatory  agencies,  including USEPA,  were  called upon  to help identify  and
 solve  the   problem.   The  raw  and  finished  water  contained at   least   42
 individual  SOCs  ranging  in  concentration  from  0.01  to 73 ug/L, including  the        I
 following compounds  (with average influent concentrations in  parentheses).
        -  dichlorobenzene (0.2 ug/L)
        -  ethylbenzene (0.5 ug/L)
        -  monochlorobenzene (0.8 ug/L)
        -  toluene  (0.3 ug/L)
        -  xylene  (0.2 ug/L)
GAC was chosen  as  the  long-term solution to the  organics problem.  However,       '••
PAC was chosen  as a  short term  solution because  of  the  time  required   to
properly design  and install a GAC  system.  Limited data were also  developed
for SOC removal  via  the conventional softening  treatment  processes  at  the
plant.  These results are presented below:
                       Concentrations  (ug/L)
                                        Percent                       ,;
     Compound          Influent         Removal.
     dichlorobenzene     0.16              37
     ethylbenzene        0.7               43
     monochlorobenzene   1.1               18
     toluene             0.5                8
     xylene              0.4               70
The results indicate  that  conventional treatment  processes  exhibit varying
degrees  of   effectiveness for  SOC  removal.   Some  of this removal  could  be
attributed  to aeration  rather  than  conventional  treatment.  On  an overall
basis,  conventional treatment  is not as  effective  for  the  removal  of  these
five SOCs.
     Richard  et  al.  (1975)  looked  at pesticide  concentrations  in raw  and
finished water supplies  in  the  state of  Iowa.  Atrazine concentrations  were
monitored  before  and  after  the  conventional  treatment  process  used  at
                                     6-32
                                                                                     I

-------
           Des Moines, Iowa.  The water .for  this  plant is obtained from the Racoon River
           (40 percent)  and  an infiltration - gallery  (60 percent).    Data on  atrazine

           concentrations at various locations are presented below:
                     Location               - •     .•,          Atrazine. (mg/L)

                     Racoon River                                 '  25
                     Infiltration Gallery                           82
                     Blended Influent                               59
                     Prefilter                                      47
                     Finished Water                                 29
                     Finished Water (60-L composite sample)         60
                     Finished Water (16-L grab sample)              71

           These results indicate that conventional treatment processes are not effective

           for the removal of atrazine from water.
                Nicholson, et al.   (1966)  reported that  a conventional  water treatment

           process  consisting of coagulation,  sedimentation  and filtration  had  little

           effect  on  reducing  toxaphene  concentrations  at  the plant.   The  influent

           toxaphene concentrations at the plant did not exceed 0.41 ug/L.
                AWWA Research Committee on Coagulation  (1979)
                Following a  recap  of  several  coagulation/sedimentation/filtration (i.e.

           conventional treatment)  studies on bench,  pilot,  and  full  scale  levels,  the

           AWWA Research  Committee on  Coagulation included  the  following  general  com-

           ments/conclusions:
                  -  The removal of pesticides  (including lindane, toxaphene,  2,4-D,  and
                     others)  will  depend  upon  the  degree  of  association between  the
                     pesticides and the natural organic content of the water.

                  -  If a strong association exists,  the best removals of pesticides will
                     occur at pH values between  5 and 6 for alum and pH values between 4
                     and 5 for iron coagulants.

                  -  The pH is an important variable during the coagulation process.

                  -  To date,  studies  on  the  removal of  pesticides  have  inadequately
                     described the influence of coagulation pH on process performance.
                                                6-3:
J

-------
     Coagulation  is  an effective  means of  removing some  SOCs  from drinking
water.  Only  limited data quantifying the effectiveness  of this technique is
available.  Some  high molecular  weight, hydrophobic  SOC  molecules  could be
removed using  coagulation or coagulation  in conjunction with  PAC.  However,
more research  is  needed to determine the applicability and cost-effectiveness
of this approach.
                                                                                     I
                                                                                     B
                                                                                     i
                                     *')-34
                                                                                     D

-------
                                   7.  COSTS

     The purpose  of this section of the document  is  to  develop costs for GAC
and packed column aeration  treatment facilities for removing SOCs from drink-
ing water.   As described  in Section 3, these  are the  two  technologies that
have been  identified as being  applicable  treatment methods  for SOC removal.
The basis for costs and design assumptions are explained below.

Basis for Costs
     Capital, operation  and maintenance (O&M), and total  costs (in cents per
1,000 gallons)  were developed for GAC and packed  column facilities for water
supply  systems  of  several  sizes.   The  design  and production  capacities  of
these  systems  which  serve  different  ranges  of population  are  presented  in
Table  7-1.   Costs for  GAC  facilities  were developed  using  the  following
sources:
       -  WATER COST:  A computer program  for Estimating Water and Wastewater
          Treatment Costs.  Gulp. Wesner.Culp., Santa Ana, California.
       -  "Estimation of Small System  Water Treatment Costs," Gumerman, R.C.,
          Burris, B.E., and Hansen S.P. USEPA Contract No. 68-03-3093, 1984.
       -  "Estimating  Water  Treatment Costs -  Volume  2,"   Gumerman,  R.C.,
          Gulp, R.L.,   and   Hansen, S.P.  USEPA  Contract   No.  68-03-2516,
          EPA-600/2-79-162b, 1979.

Packed column aeration costs  were developed by the Technical Support Division
of  the  Office  of Drinking  Water,   USEPA,  using  an  in-house  computer  model
(Cummins, 1988).   The basis of  this model has been presented by Cummins and
westrick (1986).
     All costs  presented  in this  document  are  in  late  1987  dollars.   The
capital costs were updated using indices specific to the major cost components
of the construction cost.   The  Bureau  of Labor Statistics (BLS) and Engineer-
ing News Record  (ENR) indices which  were used.to update  the  capital costs are
presented in Table 7-2.  The Producers Price Index for Finished Goods was used
to update  the  cost  of  maintenance  materials,  which are  a  component  in the
operation and maintenance  cost.  This index  is also presented  in Table 7-2.
Other unit cost and general  cost considerations are listed in Table 7-3.  For
the purpose  of  estimating  costs per  1,000   gallons,  the capital  costs were

-------
amortized over a  20 year period at an interest rate of 10 percent.  Costs for
acquiring new land for construction  sites  or  easements for a raw water trans-         §

mission line are  not  included since these  costs  are site specific.  However,
these costs, when included, could be significant.

     The design assumptions which were used for the purpose of cost estimation

and  the  resulting treatment costs, for  GAG  adsorption  and  packed  column
                                                                       i
aeration are presented below.  For both technologies, designs and system costs
should be viewed as preliminary  and  should  be used only for planning purposes         •

by  a community  with  an  SOC removal problem.   More  complete and  detailed
                                                                       i -
designs and cost estimates  should  be developed based upon pilot-plant testing
                                                                       ! .
and site-specific considerations.                                      ';
                                                                       •'i


Granular activated Carbon
     Although variations  in the design  of GAC systems result in  a  range of
cost estimates, the major components of any GAC treatment system are:                  ™

a.   Capital Costs:

       -  Carbon Contactors
       -  Carbon Charge
       -  Backwash pump.       »
       -  Regeneration Facility
       -  Carbon Storage                                               :
       -  Carbon Transport Facilities

     In addition, there may be  other site-specific  capital costs  components,
such as:
       -  Special site work
       -  Raw water holding tank (for ground water systems)
       -  New/restaged well pump (for ground water systems)
       -  GAC contactor building •
       -  Chemical facility
       -  Clearwell
       -  Finished water pump(s)
       -  Backwash storage

b.   Operating Costs and Maintenance (OSM)  costs;
       -  Carbon Make-up
       -  Labor
       -  Fuel
       -  Steam
       -  Power
       -  Maintenance

-------
        TABLE 7-1
PLANT DESIGN CAPACITIES
    AND AVERAGE FLOWS
Population
Category
25 - 100
101
501
1,001
3,301
10,001
25,001
50,001
} 75,001
100,001
500,001
Greater
- 500
- 1,000
- 3,300
- 10,000
- 25,000
- 50,000
- 75,000
- 100,000
- 500,000
- 1,000,000
than, 1,000,000
Population
57
225
750
1,910
5,500
15,500
35,000
60,000
88,100
175,000
730,000
1,550,000
Average Flow
(MGD)
^^^^^M^^H
0.0056
0.024
0.086
0.23
0.70
2.1
5.0
8.8
13.0
27.0
120.0
270.0
Design
Capacity
(MGD)
0.024
0.087 j
0.27
0.65
1.8
4.8
11.0
18.0
26.0
51.0
210.0
430.0

-------
1
D

-------
     Description

General Purpose
  Machinery

Concrete

Steel

Skilled Labor

Pipe & Valves

Electrical

Housing

Housing

Producer Price Index

Construction Cost Index
                                   TABLE 7-2

                                 COST INDICES
                                 FOR LATE 1987
     Index
   Reference

BLS 114
BLS 132

BLS 1017

ENR U.S. Average

BLS 1149

BLS 117

ENR Building Cost

$/Sq Ft
Numerical
  Value

  330.2
  343.3

  357.4

  401.8

  354.2

  261.2

  378.2

  150.0

  296.7

  412.4

-------
 I
1

-------
                                   TABLE 7-3

            GENERAL ASSUMPTIONS USED IN DEVELOPING TREATMENT COSTS
Electric Power

Labor - Small System Sizes «100,000 gpd)
        Large System Sizes (>100,000 gpd)

Diesel Fuel

Natural Gas

Sitework

Contractor's overhead & Profit


Contingencies

Engineering & Technical Fee



Interest Rate

Number of Years
$  0.086/Kwh

$  5.90/hr
$ 14.30/hr

$  0.80/gal

$  0.0027/scf

15% of construction costs

12% of construction costs
     (including sitework)

15% of construction costs

15% of construction costs
     (including sitework &
      contractor's O&P)

10%

20

-------
I
E

-------
     Capital and  operating  costs  for the contactor, initial carbon charge and
backwash pumps  were estimated using  the cost model and  manuals  cited above.
These costs .were..based .on...facility....size .and..were independent of "the SOC being
considered.  A  spreadsheet  was used to develop the carbon replacement/regene-
ration costs for  each  SOC based  on its usage rates.  Costs from the model and
spreadsheet were  then  added to obtain the  final  facility costs.   The overall
approach  to developing  GAC  facility costs  is  explained  in  the flow-chart
illustrated in Appendix E.
     The design parameters used  to estimate the costs  for contactor, carbon
charge and backwash pumps are shown  in  Table 7-4.   The following assumptions
were used for design purposes:
       -  The  contactors were  sized  to provide  an  empty  bed  contact  time
          (EBCT) -• of  7.5  minutes  at the  design  flow,  but  would   have  an
          operating EBCT of greater than 15 minutes based on the average flow,
 '         except  for the  last three flow categories.                          ~~
i
       -  Systems with a  design flow  of  less than 1 MGD used package,  pressure
          contactors.
       -  Systems  with  a  design  flow  of   1  MGD  -  11 MGD  used   pressure
          contactor.
       -  Systems with a  design  flow larger than 11 MGD used concrete gravity
          contactors.
       -  Housing requirements assumed contactors were totally enclosed,  with
          additional  area  for pipe  galleries  and operating  and maintenance
          service area.
      • -  Electrical  energy  for  building  heating,  cooling, ventilation  and
          lighting was 25 Kwh/sq  ft of building area per year.
       -  Maintenance  material  costs were  estimated  for general  supplies,
          pumps,  instrumentation  repair,  valve  replacement or   repair,  and
          other miscellaneous work  items.
       -  Costs for  land, raw water pumping, chlorination,  bulk potable water
          storage,  finished water pumping  and waste disposal were not includ-
          ed.
     The individual  capital and  O&M  costs  for  the  contactors,  initial carbon
charge and backwash pumps are presented  in Table 7-5.
     The following  assumptions were  used  for estimating  the  carbon   replace-
ment/regeneration costs:

-------
       -?  Carbon  usage rates were  developed using model  predictions for the
          specific SOC in distilled water.  These carbon usage rates were then
          adjusted by the following multiplier function:

                         Y . 0.7443 X -°'5165
                                                                      i
               where:    Y = multiplier
                         X = Distilled carbon usage rate  (lbs/1000 gal)

          The multiplier function was  used in such a manner that the adjusted
          carbon  usage  rate was equal  to the multiplier  times  the distilled
          water  carbon  usage  rate.   The  adjusted  carbon  usage  rate  were
          presented in Table 4-5.

       -  If  the carbon demand  (calculated  based on  carbon  use  rate  and
          average flow)  was  less  than  1,000 Ibs/day,  the spent  carbon  was
          replaced at breakthrough.

       -  If  the carbon demand  (calculated  based on  carbon  use  rate  and
          average flow)  was  greater than 1,000 Ibs/day,  the  spent  carbon was
          regenerated on-site.

       -  On-site  regeneration  utilized  a  multiple-hearth  furnace.   The
          furnace was oversized  by 30 percent to account  for downtime.   The
          maximum capacity  of   a  single  furnace  was  80,000   Ibs/day.   For
          capacities greater  than 80,000  Ib/day,  two  or more  furnaces  were
          used.  Carbon handling losses were assumed to be 15 percent.

       -  Cost of GAC was $l/lb.

     As indicated in  Table 7-5,  the base  capital  and O & K  costs  for carbon
contactors are mainly dependent upon flow.   However,  the cost of replacing or
regenerating  the  carbon must be  evaluated to  determine its  impact  on  the

overall cost  of  the contactor.  In  order to  determine  the impact of  carbon
replacement/regeneration on  the  total  cost, a  relationship  was  developed
between total production cost and carbon  usage  rate for  each flow category.

These relationships are presented in Figures  7-1,  7-2,  and 7-3.   As indicated
on these figures, there is  little variation in the total production costs when

the carbon usage rate is below 0.1 lbs/1,000 gallons.  There are  also distinct

ranges above  0.1  Ibs/gallons where the  total  production costs  does  not  vary
significantly.

     Based on  the cost  analysis  discussed above, it  is possible  to provide
costs for SOCs grouped according to their usage rates.  GAC facility costs for
usage rates from less than  0.1 lb/1,000 gallons up to 2.0 lb/1,000 gallons are

presented in Table 7-6.  The cost for  the individual  SOCs based  on  the carbon

usage rates in Table 4-5 are included in Appendix F. '
1

-------
        Table 7-4
GAC System Design Parameters
Population Range
Design Flow (HGD)
Average Daily Flow
(MGD)
25-100
0.024
0.0056
101-500
0.087 •
0.024
501-1,000
0.27
0.086
1,001-3,000
0.65
0.23
3^^10,000
0.7
10,001-25,000'
4.8
2.1
25,001-50,000
11
5
50,001-75,000
18
8.8
75,001-100,000
26
13
100,001-500,000
51
27
00,001-1,000,000
• 210
120
>1, 000, 000
430
270

Contactor Type
Package Pressure
Package Pressure
Package Pressure
Package Pressure
*.
Pressure

Pressure
Pressure
Concrete Gravity
Concrete Gravity
— — --.
Concrete Gravity
Concrete Gravity
Concrete Gravity
EBCT (min) Number Volume of Area of Total
Design Operating Units (cu.ft) (sq.ft) 
50
180
570
1350
1000

1670
1670
9000
9000
10000
10000
10000
Number of
Backwash
Pumps
1
1 '
1
1
2

2
2
2
2
2
6
8

-------
I
D

-------
                                                           Table 7-5
                                      Base Costs for GAC Contactor, Carbon Charge and Backwash Pump
Population Range
Design Flow (HGD)
Average Daily Flow
     (MGD)
                                  Construction Cost ($}            Total               (2)         O&M Cost ($/yr)
                          	    Construction    Capital     	
                          Contactor   Carbon Charge   BU Pump      Cost  (S)      Cost ($)    Contactor   BW Pump     Total
       25-100
        0.024
       0.0056

      101-500
        0.087
        0.024

    501-1,000
         0.27
        0.086

  1,001-3,000
         0.65
         0.23

 3,001-10,000
          1.8
          0.7

10,001-25,000

          2.1

25,001-50,000
           11
            5
                       310000
                       730000
                                                               44000        87000
                                                               67000        140000
                                                              110000       220000
                                                              180000       370000
                                                                                                                1500
                                                                                                                1900
                                                                                                                2700
                                                                                                                4000
                                        38000     59000       410000         670000       36000       700       37000
                                            97000     72000       900000       1500000         47000       1200      48000
                      1600000          200000     72000      1900000      3100000         73000       3000      76000
    50,001-75,000
               18
              8.8

   75,001-100,000
               26
               13
                      1500000          320000    170000      2000000      3300000         52000       3000      SSOOO
                      1900000          460000    160000      2500000      4200000         65000       3500      69000
  100,001-500,000
               51
               27
J
 500,001-1,000,000
              210
              120
t
         ,000,000
             430
             270
                      3200000          880000    180000      4300000      7200000        110000       4100     110000
                      9400000         3300000   410000      13000000     22000000        410000      10000     420000
                     17000000         6600000     500000     24000000     43000000        820000      19000     840000

-------
I
c
e
Q

-------
I



o



























x








CM. KJ •<*•
III
s! Ef Gf



























/































J
/
/
/





















.













'
|
1
1
fl

/
/
/







































































































FIGURE 7-1
O































































X



































-'''

































*





















\
i
f

i

i
i
i
•t
i
i
i





^

































/
•*
^



























4
*
•
:
i
•
t
/

r










i
i
i
.

.

I









|
/
/
'

















































0 1 0.1 0.01 O.C
USAGE RATE (LBS./1000 GALLONS)
TOTAL COSTS vs. USAGE RATE
FLOW CATEGORY Nos.i-4
ooooooooo
[gpoooooo
j^ oo^fs-toin^inN'-
P (SN011VO 0001/S1N30) 1SOO TV101

-------
1
.B
i

-------
[



in
o




































vo } r^ oo i
£ • £ ? 1
O O O ,
d \ c! c! !































































— ^^


































, — '
























—










. —



































* — -



































^^








-•

























^
^






























/
/
s


t
«













. .- .



-m,





i
i
i

/
/

§
f
€
*
r f
S








i

















\
I
•
i
i
i "
1 f
/ ^
/ t


i
f








1


















I
















FIGURE 7-2
0
O
*
O
o CO I
^D ^^ 5*^
^5 ^^
^ IO
O M •
§ |£
o co > 2
§ -E|
ti 0 U
2 S§
LU -<* i-3
O H fe
- CO H
o
o o o o o o o*~
o m o m o m
J fO C"J CM *- *-
f (SN011VO 0001/S1N3D) 1SOO 1V101

-------
i
e

-------
                                         FIGURE 7-3
 cn

 §
1
CM





O
                      Si
                        o
                        CM
                                 O
                                 O
                                 O
                                  *

                                 O
                                    O

                                    o
                                    o
                                    o
                                    CO
                                    m
                               LJ


                               o:

                               LtJ



                             - CO
(SN01TV9 OOOl/SifsGO) 1SOO IVlOi
                                      3?
                                      ivi Ol
                                      8 R
                                          a

-------
I
D
I

-------
                                         TABLE  7-6
WE II CARBON USAGE COSTS
^r 	
Population Range
Design Flow (MGD)
Average Daily Flow (MGD)

Carbon Usage Kate
25-100'
0.024
0.0056


101-500;
OAB7
.087
0.024
	
501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10.000
• 1.8
..0.7

10,001-25,000
4.8
I . 2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.U
8.8
•_
75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0
1
500,001-1,000,000
210.0
120.0
• •

> 1,000, 000
430.0
270.0
:;i

Ubs/1,000 gallons)
•"—•"• "" ™«— —w™C
Total Capital Cost (KS)
O&N Cost (KS/year)
Total Production Cost
	 	 £.*•*•**'«/ 1 - flflfl Mtti \
vCcniS/ i.uwv gai /
- Total Capital Cost (KS)
•" O&M-Cost" (KS/yeary
... Total Production Cost .
(cents/t.OOO gal)
Total Capital Cost (KS)
O&N Cost (KS/year) .
Total Production Cost
(cents/1,000 gal)
Total Capital Cost <«)
O&M Cost (KS/year)
Total Production Cost •
(cents/1,000 gal)
•Total Capital Cost (KS)
... .MM Cost (C$/year)
"'Total' Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost.(KS)
O&X Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost 
O&N Cost (KS/year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&N Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost

< 0.1

" 	 87
2
600

140
^
— 	 3
220
- •
220
6
100

370
12
66

650
72
58

1800
as
39

3500
160
31

3700 .
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

0.1-0.3.
87
2
600

140
M
4| —
230
	
220
9
110

370
21
77

- 700 -
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
' 10

0.3-0.6
^^^ ^^^^^
87
3
650

140
260

~ 220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

0.6-0.8
JESSES!! S3 EE 3 8 !
87
3
650

140
280

220
25
160

370
63
130

1000
120
93

2600
180
63

4600
370
50

4800
560
35

6200
760
31

10000
1400
26

28000
5800
21

50000
13000
19

0.8-1.0
87
4
700

140
«n
1U
300

220
31
180

370
80
150

1200
140
110

2900
220
73

5000
450
57

5300
680
41

6700
940
36

11000
1800
31

29000
7400
25

52000
16000
22

1.0-1.3
87
4
700

140
«*J
l£
320

220
39
210

370
100
170

1500
160
130

3400
260
86

5700
540
66

5900
830
47

7300
1200
43

11000
2300
36

30000
9200
29

54000
20000
27

1.3-1.5
87
5
740

140
•
350

220
46
230

370
120
190

1800
180
150

4000
300
100

6300
630
75

6600
980
55

8000
1400
49

12000
2700
42

32000
11000
34

55000
24000
31
mmm

1.5-1.8
87
5
740

140
4 f
lo
370

220
54
250

370
140
220

2200
200
180

4700
340
120

7100
720
85

7400
1100
61

8800
1600
56

13000
3200
48

33000
13000
39

57000
28000
35
•••

1.8-2.0
87
6
790

140
«fl
10
390

220
62
280

370
160
240

2700
210
210

5500
380
130

8000
810
96

8300
1300
71

9700
1800
62

14000
3600
53

35000
15000
44

59000
32000
40
^M

-------
 I
II

-------
Pjcke^Column Aeration       .
     .The major components of a packed column aeration facility are:

       -  Column structure
       -  Internals                                     .
       -  Packing
       -  Blower(s)
       -  Clearwell
       -  Booster pump(s)
       -  Piping                          .          •

     In  addition,  there may  be other  site-specific capital  cost components

such as:     .  .      .
     	 Special sitework
       -  Raw water holding tank
       -  New/restaged well pump
       -  Blower building
       -  Booster pump building
       -  Chemical facility
       -  Noise control installation
       -  Air emissions control

The  key  design criteria  used  to  size  the packed  column  facilities  are
presented  in Table  7-7.   The  following  assumptions  were  utilized for  the
purpose of developing preliminary packed column cost estimates:

       -  Henry's Law  Coefficients for  16 SOCs  are presented  in Table 7-8.

          The henry's coefficients for heptachlor and  toxaphene  have not been
          proven in  pilot  sutdies.   Additional data is required before these
          compounds can be classified as definately strippable.


       -  Tower  design was  based on a  maximum  liquid  loading  rate  of  30
          gpm/sf, and a minimum air pressure drop gradient of 50 Nm  m  .


       -  The maximum packed tower diameter was  16 feet.   Multiple units were

          used  in  instances  where  a  diameter  greater  than  16 feet  was
          required.
       -  A dumped packing material was used.


       -  Column shell was  constructed of 1/4 inch 304  stainless  steel walls

          with 1/2 inch thick by 3-inch wide flanges.
                                     7-5

-------
I
       -  Column  internals  included  one support plate, one liquid distributor
          and redistribution rings and were placed.every two meters of packing
          height, all of which were constructed of 304 stainless steel.

       -  Also  included  were the  blower,  a  concrete  clearwell on  which the
          column  was mounted,  pumping  {200  feet  TDK)  to the  distribution
          system, piping and valves, instrumentation and electrical work.

       -  Operating  costs  for pumping  is only  for the  headloss  due  to the
          packed tower.  Power usage was adjusted by a motor size-up factor of
          25 percent, motor efficiency  of  80 percent and a pump efficiency of
          80 percent.

       -  Operating  costs  included for  the  blower were  based on  70  percent
          motor efficiency,  50 percent  fan  efficiency  and 25 percent motor
          size-up.

       -  Labor operating  costs  were estimated  on a  fixed $0.003  per 1,000
          gallons.  Annual maintenance labor and material costs were estimated
          to be 10 percent of the pump and blower capital  costs and 4  percent        _
          of the nonmechanical equipment.  Administrative costs were estimated
          to be  20  percent  of the  operating labor  plus  25  percent   of  the
          maintenance cost.

       -  No costs were  included  for housing or treated water storage, other
          than the clearwell under the packed column.

     The  capital,  operation  and  maintenance,  and   total   cost   for  each
influent/effluent  combination  for   each   volatile  SOC   are ..presented  in
Tables 7-9 to 7-24.  The costs for heptachlor  and toxaphene should  be  used as
an  estimate,  as  the compounds  have  not been  determined to be  definately
amenable to packed column aeration.  Also included are the costs for stripping        ™
tetrachloroethylene from water supplies.
     The parameters  used in  developing  Tables 7-9 to  7-24 are presented in
Appendix G.  The costs in Appendix G were broken down as follows:
Q

-------
Note:
                                   TABLE 7-7

                        PACKED COLUMN DESIGN PARAMETERS
          Ground water temperature

          Column shell construction

          Packing Material

          Air Well

          Maximum column diameter

          Maximum liquid loading

          Minimum Air Gradient

          Safety factor for Henry's coefficient   1.1

          Safety factor for K a                   1.1
12 Degrees C

304 stainless steel

1 inch plastic saddles

Concrete

16 ft
30 gpm ft

SON m  m
     1.   Safety factor is applied to henry's coefficient estimated using
          pilot data.

-------
I

-------
                                   TABLE 7-8

                       HENRY'S LAW COEFFICIENTS USED TO
                     ESTIMATE EQUIPMENT SIZE AND COSTS FOR
                            PACKED COLUMN AERATION
                                                                      tc
         Compound

monochlorobenzene
cis-1,2-dichloroethylene
dibromochloropropane
ethylene dibromide
ethyl benzene
m-xylene
o-dichlorobenzene fj>
o-xylene
p-xylene
sytrene-
trans-1,2-dichloroeth~ylenei3o
tetrachloroethylene
toluene      ?c "7 9n
1,2—dichloropropane
             . P.
                              Henry's Coefficient
                                     (atm)
                                                            Source
                                                                  (1) (2)
                                                 Pilot at Riviera Beach, FL
                                                 Pilot at 10 field sites
                                                 50%(vapor pressure/solubility)
                                                 50%(vapor pressure/solubility)
                                                 Pilot at Bastrop, LA
                                                 Pilot at Bastrop, LA
                                                 Pilot at Dedham, MA
                                                 Pilot at Bastrop, LA
                                                 Pilot at Bastrop, LA
                                                 50%(vapor pressure/solubility)
                                                 Experimental Data
                                                 Field data
                                                 Pilot at Bastrop, LA
                                                 Pilot at Dedham, MA.
                                                 Experimental data. .
                                                 Experimental data

Notes :
     1.
     2.
     3.
             Henry's constant estimated from vapor pressure and solubility data
             used a safety factor of 50 percent (Cummins, 1988) .

             Henry's Law Coefficient estimated from pilot testing were reported
             by Cummins and Wes trick (1987) .

             Henry's coefficient based on experimental data (Warner, Cohen, and
             Ireland, 1980).  Adjusted to reflect henry's coefficient at 12 C.

-------
I

-------
                                             TABLE  7-9
Estiaated Cost  for Rtaoving Nanochlorobenzene Using Packed Coluan  Aeration - March 19B9
ystea Size Category
ilation Range s=sss±===:
ign FMfcLIGD)

100. ug/L
Influent


600. ug/L

jg
1000. ug/L
.'srage ^^vFloit 	 : 	 - - ••
(HBO)


25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.2?
0.086

1,001-3,000
0.65
0.23

3,001-10,000
^^ i.B
•M>.70
^^
10,001-25,000
4.8
I 2>1
'
25,001-50,000
11.
5.0

50,001-75,000
18.
8.B

"5,001-100,000
26.
13.

10,001-500,000
51.
27.

.-ujOOl-1,000,000
210.
120.

,000
430.
270.

Effluent (ug/L) Effluent (ug/L)

Percent Reaoved
Total Capital Cost :$/Year!
Tata I Production Cost
(cents/1.000 gal)
60.
40.
15.
0.2
98.

27.
0.7
44.

42."
1.4
20.

65.
3.0
13.

120.
7.8
8.4

230.
21.
6.4

460.
50.
5.7

710.
86.
5.3

990.
130.
5.!

ISC
240.
4.8

6500.
1200.
4.5

13000.
2900.
4.4

100. 400. 60.
90.
— 	 22.
	 0.4
150.

	 41.
	 1.2
	 . - — 69.

69.
2.6
34.

	 no.
5.5
22.

	 210.
	 14.
	 . 15.

	 440.
	 33.
	 12.

— 	 880.
	 	 g9.
11.

	 1400.
150.
9.9

2000.
220.
	 9.6

	 3800.
460.
	 9.1

	 14000.
	 2000.
8.5

	 23000.
	 4600.
	 3.1

100.
83.
20.
0.4
130.

33.
1.1
62.

60.
2.3
30.

96.
4.6
19.

180.
13.
13.

380.
34.
10.

750.
79.
9.1

1200.
130.
8.5

1700.
200.
9.3

3100.
400.
7.8

12000.
1800.
7.3

23000.
4100.
7.0

400.
33.
15.
0.2
96.

27.
0.6
43.

41.
1.4
20.

62.
2.9
12.

110.
7.5
3.0

220.
21.
6.1

430.
49.
5.4

670.
84.
5.1

940.
120.
4.9

1700.
250.'
4.6

6100.
1200.
4.4

12000.
2BOO.
4.2

Effluent (ug/L)
60.
94.
24.
0.5
160.

45.
1.3
75.

76.
2.9
33.

120.
6.1
25.

240.
16.
17.

500.
42.
13.

1000.
99.
12.

1600.
170.
11.

2300.
250.
11.

4400.
510.
10.

17000.
2300.
9.6

33000.
MOO.
?.l

100.
90.
22.
0.4
I'M.

41.
1.2
69.

68.
2.6
34.

110.
5.5
22.

210.
14.
15.

440.
3D.
/-T27)
-. 	 -•
880.
89.
11.

1400.
150.
9.9

2000.
220.
9.6

3300.
465.
9.1

14000.
2000.
3.5

23000.
4600,^
i S.ly
" — '
400.
60.
17.
0.3
110.

31.
0.8
51.

48.
1.7
23.

74.
3.5
15.

140.
9.2
9,9

2SO.
25.
7.5

550.
58.
6.7

960.
.99.
6.2

1200.
150.
6.1

2200.
300.
5.7

3100.
1400.
5.4

16000.
3200.
5.2


-------
1
B
D

-------
                                           IrtBLE 7-10
Estiaated Cost  for Removing ds-i,2-Dichloroetbylefje Using Packed  Coluen Aeration - March 1939
Systei Size Category
Copulation Range
)esigi^||u (I16D)

50. ug/L
Effluent (ug/L!
5.0 70. 100.
Percent Re»oved 90.
25-100 Total Capital Cost (K$) 21. 	 , 	
0.024 OSH Cost (.X*/Year)
0.0056 Total Production Cost
(cents/1,000 gal)
101-500 Total Capital Cost (K»)
| 0.087 Old Cost (K*/Year)
0.024 Total Production Cost
(cents/1,000 gal)
501-1,000 Total Capital Cost |K$)
0.27 . 0$« Cost (K$/Year)
0.086 Total Production Cost
(cents/1,000 gal)
1,001-3,000 Total Capital Cost (K»)
0.65 DM Cost (K*/Year)
_ 0.23 Total Production Cost
(cents/1, 000 gal)
3,001-10,000 Total Capital Cost (K$)
^^ i.l Q&« Cost {«/Year)
^fe 0.70 Total Production Cost
^^ (cents/1,000 gal)
10,001-25,000 Total Capital Cost (K$)
4.8 m Cost (Kt/Year)
i 2.1 Total Production Cost
' (cents/1,000 gal)
25,001-50,000 Total Capital Cost (X*)
11. OM Cost (K*/Year)
5.0 Total Production Cost .
(cents/1,000 gal}*
50,001-75,000 Total Capital Cost (K»)
• IB. DM Cost (K*/Year)
3.3 Total Production Cost
(cents/1,000 gal)
: 75,001-100,000 Total Capital Cost (K*|
26. Did Cost (KI/Year)
13. Total Production Cost
(cents/1, 000 gal)
100,001-500,000 Total Capital Cost (K»)
51. Oi« Cost (K$/Year)
27. Total Production Cost
(cents/1,000 gal}
^0, 001-1, 000, 000 Total Capital Cost (K$)
210. OM Cost (KVYear)
120. Total Production Cost
^^ (cents/1,000 gal}
^•KMOO Total Capital Cost (*:$)
430. OM Cost (IWYear)
270. Total Production Cost
• {:=nts/l,00") ?sl)
I
0.4
/•140. 	
'~-
39. 	 --
1.1 	 	
66. 	 —

64.
2.4
32. - 	 -

100. 	
5.1
1A _»_ ____
tv, • ~« ™-

200. 	
13. --'-- 	 .
14. 	

400. 	
35.
c— •- 	
900.
Q? • __.-,_ ____
gj» -— „„
97 ____ ____
• / __._ ™-

1300.
140. 	
9.1 	

1800. 	 —
210. 	 :
8.8

3400. 	 	
430. 	
8.4 	 i~
13000. 	
1900.
7.8 	

2*000. 	
4300._ 	
7_i) 	 	




Influent
100. ug/L


Effluent (ug/L)
• 5.0
95.
24.
0.5
160.

44,
1.3
73.

73.
2.8
36.

120;
5.9
24. .

230.
15.
17.

480.
41.
13.
960.
95.
11.

1500.
160.
11.

2200.
240.
10.

4100.
490.
9,8
16000.
2200.
9.1

31000.
4900.
3.7


70. 100.
30. .
15.
0.2
94. -~-

26.
0.6
42,

40.
1.3
19.

60.
2.B
12.

110. 	
7.3
7.9

210.
20.
5.9
420.
4B.
5.3

650.
82.
4.9

910. 	
120.
4.8

1700. 	
250.
4.5
5800.
1200.
4.2 —

11000.
2700.
'4.1 	


5.
97.
. 26.
0.
170.

48.
i.
81.

B2.
3.
41.

130.
6.
27.

260.
17.
19.

550,
43.
14.
1100.
110.
13.

1800.
180.
12,

2500.
270.
12.

4BOO.
540.
11.
13000.
2400.
10.

37000.
5400.
?,



200. ug/L


Effluent (ug/L)
0 70.
5 65.
17.
5 0.3
110.

31.
4 O.B
51.

48.
1 1.7
23.

75.
6 3.5
15.

140.
9.2
9.9

280.
25.
7.5
550.
58.
6.7

B60.
100.
6.2

1200.
150. .
6.1

2200.
300.
5.7
B200.
•1400.
5.4

16000. 1
3200.
? 5.2


100.
50.
16.
0.2
100.

23.
0.7
w.

44.
1.5
21.

67.
3.1
13.

120.
B.I
8.7

240.
22.
3.6
430.
52,
5.9

750.
89.
5.5

1000.
130.
5.3

1?00.
270.
5.0
6900. -
1300.
4.7

3000.
2900.
4.6

••

-------
1
D

-------
                                      TABLE  7-11
Estimated  Cost for Removing DibroBochloropropane Using Packed Column iteration - March 1989
S^^Size Category
pflHion Range
Design Flo* (MBD)
i Average Daily Flon
! (HBO)


25-100
0.024
, 0.0056
i
101-500
0.087
0.024

501-1,000
0.27
0.036

1,001-3,000
0.65
0.23
^^
|^p)01-10,000
* i W
0.70

i 10,001-25,000
1 4.8
2.1

25,001-50,000
11.
5.0

50,001-75,000
18.
- 8.8

75,001-100,000
26.
13.

100,001-500,000
51.
5 27.

500,001-1,000,000
•• 210.
125.

M.OC'O.OOO
~ '. V r
' " ? •'.
1
2.0 ug/l
j

' ! v-^_



Effluent (ug/L)

Percent Reaoved
Total Capital Cost !K»)
Q&H Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost («)
OiM Cost <»/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiK Cost CKI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
OU Cost (KI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K*l
QJfl Cost (K$/Year)
Total Production Cost
lcsnts/1,000 gal)
Total Capital Cost (K$)
QiH Cost (K*/Yeer)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
QiN Cost (Itt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (ft)
QiH Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
DSH Cost ! KI/Year )
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
m Cost (Kt/Year)
Total Production Cost
(cents/1, C'OO gal)
Total Capital Cost {«)
Q4H Cost (M/Yearj
Tstal Prsductisn Cc-st
scs-sts/i.OOO gai)
T-zta: :api:3! rsst (.'•:»)
"V. 'lest 'Jil/Yssf
T...I :r,. r"i-^ ,'-s«
..,,., - • •;, .._•'.

0,10
95.
46.
1.4
330.

94.
3.9
- 170.

190.
9.9
100.

370.
22.
79.

250.
62.
S3,

2200.
170.
56.

4800.
390.
53.
,
7900.
660.
49.

11000.
960.
48.

22000.
1900.
46.

87000.
3200.
42.

1:0000.

--

-0.20
90.
40.
1.2
290.
.J^tx*.' ^*
79.
3.2
140.

160.
8.0
85.

300.
18.
63.

670.
50.
50.

1700.
140.
J™*(st

3BOO.
320.
42.

6100.
540.
39.

8800.
790.
38.

17000.
1600.
36.

67000.
6500.
34.

' 4000*''
13000.
?.
It
1.0
50.
24.
0.6
^ 160.
r s
0.20
96.
48.
1.5
350.

99.
4.1
ISO.

210.
10.
110.

390.
23.
S3.

910.
65.
67.

2300.
190.
59.

5200.
420.
56.

8400.
700.
53.

12000.
1000.
51.

23000.
2000.
48.

93000.
6700.
45.

! QQ£u)rt
* £fifV|
-*

1.0
eo.
33.
0.9
230.

63.
2.5
110.

120.
6.2
65.

220.
14.
43.

490.
37.
37.

1200.
110.
32.

2700.
240.
31.

4400.
410.
29.

6200.
600.
28.

12000.
1200.
27.

47000.
5300.
25.

9e-"00
!2'JflO.
-*





Effluent (ug/L)
0.10
?9.5
67.
2.2
490.

140.
5.9
260.

310.
15.
160.

600.
35.
130.

1400.
97.
100.

3700.
270.
92.

B300.
620.
37.

14000.
1000.
82.

19000.
1500.
80.

38000.
3000.
75.

150000.
13000.
69..

310C00.
Z7C00.
:*.

0.20
99.
61.
2.0
450.

130.
5.3
230.

270.
14.
150.

530.
31.
UO.

1300.
87.
92.

• 3300.
240.
31.

7300.
550.
77.

12000.
930.
72.

17000.
1300.
70.

33000.
2700.
66. .

130000.
11000.
61.

2700QO.
24000.
ii_

1.
95.
46.
1.
"330.

94.
3.
170.

190.
9.
100.

370.
22.
78.

S50.
62.
53.

2200.
170.
56.

4800.
390.
53.

7900.
660.
49.

11000.
960.
48.

22000.
1900.
-6.

=7000.
i200.
42.

1Sf<000.
1S000.
"

0


4
•-


9



9







































-------
 I
IS
i

-------
                                             TABLE  7
Estiaated  Cost  for Removing Ethylene Dibroaide (EDB) Using
-  12
Packed Column Aeration  -  March 1989
Bystea Size Category
: uiation Range
! ign FJ^ftUtSD}
Average i^ff F!QM
(MED)
25-100
0.024
0.0056

101-500
' . 0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
£
10,001-25,000
4.8
] 2A
I
25,001-50,000
11.
5.0

50,001-75,000
18.
8.8
,
'75,001-100,000
26.
13.

00,001-500,000
51.
27.
,'U1, 001-1, 000,000
210.
120.

,000
430. '
27?.
Percent Reuoved
Total Capital Cost iKS)
Q4H Cost (KJ/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (KJ)
QiH Cost (K$/Year)
Total Production Cost
' {cents/1,000 gal)
Total Capital Cost (K*|
OJN'Cost (K$/Year)
Total Production Cost
(cents/1, 000 galf
Total Capitalist (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X$)
0&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K«)
DiH Cost (Kf/Yearj
Total Production' Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OM Cost {K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost !K»)
DSH Cost (fC$/Year)
Total Production Cost
(cents/1, 000 gall
Total Capital Cost (K*)
D&K Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost {.<*)
DM Cost (K$/Year!
Total Production Cost
(cents/1,000 gal) .
Total Capital Cost (K»)
Did Cost (Kf/Year)
Total Production Cost
(csnts/i.OOO gall
Total Capital Cost (;!i)
GW Cost i»'S/Year}
Tots! ?*D5!s:tic-r Cost
' ror.rc -'.iV"t " 1 } i
SSS~S±SS£±CSCSS«»~SSSSSSSSS5S5S5555~S
0.50 ug/L
Effluent (ag/L)
0.010
99.
39.
1.1.
2SO.

75.
2.7
130.

140.
6.5
75.

260.
14.
53.

570.
37.
40.
1300.1 •
100.
34.

3000.
240;
32.

4800. .
410.
30.

6900.
590.
29.

13000.
1200.
23.
52000.
5100.
26.

110000.
11000,
24.
0.050
90. -
30.
O.B
/'SlO. /
"^cr."
55.
1.9
96.

100.
4.5
52.

130.
9.3
36.

370.
26.
27.
350.
72.
fa..
^-'^
1900.
170.
21.

3000.
280.
20.

4300.
410.
19.

B200.
840.
"IB.
32000.
3600.
.17.

55000.
30V.O.
(•£*•
1.0 0.
99.
""""" vO t
1.
400.

110.
.... 7
VI
190.

220.
9.
110.

410.
22.
33.

	 920.
56.
64.
	 2200,
160.
55.

5000.
370.
52.

	 8000.
620.
48.

	 12000.
	 • 890.
47.
•
	 22000.
	 1800.
45.
	 68000.
7600.
41.

- — 180000.
- — 16000.
	 I?.
Influent
10. ug/L




Effluent (ug/L)
010 0.050
9 99.5
47.
6 1.3
• 330.

92.
9 3.3
160.

1BO,
9 S.I
93.

330.
18.
67.

730.
46.
51.
1BOO.
130.
44.

. '900.
300.
42.

6300.
510.
39.

9000.
730.
33.

17000.
1500.
36.
69000.
6300.
33.

140000.
14000.
:o.
1.0
90.
30.
O.B
210.

55.
1.9
96.

100.
4.5
52.

ISO.
' 9.8
36.

370.
26.
27.
S50,
72.
23.

1900.
170.
21.

3000.
280.
20.

4300.
410.
19.

- 9200.
S40.
IB.
32000.
3600.
17.

65000.
:000.
15.
0.
99.
64.
1.
460.

130.
4.
230.

260.
12.
• 140.

490.
25.
99.

1100,
66.
76.
2700.
190.
66.

6000.
430.
62.

9700.
720.
53.

14000.
1000.
57.

27000.
2100.
53.
110000.
S900.
49.

220000.
1=000.
5.5.
£ 5^ SSSSZSCSSSS S s™*« -
50. ug/L
Effluent
010 0.
93 99.
56.
6 1.
400.

110.
7 3.
190.

220.
9,
110.

410.
22.
S3.

920.
56.
64.
2200.
160.
55.

5000.
370.
. 52.

aooo.
620.
48.

12000.
890.
47.

22000.
1900.
45,
58000.
7600.
41.

120000.
1:000.
33.
(ug/L)
050 1.0
9 98.
39.
6 1.1
2BO.

75.
9 2.7
130,

140.
9 6.5
75.

2£0.
14.
53.

570.
37.
40.
1300.
100.
34.

3000.
240.
32.

4800.
410.
30.

6900.
590.
29.

13000.
1200.
23.
52000.
5100.
26.

110000.
11000.
• 24.

-------
I
13
i
i

-------
                                             TABLE  7-13
Estisated  Cost for Reioving Ethylbeniene Using Packed  Coluan Aeration - March  1989
Jystei Size Category
: illation Range
- ip U^HO}
iverage^HP Flow
(HOD)

Percent Hetoved
25-100 Total Capital Cost (K*)
0.024
0.0056

101-500
0.03?
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65.
0.23*

3,001-10,000
^^ 1.8
^Bc.70
^^
10,001-25,000
4.9
1 2<1
•
25,001-50,000
11.
5.0

50,001-75,000
18.
8.8

75,001-100,000
26.
13.

)0,001-500,000
51.
27.

."7,001-1,000,000
210.
120.

,000
*30.
279.
m Cost (Ki/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost {«)
0£M Cost (K$/Year)
Total Production Cast
(cents/1,000 gal)
Total Capital Cost (!C$)
OiB Cost (K$/Yearj
Total Production Cost
(cents/1, 000 gait
Total Capita] Cost {K*)
OH! Cost (K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (K$)
OIK Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cost (K*/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (Kt)
0&« Cost {K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q«l Cost (KWYear)
Total Production Cost
(cents/1,000 gal]
Total Capital Cost (SCt)
04M Cost (Kt/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital CosHKJ)
QiH Cost < Kt/Year )
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiH Cast (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost («)
CWJ Cost fK$/Yesr)
Total rroiuctisn Csit

Influent

100. ug/L 700. ug/L
Effluent (ug/L)
50. 700.
50,
15.
0.2.
99.

28.
0.7
45.

43.
1.4
21.

66.
3.0
13.

120. 	
7.9 	
8.5

240.
22. — r
6.5

460.
51.
5.8

720.
87.
5.4

1000.
130.
5.2

1900.
260. 	
4.9

6700.
1200. 	
4.6

13000, 	
2900.
4.5 	
Effluent (ug/L)
BOO. 50. 700. SOO.
92.9
21.
0.4 	
	 (J40. 	

40. 	
i.o 	
66. 	 —

65.
T 7 ____ *»
™~~ *.«J
32.

100.
4.8
20. 	

	 200. 	 	
	 12. 	 	
	 14. 	 	

400.
33.,.. 	
AC'.- 	

300.
76. 	
9.3 	 —

	 1300. 	
130. 	 -
8.7 	

1800.
190. -- 	 -
1

3300. 	
390.
	 7,5 	 	

— - 12000. 	 "
1800. 	
7.4 	

- — 24000. 	
4100., 	 -
	 /Tjj 	 	

50.

1000.
Effluent
700.
ug/L
(ug/L)
BOO.
95. 30. 20.
22. 14. 14.
0.
150.

43.
1.
70.

49.
2.
34.

110.
5.
22.

210.
13.
15.

430.
35.
11.

360.
31.
9.

1400.
140.
9.

1900.
200.
9.

3600.
420.
B.

13000.
1900.
7.

27')00.
4 TOO.
7
4 0.
93.

26.
1 0.
42.

40.
4 1.
19.

59.
1 2.
12.

no.
7.
~i

210.
20.
5.

410.
47.
9 5.

650.
82.
3 4.

900.
120.
0 4.

liOO.
250.
5 4.

5800.
1200.
9 4.

11000.
2700.
5 4.
2 0.2
91.

25.
6 0.6
41.

39.
3 1.3
19.

57.
8 2.7
11.

100.
3 7.1
7 7.4

200.
20.
9 5.7

400.
46.
3 5.1

620.
79.
9 4.7

S60.
120.
7 4.6

1600.
240.
5 4.3

5500.
ilOO.
2 4.1

moo.
2700.
1 4.0

-------
I
I

-------
                                           TABLE 7-14
Estiaated Cost for Reioving i-Xylene Using Packed Coluun Aeration -  March 1989
Systea Size Category
;pulation Range
'sign^^k(HSD)
Average^^y Flow
(H6D)







Percent Reaoved
25-100 Total Capital Cost (K*)
0.024
0.0056

101-500
O.OB7
0.024

501-1,000
0.27
0,086

1,001-3,000
0.65
0,23

3,001-10,000
• 1.8
0.70

10,001-25,000
4.8
1 2.1
1
25,001-50,000
11.
5.0

50,001-75,000
IB.
B.B
.
' 75,001-100,000
26.
13.

100,001-500,000
51.
27.
*
:CO, 001-1, 000, 000
210.
120.

00,000
'
.70.
Q4H Cost (K$/Year!
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K*!
Q&H Cost (K$/Year)
Total Production Cost
(cents/1,000 sal)
Total Capital Cost (K*)
O&H Cost !K$/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost {»)
Q4« Cost (K*/Year)
Total Production Cost
(cehts/1,000 gal)
Total Capital Cost (W
OJ« Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OUI Cost (tt/Year J
Total Production Cost
(csnts/1,000 gal!
Total Capital Cost (K$)
Q4fl Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cast (K$)
O&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K*)
DiH Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost 
Influent

20000.

Effluent
12000.
' 40.
15.
.4 0.
97.

27.
.2 0.
43.

42.
.6 1.
20.

63.
.5 2.
12.

110.
7.
3.

220.
21.
6.

440.
49.
5.

690.
84.
.8 5.

960.
120.
.6 5.

1300.
260.
.0 4.

6300.
1200.
.4 4.

12000.
ISOO.
. 0 J .
ug/L

(ug/L)
15000.
25.
14.
2 0.2
92.

26.
6 0.6
41.

39.
4 1.3
19,

58.
9 2.7
11.

100.
6 7.2
2 7.6

- 210.
20.*
2 5.8

410.
47.
5 5.2

630.
81.
1 4.B

330.
120.
0 .4.7

1600.
250.
7 4.4

5700.
1200.
4 4.2

11000.
:7co.
3 4.0





1000.
98.
26.
0.
170.

49.
1.
32.

33.
3.
41.

130.
6.
27.

260.
17.
13.

530.
44.
14.

1100.
100.
12.

1700.
170.
12.

2400.
260.
11.

4500.
520.
11.

17000.
2400.
10.

34000.
5300.
7.


50000.

Effluent
12000.
76.
18.
5 0.
120.

33.
4 0.
54.

53.
1 1.
25.

82.
5 3.
16.

150.
9.
11.

310.
27.
8.

610.
61.
7.

960.
100.
6.

1300.
150.
6.

2500.
320.
6.

9100.
1500.
5.

12000.
T-00.
•4 ;.


ug/L

(ug/Lj
15000. .
70.
17.
3 0.3
110.

32.
s o.e
51.

50.
a 1.7
24.

77.
8 3.5
15.

140.
7 9.1
10.

290.
25.
2 •' 7.7

570.
58.
2 6.3

890.
99.
8 6.3

1200. .
140.
6 6.1

2300.
•300.
2 5.3

3400.
'1400.
3 5.4

140JO.
320C.
i 5.:

-------
I
e

-------
                                            TABLE 7  -  15
Estimated  Cost for Reaaving o-Dichlorobenzene Using Packed  Column Aeration - March 198?
Systsi Size Category
pulaticn Range
signJ^(MGD)
AveragHBMy FIoH
(MfilT
1 -

25-100
0,024
0.0056

. 101-500
1 0.087
0,024

501-1,000
0.27
0.086

1,001-3,000
0.65
L 0.23

3,001-10,000
^_^ i.S
^fc 0.70
^^
10,001-25,000
4.3
i 2.1
*

25,001-50,000
11.
5.0

50,001-75,000
IB.
8.8
,
"75,001-100,000
26.
13.

00,001-500,000
51.
27.

.,1,001-1,000,000
210.
120.
^•k
^^P>,ooc>
430.
• 270.

I
Percent Removed
Total Capital Cost (K$)
QU Cost (K*/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (Kf)
QSH Cost (KI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KJ)
m Cast (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OU Cost (Ks/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
04H Cost (K*/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
QiH Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
QW Cost Ut/Yeari
Total Production Cost
[cents/1,000 gal)
Total Capital Cost (K$)
O&K Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost !W
O&n Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
O&H Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost !**)
DIH Cost (K*/Year)
Total Production Cost
(cents/1, 000 ga!>
Total Capital Cost !«)
0*« Cast («/Ysar)
Total ?rc2>»ction C3St
•••:s«s/i.C-W cii)


100. ug/L
Effluent (ug/L)
50. 600. 800.
50.
17, --- -
0.3
110. -—.

31. 	 	
0.9
52.

48.
1.6
24. 	 	

75. — -- — —
3C ~ *. «...
,B - — -
15. 	 -

140. 	 —
10. 	 	
10.

2EO.
28. 	 	
8.0

560.
65.
7.2 	

BBO.
no. 	
6.7 	

1200. 	 	
160.
6.5

2300. 	 —
340.
4.2

3500. 	
1600. 	
5.8 	

17000. 	
TiiVl, 	 	
S.J, 	 	


==========

50.
92.9
28.
0.6
( 190.
v '-
51.
1.6
86.

SB.
3.6
45.

150.
7.7
30.

300.
20.
22.

650.
54.
,17.
°''
1400.
130.
16.

2200.
210.
15.

3200.
310.
14.

5000.
640.
14.

23000.
2300.
13.

47000.
£200.
£f.
^

Influent
700. ug/L
Effluent (ug/L)
600.
14.
15.
0.2
95.

27.
0.7
43.

39.
1.4
19.

59.
3.0
12.

110.
8.2
8.1

220.
23.
6.3

430.
53.
5.7

670.
92.
5.3

940.
140.
5.2

1700.
280.
4.9

6200.
1300.
4.6

12000.
3000.
i.5


===============

1000. ug/L
=======
Effluent [ug/LJ
800, 50.
95.
30.
0.7
210.

54.
1.7
	 92.

96.
3.9
48.

160.
8.4
	 33.

	 330.
	 21.
24.

710.
5?.
13.

1500.
140.
17.

	 2500.
230.
*•** 1 i

	 ' 3500.
340.
16.

	 6700.
690.
15.

	 26000.
3000.
14.

	 =2000.
	 6700.
	 13.


600.
40.
16.
0,3
100.

29.
0.8
4B.

45.
1.6
22.

69.
3.5
14.

130.
9.4
9.4

2aO.
26.
7.3

510.
61.
6.6

SOO.
100.
6.2

1100.
150.
6.0

2100.
320.
5.7

7500.
1500.
5.4

800.
20.
15.
0.2
97.

27.
0.7
44.

40.
1.4
20.

iO.
3.1
12.

110.
S.4
3.3

220.
23.
6.5

440.
55.
5.8

690.
54.
5.5

970.
140.
5.3

1600.
290.
5.0

6400.
1300.
4.9

15000. 12000.
3400.
3.2


3100.
4.6



-------
 B
 I
I

-------
                                              IABU  7  -  Jib
Estimated Cost for  Rsioving  o-Xylsns Using Packed Coluan  Aaratian - Narch  1989
Systea Size Category
'pulation Range
sign JOSHED)
Hverags^jpy Flan
(hED)

Percent Reaovsd
25-100 Total Capital Cost (K»)
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3.001-10,000
^ i.S
^B 0.70
^^
10,001-25,000
4.8
t 2.1
1
25,001-50.000
11.
5.0

50,001-75,000
18,
B.B

• 75,001-100,000
26.
13.

. 100,001-500,000
51.
27.

.-'0,001-1,000,000
210.
120.

00,000
430.
n. ? ;*•

I
QS« Cost (K*/Year)
Total Production Cost
icsnts/1,000 gal)
Total Capital Cost (K$)
OSN Cost (K$/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
06N Cost (K$/Year)
Total Production Cost
(cents/1, 000 gat)
Total Capital Cost (Ki)
OtM Cost (W/Year) •
Total Production Cost
1 cents/ 1,000 gal)
Total Capita! Cast (IC»)
OiR Cost (KJ/Year)
Total Production Cost
! cants/ 1,000 gal!
Total Capital Cast (K$)
O&H Cost (KS/Ysar)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q4K Cost {K*/YearJ
Total Production Cost
(cents/1,000 gal}
Total Capital Cost (K$)
O&H Cost (KJ/Year)
Total Production Cost
[cents/1. 000 gal)
Total Capital Cost (K$)
04« Cost (M/Year)
Total Production Cost
(cEnts/1,000 gal)
Total Capital Cost (K$)
04!! Cost (Kt/Yearj
Total Production Cost
(cents/1,000 gal)
Total Capital Cost ;K$)
04« Cost (Kf/YeaY)
Total Prcductisn Cost
(cents/1, OvO qai)
Total Capital Csst ;.vf!
™ ^ii ^f/Yssr;
^2tSi '••••'•'•:"'"'' r'.r*
• .- s- r e ' "•'•(* -*' .
•
Influent
www^^— ... —...j ...... ~^2*Z«3 SSS SS115Z1£S5SSS ESS SSJ2SSS
10000. ug/L
20000. ug/L
.Effluent (ug/L) Effluent (ug/L)
1000. 12000.
90.
21.
0.4
140.
/
;
40.
1.1
65.

64.
2.3
31.

100.
4.8
20.

190. 	
13.
14.

390.
34.
Cs- -
V.
780.
77.
9.3

1200.
130.
8.7

1300.
190.
3.4

3300.
400.
7.?
•
12000.
1300.
7.4

'2*000. .. -—
i2*07
/ -. .
\ "j .

15000. 1000.
95.
23.
0.4
150.

44.
1.2
73.

	 72.
2.7
	 36.

120.
— - . 5.6
23.

220.
14.
' 	 16.

460.
39.
12.

920.
89.
11.

1500.
150.
10.

2100.
220.
9.B

3900.
460.
9.3

— - 15000.
2100.
B.5

- — ]?000.
4700.
- -.


12000.
40.
15.
0.2
97.

27.
0.7
43.

42.
1.4
20.

63.
2.9
12.

110.
7.t
3.2

230.
21.
6.2

440.
49.
5.5

690.
85.
5.2

970.
120.
5.0

1800.
260.
•',.7

6300.
1200.
4.4

12000.
:eoo.
4.3


15000.
25.
14.
0.
93.

26.
0.
41.

39.
jt
19.

58.
2,
11.

100.
•»
/ t
1,

210.
20.
5.

410.
47.
5.

630.
81.
4.

890.
120.
4.

1600.
250.
4.

5700.
1200.
4.

11000.
2700.
<


50000.
Effluent
1000.
12000.

ug/L
(ug/L)
15000.
98. 76. 70.
26. 18. 17.
2 0.5
180.

50.
6 1.4
33.

34.
3 3.1
42.

140.
7 5.6
27.

270.
2 17.
6 19.

550.
45.
B 14.

1100.
110.
2 13.

1700.
180.
3 12.

2500.
270.
7 12.

• 4700.
540.
4 11.

1SOOO.
2400.
2 10.
*
3iOOO.
54rtO.
1 . ?.7


0.
120.

34.
0.
55.

53.
1.
26.

S3.
T
V.
• 16.

150.
9.
• 1
* * *

310.
27.
3.

620.
62.
7.

970.
110.
6.

1400.
160.
6.
••
2500.
320.
6.

930D.
1500.
5.

15000.
3400.
S


3 0.3
110.

32.
8 0.8
52.

50.
8 1.7
24.

73.
8 3.6
15.

140.
9 9.3
10.

290.
25.
3 7.3

570.
53.
4 6.9

900.
100.
9 6.4

1300.
150.
7 6.2

2400.
300.
3 5.9

3600.
1400.
9 5.5

17000.
33C-0.
e :,3



-------
I

-------
                                             TABLE 7-17
Estinatsd  Cost-for Reaoving p-Xylene Using Packed Column  Aeration - March 19B9
:ystea Size Category
: elation Range
iign i^UNGD)
Average ^Mf Flow
(USD)

25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
O.OS6

1,001-3,000
0.65
0.23

3,001-10,000
^ 1.8
^Bo./o
^r
10,001-25,000
4.e
I 2.1
'
25,001-50,000
11.
5.0

50,001-75,000
18.
3.B

~; 75,001-100,000
26.
13.

100,001-500,000
51.
27,

;yO,0?l-l,000,000
210.
120.

0,000
430.
270.
'
===s=sss—

— — — 5— ™S— 3S22»ss2£a:s:sssssEa;s
10000. ug/L
Influent

«. w w W •- — — — — f
20000. ug/L
Effluent (ug/L) Effluent {ug/L)
1000.
Percent Reooved 90.
Total Capita! Cost (K») 21.
Q&H Cost (K$/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
m Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost !K$}
Ql« Cost JK$/Year)
Total Production Cost
{cents/1,000 gal!
Total Capital Cost (K$)
Q&n Cost (K$/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (K»]
OtH Cost (KI/Yearj
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (K$)
Q&K Cost lK$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K*)
Oitt Cost (Kt/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (K»)
0&K Cost {K»/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K$)
Q4H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal!
Total Capita! Cost {«)
OJ« Cost (K$/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost «$}
Q«i Cast (r.Wearj
Tstal rrciuctien .Csst
icents/l.COO -:j!)
0.4
140.

39.
1.0
64.

62.
2.2
30.

99.
4.6
19.

190.
12.
13.

360.
32.
10.

760.
73.
8.9

1200.
130.
8.3

1700.
IflO.
8.1

3200.
330.
7.6

12000.
1700.
7.1

23000.
4000.
<. a
w • _>

12000. 15000. 1000.
95.
	 23.
	 0.4
	 150.

	 43.
	 	 1.2
	 71.

	 71.
— 	 2.5
	 35.

110.
5.3
	 22.

220.
14.
15.

	 440.
37.
12.

BBO.
	 64.
	 10.

1400.
— 	 140.
	 • .... 9.6

2000.
— 	 210.
9.3

-- 	 3700.
T 	 440.
	 3.B

	 14000.
	 2000.
	 	 5^2

	 — 27000.
	 ;500.
	 	 7,3

12000.
40.
15.
0.2
96.

27.
0,6
43,

42.
1.4
20,

63,
2.9
12.

110.
7.6
:3.1

220.
21.
6.2

440.
49.
5.5

6BO.
84.
5.1

960.
120.
5.0

1BOO.
260.
4.7

6200.
1200.
4.4

12MC.
2800.
4.3
•••
15000.
25.
14.
0.2
92.

26.
0.6
41.

39.
1.3
19.

53.
' 2.7
11.

100.
7.2
7.6

210.
20.
5.3

410.
47.
5.2

630.
w.
4.8

980.
120.
4.7

1600.
240.
4.4

5700.
1200.
4.2

11000.
'.700.
4.0

_ jj .* - - - --J. £ - ... J. * = == - =
50000. ug/L
Effluent Ug/L)
1000.
fS.
25.
0.5
170.

49.
1.4
81.

32.
3.0
40.

130.
6.3
26.

250.
It.
18.

520.
43.
14.

1000.
98.
12.

1700.
170.
11.

2400.
250.
11.

4400.
510.
10.

17000.
2300.
9.7

33000.
::oo.
9.2
•••
12000.
76.
18.
0.3
120.

33.
0.8
53.

52.
1.8
25.

Bl.
3.7
16.

150.
9.6
li.

300.
26.
3.1

600.
60.
7.2

950.
100.
6.7

1300.
150.
6.5

2500.
310.
6.1

9000.
1400.
5.7

12000.
"00.
5.5
H^H
15000.
70.
17.
0.3
110.

31.
o.a
51.

50.
1.7
24.

77.
3.5
15.

140.
9.C
10.

2EO.
25.
7.5

560.
57.
6.7

880.
98.
6.3

1200.
140.
6.1

2300.
300.
5.7

9300.
1400.
5.4

16000.
3200.
'.2
•M

-------
 I
B
I

-------
                                             TABLE  7-18
Estiaated  Cost for Reuoving Styrene Using Packed  Coluan iteration - March 198?
iystet Size Category
; ilation Range
•verage S^^Ho*
(USD)


25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
Ai.s
Jfe.70
^0^
10,001-25,000
4.6
i 2.1
i

25,001-50,000.
11.
5.0

50,001-75,000
18.
8.8

75,001-100,000
26.
13,

00,001-500,000
51.
27.
«
;0,001-1,000,000
210.
120.

000
w.
.;'}.




10. ug/L

Effluent (ug/L)

Percent Renoved
Total Capital Cost (K$)
OSH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Q&H Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K*)
Qitl Cost (KI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (X*)
Q&H Cost (ft/Year)
Total Production Cost
(cents/1,000 gali
Total Capital Cost (K$)
OSH Cost (K*/Year)
Total Production Cost
icents/1,000 gal)
Total Capital Cost (K$J
m Cost (K*/Ysar)
Total Production Cost

(cents/1,000 qal)
Total Capital Cost (K*J
GiH Cost (KJ/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
Q4H Cost (Ki/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cast (K»)
04M Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Tatal Capital Cost (tt) "
<3&H Cost (M/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
QIH Cost (K$/Year!
Total Production Cost
(cents/1,000 gai)
Total Casital Cost [Ks)
Jil Cost itt/Yeari
" *. f 3 I ?• f p H M r 1 1 **n ,** * c f
2,0
80.
20.
0.4
130.

38.
1.1
62.

aO.
2.3
30.

96.
4.9
19.

ISO.
13.
13.

3BO.
34.
10.


760.
80.
9.2

1200.
140.
8.6

. 1700.
200.
8.4

3200.
410.
B.O

12000.
1900.
7.4

24000.
-200.
' , i
5.0 20.
50. -
16.
0.3
110.

30.
0.7
48,

46.
1 , 6 	
22. 	

71.
3.3
14, . 	

130.
8.7
9.3

260.
24.
7.1


520.
55.
6.3

810.
95.
5.9

1100, 	
140.
5.7

2100.
290. 	
5.4

7600.
1300.
5.1

15000.
3100. 	
i.9 	
Influent


50. ug/L



Effluent (ug/L)
2.0
96.
27.
0.6
190.

51,
1.5
85.

E7.
3.4
43.

140.
7.2
29.

290.
18.
20.

610.
49.
16,


1300.
120.
14.

2000.
200.
14.

2900,
290.
13.

5400.
590. '
13.

21000.
2600.
12.

42000.
5500.
:i.
5.0
90.
17
-V«
0.5
s* — *
/•160..

43.
1.3
72.

72.
2.8
36.

120.
5.9
24.

230.
15.
17.

4BO.
41.
s~
/13.
( r_/
\
970.
96.
12.

1600.
160.
11.

2200.
240.
10.

4200.
490.
. 9.9

16000.
2200.
7.2

32000.
- -900..-
*.' « 4rf
20
iO
17
0
110

32
0
52

49
i
24

77
3
15

140
V
10

290
26
7


570
61
7

900
100
6

1300
150
6

2300
320
6

3500
1500
5

17000
:*eo
•



200. ug/L


Effluent (ug/L)
2.0
99,
. 33.
.3 0.7
230.

62.
.9 1.9
100.

110.
.8 4.2
54.

190.
.7 9.1
37.

370.
.7 23.
26.

300.
il.
.3 20.


1700.
150.
.0 19.

2700.
250.
.5 13.

3SOO.
360.
.4 17.

7-300.
730.
.0 16.

29000.
320C.
.6 15.

::000.
•100.
.4 14.
5.0
97.5
29.
0.6
200.

54.
1.6
91.

95.
3.7
47.

160.
7.9
32.

320.
20.
22.

430.
54.
17.


1400.
130.
16.

2200.
220.
15.

3200.
320.
14.

5100.
640.
14.

C4000.
2300.
13.

47000.
:300.
• i
' 20.
90.
23.
0.5
160.

43.
1.3
72.

72.
2.9
36.

120.
5.9
24.

230.
15.
17_

430.
41.
13.


970.
96.
12.

1600.
160.
11.

2200.
240.
10.

4200.
490.
?.9

UOOO.
2200.
9.2

3:000.
4900.
3.S

-------
 I
.B

-------
Estiisatsd Cost for Rsseving  trans-i^-Dkliloroethylens Using Packed  Colusn Aeration - Karen 1939
Systes Size Category
Poadaticn Range
•Wit* (KB)]
H^Wgi E'aily Flow
(USD)


25-100
0.024
0.0056

101-500
0.097
0.024

501-1,000
0.27
O.OB6

1,001-3,000
0.65
0.23

3,001-10,000
• 1.2
0.70

10,C01-25,000
4.S
2.1

25,001-50,000
11.
D.O

50,001-75,000
IS.
S.S

75,001-100.000
26.
13.

100,001-500,000
51.
27.

500,001-1,000,000
210.
	 120.
m
^^F •••• :f;\ fffj
~"™^ .• * 4 v v •- t -j Vv
".'}.
'.'':,





Percent Resoved
Total Capital Cost (K*S
UN Cost (XS/Year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (K*)
m Cost (K$/Year)
Total Productisn Cost
(cents/1, 000 gal)
Total Capita! Cost (IS)
DM Cost (Kf/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost m
m Cost (ft/Year)
Total Production Cost
(cants/1,000 53!)
Total Capital Cost (K$)
m Cest (ft/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (ft)
m Cost (ICt/Yearj
Total Production Cost
(cents/1,000 gal)
Total Capital Cost {»)
O&H Cost (W/Year)
Total Production Cost
(csnts/1,000 gal)
Total Capital Cost («)
Qffl Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost {«)
m Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (»)
GSM Cost (Kt/Year)
Total Production Cast
(cents/1,000 gal)
Total Capital Ccst (K*)
04M Cost (H/Year)
Total Protection Ccst
(cErts/1,000 oa )
Tstai r^jta! C:-s: :.$!
'I'!-."; C:-r. i'.t/'fear
~"i; "r:7.:'.i:-n 'I: t

50. ug/L

Effluent (ug/L)
5.0 70. 100.
90.
20. — —
0.3 —
.130. — —
t'
37. — —
0.9 — —
60. — —

59, . — —
2.1 — —
29. — —

93. — —
4.3 — —
1 Q * 	 	 ^m
Iw*

120. 	 	
11. 	 	
12. — —

360. — —
30. — —
fa
'- •"
710. — —
70. — —
54 __ ____
«T —

1100. — -—
120. — —
7.3 — —

1600. 	
170. — 	
7.6 — —

2900. —
340.
7 • ,__
/ * i — —

«1iWA
. * vv V i — — - — -
1700. 	 -
4.7 	 —

-KOO. — —
"j.}. 	 -
£j ." 	



Influent

100. ug/L

Effluent (ug/L)
5.0
95.
21.
0.4
140.

41.
1.1
67.

66.
2.4
32.

110.
5.C
21.

200.
13.
14.

410.
34.
11.

320.
79.
9.6

1300.
140.
3.9

1800.
200.
B.7

3400.
410.
8.2

13000.
1900.
7.4

IKC-O.
•200.
\:
70. 100.
30.
14. —
0.2 —
07 	
70.

26. . —
0.6
42. —

39.
1.3
* 3 —__

59, —
"• ** -™
12. —

100. 	
7.3 	
7.7 	

210.
20. —
5.3

' 410.
47. 	
5.2 —

640. —
El. —
4.8

690.
120.
4,7

1600. —
250. —
'T i T — -

5700.
1200. 	
4tj 	

11CCO. —
I7X1. —
-.1 "~~






500, gg



•'•-

Effluent (ug/L)
5.0
99.
26.
0.5
170.

39.
i.4
82.

B3.
3.0
41.

130.
6,4
26.

2sO.
li.
13.

530.
14.
14.

1100.
100.
12.

1700.
170.
12.

2400.
250.
11.

4500.
520.
11.

17000. i
23!0.
9.9

74900. -
T---A't
;,4
70.
86.
19.
0.3
120.

35.
0.9
57.

56.
1.5
27.

37.
4.0
17.

160.
i?.
12.

330.
-£*
5.7

650-.
65.
7.B

1000.
110.
7.2

1500.
160..
7.0

2700.
740.
5.6

yoo.
1600.
i.:

:->».
- -W i

100.
so.
IE,
0.3
120.

33.
0,8
53.

12.
T C
25.

:!.
T T
16.

150.
?.c
*« ,

'00.
26.
2.0

600.
60.
7.1

?40.
100.
5.7

1300.
150.
6.5

2500.
310.
i.l

90C-0.
1400.
5 7

-:OvO.
"*"* *."'.
" c.

-------
I
I
I

-------
                                          TABLE  7-20
Estimated Cost  for Reaoving Tetrachloroethylene Using Packed
Coition Aeration  - March 19B9
Systes Size Category
Population Range
(K6D)



M0»


25-100
0
0.

.024
0056

101-500
0
0

501-1

0

1,001-3



3,001-10

.
10,001-25

i
•
25,001-50



.087
.024

,000
0.27
.036

,000
0.65
0.23

,000
i.8
0.70
,000
4.S
2.1

,000
11.
5.0

50,001-75,000



- 75,001-100



100,001-500



s 500,091-1,000



1,000


18.
8.3

,000
26.
13.

,000
51.
27,

,OCO
210.
120.

,000
!30.
"";

Percent Resoved
Total Capital Cost (KJ)
GSM Cost (K*/Year)
Total Production Cost
! cents/1, 000 gal)
Total Capita! Cost (K$)
Q&H Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Mai Capital Cost (K«)
Q4H Cost (KI/Year)
Total Production Cost
(cents/1,000 -gal)
Total Capital Cost (K$)
GiH Cost (Kt/Year)
Total Production Cost
(csnts/1,000 gal)
Total Capita! Cost (K*J
24H Cost (K$/Year)
Tot=! Production Cost
Total Capital' Cost (M)
OH Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
' 04K Cast (K*/Year)
Total Production Cost
(cents/1, 000- gal)
Total Capital Cost (K$)
Oi« Cost {Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost r—
(':.! /
50,' 1.0
99.
25.
0.5 •
170,

49.
"*"""• 1 » «1
79.

31.
2.B
39.

130.
	 5.S
	 25.

	 250.
15.
17.
510.
40.
13.

	 1000. '
91.
	 " 12.

1600,
160.
11.

2300.
230.
10.

4300.
470.
9.9

- — 16000.
2100.
	 ?.2

• 	 72000.
	 i£00.
---- - ~!
5.0
95.
21.
0.4
140.

40.
i.O
65.

66.
2.2
32.

100..
4.6
20.

200.
' 7
1 ^
400.
32.
10.

790.
73.
9.1

1300.
120.
3.5

1800.
130.
8.2

3300.
380.
7.7

12000.
1700.
' 7.2

240C-0. .
7rl)0.
:,7
50.
50.
15.
0.2
93.

27.
0.7
44.

43.
i.4
20.

i4.
3.0
13,

120.
7.S
3!4
230.
21.
i.3

450.
50.
5.7

710.
S6.
5.3

990.
130.
5.1

1EOO.
260.
4.3

6500.
1200.
4.5

13000.
2J00.
-.•

500. ug/L
Effluent .[ug/LJ
1.0
99. B
29.
0.6
200.

" 57.
1.5
94.

97.
3.4
47.

160,
7.0
3i".

310.
IS.
•t 1
i30.
*3.
16.

1300.
110.
14.

2000.
190.
13.

2900.
270.
13.

5400.
560.
12.

20000.
2JOO.
11.

40(00.
::'}'/.
1 .' i
5.0
99.
25.
0,5
170.

49.
1.2
79.'

91.
2.3
39.

130.
5.8
25.

250.
15.
t "T
510.
40.
13.

1000.
91.
12.

1600.
160.
11.

2300.
230.
10.

4300.
470.
9.9

16000.
2100.
' 9.2

"ZjOO.
-700. •
3.7
50.
90.
19.
0.
130.

36.
0.
58.

59.
2.
28.

92.
4.
13.

170.
10.
12.
350;
22.
o

690.
66.
e.

1100.
uo.
7.

1500.
170.
7.

2300.
340.
6.

10000.
1600.
~.

20000.
7£vO.
3.



3



9



0



i







0



0



5



2



e



4



1
i

-------
I
u

-------
                                             TABLE  7-21
Estimated  Cost for Rsaoving Toluene Using Packed Coluan Aeration - March  1939
ystfi Size Category
liatian Range
verage fl^V Flox
(KGDT


25-100
0.024
0.0056

101-500
O.OS7
0.024

501-1,000
0.27
O.OB6

1,001-3,000
• 0.65
0.23

3,001-10,000
^ 1.8
•V0'70
10,001-25,000
4.9
i L1
f
25,001-50,000
11.
5.0

50,001-75,000
IB.
8.8

'75,001-100,000
26.
13.

00,001-500,000
51.
27.

;-J, 001-1, 000, 000
210.
120.

,000
130.
77,1


500. ug/L



Percent Reuoved
Total Capital Cost (K»)
OSH Cost (Kf/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$>
OiN Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K*J
Did Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)-
Total Capital Cost (K»)
m Cost (K$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K»)
O&H Cost <$)
O&H Cost !K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OiN Cost (KWYearJ
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (Kt)
D&d Cost (Kf/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
Did Cost (K$/Year)
Total Production Cost
(cants/I, 000 gai)
Total Capital Cost '£$)
CSfl Cost (*'$/Y6ir;
Total 2f !••>><-•• -.-i r-er


Effluent (ug/L)
100. 2000. 3000.
30.
19. 	
0.3 . 	 —
120. 	

33. 	
0.8 	 --
54. 	 —

53. 	
1.8 	 	
26. 	

83. 	 —
3.8
16. 	 -

150.
9.7
11.
310. 	
27, 	
8.2 — -

610. 	 --
61.
7.3 — •" - -•"'

970.
100.
6.B

1400. 	 	
150.
6.6

2500.
320. 	
6.2 	

9200. 	 --
1500. 	
5.2 	 	 .

13000. 	 —
-4f.fi, 	 ....
<; i
...


100.
' 96.
23.
0.
/'ISO.
'-• -
44.
1.
73.

73.
2.
35.

120.
5.
23,

220.
14.
16.
460.
38.
&
\
910.
E6.
11.

1400.
150.
9.

2000.
22C.
9.

3800.
440.
9.

14000.
2000.
B.

23000.
i ;,(>{!.

/* *
i -^
Influent
3000. ug/L 5000.

Effluent (ug/L)
2000. 3000.
7 33.
15.
4 A_2 	
94.

26.
2 0.6
42.

40.
6 1.3
19. ' 	

60.
5 2.3
12.

110. 	
7.4
7.8
210.
21,
5.9

420.
48.
5.3

650.
92.
9 4.9

910.
120.
6 4.8

1700.
250.
1 4.5

5900.
1200.
4 4.3

11000.
^ 2700.
-A 4 i 	
•/


100
99
25
0
160

47
• i
78

78
2
38

130
•j
25

240
15
17
500
4:
13

1000
93
12

1600
160
11

2200
230
10

4200
480
9

16000
2200
?

31000
-500
a


Effluent
2000.
60.
16.
.5 0.
100.

29.
.3 0.
47.

46.
.3 1.
22.

70.
.9 3.
14.

130.
S.
9.
250.
23.
6.

500.
53.
6.

770.
91.
5.

1100.
130.
5.

2000.
280.
.9 5.

7200.
1300.
.2 4.

14000.
:ooo.
.7 4.


ug/L

(uj/L)
3000.
40.
15.
2 0.2
96.

27.
7 0.6
43.

41.
3 1.4
20.

42.
i 2.9
12.

110.
2 7.5
0 8.1
225.
*? 1
3 4.1

430.
49.
1 5.5

680.
84.
7 5.1

950.
120.
5 4.9

1700.
250.
2 4.6

6100.
1200.
9 4.4

12000.
:soo.
7 '.2


-------
i
e

-------
                                            IHDLL  /  -  ilii



Estiflatetf Cost for Rguoving 1,2-Dichloroprapane Using Packed Coluan Aeration  -  Harch  1989
Systei Size Category
Population Range
Des^^ow (BSD)
AvefljBaily Flow
I!BI»
i

25-100
0.024
0.0056

101-500
! 0.087
0.024

501-1,000
0.27
0.036

1,001-3,000
0.65
0,23

3,001-10,000
1.8
^m o.70
^r
10,001-25,000
4.9
1 2<1
1
25,001-50,000
11.
5.0

50,001-75,000
IS.
3.3

•' 75,001-100,000
26.
13.

100,001-500,000
51.
27.

'500.001-1,000,000
210.
120.
^•000,000
^^ 430.
27?>.
Percent Rsaoved
Total Capital Cost (K$)
Ol» Cost (£$/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
OJH Cost (K$/Ysar)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (K$)
Q4H Cost (Kt/Yearj
Total Production Cost
(cents/1, 000 gal)
Total- Capital Cost (£*)
DSH Cost (KS/Vear)
Total Production Cost
(cents/1,000 gal}
Total Capital Cast (Kl)
OW Cost (KI/Year)
Total Production Cast
(cents/1, 000 gaii
Total Capital Cost {**)
OHI Cost (M/Year)
Total Production Cost
(cMts/1,000 gal)
Total Capital Cost (K$)
0*N Cost (KI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kl)
Dili Cost (KI/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (Kl)
Q4H Cost (KI/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (Kt)
0«1 Cost (KI/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kl)
D4« Cast (KI/Year)
Total Production Cost
(cents/!. 000 gal)
Total Cisital test ;•.»!
5W C:=t !il/Vsjf



S:ES5S2±=SS«
10. ug/L
Influent

sssssfszsasaaaasassssaaasaxaa— — — — — — — — — — — — — — — 	
50. ug/L
Effluent (ug/L) Effluent (ug/L)
2.0
BO,
21.
0.4
140.

38,
1.1
63.

61.
2.4
30.

96.
5.0
20.

190.
13.
14.

3?0.
35.
11.

790.
82.
9.6

1300.
140.
9.0

1300.
210.
S.7

3300.
420.
B.3

13000.
1900.
7.7
2 *(•'!").
-"*'(': '
5.0
50.
16.
0.3
110.

30.
0.3
49.

46.
1.6
22.

71.
3.4
14.

130.
8.9
9.5

260.
24.
7.2
,
520.
57.
- 6.4

320.
97.
6.0

1100.
140.
5.8

2100.
300.
5.5

7600.
1400.
5.2
1*009.
""V.
c -,
10. 2.0
96.
28.
0.6
190.

51.
1.5
86.

S3.
-- T ?
V k J
44.

150.
7.4
29.

300..
	 1?.
	 21.

	 630.
51.
16.

1300..
	 120.
15.

	 2100.
210.
14.

	 3000.
300.
14.

	 5700.
610.
13.

- — 22000.
2700.
12.
---- 14')00.
	 :000.
	 < i
5.0
90.
24.
0.5
'160..-
•"' '
44.
1.3
73.

73.
2.9
36.

120.
6.1
24.

240.
• 16.
17.

500.
42,
-'13.;

1000.
99.
12.

1600.
170,
11.

2300.'
250.
.11.

4400.
510.
10.

17000.
2300.
9.6
33000.
5100,-,
A.i
1C.
•BO.
21,
0.4
140..

33.
1.1
63.

61.
2.4
30.

?3.
5.0
20.

190.
!3,
14.

390.
35.
li.

790.
82.
9.6

1300.
140.
9.0

1800.
210.
3.7

3300.
420.
3; 3

13000.
1900.
7.7
25000,
i"00.
100. ug/L
Effluent (ug/L)
2.C
93.
31.
0.7
210.

.57.
1.7
?i.

ICO.
4.0
50.

170.
E.4
34.

3*0.
C-?
,* t
» t *

730,
57.
19.

1500.
140.
17. .

2500.
230.
1=.

3500.
340.
16.

6700.
690.
15.

26000.
3000.
14.
530 0.
;7O. '
5.0
95.
27.
0.6
ISO.

49,
1.5
S3.

35,
3.3
42.

140.
7.1
23.

230.
IE.
20.

£.00,
49,
it;

1200.
120.
14.

2000.
200.
13.

2E90.
290.
13.

5400.
530.
12.

21000.
• 2600.
12.
-2-000.
?3

-------
I
Q

-------
Estimated Cost for Removing Toxaphene Using Packed Coluain Aeration  -  March  1989
Systei Size Category
opulaticn Range
esigg^ (HGD)
IB)
'!

= cr r r s==s=±±s ssss:
25-100
0,024
0.0056

, 101-500
! ' O.OS7
0.024

501-1,000
0.27
0.086

1,001-3,000
0.65
0.23

3,001-10,000
	 1.8
|A 0.70
^IW
10,001-25,000
4,3
1 2<1
'
25,001-50,000
11.
5.0

50,001-75,000
- 18.
8.3

: 75,001-100,000
26.
13.

100,001-500,000
51.
27.

*OQ, 001-1, 000, 900
210.
120.

000,000
430.
"?•}.





Percent Reaoved
Total Capital Cost (K»)
Q&R Cost (W/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
-OiN Cost (KI/Year)
Total Production Cost
(cMts/1,000 gal)
Total Capital Cost |K»)
Old Cost (W/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K*)
QiH Cost (K*/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («}
OSM Cost (K*/Year)
Total Production Cost
(cents/1,000 gai)
Total Capital Cost (X$)
m Cost (W/Year)
Total Production Cast
(csnts/1,000 gal)
Total Capital Cost («)
OSM Cost (»/Year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (Kt)
D&H Cost (K$/Year)
Total Production Cost
(cents/1,000 gal]
Total Capital Cost (Kt)
04H Cost (Kt/Year)
Total Production Cost
(cents/1,000 gal)
Total Capitai Cost (K$)
O&H Cost (K*/Year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (K*)
04H Cost (M/Year)
Total Production Cost
(cents/1, 000 gai)
Tatai Casital Cost ('<%}
--M ICSt '* j/V'5,= r'
Total :'ocuctic." Cost


i
80
20
' 0
130

39
0
61

60
2
29

95
. 4
19

130
11
13

360
30
9

720
. 70
B

1100
120
7

1600
180
7

3000
360
7

11 000
1700
t

2200-)
"300
.
5.0 ug/L
Effluent (ug/L)
.0 5.0 10. i.
Influent

10. ug/L
Effluent (ug/L)
0 5.0
90. 50.
	 23. 16.
.3 	 	 ..0.
— 	 (150.

	 43.
.9 	 	 1.
	 71.

-l<
\ ___- _.». 7
• ~~~— — — _x. JJ ^

	 no.
4 .._. ___. ^
	 22.

	 220,
	 14.
____ 1 ^
i J, «.' »

	 440.
	 37^
.5 	 12.

	 380.
	 E4.
.5 	 10.

1400.
	 150.
.9 	 9.
.
— 	 2000.
	 210.
.7 -— — - 5.

-— 3700.
	 	 440.
.2 	 3.

	 14000.
- 	 2000.
.8 	 e.

	 	 ;=000.
	 	 -500.
c .__™ ..-_ -
4 0.2
100.

29.
2 0.7
47.

46.
6 1.5
22.

70.
3 3.2
14.

130.
S.3
9.1

260.
**"*
Zo *
4s9

500.
53.
6.1

790.
92.
6 5.7

1100.
130.
4 5.6

2000.
230.
B 5.2

7300.
1300.
2 4.9

14000.
3000.
3 ^ .7





50. ug/L

10. 1.
9B.
	 29.
	 0.
200.

57.
- — i .
94.

96.
	 3.
47.

'— - 160.
	 7.
31.

310.
»« 1 3
„„_*, '!*'?

	 540.
---- J.i,
16.

	 ^300.
120.
15.

2000.
200.
14.

2900.
300.
13.

5400.
610.
----- 13.

— - 21000.
	 2700.
	 12,

	 i2000.
	 iOOO.
	 11.
Effluent
0 5.
90.
23.
6 0.
150.

43.
6 1.
71.

71.
4 2.
35.

110.
5 5.
22.

220.
14.
15.

440.
37.
12.

SBO.
84.
10.

1400.
150.
9.

2000.
210.
9.

3700.
440.
0.

14000.
2000.
g.

13000,
4500.
T
(ug/L)
0 10.
20.
20.
4 0.3
130.

33.
2 0.9
61.

50.
6 2.1
29.

95.
3 4.4
13.

1:0.
11.
13.

7:0.
73.
7.5

720.
70.
3.5

1100.
120.
6 7.9

1600.
ISO.
4 7.7

3000.
!eO.
B 7.2

11COO.
1700.
2 5.8

22CJO.
"•0.
3 3.!

-------
1
o
I

-------
                                             IrtDLC.  /   -  £H
Estiiiatsd Cost for Resoving Heptachlor Using Packed  Caluan Aeration - March 19S9









1









___







j
1







.
j







1







1
•
systea Size Category
Copulation Range
}esio^^bM (HBO)
Avera|^^ily Flow
(H6D)

Percent Reaoved
25-100 Total Capital Cost (K»)
0.024 QiH Cost (Kt/Year)
0.0056 Total Production Cost
(cents/1,000 gal)'
101-500 Total Capital Cost (K»)
0.087 QiH Cost (KJ/Year)
0.024 Total Production Cost
(cents/1,000 gal)
501-1,000 Total Capital Cost (K$)
0.27 QSH Cost (K$/Year)
0.086 Total Production Cost
(cents/1,000 gal)
1,001-3,000 Total Capital Cost (»)
0.65 OSK Cast (Ki/Year)
0.23 Total Production Cost
(cents/1,000 gal)
3,001-10,000 Totsl Casita! Cost (K«)
^^ 1.9 QiM Ccst (X*/Year) .
^^p 0,7') Total Production Cost
^^ (csRts/1,000 gal)
10,001-25,000 Total Capital Cost (K$)
4.8 Otfl Cost !K$/Year)
2.1 Total Production Cast
(eents/1,000 gal)
25,001-50,000 Total Capital Cost |K$)
11. QiM Cost (K*/Year)
5.0 Total Production Cost
(cents/1,000 gal)
50,001-75,000 Total Capital Cost (K»)
IB. Q&H Cost {Kf/Year)
8.8 Total Production Cost
(cents/1,000 gal)
75,001-100,000 Total Capital Dost (K$)
26. Q&M Cost (K$/Year)
13. Tatal Production Cost
(cents/1,000 gal)
100,001-500,000 Total Capital Cost (K»J
51. 04M Cost (KJ/Year)
27. Total Production Cost
(cents/1,000 gal)
500,001-1,000,000 Total Capital Cost (Ki)
210. QiM Cost (KS/Year)
120. Total Production Cost
•(cfints/1,000 gal)
,000,000 Total Capital Cost (K8)
•S'v, 01.1 Ccst i.
-------
I
i

-------
       -  Capital  costs were  divided  into  process  equipment cost,  support
          equipment cost, direct cost, and indirect cost.  The operating costs
          are divided into power, maintenance, labor, and administrative.

       -  The process  equipment included the  column shell,  column  internals
          (i.e. liquid distributor, liquid redistributor, and packing material
          support plate), packing material,  one blower, and one pump.

       -  The  support  equipment  included assembly and  installation of  the
          above process equipment,  a  concrete air well which is  a foundation
         .for the  packed  column and  a  liquid .reservoir, 200  feet of piping,
          instrumentation, air duct, and electrical connections.

       -  The total direct  cost included all equipment  installed  at the site
          and is the sum of the process and support equipment.

       -  The indirect  cost included  all non-physical items  required for the
          air stripping system.   This includes sitework,  design  engineering,
          contractor overhead and profit, legal and financial, interest during
          construction, and contingencies.

       -  The total capital cost is the sum of the direct and indirect costs.

     The  operating  cost  is  the  sum  of  power,  maintenance,   labor,  and

administrative costs.   The costs associated with each of these components were

estimated and described as follows:

       -  The total production cost  is  the  total annual cost  divided  by the
          volume of water treated per year.

       -  The blower costs were based on the projected volume of water treated
          per year.

       -  The maintenance costs were  based on 10  percent and 4 percent of the
          mechanical  and   non-mechanical  process  equipment  capital  cost,
          respectively.

       -  The  labor cost  is based  on  a  flat rate of  0.3 cents  per  1,000
          gallons of treated water and the volume of liquid treated per year.

       -  The administrative cost is based on 20 percent and 25 percent of the
          labor and maintenance cost respectively.
Summary

     The choice between GAC adsorption and packed column aeration for removing

SOCs from drinking water  depends,  to a large extent, on the  economics  of the

two processes.   All SOCs  considered in this document  were identified  to be

-------
adsorbable  with  the exception  of  epichlorohydrin,  for which  treatability
information  was  not available.   Treatment  costs  for  GAC adsorption  show
relatively little variation  between  contaminants.   As indicated in Section 5,
only 14 of the 29 SOCs were  identified  to  be amenable for treatment by packed
column aeration.  Heptachlor and toxaphene may be  amenable,  but  further data
is needed.  Packed column facility costs for these  16 SOCs show a wider range
than GAC adsorption costs for the same compounds.
     A comparison of GAC and packed column aeration facility costs is shown on
Figure 7-4  for DBCP  and o-xylene.  For  DBCP, which is a well  adsorbed and
relatively  low volatile  pesticide,  GAC  adsorption  is  more economical  than
packed  column  aeration.   For  o-xylene,  which  is  moderately volatile  and
relatively  poorly  adsorbed,  packed  column * aeration  is  more  economical.
Therefore,  for the  16  SOCs  that  are  suitable  for  both GAC  adsorption and
packed column  aeration,  a detailed site-specific evaluation  will  be required
to identify the most economical option.                                «

-------
                                                            FIGURE 7-4
Q
CD
                                                 O
                                                 _l
                                                 Ll_
D_

LU
CD
<§•
                                                      o>
                                                      ZJ O
                                                       CM
                                                     O
                                                     §1
                                                     o"o
                                                      11 :>
                                                     •- O
                                                      LU
       UJ
       o:
       (SNOTIV9  OOOT/S1N3D)   1SOD 1V101
   .. O
   LU .»
   I— fc^
   o m
                                                                   g
                                                                   h-
                                                                   Q_
                                                                   CC
                                                                   O
                                                                   (/)
                                                                   Q
                                                                   <
                  <
                  O

                  00
(/)
O
O
u_
o.
                                                                O
                                                                Ul
                                                                E
                                                                <
               O _j
               o o
                  o
                  Q
                  LU
                  ^:
                  o
                  <
                  Q_
,
                                                        en

-------
I
1
0

-------
                            8.0  REFERENCES
Adams,  J. C-J  R* M-  Clark; B.  W.  Lykins;  and  P.  Kittredge;  Regional
Reactivation of Granular Activated  Carbon  J.AWWA,  5:38-41,  1986.

Aieta,  E.  M.}  Reagan, K.  M.;- Lang,  J.  S.; McReynolds,  L.; Rang, J.; and
Glaze,  W.  H.;  "Advanced  Oxidation  Processes for  Treating  Groundwater
Contaminated  with TCE  and PCE:  Pilot-Scale  Evaluations."  J.  AWWA, May
1988.                 "

Aly,  0. M. and S.  D.  Faust; "Removal  of  2,4 Dichlorophenoxyacetic Acid
Derivatives from  Natural Waters." J.AWWA,  57:221-230, 1965.

Arisman,  R.  K.;   R.  C.  Musick;  J.  D.  Zeff; T. C.  Crase;  "Experience  in
Operation  of  a   Ultraviolet-Ozone   (ULTROX)  Pilot Plant  for  Destroying
Polychorinated Biphenyls"  In: Industrial Waste Influent,  35th  Industrial
Waste Conference  Proceedings, Purdue, May, 1980.

AWWA Organic  Contaminant  Committee, "Volatile Organic Chemical Treatment
Facilities" draft Nov.  1986.

Baker,  D.;  "Herbicide  Contamination  in  Municipal Water  Supplies   in
Northwestern  Ohio." Final  Draft Report  1983. Prepared .for Great  Lakes
National Program  Office, U.S. Environmental Protection Agency,  1983.

Bell, Jr.,  F.  A.; D. L. Perry;  J. K. Smith, and S. C. Lynch;  "Studies  on
Home Water Treatment Systems."  J.AWWA,  pp. 126-130, April,  1984.

Becker,  D. L. and  S.  C.  Wilson;  "The  Use of Activated  Carbon for the
Treatment  of Pesticides and Pesticidal Wastes."  In:   Carbon  Adsorption
Handbook  (Chemisinoff,  D.  H. and F. Ellerbusch, Eds.), Ann  Arbor Science
•Publishers, Ann Arbor,  Michigan,  1978.

Bennett,  P.  J.   et  al;   "Removal   of  Organic  Refractories  by Reverse
Osmosis"  Proceedings  of  the  23rd  Purdue Industrial  Waste  Conference,
Part 2, pp. 1000-1017,  May,  1968.

Berkau, E.  E.; C. E. Frank,  and  I  A. Jefcoat; "A Scientific Approach  to
the  Identification and Control of  Toxic  Chemicals in Industrial Waste-
waters", AlChe Symposium Series No.  197, Volume 76, 1980.

Berhardin,  F.  E. and  E.  M.  Froelich'; "Practical  Removal  of Toxicity  by
Adsorption".  Proceedings  of the  30th Annual Purdue  Industrial Wastes
Conference, pp. 548-560, Purdue University, Lafayette, Indiana, 1975.

Bilello,  L. J. and  B.  A.  Beaudet; "Evaluation of Activated  Carbon by the
Dynamic Minicolumn  Adsorption  Technique" In:   Treatment  of  Water   by
Granular Activated Carbon  (M. J.  McGuire and  I. H.  Suffet,  Eds),  American
Chemical Society, Washintgon, D.C.,  pp. 213-246, 1983.

Brown,  L.; K. C.  C.  Bancroft, and M. M. Rhead;  "Laboratory Studies on the
Adsorption  of  Acrylamide Monomer by Sludge,  Sediments,  Clays, Peat, and
Synthetic Resins", Water Research 14s799-781,  1980.

                                  8-1

-------
Buescher,  C.  A.;  J.  H.  Dougherty,  and R. T. Skrinde; "Chemical Oxidation
of Selected Organic  Pesticides". J.WPCF, Vol. 36, No. 8,  1964.

Cabasso, I.;  E. Klein; C. Eyer, and J. Smith; "Trace Organic Contaminants
in  Drinking  Water;  Evaluation of  Semi-permeable Membranes  and Osmotic
Pumping  to Achieve  Concentration",  Presentation before  the  Division of
Environmental Chemistry  (American Chemical  Society), pp.  204-210, 1974.

Canonie Environmental Services Corp., "Development of Treatment Measures
for  Ground Water Restoration",  Report  for Occidental  Chemical Company,
July, 1981.                                                      ,

Chemical Engineering and News.  Method Rids Agent Orange of TCDD Contami-        fj
nation. 55(11}:25, 1977.                                         ;

Chi an, E.  S.  K.;  W. N.  Bruce,  and  H. H. P. Fang;  "Removal of Pesticides
by  Reverse Osmosis". Environmental  Science and Technology,  9(l):52-59,
1975.

Connecticut Water Company — Field Data  from Pilot Aeration Study for EDB
Removal — Windsor Locks, Connecticut, 1984.

Cohen, J. M.; L. J.  Kamphake;  A.  E.  Lemke; C.  Henderson, and R. :L. Wood-
ward; "Effects  of Fish  Poisons on Water  Supplies", Part  1,  Removal of
Toxic Materials J.AWWA,  55(12):155l-1566, 1960.

Cohen, J.  M., G.  A.  Rourke, and R. L. Woodward; "Effect of Fish Poisons
on Water Supplies",  Part 2, Odor Problems,  J.AWWA, 55{1):49-62, 1961.

Committee Report; "Organics Removal by Coagulation:  A Review of Research        n
Needs", J.AWWA 71(10):588-603,  1979.

Crittenden,  J.  C.;  P.   Luft;  D.  W.  Hand;  G.   Friedman;  Predicting the
Removal of Known Organic Compounds  in Unknown  Mixtures and Total.-Organic
Halogen  in Fixed-Bed Adsorbers.   Proceedings  of the  1984 Environmental
Engineering Specialty Conference.

Crittenden,  J.  C.;  D.  W.  Hand;  H.  Arora;  B.W. Lykins;  Desiqn Consid-
erations for  GAC Treatment of Organic  Chemicals,  J.  AWWA, 79(1):74-82,        _»
1987(a).                                                                         B

Crittenden, J.  C.;  R.  D. Cortright;  B.  D.  Rick, S. Tang,  D.  L. Perram,
and T. J.  Rigg; Removal  of Volatile Organic Chemicals from Air Stripping
Tower Off-gas Using  Granular  Activated  Carbon;  Final  Report  to AWWARF,
February, 1987(b).

Croll, B.  T.; G.  M.  Arkell, and R. P. J.  Hodge; "Residues of Acrylamide        ^
in Water", Water Research 8:989-993,  1974.                                       ""
                                 8-2

                                                                                i

-------
Cummins, M. D.; "Field  Evaluation of  Trichloroethylene  Removal by Packed
Column Air Stripping",  (Landsdale, Pennsylvania, August 10, 1982), USEPA,
Office of Drinking Water, Technical Support Division, 1982.

Cummins, M. D.; "Field  Evaluation of Packed Column  Air Stripping" (Glen
Cove, New York, August 20, 1982, and December 14-16,  1982), USEPA, Office
of Drinking Water, Technical Support Division,  1982.

Cummins,  M.  D.;  "Field Evaluation of  1,1,1-Trichloroethane  Removal  by
Packed  Column  Air Stripping"  (Dedham,  Massachusetts,  August  24,  1982),
USEPA, Office of Drinking Water, Technical Support Division, 1982.

Cumminsj M. D.; "Field  Evaluation of  Trichloroethylene  Removal by Packed
Column Air  Stripping"  (Hartland, Wisconsin, September  23,  1982), USEPA,
Office of Drinking Water, Technical Support Division, 1982."

Cummins, M. D.; "Field  Evaluation of  Trichloroethylene  Removal by Packed
Column  Air  Stripping"  (Wausau, Wisconsin,  September 28,  1982),  USEPA,
Office of Drinking Water, Technical Support Division, 1982.

Cummins, M. D.; "Removal of Ethylene Dibromide  from Contaminated Ground
Water by Packed Column  Air  Stripping,"  Lake Wales, FL,  April 1984, USEPA
Office of Drinking Water, Technical Support Division, August, 1984.

Cummins,  M. D. ,   "Field Evaluation  of  Packed  Column  Air  Stripping,"
Bastrop,  LA,  February  1984,  USEPA' Office  of  Drinking  Water,  Technical
Support Division,  May, 1985.

Cummins, M. D. and J. J. Westrick,  "Packed Column Air Stripping Prelimi-
nary Design Procedure", presented at Water  Pollution Control  Federation
Conference, Los Angeles, CA, October, 1986.

Cummins,  M.  D. and  J.   J.  Westrick,  "Feasibility of Air  Stripping  for
Controlling Moderately  Volatile Synthetic  Organic Chemicals", presented
at  American Water Works  Association  "Annual   Conference,  Kansas  City,
Missouri, 1987.               -    :    •

Cummins,  M.   D.,  Office   of.  Drinking  Water,  TSD,  USEPA.    Personal
communication with Russell Ford, Malcolm Pirnie, Inc., 1988.

Dahl,  O.  T.;  "Occidental  Chemical  Company at  Lathrop,  California,  A
Ground Water/Soil Contamination Problem and a  Solution", USEPA, National
Enforcement Investigations Center, Denver, Colorado,  USA, 1985.

DeFilippi, R.  P.;  V.  J. Kyukonis; R. J.  Robey,  and  M Modellj  "Supercri-
tical  Fluid Regeneration of  Activated Carbon  for Adsorption  of Pesti-
cides", Research Triangle Park, USEPA'Document EPA-600/2-80-054, 1980.
                                 .8-3

-------
Divlrka and Bartilucci and Malcolm Pirnie, Inc., "Demonstration Treatment
Facility  at Greenport,  New York,  Phase  II  Design Report"  for  Suffolk
County Department of Health Services, July 1987.                  •.,               j

Dobbs, R.  A. and  J. M.  Cohen;   "Carbon  Adsorption Isotherms  for Toxic
Organics", Municipal Environmental Research Laboratory, Cincinnati, Ohio,
Report No. EPA-600/8-80-023, 1980.

Edwards, C. A.; "Persistent Pesticides  in the Environment", CRC Critical
Reviews in Environmental Control 1(2):7-68, 1970.

Edwards, V.  and P.  F. Schubert;  "Removal of 2,4-D  and Other Persistent        .
Organic  Molecules  from  Water  Supplies   by Reverse   Osmosis",  J.AWWA,        |
October, 1974.             ;                                       .

El-Dib, M.  A.  and M.  I.  Badawy; "Adsorption of Soluble Aromatic Hydro-
carbons on Granular Activated Carbon", Water Research,  13:  225-258, 1979.

Environmental Science  and Engineering,  "Study of  Effectiveness of Acti-
vated Carbon  Technology  for Removal  of Specific  Materials from Organic
Chemical Processes", EPA No. 68032610, 1981.
                                                                                 •
Environmental Science  and  Engineering,  Inc.  (ESE), "Evaluation  of  the
Treatability of Ethylene  Dibromide  and  Dibromochloropropane by Activated
Carbon and Packed Column  Air Stripping" Prepared for the Florida Depart-
ment of Environmental Regulation, 1983.

Fiessinger, R., J. Mallevialle,  and A.  Bruchet;  "Fate  of Polymers in the
Treatment Process". AWWA Seminar Proceedings, Use of Organic Polycslectro-
lytes in Water Treatment, pp. 37-49,; June, 1983.                                 p

Frissel,  M.  J.; "The  Adsorption of  Some Organic  Compounds, Especially
Herbicides, on  Clay  Materials".  PUDOC, Centrum Voor Landbouwpublikaties
en Lanbouw Documentatic, Wageningen, Netherlands,  1961.           ;

Fronk, C.  A.;  "Destruction of Volatile Organic  Contaminants  in Drinking
Water by  Ozone  Treatment", Ozone Science  and Engineering, 9(3):265-288,
1987(a).
                                                                                 i
Fronk, C.  A.; "Removal of Low  Molecular Weight Organic Contaminants from        m
Drinking Water  Using Reverse Osmosis Membranes"  presented in AWWA Annual
Conference, Kansas City, June, 1987(b).

Gilbert,  E.;  "Chemical Changes and Reaction  Products  in the Ozonization
of  Organic  Water  Constituents"  In;  Oxidation Techniques  in Drinking
Water Treatment, Office  of Drinking -Water,  Washington, D.C., Report No.
EPA-570/9-79-020, 1979.      '                           .          ;

Glaze,  W. H. and  Kang,  J.;  "Advanced  Oxidation  Processes For Treating
Groundwater Contaminated with TCE and PCE: Laboratory Studies.", J. AWWA,
May  1988.
                                  8-4

-------
Griffin, R. A. and E. S. Chian; "Attenuation of Water-Soluble Polychlori-
nated  Biphenyls  by  Earth  Materials".  Illinois  State  Geological  Survey
Division •, 1979.

Hade, J.;  Personal Communication.  Fremont,  Ohio  Water Treatment Plant to
ESE, Gainesville, Florida, 1984.

Hager, D.  G.  and J.  L. Rizzo;  "Removal  of  Toxic Organic From Wastewater
by Adsorption with Granular Activated Carbon". Presented at U.S. Environ-
mental  Protection Agency  Technology  Transfer  Session  on  Treatment  of
Toxic Chemicals, Atlanta, Georgia,  1974,  In;   Drinking Water and Health,
Vol. 2, Safe  Drinking Water Committee,  National Academy Press, Washing-
ton, D.C., pp. 266, 1980.

Hand, D. W.,  Crittenden, J.C.,  and Thacker, W.E., "Simplified Models for
Design of  Fixed-Bed  Adsorption Systems",  Jour.  Env. Engr.,  ASCE,  Vol.
110, No. 2, 1984.

Hansen, Robert E; "Experiences With Removing Organics from Water". Public
Works, October, 1977.

Harris, C. I. and G.  F.  Warren; "Adsorption and  Desorption of Herbicides
by Soil". Weeds, 12:120-126, 1964.

Hess, A., J.  Dyksen,  and H.  J.  Dunnr  "Occurrence and Removal of Volatile
Organic Chemicals From Drinking Water", Cooperative Research Report, AWWA
Research Foundation, 1981.

Hinden, E. et al.;  "Organic Compounds Removed by Reverse Osmosis" Water
and Sewage Works, 1968.

Hoigne, J., and  Bader,  H.  "Ozonation of  Water:   Selectivity and Rate of
Oxidation of Soluble", Ozone:  Source and Engineering, '1:73-85, 1979.

Hoigne,  J.  and  H.  Bader;  "Rate  Constants of  Reactions of  Ozone  with
Organic ,and  Inorganic  Compounds  in  Water -  I".  Water Research,  17:
173-183, 1983.

Huang, J. C.; "Pesticides in Water:   Effect on Human Health". Journal of
Environmental Health, 34:(3/4):501-510, 1972.

Jank, B. E. and P. J. A. Fowlie; "Treatment of a Wood Preserving Effluent
Containing Pentachlorophenol by Activated Sludge and Carbon Adsorption".
Proceedings of the  35th Industrial Waste Conference,  Purdue University,
Lafayette, Indiana, 1980.

Kornegay,  B.  H.; "Control  of  Synthetic  Organic Chemicals  by Activated
Carbon-Theory,  Application,  and  Regeneration  Alternatives,"  Westvaco
Corp., ' Covington,  Virginia,  Presented  at  the   Seminar on  Control  of
Organic Chemicals in  Drinking Water,  sponsored by the USEPA, February 13
and 14, 1979.
                                 8-5

-------
 Korneva,  L.  V.;  Y.   U.  Avondonin,  and  V.  M.  Olevskii?   "Removal  of
 Chlorobenzene  from Wastewaters by  the  Reverse Osmosis  Method", Khim,
 Prom-St. Moscow, 1976.                                           •                B

 Lafornara, J. P.;  "Cleanup After Spills of Toxic Substances". J.WPCF, pp.
 617-627, April,  1978.

 Lawrence,  J.  and H. M. Tosine;  "Adsorption  of Polychlorinated Biphenyls
 from  Aqueous Solutions  and  Sewage".  Environmental  Science  and  Tech.,
 Vol. '10, No. 4,  1976.

 Legube,  B.;  S.  Guyon; H. Sugimitsu,  and  M. Dore;  "Ozonation of  Some        •
 Aromatic Compounds in Aqueous  Solution:   Styrene, Bezaldehyde, Naphtha-        §
 lene,  Diethylphthalate,  Ethyl and Chloro  Benzenes",  Ozone:   Science and
 Engineering,. 5:151-170, 1983.

 Lettinga, G.; W. A. Beverloo, and W. C. van Lief;  "The Use of Flocculated
 Powdered  Activated   Carbon   in  Water  Treatment".  Prog.  Wat.  Tech.,
 10(1-1/2):537-554, 1978.

 Love,  Jr.,  O.   T.;  "Treatment  Techniques  for  the  Removal  of   Organic
 Contaminants from Drinking Water" In:  Manual of Treatment Techniques for       rM
 Meeting  the  Interim  Primary  Drinking Water  Regulations,  Water  Supply
 Research  Division, Cincinnati,  Ohio,  USEPA  Document  EPA-600/8-77-005,
 1977.
j

 Love,  O.  T.  and R.  G. Eilers;  "Treatment of Drinking  Water Containing
 Trichloroethylene  and Related Industrial  Solvents".  J.AWWA, 74:413-425,
 August, 1982.                                                    ,

 Love,  O. T.;  B.  W. Lykins;  R.  M.  Clark and R.  J.  Miltner?  Research for
 the Treatment of Organics in Drinking  Water.   Proceedings Environmental
 Engineering Specialty Conference, 1984.                          '

 Malaiyandi, M.,  P. Blais, V. S. Sastri;  "Note:   Separation  of'  Lindane
 from Its Aqueous Solutions by Reverse Osmosis System", Separation  Science
 and Technology 15(7);1483-1488, 1980.

 Malcolm Pirnie,  Inc.   Letter  Report  on Long-Term  Packed Column Aeration        n
 Testing, Pheonix, Arizona, April 22, 1985.                       ,

 McCarty, P.  L.,  and  M.  Reinhard;  "Trace  Organics Removal  by Advanced
 Wastewater Treatment". J.WPCF, 52(7):1907-1921,  1980.
                                                                 !
 McCarty, P.  L.;  K.  Sutherland; J. Graydon,  and  M.  Reinhard; "Volatile
 Organic Contaminants Removal by Air Stripping",  Civil Engineering  Depart-
 ment, Stanford University, California, 1977.                                     __

 Miltner, Richard J.,  Personal communication.  Organic Control Branch, EPA
 Drinking Water Division, Cincinnati, Ohio, 1986.

 Miltner, R.  J.  and C. A.  Fronk;  "Removal of  Synthetic  Organic Contami-
 nants from Drinking Water", Progress Report DWRD, EPA, July 1985(a).

                                 8-6

-------
Miltner, R. J. and C. A.  Fronk;  "Treatment of Synthetic Organic Contami-
nants  for  Phase  II  Regulations",  Internal  Report  DWRD, EPA,  December
1985(b).

Miltner, R. J.; T. F. Speth; J.  M.  Reinhold;  "Interim Internal Report on
Carbon Use Rate Data", DWRD, ODW, USEPA, June, 1987(a).

Miltner, R. J.; T. F.  Speth;  D. D. Endicott; J.  M.  Reinhold;  "Final In-
ternal Report on Carbon Use Rate Data", DWRD, ODW, USEPA, June, 1987(b).

Miltner, R. J.; Baker,  D.  B.;  Speth, T. F.;  Fronk,  C.  A.;  "Treatment of
Seasonal Pesticides-in Surface Waters", J. AWWA, January 1989.

Morgeli, B.;  "The Removal of  Pesticides  from  Drinking Water".  Sulzer
Tech. Review, Vol. 54, No. 2, 1972.

Moran,  D. ? "Report  on  Granular Activated  Carbon  Treatment  Units for
Removal of Aldicarb Residues in Private Wells of Suffolk County", Suffolk
County Health Services, Suffolk County, New York, 1983.

Mumford, R. L. and J. L.  Schnoor;  "Air Stripping of Volatile Organics in
Water", AWWA Annual Conference pp. 601-617, 1982.

O'Brien and Gere,  Engineers,  Inc.; "Hudson  River Water PCS Treatability
Study". Syracuse, New York, 1982.

Ottinger,  R.  S.  et al.;  "Recommended Methods  of Reduction, Neutraliza-
tion,  Recovery  or  Disposal   of   Hazardous  Wastes",  Volume 5,   USEPA
670/2-73-053-3, 1973.

Pirbazari, Massoud, et al.; "Pilot-Plant Investigations of the Adsorption
of  1,2-Dichloroethane  and l,2-Dibromo-3-Chloropropane  From  Water  Sup-
plies", Fundamentals of Adsorption, Proceedings of Engineering Foundation
Conference, pp. 441-449, May, 1983.

Regunathan, P., W. H. Beauman, and E. G. Kreusch; "Efficiency of Point of
Use.Treatment". J.AWWA, January, 1983.

Robeck, G. G.; K. A.  Dostal;  J.  M.  Cohen, and J. F. Kreissl; "Effective-
ness  of Water Treatment Processes in  Pesticide Removal".  JAWWA 57(2)s
181-199, 1965.

Rosen,  A.  A.  and F.  M. Middleton; "Chlorinated  Insecticides in Surface
Waters". Anal. Chem., 31:1729-1732, 1959.

Roth,  J.  A.,  and . D.  E.  Sullivan;  "Kinetics of Ozone  Decomposition in
Water", Ozone:  Science and Engineering, 5:37-49, 1983.

Ruggiero, D. D., "Removal of Organic Contaminants from the Drinking Water
Supply  at  Glen  Cove,  New  York",  USEPA  Document,  EPA-600/2-84-029,
January, 1984.
                                 8-7

-------
Ruggiero, D. D. and W.  A.  Ferge;  "Fie Id-.Evaluation of Aeration Processes
for  Organic  Contaminant  Removed -from Groundwater",  Proceedings  AWWA
Annual Conference, Las Vegas, Nevada, June 5-9, 1983, pp 801-822j

Selleck, R. E.; F. H. Pearson; V. Diyamandoglu; Z. G. Ungun; "Application
of Air Stripping Technology for the Removal of DBCP Residues in Community
and  Industrial  Water Supplies",  Report to Occidental  Chemical Company,
Lathrop, California, 1983.  -

Singley, J. E.; B. A. Beaudet, and A. L. Ervin; "Use of Powdered Activat-
ed  Carbon for  Removal of  Specific  Organic  Compounds",  Proceedings  of
Seminar, Controlling Organics in  Drinking  Water,  AWWA Annual Conference,
San Francisco, California, 1979.

Singley, E. and  R.  Moser;  "Evaluation  of  Alternatives", -In:  Occurrence
and  Removal of  Volatile  Organic  Chemicals  from  Drinking Water,  AWWA
Research Foundation, Denver, Colorado, 1983.

Snoeyink, V. ;  "Control Strategy  — Adsorption • Techniques'1,  In::  Occur-
rence and Removal of Volatile Organic Chemicals from Drinking Water, AWWA
Research Foundation, Denver, Colorado, 1983.

Sontheimer, H.;  "Considerations on the Optimization  of Activated Carbon
Use in Waterworks". USEPA Document, EPA-600/9-76-030.

Steiner, John  IV and J. E.  Singley; "Methoxychlor  Removal  from Potable^
Water". J.AWWA, 71:284-286, May 1979.

Stover,  E.;  "Removal  of   Volatile  Organics   from  Contaminated  Ground
Water", GWMR,  pp. 57-62, 1982.

Suffet, I. H.; A. Wickland; P. R. Cairo; "The Effect of a Pollution Event
on the Ability of Granular Activated Carbons and Resins to Remove Chlori-
nated  Organics from  Treated Drinking  Water",  In;   Water. Chlprination
Environmental  Impact  and  Health Effects, Vol.  3, Ann Arbor Science, Ann
Arbor, Michigan, 1980.

Tanada,  S.  and K. Boki;  "Adsorption of Various Kinds  of  Offensive Odor
Substances  on Activated.- Carbon  and  Zeolite".  Bull.  Environ.  Contain.
Toxicol. 23:524-530, 1979.

TerKonda, P.  and D.  W. Thompson;  "Treatment  of Groundwater Contaminants
Resulting  from the Impoundment  of Hazardous Wastes".  Presented at ASCE
Division of Environmental Engineering National  Conference, July, 1981.

Treybal, R. E.; MassTransfer Operations, McGraw Hill Book Co., New York,
New York, 1980.

Troxler, W. L.;  C. S.  Parmele,  and D. A.. Barton;  "Survey of  Industrial
Applications of "Aqueous Phase Activated Carbon Adsorption from Manufac-
ture   of  Organic  Compounds".   Draft  EPA   Contract   No.  68-03-2568,,
                                  8-8

-------
 USEPA Office of Drinking Water, "Review of Treatability Data for Removal
 of Twenty-five  Synthetic  Organic Chemicals  from Drinking  Water", ESE,
 1984.                                   •      •               •

 USEPA National  Primary Drinking  Water  Regulations,  Synthetic Organic
 Chemicals,   Inorganic  Chemicals,  'and  Microorganisms,  Proposed  Rule,
 Federal  Register,  November  13,  1985.
                                                   *•
 Versar,  Inc.;  "PCBs  in  the  United  States  Industrial Use and  Environmental
•Distribution".   EPA  560/6-76-005,  Office  of  Toxic   Substances,   United
 States Environmental Protection Agency, Washington, D.C., 1976.

 Warner,  H.  P.;  Cohen,  J.  M.;  Ireland, J.  C.;  "Determination of Henry's
 Law  Constants of  Selected  Priority  Pollutants", Municipal  Environmental
 Research  Laboratory,   Office   of   Research  and   Development   USEPA,
 Cincinnati,  Ohio,  April 1980.

 Weber,  W. J.;  "Pretreatment  of Industrial Wastes  with Activated  Carbon
 for'  Removal of Priority  Pollutants".  Applications  of Adsorption  to
 Wastewater Treatment Vanderbilt University, Nashville, Tennessee, 1981.

 Weber,  W. J.;  M.  Pirbazari and  M.  D. Herbert;  "Removal of Halogenated
 Organic  arid  THM'Precursor Compounds  from  Water  by Activated  Carbon", AWWA
 Annual Conference  Proceedings Part I,  pp  15-1,  1-31,  1978.

 Weber,   W.  J.;  M.  Pirbazari;   "Adsorption  of 'Toxic and  Carcinogenic
 Compounds  from Water",  AWWA  Journal of  Research  and Technology,  April,
 1982.

 Windholz,  M.,  The Merck Index, An Encyclopedia of  Chemicals and  Drugs,
 10th  Edition, Merck  & Company,  Inc., Rahway,  New Jersey,  1983.

 Yocum, Floyd H.; "Oxidation of Styrene with  Ozone  in Aqueous Solution",
 Ins   Ozone/Chlorine  Dioxide Products  of  Organic Material,  International
 Ozone Institute, Cleveland, Ohio,  1978.

 Zimmer,  G.;  Haist, B.;  and  H. Sontheimer;  "The  Influence of  Preadsorption
 of  Organic.  Matter   on   the  Adsorption  Behavior   of  Cholorinated
 Hydrocarbons"  Proceedings  of the Annual  AWWA Conf.  on June 14-18, 1987,
 in Kansas City,  Missouri.  (1987b).

 Zimmer,  G.;  Crittenden, J. C.; and  H.  Sontheimer;  "Design  Consideration
 for  Fixed-Bed Adsorbers that  Remove Synthetic Organic  Chemicals in the
 Presence of  Natural  Organic Matter," Proceedings of the Annual AWWA Conf.
 on June  19-23,  1988,  in Orlando, Florida.  (1988).
                                 8-9'

-------
I
B

-------
           APPENDIX A




ESTIMATION OF CARBON USAGE RATES

-------
1
i
B

-------
                                  APPENDIX A

                        ESTIMATION OF CARBON USAGE RATE


From Chapter 4  (isotherm evaluations)

          C.U. Rate ~   C


     Where:    C = SOC equilibrium concentration  (mg/L)

               K, 1/n - isotherm constants

     Or:

     Carbon usage (Ibs/thousand gallons) -    C       (g/L)  x  8.34  (Ibs/KG)
                 -   -                      K(ci)l/n                  (g/D

     For example:

     SOC » PCB  (Arochlor 1254)

     K = 13,724 (mg/g) (L/mg)1/n (From Table 4-1)

     1/n =1.03 (From Table 4-1)   -

     Influent concentration = 5 ug/L = 0.005 mg/L
     Carbon Usage =    (0.005)(mg/L) x 8.34  (lbs/KG)/(g/L)
                    13,724  (mg/g) (L/i
                  = 0.00071 Ibs/KGAL
13,724 (mg/g) (L/mg)1/'n x  (0.005 (mg/L))1'03
                                   -1-

-------
1
1

-------
J^^^.
                                       APPENDIX B -




                             SUMMARY OF GAC ISOTHERM STUDIES

-------
1
D

-------

V
L.
0>
oe
s
**
V
C
•'i
O* 0*

Af > CK

g g
z z
§

u
C
X
1

V
C
z
§

s
z
§ E
~ g
C U
- "g
z a
8

g
z
§ §

g g
z z
8 §

g g
X X


tt Of C U
Z Z C in
                                                                                                                                            is.  5  0-
                                                                                                                                            *°  C  §

                                                                                                                                            s*   C  C
                                                                                                                                                 V
                                                                                                                                            c_  j:  L.

                                                                                                                                            28%

                                                                                                                                            r  "g  r
                                                                                                                                            X   <0  Z

a       to

i       I
<       0
                              in  to  tn
                              tn  in  -O
                                  5m  in      M
                                  •»  o      Kl
                              •*  «-  *O      •-
                          O  CO      CO       ••*  CM

                          M  rj      »'
                          K1  S.      (
                                                                                 tO
                                                                        ~  «
                                                                                                 S  3
                                                                    CM  «-       *-  CM
                                                                                                  oj  O>
                                                                                                  f\J
                              O  O  O      O  O
                                                                                             in  o  o  N.
                                  KCO
                                  (M
    •4*      1^-      K>  *O       ^O   i       O
    O      CO      h*  f<*       •J'          fl
    ~-      fv      -O  M       K)
                                                                                 M  -O  t>
                                                                                 CM  •-  
S
o
CM
•O

SK»
FO
O O
0 ^
CO N.

0
-X
o
-O
-0
M
•O
«»
O
(M
CO

*o — -o
M •» M
0 O O
M3 ro co
N.' >t d>
iC
R 8
o o
Ki
in

R
o
o
CO
•0
O
KJ
•0
2
o
O
to

S
o
<^
CO

o   o       o       o   o
a.  ee       et      te.ec
                                                                                                  •*  o  •>»•   o
                                                                                                  «-  a:  «-   oc
                                                                                                                        i   §   ,
                                                                                                  o   o
                                                                                                  ae  of
                                                                        \
                                                                         a>
 a.  i   "n  *»      I    (A  >   O
     51   — •—   L.
     i   o a  o
                                                                                                                                             5         4-»«^3301
                                               u>  >       o      u) .*-•       uiai       IAMOO>

                                               OQC      U      O3      OO      OOOOK
                                              fj

                                              8
            in       «-
            •-       CM
            CM       CM
                                                                                                 -o
                                                                                                 M
                                                                                                 .
                                                                    C
                                                                    (0
                                                                                                                                            I
                     o
                     a
                     ui
                          CO
                          u

                                 •o
                                  ^
                                  o
                                                                                              o«   u

                                                                                             u  •5
                                                                                                                      "D

                                                                                                                       o

-------
I
B
I

-------


fl)
H-
QC

1
'5
i
^*
*•*
41
|
llMf
 o> w
^^ ^^ C
ill
111
a '
3 K S
O* «- Ifi


sO CO
O in i
** M
IT* «•» "O
O O O
Kl
K f Kl
r- co in
«


II'
•p  > W
a oe o

o
Kl
0
1 , 2- d i ch I oroprop
1
II
P
— >.
x <

,0 g
sf O
s* CO


o
sT ' •
rs. *o
CM in
o <=>
o
is!



i ,
o
ae
L
» »
0 0

o
CM
CM

0

§
01
c
X

$
«


o
o
in
R
»
•o
•i
m


oc
3
w
0

(M
§

o>
c
o
N
1
"^
§ 3
v m
L. n
g 1
-• XI
X O
111
* 8
^- o
-* o


O
1 •
CM sT
0 O
0
CO
in
is!

u
CO
• 1
5 «
tfi IA
0 0






CO OQ CO **^ c O* '"* ^~ *~ OQ *"^ T**
•^r «./ v* O* ^ O*1 C C v CK C
L c. i. C '> o Cf£ t- C j;
OOIOJ CO OO O( O
C C C — UJ — — U (J C — U
— — ^: z .2 fc Z"S"8 ~I"c?
xxx c (/> IB <-CON-O O O O> «- O O
r-cMrsmo cOsrin  CO i i i i O Oil
in >O j; . j; rvl
sjm**Ofl OKIO* fs.u>f^
00000 000 000
|s!oOOO OKI OKI
rvjcoors.in Kin Km
-0


o o o ' o
ce ae *• ae
L.  sx s^
«J . W
u> > vi u O MUM a> a at
oaeoou ooa ooo

O- in co
5 R S
01
rl
Ul
° 1
^ JC
u u
10 a
w *•*
m Q. Q.
o u ^"

1
1
i

m
h-
8:
CM


O
1
,
0
«O
IM
sT


at
TL
10
o

o-
o
a

c
CO
"S

1
SM*
I
i

CM
^
fM


O
in
in
,
0
CO
CO
^


ae
u
01
5
1




*"S
N-
1
1
i

8:
~


o
CM
CM
s
O





ae
in
"S
tfl
o

K
in

lethoxychlor
*.
s^
>
(U
0)
c

1
U)
o
o
2



1
•o
sr
C9





1
L.
O
to
3
a
£






-------
B

-------
                                                                                                            fc
                                                                                                            o.
 t>
H-
 t)
         »  §  c
         2  *  ~       S
         -  ~   g    \g
         t-  C.  .e
         C  C  CJ
                          %x      <^  .                 o                            o                    >. o
                                       ^s      *"»  ^s  CO       ^s       ^*      *^  CO      **s, ^%  ^^   QJ  CO      ^^  ^^ "^
                          >—      —I"-      |s.  cs.  »       N-       Is.      PS.  O"     rs.rs.cs.3O      h-Kco
                                                §co  co  •—       co       co      oo  v».      oo co  co  jo  *~      co  co
                                                O  O*  s^       o       O      c>s^      CX o  o  TO  sw*      O*  C> -f
                                      .«—      T-  »~.           •—       «~      *—           •—*-«—   CO           «—  *—  0*
                                       w      '"^g       —       **  .    w   5      •«->'weoC      f«_
                          ~       1_   L.       L.<_£       L.       I-'I-JE       Ul-t-'Of      C_   t_ •-
                          .„       ._   oi       01010       <_      *•"•*'__      ^^P

                           ca       a


                          I       I

*^*
^%
I
•J
«*r
t«*
^H
OI
i
0 «
O 3
O          Is.

                                                                          is.  fi      -O  in  K.              in

                                                                          in          s*
                                                                                                        O

                                                                                                        CO
             "8
                          t.       1.
                          0)       01
I
L.
O
3
     »•»           CO       CO                I-

•O^TJ       3      3  -D      TjS-0      TI       T}-T>
 0>   ^  V       Of       OIU       OJCOw       01        V       V

—   """  ^       t.       I,—      —       —      —       li      ^
—   t_  .•-       U.      Ifc  .^      .—   i-  —      —       —      —
«^OI4^                   W4^0'*^*f*'f
 CA«^U>       O-UM       CO>IA       (I)        CA       U)

O   3  S      'E      'E  'o      O  C<  O      O       0      O
                  CO       CO
     L.           O)       O)
     0>           <-       k
    _>          o      o

     C£
                                                                                                        ^  "8
"8
                                                                                               M   O   01  M   Bl       (0

                                                                                               O  13  O  Q  O       O
        so

        cv
                          §
                                  sO
                                  CM
                                  IO
                                                                                  CO
                                                                 OJ      *—       *—
                                                                                                                O

                                                                                                                CM

                                                                                                                sr
        1.
         N


        I
                         *-      in
                                                g
                                                01

                                                o
                                                o.
                                                                                  01
                                                                                  g
                                                                                                                         01
                                                                                                                         -g.

-------
I
i

-------
»>^%**
N>h-r^3     N.K
Reference

(••I
^s
g
•^
u
O)
x»
*^
»-i
*•%
01
|
|
^^
,c

S.
£
3
1
I—
(M
i
t_
O
*
«v

i

8
8
III 1 1 1 i
ac ac i i x x. o
10 _l
jQ , jjj
o
S OJ 0 . '-43 PJ S O
ro O> M jo in p o
•- oo in N.  ro eo N. i
in ro o K-I o.
in o* «- N- N- *o CM
>* Ki in >* >* «M ru
o o o o O O o
K »
225 S22-.


eS <§ « o: S
L.
L. O
O 4-*
> ui o  01 O
c c ecu
i ac i x «u
in
S
o
o
SCO «- O O
o* in ^3 ^3
S 8 o S S


o o o o
o ro o «- i
1C SQ S S 2:
O O O O O
o
t** oo &• -^ t*i
* t • * *
^o trv. -o ^o N-


« |
O Ml O O C
oc «- K oc
S
e
JS
Af *^
4-> O
V O> V 3 Ol  _ -o _ o
tt . tA W O CO 3
o o o u o o o
o o
NT Q fft
C.
A « ^
O *
* - - 1
















a
a
M
a
|
n
!
. Carbon
in


-------
I
D

-------
                APPENDIX C




SUMMARY OF PILOT AND FULL-SCALE GAC STUDIES

-------
I
E

-------
1
u
§
**
!
>, i
1 I
1
u
(A
111
U
<
111
S
to
1
U _*
*J
X 3
• Ii
£
< h-
O
_l
z
1 1
1

o
+>
10
(A






*-
IU



o
i
'o
g £s -e^ -e^ -e^ f= -e
au "5 t- "5 t- ~D L. *5 t- "5 t- "u
a 10 M in in
*- o o o o

h» r<-


f*" *^ m ^) o
in, 10 *M to 31

.* * i i *




flB ID tO
U *0 O 10 U



o

«
                       V)   g

                       <   £
                       a.   b
             a       u.
                                     10
                                     u

                                    v       a

-------
I
i

-------
              01  O
              D>  -
                                                      «g nj
                                                      Si •*
                                  •*  «-     <>  -o

                                  -*  m     •*  -»
                                                      sr  cv     •-
in in     *• < 0.
1*
o  o
o
CO
                                  §         i
                                                                                 8-
                                            u

                                           TJ
                                                      IB
                                                      u
                                                                                                 •8
                                                                                              •8
                                                                                              1
0
1
a
ca
a
o
O
u
v>

1
*fc^
8
w







(A
•8
Z
2
4^
Z
*
f
u
"o
H-
3 >•
tn <
**
I
«
u
"o
«^
«^
3
I/I


*•

-------
I
i
D

-------
I
01
V
a
ce
^ 4*
<3 o>
a
S
^
1
* W

1
'u
o
L.
4J


|
U
tn
Ul

o cj
3 EQ
I/I
u
- s
5 ui
£ 2
1 "
S 3 "2
• U. HI
xi §
§: i
ui O _j
O. _l O
CL — v>
< Ct
u.
O
1
x
M















?



*
%

§


i
^
1

^^
Ul

*J

01

"c



c

'i




X
l_
a
3C
o
i
0






i
,j
a>
ec



a

IP
a
o
u
M

£
U
O
la


?§ 2 1 s E? £
• • • • • .in



•» IM «- in * ^
fM CM mm




in in in 
— (0 . f
<0
s
O


u


IM
•
in



§






^.

•«




f^
^*





t
o
u

^
01
eg
£
a

(A
ai

f
1
H- •
s^

' 0.
a. u
m
o


K

v m v •- A
V

§ 1 !Q Si •: §
• V
CM

O

. » in **

«- 1 w— CO »— »— «—
1 O • r- CM II
*"• m m C
N. - in



o o o o in ii







1
o
«- ex a. a.
m — u u ui u a
a 3 m co u ma
ui  o a o o uj


g S

c i 5 •- * ^
UJ Of O» CO *-* *—
.£ " c £ * ^. -* «
c ~a • J3 L." M ' 2in

to cj o -^01.- -«-
uEcj a.3<-> O^>
1 1





2 S 1
% e I
1 s °
** •*- c
<
-J 3 VI U


^ CL ^



-------
I
I
D

-------













en
UJ
i
M
U
~ g
» ui
IS
I "
" =
u
I?
£ 3
a —
< a.
u.
0
Of
1














•



4> "ffl
«-> O)
• <8
ec o
I §
>•* 4-f
1 1
§ ***
a
L. 4J
C U
8 —
o c
u —

1- c
u ••
m E
UJ ^*




ll

o u
'•M '£
3 n
— CD
. O t-
in o



o
V

V
ae
a '

OJ
a
•s
d>
Sf
1


J«K
*l

**te
* 1
w


• in in
ST^ot (MNCVICM INI-O
... ....  1*1 (M •- in h-
§*^ t^ ' c? *^ CNJ ^~ • m m
o o o o o o . «—




T-O^-O IM •- in IM K» '  c £
— J5 4> — • -O c v a u
•525 -ggifg --S
— OX. •- O >- >• t- i
TJ — • £ T3 — X j: X IM
QU4) Ou£WV) <~

-D
• 
•a . C
B § £

(J ^ .—
z ** x.
^ ** • >*
^ ° g

(J —
OJ ° 2
c c! >2
£ a « ^ »
g &
U O
o o
•o j=
— u
O , TJ '
T3 it CM a.
O . «-"


O- CM »O K» CM O^ •
•41 in •— K» O« CM
c\i •-" ro •"• cu «-

inin
in ^o co in in in
«- IM •-



«- •- in in
~ ** s S S S
PO n Oi r>l



O LA IA ID IA



41 4»
i • i -S
0 0 "3
L. ^ O
f f 3
o o «

111
•O T3 0
CM f\l "5
r? +f ~tt















.'





t>


12 1

•» CM •-
f— CM f\l
CM



in in in
cvi <5 *




in in in




g
1
a
is 1
1 1
a u























-------
I
B

-------








in
Ul
§
<
<
c
i
i
j
^
!
§
**
o
s_
4-f
s
o
u


»
c
i



•

*
-
"
c
f*>
0 7a
-> O)
D
' o
v e
at -
i ^
S §
v-»
**
•rf
«•>»
M—
UJ
4-1
H-
c


«•"» .
- c
3 I


' X
5 in
„ X
i o
3 'E
3 k.
« O

v»K)*O<4> (M (NJ >* PJ O -J- *O sf
i3O^^ lA LJ CM O U »O O* I/\CM O"» Is* tn r«-
. • • r\iz «^z z M«- *MOJ c\j«- m«-
V
1
z z »- z ^ «- T- srN o* «-in CM<*

oo»- >OCM -CMT-. 09 inin jntn —— "Z1;
.-CM i • « inin P-r- § § >O>O
IM
^~


• o in OO ii I fO IM CM «• ^



UJ UJ * tii tti ni in in m
U U CJUUOUUDLJ
o o < o o a o oo oo
CM CM 1- (MIM IMIM CMCM OJ CM
SI i * i 1 II ii ii
UJ MUJ UUJ ^ 

-------
I
B

-------
*%
«l "3
•* at
a
DC O
(3 O> »
3 £
5 3
.2 "
L. 4*
** C
£ 3
i •£
U —
(O
- n c
o o —
=> co E
N.T- <* IM vf CV (M •-
(M -O O -O -* •-
mm ro «- o> co
T- IM s- «- in
••* -»
eo eo ** **• st -^
o o tn in N. N.
IM IM O- O !*• N-
IM rg K. Ni IM IM
  II
     u»
  CJ
  x  3

  i:
  uj  O
  a.  _J

  <  a

     u.
.     O
   ....

C  *-•
.  -


5  o



1.1
o  u
to  O
i
B  53
o  o
53  53
o  o
S3  S3
o  o
X X
f £
** **
a «
«  «

s  s

"3  "3
                     —•  —•    IM ru
              X >.

              X X
                           e  e
                      a a
                              v> at

                             'o 'o
                a)  a)


                'o  'o
                at  ta


                u  'u
ca  u)


o  o
                                           §
                                                     r—


                                                     §
                                                                   o

                                                                   5
   a
   4^

   

-------
I
B

-------








in
LU
I
£ UJ
3 _l
•*- O
v W
g J,
•2 o
i^
u
x z
a
1 1
a. —
u.
O
ae
|
«














^*
o or
1 1
1 3
i s
<0
«- V
1 5
I i


^ c
o -~
£ g
U) w




X
•g i
. »
o v
+4 £
1 I



o

2
•i-
ae
a
a
o
o
u
i
v»
S2L
X
I—
u
v>
o ":,« * - «
V Kl
oom i*i in o> «- o
z o 
, ^B i __ ^n ..> ,F^ ^Z ^L
ToV §5§ TV
£ S S K "
f* • in


O ^3 O • i i ii
ro ro m

C. *rx
£ Q>
eg *j
g !i
C i- O
« CT> i.
-f ~ a>
O w
H- a. a.
CO — O CO O CO
a 3 OP a co o
ui tn a ui o ui

8 • -
.8 -; -s
C "" l*» *
UJ * CO O •
01 O> C O
41 4> «- -•
— U a> f*
O > X uT E eo
C <- — • «a DO
ID 01 3 M .C «-
CJ U) -J Ul »- v
01
S .5
«• CT
2 1
m i «c
— * to o
'
4
QJ
N
1

co a. u. .c
o ^3
Ul ui
in T-O 43h», orv rg ro
Oru N-r- -orvi >o»- !*-•—
-*»- 00 O CS °° «- 0

ro st <•? «o o> in in
OO »*KI **"« I*^O IMfw
rxjio •• *co •* ••
^K> >O»- *••>» CM-«

oo eo intn min intn
r»-N- ror\i inin o>O'








Is
U U M M 41 0»
o a c c c c
*i o o 01 o> a> a*
r\i rvi i 25 aio c c — —
^ - CC (U «) XX

VV "x*X 33 'x'x ?*
MM ££ — -• XX CLQ.
•— — 4-> 4J O O 11 «N, «•»
(JO VO) fc- 4J EE OO


1


I ' '


|
CA
^
3
I
3


fit


-------
I

-------
s s
0
at o

u o> -
a «-
5
•***, 0)
I 1
<^
C UJ
*••
a
»- C
1 5
(A
Ul ~
»~ ^ C
i g •
in
u
?S

*-» U)
§ ' x
U — J "Q ^
•w 3 C 4-»
1^ Q (Q
X S § 0
§"* * 'S 'E
>- 30
ui a — o)
a. -j o t.
a. — 

~.
* 1
*—
I



sr-^st- (MfMCXirgcxj

2
o   - c 4->
oovouEtiia -- i
•o
 fs. .^

O0 ^^ O0
X — L.
w xx _« 0) *-\
1- O t) C O-
IB  •-* r»»
u o- c. t> o-
u «— o 4-* «—
I vx X OT ^
» IA
£-5 § 1
Jt_ . a -a 41
•f w£ -C
w M a a

S o TT 15
roc. o oi
c o> oi *j at
<- IB IB '5 a
O 3 _i 
o K.
fO



r\j
c_
O
1
IB
1

^^
CO
S- ai
O t.
»- HI
«-• O
IB ofl
1 s -
0 'C S
H- CO O-
IB -» ^
_l O -^
T c oT
01 V — ' 01
Z 10 

out.
•D 01 01 O
IB «* —
N •— <0 X
IB O. c- ai
X Crt *— Z




b.

-------
E
D

-------
*•%
a a
*> o>
a
DC O
- IU V
W
'- O
13
li
** CO
0 -ll X
£ ^ ? '£
u- a a
u z
o c
XX 00
a 4J C
= t- 3 a
IU O — • Ql
CL — J O I.
Q. — MO
< a.
u.
O
1^
Of
<
3C
3
O
1
01

oe



a
Arf
0
•*-
o
Of
U
c.
I
^\
<*t
v/
1
*•>*
s

*o


y

/N
N.
«v
O
8
^3


•


1

i.
o
JI
U
a
!











a
•»• 4W
L. C
V 4?
4-» £
o
Jt_
*-
(. — f

o
L.
o
£
U
4^
g fc
a.





























S

*»
V
4-*
0)
L.
01
— *

O
L.
h»







^f
(M
ro
5


-a
r»i



*


1 •
o>
1
o
1
+*
i




^*

Nrf
JriC

^
o
t_
<0
4J
S
X
I
Tl

t-



»
^
°- £
in


rj

S
o


S



1


§
N
1
U
o-dichlo
"S
a
t
'01
ae
•B
X
4rf
IB

Z



X
3
O
U
D)

a
t.
o





«*•


IV CM OJ CV

«- in h- CO
** CM «— •—
O O O O


^ 8 g S



i i i i

I
1?
o

1.1

£ 1 4* *J
U E O M






«<^
00

c



4rf
o
t.
**
M
a
L.

«J
IB








R
V
V


^%
00
w. >O
K1



1 .






V
f
X
o
4-1

^*
*
^
Ni*
<0
c-
E
0
**-
(0
_J
- 3
a

T c «T
ai at _
4- 6 4J
a w 4->
z a 
V)
o •»-
01 Q
P) i.
C C^
O w





U.


IM IM fXJ

K) t 2
000


o o o



1 1 1




a>
£
•S
m-xylene
ethyl ben:
styrene


























-------
I
 B
 D
 B

-------
      ii

      a.
  -

  S S
  "S ±  S
V i-> S3  Ul

3 — £  _,
  U 0  II —'
       c
       n
Ill

«Il
fe ^ 'g
uoo
    II Tl B> t- O  01
     C ••- 4) 3  3
    : at — *. _  —
       LJ O — —

-------
I
D

-------
                                              APPENDIX D




                                     CARBON USAGE RATE COMPARISON
L

-------
1
B

-------
                       APPENDIX D
COMPARISON OF FIELD DATA AND HOTEL-PREDICTED CARBON USAGE RATES
Concentration
Average
Influent Effluent
Compound (ug/U (ug/L)
Aldiearb ' 19.9 0.5
2.5 .
7.5
12.5
17.5
19.9
cis-1,2-Dtchloroethylene 79.8 0.798
20
60
79.8
77, R n.r>8
I 18
55
72.8
61.0 0.61
15
46
61
88.1 0.881
22
, 66
88.1
75.0 0.75
19
56
75
55.0 0.55
u
42
55
•25.72 0.2572
6.4
19.3
25.72

Carboi
Type I (1)
0.00677
0.00653
0.0062
0.00593
0.00544
0.00452
infinite
0.49
• 0.114
0.038
0.442
0.205
0.139
0.076
0.241
0.17
0.134
0.089
0.217
0.188
0.168
0.133
0.18
0.168
0.16
. 0.141
0.149
0;144
0.139
0.127
0.2
0.174
O.US
0.108

i Usage Hate (Ibs/Kgal)
Type 1 1 Ix (2) Type IVx (3)
0.301
0.193
0.142
0.124
0.113
0.109-
infinite
0.49
0.125
0.092
2.27
0.476
0.187
0.145
0.708
0.35
0.174
0.139
0.433
0.294
0.176
0.149
0.296 . --
0.252
0.22 -.—
0.175
0.318
0.262
0.194
0.172
1.23
0.463
0.206
0.161

On* i« 1 1 1 v
KoilO IliX
or IVx :l
44.46
29.56
22.90
20.91
20.77
24.12
0.00
1.00
1.10
2.42
5.14
2.32
1.35
1.91
2.94
2.06
1.30
1.56
2.00
1.56
1.05
1.12
1.64
1.50
1.38
1.24
2.13
1.82
1.40
1.35
6.15
2.66
1.39
1.49

Cftf*T
COLiI

12.0
12.0
12.0
12.0
12.0
12.0
1.01
1.01
1.01
1.01
3.09
3.09
3.09
- 3.09
5.08
5.08
5.08
5.08
10.35
10.35
10.35
10.35
21.18
21.18
21.18
' 21.18
32.25
32.25
32.25
32.25
6.20
6.20
6.20
6.20

trtr
iUw
(mg/L)
—
...
...
...
...
...
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
6.35
8.35
8.35
8.35
8.35
8.35
6.00
6.00
6.00
6.00


Uater
Source
Suffolk GU
Suffolk GU
Suffolk GW
Suffolk GU
Suffolk GU
Suffolk GU
Uausau GU
Uausau GU
Uausau GU
uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GW
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Great Miami
Great Miami
Great Miami
Great Miami
-•
































Aquifer
Aquifer
Aquifer
Aquifer

-------
                    APPENDIX D (continued)
COMPARISON OF FIELD DATA AND MODEL-PREDICTED CARBON USAGE RATES
Concentration
Average
influent Effluent
Compound (ug/L) (ug/L)
cis-1,2-Dichloroethylene 19.35 0.1935
4.8
14.5
19.35
20.84 0.2084
5.2
15.6
20.84
95.4 0.954
n.9
71.6
95.4
77.4 0.774
19.4
58.1
77.4
Carbofuran 8.5 0.085
2.1
1,2-Dichloropropane 34.06 • 0.3406
5
8.5
10
15
20
25.6
30
34.06
22.0 0.22
2.5
5.5
7.5
12.5
16.5
20
22
Carbon Usage Rate (Ibs/Kgal)
Type 1 (1) Type Mix (2) Type IVx (3) <
0.178
0.155
0.132
0.092
0.162
0.152
0.14
0.118
0.248
0.201
0.172
0.126
0.196
0.175
0.159
0.131
0.003
0.002
0.187
0.147
0.135
0.13
0.119
0.109
0.098
0.0847
0.058
0.117
0.107
0.102
0.0989
0.0926
0.086
0.078
0.064
0.
0.
0.
753
464
257
0.21 ---
0.
0.
0.
0.
• * m
-•'
...
--•
...
...
...
...
0.
0.
0.
596
421
266
225
0.686
0.434
0.247
0.187
0.373
0.299
0.199
0.166
097
089
998
0.45
0.316
0.
0.
0.
268
201
157
iatio
>r IVx
4
2
1
2
3
2
. 1
1
2
Mix
.23
.99
.95
.28
.68
.77
.90
.91
.77
2.16
1
1
1
1
1
1
32
44
5
3
2
2


0.133
0.
0.
109
103
i,
0.366
0.302
0.249
0.219
0.179
0.152
0.132
0.128


3
2
.44
.48
.90
.71
.25
.27
.33
.50
.34
.06
.34
.06
.69
.44
.36
.29
.78
.13
.82
2.44
2
1
1
1
2
.21
.93
.77
.69
.00
EBCT
(min)
6.
6.
6.
6.
12.
12.
12.
12.
7.
7.
7.
7.
12.
12.
12.
12.
5.
5.
5.
5.
20
20
20
20
40
40
40
40
40
40
40
40
70
70
70
70
00
00
00
00
5.00
5.
-5.
5.
5.
5.
5.
10.
10.
10
10
10.
10.
10.
10.
00
00
00
00
00
00
00
00
00
00
00
00
00
00
TOC
6.00
6.00
6.00
6.00
6.00
6.00
6.00
6.00
8. .35
8. ,35
8 .,35
S..35
8. .35
8.35
8.35
8,35
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
.2.00
2.00
2.00
2.00
2.00
2.00
2.00
Uater
Source
Great Miami
Great Miami
Great Miami
Great Miami
Great Miami
Great Miami
Great Miami
Great Miami
Uausau GU
Uausau GU
Uausau GWjj
Uausau G^
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GUj
Suffolk fl

AquSf< •
Aquifer
Aquife-
Aquift
Aquifer
Aquife
AquifE
Aquifer


|
w


T
A*






1







•


^
i
                                                                                                         D

-------
                                               APPENDIX D  (continued)
                           COMPARISON OF FIELD DATA AMD MODEL-PREDICTED CARBON USAGE RATES
Compound
1 ,2-Dichloropropane








Ethyl Benzene



Toluene



ro-Xylene



o/p-Xylene



Note:
Concentration
Average
Influent Effluent
(ug/L) (ug/L)
20.0 0.2
1
2.5
5
7.5
12.5
15
17.5
20
4.5 0.045
1.13
3.34
4.5
24.55 0.02455
6.1
18.4
24.55
5.45 0.0545
1.36
4.09
5.45
9.0 0.09
2.25
6.75
9

C1> Type I carbon usage rates are KSOH model
(2) Type Illx data are
Carbon Usage Rate (Ibs/Kgal)
Type I <1)
0.103
0.101
0.0978
0.0948
0.0924
0.0881
0.085
0.0812
0.069
infinite
0.002
0.001
0.0004
infinite
0.013
0.006
0.002
infinite
0.001
0.0007
0.0002
infinite
0.002
0.0011
0.0004

predictions
Type illx (2) Type IVx (3)
0.2B1
0.267
0.248
0.225
0.202
0.174
0.165
0.15
0.146
infinite
0.07t
nsm ---
0.0064
0.215
0.066
0.027
0.021
infinite ---
0.069
0.013
0.0073
infinite
0.172
0.013
0.0088

Ratio Illx
or IVx :1
2.73
2.64
2.54
2.37
2.19
1.98
1.94
1.85
2.12
0.00
25.50
.10.00
16.00
0.00 •
5.08
4.50
10.50
0.00
69.00
18.57
36.50
0.00
86.00
11.82
22.00

EBCT

15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
15.00
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01
1.01

TOC
(mg/L)
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00
8.35
8.35
8.35
8.35
8.35
8.35
8.35
6.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35
8.35

Water
Source
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Suffolk GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Wausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau GU
Uausau CU
Uausau GU
Uausau GU

using distilled water isotherm values.
actual carbon usage rates determined at the indicated concentrations
     and design criteria  through pilot-scale testing.
(3)  Type IVx data are actual  carbon usage rates determined at  the indicated  concentrations
     and design criteria  through full-scale testing.

-------
I
c

-------
                 APPENDIX E





FLOW-CHART FOR DEVELOPING GAC FACILITY COSTS

-------
1
B

-------
                                         soc
                                        ISOTHERM
                                       CONSTANTS
                                       CARBON USE
                                         RATES
           PLANT
          CAPACITY
         CONTACTOR.
          CARBON
          CHARGE
          BW
                                (I) CARBON DEMAND*
a VENDOR
* REPLACEUEN1

_L

O A M
COST
CARBON USE RATE
   x FLOW
FLOW-CHART FOR DEVELOPING GAC FACILITY COSTS

-------
I
D

-------
              APPENDIX F
GAG COSTS FOR INDIVIDUAL PHASE II SOC'S

-------
I
I

-------
orption -- Costs for Retnoving===>  Alachlor
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
i:a
• 0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0
•^Lt
^B>1, 000,000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («)
O&M Cost, (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
, O&M Cost (KS/year}
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

0.60

94.00
.d«.WWW«l*W
87
2
600

140
3
220

. 220
6
100

370
12
66

650
72
58

1800
. 85
39

3500
• 160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

10.00
2.00

80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


6.00

40.00
87
2
600

140
3
220

. 220
6
100

370
12
66

650 .
72
58

1800
85
39

3500
160
31

3700
200
. 20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.60

98.80
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31
•
3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
2.00

96.00
87
2
600

140
3
220

220
6
100

370
. 12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
.17.

8500
350
14

25000 •
1300
JO

46000 "
2700
- 8

•
6.00

88.00
w«j.«£3*;2*3285
87
2
600

140
3
220

220
6
100

370
12
66

650
72
- 58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
3SO
14

25000
1300
10

46000
2700
.8


0.60

99.40
87
2
600

140
3
220

220
6
100

370 '
12
66

650
72
58

1800
85 '
39

3500
160
31

3700
200
• 20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

100.00
2.00


6.00

98.00 94.00
22S SS SS S S SS3S S S SSI
87 87
2
600

140
3
220

220
6
100

. 370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
3SO
14

25000
1300
10

46000
2700
8

2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
GAC Adsorption -•  Costs for Removing===>  Aldicarb
Population Range
Design Flow (MOD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow  Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8.
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000 '
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
•Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
ssssssssss
1.30

97.40
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
10.00

80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

•3700
. 200
20

4900
220
17

8500
350
14

25000
1300
10

46000
" 2700
8


20.00

60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
. 220
17

8500
350
14

25000
1300
10

46000
2700
8


1 .30

98.70
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
' 4300
10

100.00
10.00

90.00
87
2
600 .

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


20.00

80.00
87
2
" 600

140
4
230

220
9
110 '

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16
"
25000
2100
11

47000
4300
10

SSSS5ESS35S
1.30

99.74
87
2
600

140
, 4
230

220
•9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

39DO '
260
22
1
5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

500.00
10.00

98.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63 J
tl
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
I
47000 '
4300
10


20.00

96.00
87
2
600

140.
4
230

220
9
110

370
21
77

700
. 80
Lfe63
V
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
A
•••••LM
^^voo
4300
10

B






1

















G








I







™







                                                                                                                               B

-------
orption --  Costs for R«noving===>  Atrazine
Population Range
Design Flow (MGD)
Average Daily Flo
' 25-100
0.024
0.0056

t 101-500
[ 0.087
' 0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
^^ 1.8
^B 0.7
^^
10,001-25,000
4.8
I 2>1
1
25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.6
27.0

t
' 500,001; 1,000, 000
210.0
120.0

>1, 000,000
430.0
270.0

I
L^L^B^.^.B
Influent (ug/L)
Effluent (ug/L)
w (MGD) Percent Removed
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost <«>
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total capital Cost (KS>
O&M Cost (KS/year)
Total Production Cost
(cents/1, 000 .gal)

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
^^^^^^^^

1.00
80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14


25000
1300
10

46000
2700
8


5.00
3.00 5.00
-40.00 0.00
87
2
600

140
3
220

220 .-••
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14


25000
1300
10

46000
2700
8
•

50.00
1.00
98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14


25000
1300
10

46000
2700
8


3.00
94.00
87
2
600

140
3
220
-
220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31
-
3700
200
20

4900
220
17

8500
350
14


25000
1300
10

46000
2700
8


5.00
90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14


25000
1300
.10

46000
2700
8



1.00
99.00
87
2
600

140
3
220

220
6
100 *

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
' 200
20

4900
220
17.

8500
350
14


25000
1300
10

46000
2700
8


100.00
3.00
97.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14


25000
1300
10

46000
2700
8

•^••i

5.00
95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14


25000
1300
10

46000
2700
8

••••I

-------
GAC Adsorption -- Costs for Removing»*>  Carbofuran
Population Range
Design Flow (MGO)
Influent (ug/L>
Effluent (ug/L>

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000,000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
' OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
20.00
5.00 40.00 50.00

75.00 	
87 	
2
600 	

140
3 	
220 	

220 	
6
100

370
12 	
66

650
72 	
58 	

1800
85 	
39

3500 	
160 	
31 	

3700 	
200
20

4900 	
220 	
17

8500 — —
350 	
14

25000 	
1300 	
10 	

46000
2700
8 	


5.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

. 4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
40.00

20.00
87
2
600

140
3
220

220
6
100

370
12
66

650.
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

*
50.00 5.00

0.00 95.00
87
2
600
.
140
3
220
*:
220
.6
100

. 370
12
66

650
72
58

1800
85
39

3500
- 160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
... 10

--- 46000
. --- 2700
a

;»wwww===
100.00
40.00

60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
- 14

25000
1300
10

46000
2700
8


50.00

50.00
™ 5 — — y SS SS &
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
^^k
^^)0
2700
8

1






1



v













E








I







• •








-------
sorption -- Costs for Re«noving===>  Chlordane
Population Range
Design Flow (MOD)
Average Daily Flo
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
• 0.7

10,001-25,000
4.8
- 2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
• 120.0
•'
>1, 000, 000
430.0
270.0

Influent (ug/L)
Effluent (ug/L)
u (MGD) Percent Removed
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost («>
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M cost (KS/year)
Total Production Cost
(cents/1,000 gal) .
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production. Cost
(cents/1 ,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

0.50
90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00
2.00 5.00
60.00 0.00
87
2
600

140
3
220

220 . ---
6
100

370
12
66

650
72
58' —

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.50
95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

10.00
2.00
80.00
87
2
600

140
3
220

220
6
100

370
12
66

6SO
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

___________
5.00
50.00 -
87
2
600

140
3
220

. 220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

———_—_——-
0.50
99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

ES5SS5SSS3
50.00
2.00
96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


5.00
90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
GAC'Adsorption -- Costs for Removing===>  cis-1,2-DichLoroethylene
Population Range
Design Flow (MOD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

5.00

90.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

50.00
70.00 100.00 5.00

95.00
	 87
3
	 650

140
	 6
	 . 260

	 220
	 17
140

370
42
100

	 860
	 100
	 79

	 2200
140
52

--- . 4100
300
43

4300
410
28

	 5600
	 530
25

	 9400
990
	 21

	 27000
4000
16

49000
8500
14

100.00
70.00 100.00

30.00 0.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
•14


5.00

97.30
87
3
6!50

. 140
6
260

220
17
140

370
42
100

860
100
79

2200
140
-52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

_____ ^
200.00
70.00

65.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

ir™
100.00

50.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
-fl-k79
^^
2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16



14

[
1





-M
I

















i








I







™








-------
sorption -- Costs for Reraoving===>  DBCP
^^ Influent (ug/L)
•"i 	
' Population Range Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100 Total Capital Cost (KS)
0.024 O&M Cost (KS/year)
O.OOS6 Total Production Cost
(cents/1,000 gal)
101-500 Total Capital Cost (KS)
] 0.087 O&M Cost (KS/year)
0.024 Total Production Cost
(cents/1,000 gal)
501-1,000 Total Capital Cost (K$)
0.27 O&M Cost (KS/year)
0.086 Total Production Cost
(cents/1,000 gal)
1,001-3,300 Total Capital Cost (KS)
0.65 O&M Cost (KS/year)
0.23 Total Production Cost
(cents/1,000 gal)
3,301-10,000 Total Capital Cost (KS)
1.8 O&M Cost (KS/year)
•0.7 Total Production Cost
(cents/1,000 gal)
10,001-25,000 Total Capital Cost (KS)
4.8 O&M Cost (KS/year)
1 2.1 Total Production Cost
i (cents/1,000 gal)
25,001-50,000 Total Capital Cost (KS)
11.0 O&M Cost (KS/year)
5.0 Total Production Cost
(cents/1,000 gal)
50,001-75,000 Total Capital Cost (KS)
18.0 O&M Cost (K$/year>
8.8 Total Production Cost
(cents/1,000 gal)
- 75,001-100,000 Total Capital Cost (KS)
26.0 O&M Cost (KS/year}
13.0 Total Production Cost
(cents/1,000 gal)
100,001-500,000 Total Capital Cost (KS)
51.0 O&M Cost (K$/year)
27.0 Total Production Cost
(cents/1,000 gal)
E 500,001-1,000,000 Total Capital Cost (KS)
210.0 O&M Cost (KS/year)
120.0 Total Production Cost
•(cents/1,000 gal)
>1, 000, 000 Total Capital Cost (KS)
430.0 O&M Cost (KS/year)
270.0 Total Production Cost
(cents/1.000 gal)

0.10
95.00
87
. 2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

2.00
0.20
. 90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
• 31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


1.00
50.00
87
2
600

140
3
220

,220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
• 14

25000
1300
10

46000
2700
8

V
0.10
98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00
0.20
96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


1.00
80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20 .

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.10
99.50
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

20.00
0.20
99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


1.00
95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
GAC'Adsorption -- Costs for Removing===>  o-Dichlorobenzene
Population Range
Design Flow (MGD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (NGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3.300
0.65
0.23

3,301-10,000
1.8
0.7

- 10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

> 1,000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&K Cost (KS/year)
Tota.1 Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
100.00
50.00 600.00 800.00

50.00
87 	
2 	
600 --- -."

140 	
3 	
220 	

220 	
6 	
100

370 	
12
66

650
72 	
58

1800
85
39 	

3500 	
160 	
31 	
,
3700 	
200
20

4900 	
220 	
17

8500
350 	
14

25000
1300
10 	

46000
2700 	
8 	


50.00

92.86
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

700.00
600.00 800.00

14.29
87
2
• 600

140
4
230 . —

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


50.00

95.00
5—————————
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25CIOO
2100
11

47000
4300
10

,w«w.vv
600.00

40.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

w
800.00 B

20.00
87
2
600

140
4 I
230 *

220
9
110

370
21
77

700
80
•63

1900
100
42
0
3600
190
34

3900
260
22

5100 E
310
19

8700
530
16

25000 —
2100
11
^^
^•bo
4300
10


-------
irption -- Costs for Ren»ving===>  1,2-Dichloropropane
s^^^^^^Bssssssssssssss:
Population Range
Design Flow (HOD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MOD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
^^ 1.8
l^^fc 0.7
^^
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M cost (KS/year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
.Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$>
O&M cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost .(KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)

2.00

80.00
87
2
600

'140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

10.00
5.00

50.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


10.00 2.00

0.00 96.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
--- 34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

50.00
5.00

90.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


. 10.00

80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

100.00
2.00

98.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
' 140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

5.00

95.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

10.00

90.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


-------
I
         GAC Adsorption -- Costs for Removing«»>  2,4-D
Population Range
Design Flow (MGO)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS>
OSM Cost (KS/year)
•Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
50.00
5.00 70.00 100.00

90.00 ....
87 	
2 	
600 	

140 	
3 	
220 	

220 	
6
100 	

370
12
66

650 	
72 	
58 	

1800 	
85
30

3500 	
160
31 	

3700 	
200
20 	

4900 	
220 	
17

8500 	
350 	
14

25000 	
1300 	
10 	

46000
2700
8 	


5.00

95.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

100.00
70.00 100.00

30.00 0.00
87
2
,600

140
^
230

220
9
110

370
21
77
•
700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


5.00

99.00
87
2
600

140
4
230

220
-9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

========,
500.00
70.00

86.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

W "
100.00 B

80.00
====assSES
87
2
600

140
4 I
230 "

220
9-,.
110

370
21
77

700
80
•63
..
. 1900
100
42 n
c
. 3600
190
34

3900
260
22


310
19

8700
530
16

25000 —
2100
11
^^t
^P>0
4300
10


-------
sorption --  Costs for Removing===>  Ethyl  benzene

Population Range
Design Flow (MGD)
Average Daily Floi
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
^^_ 1.8
^fe 0.7
^^
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

. 100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000,000
430.0
270.0

Influent (ug/L)
Effluent (ug/L)
w (MOD) Percent Removed
Total Capital Cost (K$>
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
Total Capital Cost (KJ)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS) , .
O&M Cost (KS/year)
Total Production Cost <*
(cents/1,000 gal)
100.00
50.00 700.00 800.00
50.00 --- --- ,
87 	
2
600 	

140 	
4
230

220
9
110 	

370 	
21 	
77 	

700
80 --- ---
63 ... ....

1900 	
100 	
42 	

3600
190 	
34

3900 	
260
22 --- — .

5100
310 ' —
19

8700 	
530
16 	

25000
2ioo
11 	 -•-

47000
4300
10

700.00
50.00 700.00
92.86 0.00
87
2
600

140
4
230

220
9
110

370
21
77

TOO
80
63

1900
100
42

3600
190
34

•3900
260
22

5100
310
19

8700
530
16

25000
2100
11 . —

47000
4300
.10


800.00 50.00
95.00
87
2
600

140
4
230

220
9
110

370
21
77

TOO
80
63

1900
100
42

3600
190
34

3900
260
. 22

5100
310
19

8700
530
16

25000
2100
11

47000 ,
4300
10

1000.00
700.00
30.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

:*iSSKS=s=s
800.00
20.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22
•
5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


-------
GAC* Adsorption «- Costs for Renwving===>  EDB
Population Renga
Design Flow (HGO)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (HGD) Percent Removed
25-100
O.C-24
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,^0
C.6S
0.23

3,301-10,000
1.8
0.7
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
216.3
120.0

'1,000.000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal) .
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(Cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)

0.01

98.00
87
2
600

140
3
220

220
6
100 .

370
12
66

650
72
58
1800
85
39

3500
.160
31

3700
200
20

1 4900
220
17

8500
350
14

25000
1300
10

'-46000
' 2700
8

===ss.ssssi
0.50
0.05

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

S-SSS555SSS35 sjtSBJESBSJSSI
1.00 . . 0.01

99.90
87
2
600

140
^
230

220
9
110

370
21
77

700-
80
63
1900
100
42

3600
190
34

3900
260
22

5100
' 310
19

8700
530
16

25000
2100
11

47000
4300
10

10.00
- 0.05

99.50
87
2
600

140
4
230

220
9
110

370
21
77

700-
80
63
1900
100
42

3600
190 •
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


1.00

90.00
87
2
600

•140
4
230

• 220
9
110

370
21
77

700
80
63
1900
100
42

3600
190
'34

3900
260
22

5100
310
19

8700
530 .
16 '

25000
2100
11

47000
4300
10

==— ------
0.01

99.98
SESSSISSSSS
87
2
600

140
4
230

220
9
iio

- ?70
!21
77

700
80
63
1900
'1 00
42

3600
190
34

3900
260
22

5100
310
'19

8700
530
16

.25000
i 2100
. 11

•47000
4300
.. 10

50.00
0.05

. 99.90
SSS3f35— 35SS5
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


1.00

98.00
87
2
600

140
4
230

220
9
110

370
21
77

700
•'
8
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
^^k
^^POO
4300
10

I















•m






E


























-------
rption -- Costs for Removing===>  Heptachlor
-^-—
Population Range
Design Flow (MOD)
Influent (ug/U
Effluent (ug/L)

Average Daily Flow (HGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301*10,000
'_ '••
A 0.7
^^
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000,000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year}
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (ft/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS) .
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost 
OSH Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS).
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M cost (KS/year)
Total Production Cost
(cents/1,000 gal)
0.10
0.03 0.40 1.00

70.00
87 	
2 	
600

140 	
3 	
220 	

220
£ m m m m m m
100 	

370
12
66

650
72
58

1800 	
85 	
39 	

3500 	
160
3t

3700 	
200 	
20

4900
220 	
17 	

8500
350 	
U

25000 	
1300 ' —
10

46000 	
2700
8 	


0.03

97.00
87
2
. 600

140
3
220

220
6
100

370
12
66

6SO
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
. 2700
8

1.00
0.40 1.00

60.00 0.00
87 ---.
2 . --
600

140
3
220

. 220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31
•
3700
200 	 	 ;.
20

4900
220
17

8500
350
14
:
.25000
1300
10

46000
2700
8

10.00
0.03

99.70
87
2
600

140
3
220

220
6
100

370
12 .
66
-
6SO.
72
58-

1800 .
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
a

0.40

96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

. 3700
200
20

4900
220
17

8500
350
14

25000
•••1300
- 10

46000
2700
8

1.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

6SO
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
GAC'Adsorption -- Costs for Removing===>  Heptachlor epoxide
Population Range
Design Flow (MGO)
:============================
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25.000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000-
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost •
{cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year}
Total Production Cost
(cents/ 1,000 gat)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS) •'•
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS) .
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
0.10 .
0.03 0.20 1.00

70.00 -—
87 	
2 	
600 	

140 	
3 	
220 	

220 	
6
100 	

370
12
66

650 	
72 	
58 	

1800 	
85 	
39

3500 	
160 	
31 	

3700
200
20

4900
220
17 	

'8500
350 	
14

25000 	
1300 	
10 	

46000 	
2700
8


0.03

97.00
87
2
600

140
3
220

220
6
100

370 .
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

— — — — — — S3S3 3 3 3S— 35S-
1.00
0.20 1.00

80.00 0.00
87
2
600

140 —
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20 --- -

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

B— — — — SSAA|K,
0.03

99.70
87
2
600

140
.,3
220

220
6
100

370
12
66

650
72
58

IE 00
85
39

3500
160
31

3700
200
20

4900
220
17

85100
2150
14

25000
1300
10

46000
2700
8

10.00
0.20

98.00
87
2
• 600

140
3
220

220
6
100

370
12
66

650
72
58 i
*

1800
85
39

. 3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
1
46000
2700
8


1.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
^^72
^•58
OF
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
ttbo

2700
8

I















m







r
lib"

























-------
=^^^•=======================================1
Influent (ug/L)
Population Range Effluent (ug/L)
Average Daily Flow (MGD) Percent Removed
25-100 Total Capital Cost (KS)
0.024 O&M Cost (KS/year)
0.0056 Total Production Cost
(cents/1,000 gal)
'"101-500 Total Capital Cost (KS)
0.087 O&M Cost (KS/year)
0.024 Total Production Cost
(cents/1,000 gal)
501-1,000 Total Capital Cost (KS)
0.27 O&M Cost (KS/year)
0.086 Total Production Cost
(cents/1,000 gal)
1,001-3,300 Total Capital Cost (KS)
0.65 O&M Cost (KS/year)
0.23 Total Production Cost
(cents/1,000 gal)
3,301-10,000 Total Capital Cost (KS)
^^ 1.8V O&M Cost (KS/year)
fl^k 0.7 Total Production Cost
^^ (cents/1,000 gal)
10,001-25,000 Total Capital Cost (KS)
4.8 O&M Cost («/year)
t 2.1 Total Production Cost
' (cents/1,000 gal)
25,001-50,000 Total Capital Cost (KS)
11.0 O&M Cost (KS/year)
5.0 Total Production Cost
(cents/1,000 gal)
50,001-75,000 Total Capital Cost (K$>
18.0 O&M Cost (KS/year)
8.8 Total Production Cost
(cents/1,000 gal)
1 75,001-100,000 Total Capital Cost (KS)
26.0 O&M Cost (KS/year)
13.0 Total Production Cost
(cents/1,000 gal)
100,001-500,000 Total Capital Cost (KS)
51.0 O&M Cost (KS/year)
27.0 Total Production Cost
(cents/ 1,000 gal)
1 500,001-1,000,000 Total Capital Cost (KS)
210.0 O&M Cost (KS/year)
120.0 Total Production Cost
•(cents/1,000 gal)
>1, 000, 000 Total Capital Cost (KS)
430.0 O&M Cost (KS/year)
270.0 Total Production Cost
(cents/1,000 gal)
:s=====s:
0.02
96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
. 160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

:ss=sssss:
0.50
0.20
60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


1.00 0.02
98.00
87
2
600

140
3
. 220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
... • 20

4900
220
17

8500
350
14

25000
1300
10

-— 46000
2700
8

1.00
0.20 1.00
80.00 0.00
87
2
600

140
3
220

220
6
100

370
12
66 — .

650
72
58

1800
85
39 ..:

3500
160 —
31 . —

3700 — "
200
20

4900
220
17

8500
350
14

25000
1300 — .
10

46000
2700 .—
8


0.02
99.80
87
2
• 600

140
3
220

220
6
100

370
12
66

650
72
- 58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500,
350
14

25000
1300
10

46000
2700
8

10.00
0.20
98.00
87
2
• 600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
a


1.00
90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

, 25000
1300
10

46000
2700
8


-------
GAC'Adsorption -- Costs for Removing===>  Methoxychlor
Influent (ug/L)
Population Range
Design Flow (MGD)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
• 51.0
27.0

500,001-1,000.000
210.0
120.0

>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (Kf/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
260.00
100.00 400.00 500.00

61.54 	
87
2
600 	

140 	
4 	
230 	

220 	
9
110 	

370
21
77

700 	
80 	
63
-
. 1900 	
100
42

3600
190 	
34 	

3900 	
260 	
22 	

5100
310 	
19 	

8700
530 	
16 	

• 25000 	
2100
11 	

47000
4300 	
10 	

400.00
100.00 400.00 500.00

75.00 0.00
87 	
2 	
600 	

140
4
230 	

220
9 ... 	
110

370
21
77

700 	
80
63 	

1900 	
100
42 --- —r

3600 --"
190 	
34 	

3900 	
260
22 	

5100 	
310 	
19

8700
530 	
16 	

25000
2100 	
11 ... ....

47000 	
4300 	
10


100.00

90. DO
B7
2
600
'
140
4
230
t
. 2:20
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22
•,
5100
310
i 19

8700
530
> 16

2!iOOO
- 2100
11

47000
4300
10

:=S«t===JB2=!|
1000.00
400.00

. 60.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63 I
\
1900
100
42

3600
190
34

3900
260
22

5100
310
19

6700
530
16

25000
2100
11
A
47000 •
4300
10

W
500.00

50.00
87
2
600

140
4
230
•
220
9
110

370
21
77

700
80
flk 63
V
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
^
•ooo
4300
10

I






I









™







C








i







~








-------
sorption -- Costs for Removing===>  MonochLorobenzene
=^^^^^KS5ESS>1, 000,000
430.0
270.0

Total Capital Cost (KS)
OSN Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSN Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (let/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&N Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost 

-------
GAC Adsorption --  Costs for Removing'
PCS (Aroclor 1254}
=================
Population Range
Design Flow (MOD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8 <
0.7*
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0


Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal}
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&M cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production-Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year}
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost

(cents/1,000 gal)
:=======================================================
5.00 10.00
0.05

99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.50

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31
-
3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


5.00 0.05

0.00 99.50
ESSSS S S S S S555«SSS S !
87
2
600

140
' 3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


0.50

95.00
ES5SS 5 5! 5 SSp:
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
-
46000
2700
8


5.00

50.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
a


._____.____.
0.05

99.90
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1500
10

46000
2700
8
>

50.00
0.50

99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


•^•^•^MSSSS
5.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
s,
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
^^
^•P00
2700
8


I















^






r
*"*
















^"









-------
it ion -- Costs for R«noving===>  Pentachlorophenol
Influent (ug/L) 50.00
Population Range
Design Flow (HOD)
Effluent (ug/L) 20.00 200.00


Average Daily Flow (HGO) Percent Removed 60.00
















3
^^
^tt
^^
10



25



50



25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

,301-10,000
1.8
0.7

,001-25,000
4.8
2.1

,001-50,000
11.0
5.0

,001-75,000
18.0
8.8

75,001-100,000



26.0
13.0

100,001-500,000



51.0
27.0

500,001-1,000,000






^m
210.0
120.0

>1, 000,000
430.0
270.0
^•H
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost .
(cents/1,000 gal)
Total Capital Cost (KS>
OS* Cost (KS/year)
.Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
< cents/1, 000 gal)
87
2
600

140
3
220

220
6
100

370 —
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

• 25000
1300
10

46000
2700
8

sssssssssss±ss±tss===!=ssssss=sssssssss£======:ssss
500.00
400.00 20.00

96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

.—- 4900
220
17

8500
350
14

25000
1300
to

46000
2700
8

200.00

60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

' 1800
85
39

' 3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

400.00

20.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

20.00

98.00
87
2
600

140
4
230

220
9 '
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

1000.00
200.00

80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


400.00

60.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


-------
GAC'Adsorption --  Costs for Removing===>  2,4,5-TP (Sflvex)
Population Range
Design Flow (MOD)
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3.300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0
>1, 000, 000
430.0
270.0

Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year >
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
50.00
5.00 50.00 100.00

90.00 0.00
87 	
2 	
600 	

140
3 	
220

220 	
6 	
100 	

370
12
66

650 	
72
58 	

1800
85
39

3500
160 	
31 	

3700 	
zoo
20

4900 --7
220
17 	

8500 	
350
14

25000
1300
10
46000
2700
8 	


5.00

95.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
46000
2700
8

100.00
50.00

50.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
46000
2700
8


100.00

0.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
46000
2700
8


5.00

99.00
87
2
600

140
, 4
230

220
9
110

370
21
77

700
80
63

1900
100
4Z

3600
190
34

3909
26D
22

5100
310
19
i
8700
530
16

25000
2100
11
47000
4300
.10

I========!
500.00
50.00

'90.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
47000
4300
10

m
100.00

80.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
•fllfcp
^f
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
4300
10

                                                                                                                                 I
                                                                                                                                 i
                                                                                                                                 1

-------
sorption  -- Costs for Removing==>  Styrene
Population Range
Design Flow (MOD)
ssssKsssssESisssssssssssssssss::
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MS>) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
• 0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

, 50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0
m^^^mm
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
08M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (K$)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (KS)
O&M cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
10.00
2.00

80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00 20.00

50.00
87
2
600

140
3
220

220
6
100

-370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900 . —
220
17

8500
350
14

25000
1300
10

46000 --- •
2700
8

2.00

96.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
5.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

SSSSSSSSSSSSJSZSSSSSSSESSSSSSSSSSSSSSSSSSSK
200.00
20.00

60.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000 •
2700
8

2.00

99.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39
V
3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

5.00

97.50
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
• 1300
10

46000
2700
8

20.00

90.00
87
2
600

140
3
220

220
6
100

370
12
66

6SO
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


-------
CAC*Adsorption -- Costs for Removing===>  Tetrachloroethylene

Population Range
Design Flow (MGD)
Average Daily Floi
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500.001-1,000,000
210.0
120.0

>1, 000,000
430.0
270.0

Influent (ug/L>
Effluent (ug/L)

N (MGD) Percent Removed
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year}
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)

1.00

98.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

.3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

50.00
5.00 50.

90.00 0.
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58

1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300 --
10

46000
2700
8


00 1.00

00 99.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

100.00
5.00

95.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


50.00

50.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


1.1)0

99.80
87
2
600

140
4
230

220
9
110

370
21
77 .

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

500.00
5.00

99.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

. 8700
530
16

25000
2100
11

47000
4300
10


50.00

90.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
J«S3
^•^
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
^^
^PO
4300
10


1






• ^m
I

















G








B







HH








-------
sorption --  Costs for R«noving==*>  Toluene
. ^^^^ «.
~ Population Range
Design Flow (MGD)
isssssssssssssssssssssssssss::
Influent (ug/L)
Effluent (ug/L)

Average Daily Flow (MGD) Percent Removed
25-100
0.024
0.0056*

. 101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301 -.10, 000
^^ - 1.8
^B °'7
^^
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0-

100,001-500,000
51. 0"
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
430.0
270.0

:=S3SSSSS55?====SSSSSSS=SS*»
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K*)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year}
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
500.00 3000.00
100.00 2000.00 3000.00 100.00 2000.00 3000.00

80.00
87
2
600

140
4
230
•
220
9
110

370
21
77

700
80
63

1900 , —
100
42

3600
190
34

- 3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
• 4300 	
10
'

96.67
87
3
650
,
140
.... 6
260
-
220
17
140

370
42
100

860
100
79

2200
140
52

•:4ioo
300
'•-- 43

4300
410
28

5600
530
25

9400
990
21

27000
4000
	 16

, .:. 49000
8500
14


33.33 0.00
.87
3
650

140
6 ' •--
260

220 •---
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300 — •
410
28

5600
530'
25

9400
990
21 • —

27000
'4000
16

49000
8500 -•• .
14

5000.00
100.00 2000.00 3000.00

98.00
^jjMgjjMjjMjj, m,m, m, —
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140 '
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21
.
27000
4000
16

49000
8500
14


60.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400 .
990
21

27000
4000
16

49000
8500
14


40.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


-------
GAC" Adsorptiors  - Costs for Ren»ving===>  Toxaphene
Population Range
Influent (ug/L)
Effluent (ug/L)
Average Daily flow (MO)} Percent Removed
25- 300
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,3«)
C-.65
0.23

3,301-10,000
..-*
f- 7
10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000, 000
- 430.0
270.0

Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
' OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost- (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
OSM Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
5.00
1.00 5.00
80.00 0.00
87
2
600

140
3 - -••
220
•
220
6
100

- 370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8


10.00 1.00
90.00
87
2
600

140
3
220

220
.— 6
100

370
12
66

650
72
58
. . 1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
8

10.00
5.00 10.00
50.00 0.00
87
2
600
..
140
3
220
- .
220
6
100
•
370
12
66

650
72
58
1800
85 "- --
39

3500
160
31

3700
200
20- —

4900
220 . —
17

8500
350
14 — .

25000
1300
10

46000
2700
8


1.00
98.00
B7
2
600
;
140
'3
220

2.20
6
100

370
12
66

650
72
1)8
1800
85
39

3500
160
31

3700
200
. 20

4900
•• 220
•1.7

85CIO
350
14
•'
25000
1300
10

46000
2700
8

50. OC
5.00
90.00
87
2
600

140
3
220

220
6
100

370
12
66

650
72
58
1800
85
39

3500
160
31

3700
200
. 20

4900
220
17

8500
350
14

25000
1300
10

46000
2700
a


10.00
80.00
87
2
600

140
3
220

220
6
100

370
12
66

650
^72
0
1800
85
39

3500
160
31

3700
200
20

4900
220
17

8500
350
14

25000
1300
10
^^k
^LP°
2700
8

:
I

!




I
















D








B







™








-------
orption -- Costs for Rerooving===>  o-Xylene
^^ - Influent (ug/L) - 10000.00
Population Range
Design Flow (MGD)
Average Daily Flo
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3.301-10,000
1.8
• 0.7

10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100.000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

> 1,000, 000
430.0
270.0

. Effluent (ug/L) 1000.00 10000.00 15000.00
iw (NO)) Percent Removed 90.00 0.00
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1, 000 gal)
Total Capital Cost (KS)
O&M Cost 
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital' Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
87 	
3
650
*
140 	
6 	
260 	

220 	 ,
17
140

370 	
42
100 	

860
100
79

2200 	
140 	
52 	

4100 	
300 	
43 	

4300 	
410
28 	

5600 — 	
530 	
25

9400
990 	
21 	

27000 	
4000
16 	

49000 	
8500
14 	

20000.00
1000.00 10000.00 15000.00
- 95.00
87
3
• . 650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
. 25

9400
990
21

27000
4000
16

49000
8500
14

. 50.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600-
530
25

9400
990
21
.
27000
4000
16

49000
8500
14

25.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28
1
5600
. 530
25

9400
990
.21

27000
4000
16

49000
'8500
14

50000.00
1000.00 10000.00 15000.00
98.00
87
3
650

140
6
260

220
17
" 140

370
42
100

860
100
79

2200
140
•52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000 v
8500 .
14

80.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100 ,
' 300
43

4300
410
28 .

5600 .
530'
25

9400
990
21

27000
4000
16

49000
8500
14

70.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14


-------
GAC*Adsorption -- Costs for Removing===>  p-Xytene
Population Range
Design Flow (HGD:
:==================== ==================================
Influent (ug/L) 10000.00
Effluent (ug/L) 1000.00 10000.00 15000.00


Average Dai ly Flow (HGD) Percent Removed 90.00. 0.00
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

-10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

" .75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0
>1, 000,000
430.0
270.0

Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost {KS/year)
Total Production Cost
(cents/1,000 gal)
. Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
{cents/1,000 gal)
• Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year}
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year}
Total Production Cost
(cents/1,000 gal)
Total Capital Cost.(KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
{cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&H Cost (KS/year)
Total Production Cost
(cents/1.000 gal)
87 	
3 	
650 	
*
140
6 	
260 	

220 	
17 	
140

370 • —
42 — . ---
100

860 	
100 	
79 	

2200
140
52 	

4100
300
43 	

4300
410
28 - • - - - -

5600
530 	
25 	

9400
990 	
21 	

27000 	
4000
16 	
49000
8500 	
14

20000.00
1000.00 10000.00 15000.00

95.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

' 9400
990
21

27000
4000
16
49000
8500
14


50.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16
49000
8500
14


25.00
, 87
3
650

140 •
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16
49000
8500
14

50000.00 ^^
1000.00 10000.00 15000.00

98.00
87
3
650

140
'6
. 260
!
220 '
17
140

370
iz
100

860 ,
100
79
I
2200
140
52

4100
300
.43

4300
410
28
;
5600
530
25

9400
990
21

27000
4000
16
49000
8500
14


80.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16
49000
8500
14


70.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
^^Hf9
^f.
2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16
*
8500
14

1






1

















E








.1







•







-------
          eorption -- Costs for Removing===>  trans-1,2-Dichloroethylene
Population Range
Design Flow (HGD)
Influent (ug/L) 50.
Effluent (ug/L)

Average Daily Flow (NGO) Percent Removed
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
^ 1.8
A 0.7
^F
10,001-25,000
4.8
2.1 "

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0 •

>1, 000, 000
430.0
270.0

Total Capital Cost (K$>
O&M Cost (ft/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost («>
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year>
Total Production Cost
(cents/1,000 gal)
Total Capital Cost  .
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (K$/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (K$)
O&N Cost < KS/year) -
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (tt/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/ 1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
' 5.00 100.

90.00
87
2
600

* HO
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

00
00 200.00 5.00
*

97.50
87
3
650

140
— - • 6
260

220
17
140

370
' 42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

' 5600
530
25

9400
990
21

27000
4000
16

49000
8500
14

=========== ==:s=:s=ss===:= = ======
200.00
100.00 200.00

50.00 0.00
87
3
650

140
6 ---
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300 ---
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
14 ---

5.00

99.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000 '
4000
16

49000
8500
14

;====ww&a
500.00
100.00

80.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

• 49000
8500
14

iwwwwMM*«»4»
200.00

60.00
87
3
650

140
6
260

220
17
140

370
42
100

860
100
79

2200
140
52

4100
300
43

4300
410
28

5600
530
25

9400
990
21

27000
4000
16

49000
8500
- 14

13

-------
GAC'Adsorption -- Costs for Removir>g===>  m-Xylene
Influent (ug/L) 10000.00
Population Range
Design Flow (MGO)
Effluent (ug/L) 1000.00 10000.00 15000.00


Average Daily Flow (MGD) Percent Removed 90.00 - 0.00
25-100
0.024
0.0056

101-500
0.087
0.024

501-1,000
0.27
0.086

1,001-3,300
0.65
0.23

3,301-10,000
1.8
0.7

.10,001-25,000
4.8
2.1

25,001-50,000
11.0
5.0

50,001-75,000
18.0
8.8

75,001-100,000
26.0
13.0

100,001-500,000
51.0
27.0

500,001-1,000,000
210.0
120.0

>1, 000,000
430.0
270.0

Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year}
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year}
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
Total Capital Cost (KS)
O&M Cost (KS/year)
Total Production Cost
(cents/1,000 gal)
87
2 	
600

140
4
230 	

220
9
110 	

370 — "=•
21
77

TOO
80 	
63 •••

1900 	
100 ... ....
42

3600 	
190 	
34

3900 	
260
22 	

5100 	
310 	
19

8700 	
530 	
16 	

25000
2100 	
11

47000 	
4300
10 	

20000.00
1000.00 10000.00 15000.00

95.00
87
2
600

140
4
230

220
9
110

. . 370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


50.00
87
2
600

140
4
230

220
9
110

370
21
77

700
80
63

1900 .
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10


25.00
87
2
600

140.
4
230

220
9
110

370
21
77

700
80
63

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16
,
25000
2100
11

47000
.4300
10

, 50000.00 ^^
1000.00 10000.00 15000.00

98.00
87
2
, 600
!
140
4
230

220
9
110

370
21
77

700
80
63

1900 .
100
" 42

3600
190
34

3900
260
22

51DO
310
19

8700
530
16

.25000
2100
11

47000
. 4300
10



1
80.00 70.00
87 87
2
600

140
4
230

220
9
110

370
21
77

700
80
63 {

1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11

47000
4300
10

2
600

140
4
230

220
9
110

370
21
77

700
80
^3
w
1900
100
42

3600
190
34

3900
260
22

5100
310
19

8700
530
16

25000
2100
11
^^
^Hio
~?300
10





1

















*•








I







™








-------
             APPENDIX G




PACKED COLUMN FACILITY DESIGN BACKUP

-------
1!
1
D

-------
   Estimated Equipment Size and Cost.for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
             Monochlorobenzene
  Henry's Coefficient = 0.06 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
I
D

-------
                            Monochlorobenzene

                                 Table  1
                       DESIGN  CRITERIA  -  March  1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(*)
33.
40.
60.
83.
90.
i 94-
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
Cost Optimi
Stripping
Fractor
1.0*
1.0*
1.4*
1.9*
2.2
2.4
1.0*
1.0*
1.1*
2.3
2.7
3.0
1.0*
1.1*
1.5*
2.1
2.4
2.6
1.0*
1.0*
1.4* :
1.9
2.2
2.4
1.0*
1.0*
1.3*
1.8
2.1
2.3
1.0*
1.0*
1.2*
1.7
2.0
2.2
                                                              50.*
                                                              50.*
                                                              88.
                                                             160.
                                                             170.
                                                             160.'

                                                              50.*
                                                              50.*
                                                              61.
                                                             150.
                                                             140.
                                                             140.

                                                              50.*
                                                              57.
                                                             100.
                                                             150.
                                                             140.
                                                             140.

                                                              50.*
                                                              50.*
                                                              91.
                                                             140. .
                                                             130.
                                                             130.

                                                              50.*
                                                              50.*
                                                              80.
                                                             120.
                                                             120.
                                                             110.

                                                              50.*
                                                              50.*
                                                              71.
                                                             100.
                                                              99.
                                                              97.
*  Design parameter held to limiting value.

-------
                           Monochl orobenzene
                          Table  1  (continued)
                      DESIGN CRITERIA  - March
1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0 •
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                        00
                        00
                        00
                        00
                        00
                      5.00

                      8.80
                      8.80
                      8.80
                      8.80
                      8.80
                      8.80

                     13.0
                     13.0
                     13.0
                     13.0
                     13.0
                     13.0

                     27.0
                     27.0
                     27.0
                     27.0
                     27.0
                     27.0

                    120.
                    120.
                    120.
                    120.
                    120.
                    120.

                    270.
                    270.
                    270.
                    270.
                    270.
                    270.
Removal
Efficiency
(%)
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
33.
40.
60.
83.
90.
94.
Cost Optim
Stripping
Fractor
1.0*
1.0*
1.2*
1.6*
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0*
1.0*
1.2*
1.6
1.9
2.0
1.0* .
1.0*
1.1*
1.6
1.9
2.0
               50.'
               50.
               67.
              110.
              110.
              110.

               50.1
               50.'
               67.
              110.
              100.
              100.

               50.'
               50.'
               66.
              110.
              100.
              100.

               50.'
               50.'
               65.
              100.
               97.
               95.

               50. "
               50.'
               63.
               93.
               89.
               87.

               50.<
               50.'
               62.
               86.
               82.
               80.
I
*  Design parameter held to limiting value.

-------
   Monochlorobenzene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
.30.
30.
28.
26.
30.
30.
30.
26.
24.
22.
30.
30.
30.
28.
26.
24.
30.
30.
30.
29.
26.
24.
30.
30.
30.
29.
26.
24.
30.
30.
' 30.
28.
25.
24.
Air
(SCFM
ft-2)
73.
73.
100.
.140.
150.
150.
73.
73.
84.
150.
150.
160.
73.
80.
1.10.
150.
150.
150.
73.
73.
110.
140.
140.
140.
73.
73.
98.
130.
130.
130.
73.
73.
92.
120.
120.
130.
Air:
Water
Ratio

18.
18.
26.
35.
40.
44.
. 18.
18.
21.
43.
49.
54.
18.
20.
28.
38.
44.
48.
18.
18.
26.
35.
41.
45.
18.
18.
24.
33.
38.
42.
18.
18.
23.
32.
36.
40.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.014
0.014
0.014
0.013
0.013
0.013
0.013
0.013
0.012
0.011
0.013
0.013
0.014
0.014
0.013
0.012
0.013
0.013
0.014
0.014
0.013
0.012
0.013
0.013
0.014
0.013
0.013
0.012
0.013
0.013
0.013
0.013
0.012
0.012
Number
of
Columns

.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
r.o
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.8
0.9
0.9
1.6
1.6
1.6
1.7
1.8
1.9
2.8
2.8
2.8
2.9
3.1
3.2
4.4
4.4
4.4
4.5
4.7
4.9
7.3
7.3
7.3
7.5
7.8
8.1
11.9
11.9
11.9
12.3-
13.0
13.4
Packing
Height

(ft)
2.8
3.8
6.7
13. .
17.
20.
2.8
3.8
7.7
12.
15.
17.
2.8
3.6
6.5
13.
16.
19.
2.8
3.8
6.7
13.
16.
19.
2.8
3.8
7.0
14.
17.
20.
2.8
3.8
7.2
14.
17.
21.
Air
Flow

(SCFM)
41
41
Air
Pressure
(inch
H20)
2.2
2.2
58. 2.7
79
88
98
150
150
170
350
400
440
460
500
710
• 960
1100
1200
1100
1100
1600
2100
2500
2700
. 3100
3100
4100.
5600.
6400.
7000.
8200.
8200.
10000.
14000.
16000.
18000.
4.6
5.4
5.8
2.2
2.2
. 2.6
4.1
4.6
5.0
2.2
2.3
2.8
4.4
4.8
5.2
2.2
2.2
2.8
4.3
4.7
5.0
2.2
2.2
2.7
4.0
4.4
4.7
2.2
2.2
.2.6
3.8
4.1
4.4

-------
   Monochlorobenzene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number

•
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56 '
57
58
59
60
61
62
63
64
65
66
67
68
69
70 .
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
27.
26.
30.
30.
30.
30.
27.
25.
30.
30.
30.
29.
27.
25.
30.
30.
30.
29.
26.
24.
30.
30.
30.
28.
25.
24.
30.
30.
30.
27.
25.
23.
Air
(SCFM
ft-2)
73.
73.
89.
120.
130.
130.
73.
73.
88.
120.
120.
130.
73.
73.
87.
120.
120.
120.
73.
73.
87.
120.
120.
120.
73.
73.
85.
110.
120.
120.
73.
73.
84.
110.
110.
120.
Air:
Water
Ratio

18.
18.
22.
30.
34.
37.
18.
18.
22.
30.
34.
37.
18.
18.
22.
30.
34.
37.
18.
.18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.013
0.014
0.013
0.013
0.013
0.013
0.013
0.014
0.013
0.012
0.013
0.013
0.013
0.014
0.013
0.012
0.013
0.013
0.013
0.013
0.013
0.012
0.013
0.013
0.013
0.013
0.012
0.012
0.013
0.013
0.013
0.013
0.012
0.011
Number
of
Columns

1.3
•1:3
1.3
1.3
1.4
1.5
2.1
2.1
2.1
2.1
2.3
2.5
3.0
3.0
3.0
3.1
3.4
3.6
5.9
5.9
5.9
6.1
6.7
7.2
24.2
24.2
24.2
25.9
28.6
30.6
49:5
49.5
49.5
54.6
60.3
64.5
Col limn
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16'.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
ie;o
16.0
16.0
16.0
Packing
Height

(ft)
2.8
3.8
7.4
15.
18.
22.
2.8
3.8
7.4
15.
18.
22.
2.8
3.8
7.4
15.
18.
22.
2.8
3.8
7.5
15.
18.
22.
2.8
3.8
7.6
15.
18.
21.
2.8
3.8
7.7
Air
Flow

(SCFM)
Air
Pressure
(inch
H20)
19000. 2.2
19000.
23000.
31000.
35000.
38000.
31000.
31000.
37000.
50000.
57000.
62000.
44000.
44000.
53000.
72000.
82000.
90000.
87000.
87000.
100000.
140000.
160000.
180000.
360000.
360000.
410000.
580000.
660000.
730000.
730000.
730000.
840000.
14. 1200000.
18. 1400000.
21. 1500000.
2.2
2.6
4.1
4.5
4.9
2.2
2.2
2.6
4.0
4.4
4.7
2.2
2.2
2.6
4.0
4.3
4.7
2.2
2.2
2.6
3.8
4.2
4.5
2.2
2.2
2.6
3.7
4.0
4.3
2.2
2.2
2.6
3.5
3.8
4.1
                                                             I
                                                             B
                                                             i

-------
     Mdnochlorobenzene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.2
2.3
2.9
4.2
5.0
5.7
'5.1
5.4
6.8
9.2
11.
12.
8.1
8.6
11.
15.
a 18.
21.
13.
14.
17.
25.
30.
35.
24.
26.
33.
50.
60.
70.
50/
54.
70.
* 100.
130.
150.
Support
($K)
6.8
6.9
7.2
8.0
8.4
8.9
11.
11.
12.
14.
14.
15.
17.
17.
18.
21.
23.
25.
25.
25.
28.
33.
36.
40.
43.
45.
50.
61.
68.
75.
84.
86.
98.
120.
140.
150.
Indirect
($K)
5.9
6.0
6.6
8.0
8.8
9.6
10.
11.
12.
15.
16.
18.
16..
17.
19.
24.
27.
30.
24.
26.
29.
38.
44.
49.
44.
46.
54.
72.
84.
95.
87.
92.
110.
150.
170.
200.
Total
($K)
15.
15.
17.
20.
22.
24.
27.
27.
31.
38.
41.
45.
41.
42.
48.
60.
68.
76.
62.
65.
74.
96.
110.
120.
110.
120.
140.
180.
210.
240.
220.
230.
280.
380.
440.
500.
Operating
Cost
($K Year-1)
0.21
0.22
0.27
0.37
0.43
0.49
0.64
0.66
0.77
1.1
1.2
1.3
1.4
1.4
1.7
2.3
2.6
2.9
2.9
3.0
3.5
4.8
5.5
6.1
7.5
7.8
9.2
12.
14.
16.
21.
22.
25.
34.
38.
42.
Yearly
Cost
($K Year-1)
2.0
2.0
2.2
2.7
3.0
3.3
3.8
3.9
4.4
5.5
6.0
6.6
6.2
6.4
7.3
9.4
11.
12.
10.
11.
12.
16.
18.
21.
. 21.
21,
25.
34.
39.
44.
47.
49.
58.
78.
90.
100.
Production
Cost
($ Kgal-1)
0.96
0.98
1.10
1.34
1.48
1.63
0.43
0.44
0.50
0.62
0.69
0.75
0.20
0.20
0.23
0.30
0.34
0.37
0.12
0.13
0.15
0.19
0.22
0.25
0.08
0.08
0.10
0.13
0.15
0.17
0.06
0.06
0.08
0.10
0.12
0.13

-------
     Mbnochlorobenzene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
100.
110.
140.
210.
260.
310.
160.
180.
230.
340.
420.
490.
230.
250.
320.
480.
590.
700.
450.
480.
620.
930.
1100.
1400.
1800.
1900.
2400.
3700.
4500.
5400.
3600.
3800.
4900.
7500.
9200.
11000.
Support
($K) ,
160.
160.
190.
240.
270.
310.
240.
250.
290.
370.
430.
490.
340.
350.
400.
530.
610.
690.
600.
620.
730.
970.
1100.
1300.
1900.
2000.
2500.
3400.
4100.
4700.
3600.
3800.
4700.
6700.
8000.
9400.
Indirect
($K)
170.
180.
220.
290.
350.
400.
270.
280.
340.
470.
560.
640.
370.
390.
480.
660.
790.
910.
680.
720.
880.
1200.
1500.
1700.
2400.
2600.
3200.
4700.
5600.
6600.
4700.
5000.
6300.
9300.
11000.
13000.
Total
(SK)
430.
460.
550.
750.
880.
1000.
670.
710.
860.
1200.
1400.
1600.
940.
990.
1200.
1700.
2000.
2300.
1700.
1800.
2200.
3100.
3800.
4400.
6100.
6500.
8100.
12000.
14000.
17000.
12000.
13000.
16000.
23000.
28000.
33000.
Operating
Cost
($K Year-1)
49.
50.
58.
79.
89.
100.
84.
86.
99.
130.
150.
170.
120.
130.
150.
200.
220.
250.
250.
260.
300.
400.
460.
510.
1200.
1200.
1400.
1800.
2000.
2300.
2800.
2900.
3200.
4100.
4600.
5100.
Yearly
Cost
($K Year-1)
99,
100.
120.
170.
190.
220.
160.
170.
200.
270.
320.
360.
230.
240.
290.
390.
460.
520.
460.
480.
560.
770.
900.
1000.
1900.
2000.
2300.
3200.
3700.
4200.
4200.
4300.
5100.
6900.
8000.
9000.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.09
0.11
0.12:
0.05
0.05
0.06
0.09
0.10
0.11
0.05
0.05
0.06
0.08
0.10
0.11
0.05
0.05
0.06
0.08
0.09
0.10
0.04
0.05
0.05
0.07
0.08
0.10
0.04
0.04
0.05
0.07
0.08
0.09
                                                               1

-------
   Estimated Equipment Size and.Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
          cis-l,2-Dichloroethylene
  Henry's Coefficient = 0.067 at 12 Deg.  C
    U.S.  Environmental  Protection  Agency
          Office of Drinking Water
         Technical  Support  Division
           Cincinnati,  Ohio 45268

-------
I
I
1

-------
                      ci s-1,2-Di chloroethylene

                              Table 1
                    DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7 .
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
Cost Optinr
Stripping
Fractor
1.1*
1.2*
1.6*
2.2*
2.5
2.7
1.1*
1.1*
1.3*
2.7
3.0
3.3
1.1*
1.3*
1.7*
2.4
2.7
3.0
1.1*
1.2*
1.6*
2.2
2.5
2.7
1.1*
1.1*
1.5*
2.1
2.4
2.6
1.1*
1.1*
1.4*
2.0
2.2
2.4
                                                           50.*
                                                           56.
                                                           87.
                                                          160.
                                                          160.
                                                          150.
                                                           50.
                                                           50.
                                                           60.
                                                          140.
                                                          140.
                                                          140.
                                                           50.*
                                                           67.
                                                          100.
                                                          150.
                                                          140.
                                                          140.

                                                           50.*
                                                           59.
                                                           89.
                                                          140.
                                                          130.
                                                          120.

                                                           50.*
                                                           52.
                                                           78.
                                                          120.
                                                          110.
                                                          110.
                                                          50.
                                                          50.
                                                          70.
                                                         100.
                                                          98.
                                                          96.
Design parameter held to limiting value.

-------
                        cis-l,2-Dichloroethylene

                          Table 1 (continued)
                      DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                      5.00
                      5.
                      5.
                      5,
                      5,
00
00
00
00
                      5.00

                      8.80
                      8.80
                      8.80
                      8.80
                      8.80
                      8.80

                     13.0
                     13.0
                     13.0
                     13.0
                     13.0
                     13.0

                     27.0
                     27.0
                     27.0
                     27.0
                     27.0
                     27.0

                    120.
                    120.
                    120.
                    120.
                    120.
                    120.

                    270.
                    270.
                    270.
                    270.
                    270.
                    270.
*  Design parameter held to limiting value.
Removal
Efficiency
W
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
30.
50.
65.
90.
95.
97.5
Cost Optimi
Stripping
Fractor
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
. 1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
1.1*
1.1*
1.3*
1.9
2.1
2.3
 50.'
 50.'
 66.
110.
no.
no.

 50.<
 50.'
 65.
no.
100.
100.

 50.'
 50 J
 65.
100.
100.
 99.

 50. <
 50.<
 63.
 99.
 96.
 93.

 50.'
 50.'
 62.
 91.
 88.
 86.

 50.'
 50.'
 61.
 84.
 81.
 79.
t
                                                                                i

-------
cis-l,2-Dichloroethylene

      •  Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2.
3
4
5
6
7
8
9.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings .
Liquid
(GPM
ft-2)
30.
30.
30.
30.
28.
26.
30.
30.
30.
25.
23.
22.
30.
30.
30.
28.
25.
23.
30.
30.
30.
28.
25.
24.
30.
30.
30.
28.
25.
24.
30.
30.
30.
27.
25.
23.
Air
(SCFM
ft-2)
73.
79.
100.
150.
150.
150.
73.
73.
83.
150.
150.
160.
73.
88.
110.
150.
150.
150.
73.
82.
100.
140.
140.
140.
73.
75.
97.
130.
130.
130.
73.
73.
91.
120.
120.
130.
Air:
Water
Ratio

18.
20.
26.
36.
40.
44.
18.
18.
21.
44.
50.
55.
18.
22.
28.
39.
45.
.48.
18.
20.
26.
36.
41.
45.
18.
19.
. .24.
34.
39.
' 42.
18.
18.
23.
33.
37.
40.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.016
0.015
0.014
0.015
0.015
0.015
0.014
0.013
0.013
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.014
0.014
0.013
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
. 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
. 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
"1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.8 -
0.9
0.9
• 1.6
1.6
1.6
1.7
1.8
1.9
2.8
2.8
2.8
2.9
3.1
3.2
4.4
4.4
4.4
4.5
4.7
4.9
7.3
'. 7.3
7.3
7.5
7.9
8.2
11.9
11.9
11.9
12.5
13.0
13.5
Packing
Height

(ft)
2.1
4.6
6.9
15.
19.
23.
2.1
4.8
7.8
14.
17.
20.
2.1
4.4
6.6
14.
18.
22.
2.1
4.5
6.8
15.
19.
23.
2.1
4.7
7.1
15.
19.
23.
2.1
4.8
7.4
-16.
20.
24.
Air
Flow

(SCFM)
41
44
Air
Pressure
(inch
H20)
2.1
2.3
57. 2.7
81
90
99
150
150
170
360
400
440.
460
550.
700.
980.
1100.
1200.
1100.
1200.
1600.
2200.
2500.
2700.
3100.
3100.
4000.
5700.
6500.
7000.
8200.
8200.
10000.
15000.
16000.
18000.
5.1
5.8
6.2
2.1
2.3
2.6
4.4
4.9
5.4
2.1
2.4
2.8
4,7
5.1
5.6
2.1
2.3
2.8
4.5
5.0
5.4
2.1
2.3
2.7
4.3
4.7
5.1
2.1
2.3
2.6
4.0
4.4
4.8

-------
cis-l,2-Dichloroethylene
  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
27.
26.
30.
30.
30..
29.
27.
25.
30.
30.
30.
29.
26.
25.
30.
30.
30.
28.
26.
24.
30.
30.
30. -
27.
25.
24.
30.
30.
30.
27.
24.
23.
Air
(SCFM
ft-2)
73.
73.
87.
120.
120.
130.
73.
73.
87.
120.
120.
120.
73.
73.
86.
120.
120.
120.
73.
73.
85.
120.
120.
120.
73.
73.
84.
110.
120.
120.
73.
73.
83.
.110.
110.
110.
Air:
Water
Ratio

18.
18.
22.
30.
34.
37.
18.
18.
22.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
30.
34.
37.
18.
18.
21.
31.
35.
37.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.014
0.014
0.015
0.015
0.015
0.015
0.014
0.014
0.015
0.015
0.015
0.015
0.014
0.014
0.015
0.015
0.015
0.015
0.014
0.013
0.015
0.015
0.015
0.014
0.014
0.013
0.015
0.015
0.015
0.014
0.013
0.013
Number
of
Columns

1.3
1.3
1.3
1.3
1.4
1.5
2.1
2.1
2.1
2.1
2.3
2.5
3.0
3.0
3.0
3.1
3.4
3.6
5.9
5.9
5.9
6.2
6.8
7.2
24.2
24.2
24.2
26.5
28.9
30.7
49.5
49.5
49.5
55.8
61.0
64.8
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
2.1
4.8
7.5
17.
21.
25.
2.1
4.8
7.6
17. -
21.
25.
2.1
4.8
7.6
17.
21.
25.
2.1
4.8
7.7-
17.
21.
25.
2.1
4.8
7.7
17.
21.
25.
2.1
4.8
7.8
Air
Flow

(SCFM)
19000.
Air
Pressure
(inch
H20)
2.1
19000. 2.3
22000.
31000.
35000.
38000.
31000.
31000.
36000.
51000:
58000.
62000 .
44000.
44000.
52000.
74000 .
83000,
90000.,
87000.;
87000.
100000.
140000.
160000.
180000.
360000.
360000.
410000.
600000.
670000.
730000.
730000.
730000.
830000.
17. 1200000.
21. 1400000.
25. 1500000.
2.6
4.4
4.8
5.3
2.1
2.3
2.6
4.2
4.7
5.1
2.1
2.3
2.6 |
4.2 1
4.6
5.1
2.1
2.3
2.6
4.0
4.5
4.9
2.1
2.3
2.6
3.9
4.2
4.6
2.1
2.3
2.6
3.7
4.1
4.4
                                                        1
                                                        0

-------
                       cis-1,2-Dichloroethylene
                               Table 3
                      ESTIMATED COST - March 1989
Design
Number
Es1
Process
($K)
;i mated (
Support
{$K)
Capital C(
Indirect
($K)
)StS
Total
($K)
Operating
Cost
($K Year-1)
Yearly
Cost
($K Year-1)
Production
Cost
($ Kgal-1)
 1
 2
 3
 4
 5
 6

 7
 8
 9
10
11
12

13
14
15
16
17
18

19
20
21
22
23
24

25
26
27
28
29
30

31
32
33
34
35
36
  2.1
  2.5
  2.9
  4.5
  5.5
  6.4

  4.9
  5.7
  6.8
  9.9
 12.
 13.

  7.6
  9.2
 11.
 17.
 20.
 23.

 12.
 14.
 17.
 28.
 34.
 39.

 22.
 28.
 33.
 54.
 67.
 79.

 47.
 58.
 70.
110.
140.
170.
  6.7
  7.0
  7.3
  8.2
  8.7
  9.2

 11.
 11.
 12.
 14.
 15.
 16.

 17.
 17.
 18.
 22.
 24.
 26.

 24.
 26.
 28.
 35.
 38.
 42.

 42.
 46.
 50.
 64.
 72.
 81.

 81.
 89.
 98.
130.
150.
170.
  5.8
  6.2
  6.7
  8.3
  9.3
 10.

 10.
 11.
 12.
 16.
 17.
 19.

 16.
 17.
 19.
 25.
,29.
 32.

 24.
 27.
 30.
 41.
 47.
 53.

 42.
 48.
 55.
 78.
 91.
100.

 84.
 96.
110.
160.
190.
220.
 15.
 16.
 17.
 21.
 24.
 26.

 26.
 28.
 31.
 39.
 44.
 48.

 40.
 44.
 48.
 64.
 73.
 82.

 60.
 67.
 75.
100.
120.
130.

110.
120.
140.
200.
230.
260.

210.
240.
280.
400.
480.
550.
 0.21
 0.23
 0.27
 0.40
 0.46
 0.53

 0.63
 0.69
 0.78
 1.1
 1.3
 1.4

 1.3
 1.5
 1.7
 2.4
 2.8
 3.1

 2.8
 3.1
 3.5
 5.1
 5.9
 6.6

 7.3
 8.1
 9.2
13.
15.
17.

20.
22.
25.
35.
41.
45.
  1.9
  2.1
  2.2
  2.9
  3.2
  3.6

  3.7
  4.0
  4.4
  5.7
  6.4
  7.1

  6.0
  6.6
  7.3
  9.9
 11.
 13.

  9.8
 11.
 12.
 17.
 20.
 22.

 20.
 22.
 25.
 36.
 42.
 48.

 45.
 51.
 58.
 83.
 97.
110.
0.94
1.01
1.10
1.40
1.57
1.74

0.42
0.46
0.51
0.65
0.73
0.81

0.19
0.21
0.23
0.32
0.36
0.41

0.12
0.13
0.15
0.20
0.24
0.27
0,
0,
  08
  09
0.10
0.14
0.16
0.19

0.06
0.07
0.08
0.11
0.13
0.14

-------
  cis-l,2-Dichloroethylene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
. 54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
(SK)
97.
120.
140.
230.
290.
340.
160.
190.
230.
370.
460.
550.
220.
270.
330.
530.
660.
780.
420.
510.
630.
1000.
1300.
1500.
1700.
2000.
2500.
4000.
5000.
6000.
3400.
4100.
4900.
8200.
10000.
12000.
Support
($K)
150.
170.
190.
250.
290.
330.
240.
260.
290.
400.
460.
530.
330.
360.
410.
560.
650.
750.
580.
650.
730.
1000.
1200.
1400.
1900.
2100.
2500.
3700.
4500.
5200.
3500.
4000.
4700.
7300.
8800.
10000.
Indirect
($K)
160.
190.
220.
320.
380.
440.
260.
300.
340.
500.
610.
710.
360.
410.
480.
710.
860.
1000.
660.
760.
890.
1300.
1600.
1900.
2300.
2700.
3200.
5100.
6200.
7300.
4500.
5300.
6300.
10000.
12000.
15000.
Total
($K)
420.
480.
550.
800.
960.
1100.
650.
750.
860.
1300.
1500.
1800.
910.
1000.
1200.
1800.
2200.
2500.
1700.
1900.
2200.
3400.
4100.
4800.
5800.
6900.
8200.
13000.
16000.
18000.
11000.
13000.
16000.
26000.
31000.
37000.
Operating
Cost
($K Year-1).
47.
52.
58.
83.
95.
110.
82.
89.
100.
140.
160.
180.
120.
130.
150.
210.
240.
270.
250.
270.
300.
430.
490.
540.
1200.
1300.
1400.
1900.
2200.
2400.
2700.
2900.
3200.
4300.
4900.
5400.
Yearly
Cost
($K Year-1)
96.
110.
120.
180.
210.
240.
160.
180.
200.
290.
340.
390.
230.
250.
290.
420.
490.
560.
440.
500.
570.
820.
970.
1100.
1900.
2100.
2400.
3400.
4000.
4600.
4100.
4500.
5100.
7300.
8600.
9700.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.10
0.11
0.13
- 0.05
0.05
•0.06
0.09
,0.11
0.12
0.05
0.05
, 0.06
0.09
0.10
0.12
0.04
0.05
0.06
0.08
0.10
0.11
0.04
0.05
0.05
0.08
0.09
0.10
0.04
0.05
0.05
0.07
0.09
0.10
                                                          I
                                                          Q

-------
   Estimated Equipment Size and Cost .for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:  .
           -Di bromochloropropane
  Henry's Coefficient = 0.006 at 12 Deg. C
    U.S. Environmental Protection Agency
          Office of Drinking Water
         Technical Support Division
           Cincinnati, Ohio 45268

-------
.1
1

-------
    Di bromochloropropane
          Table 1
DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
1.80
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.
0.
0.
0.
0.
  .024
  .024
  .024
  .024
  .024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.086
 .230
 .230
 .230
 .230
0.230
0.230
0.230
0.230
0.
0.
0.
0.
0,
0.
0.700
0.700
 .700
 .700
0.700
0.700
0.700
0.700
Removal
Efficiency
(X)
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
Cost Optinr
Stripping
Fractor
1.0
1.8
2.2
2.5
2.5
2.7
2.9
3.0
1.0
1.6 -•
1.9
2.2
2.2
2.4
2.5
2.6
1.0
1.4
1.8
2.0
2.0
2.2 '
2:3
2.4
1.0
1.4
1.7
1.9
1.9
2.1
2.2
2.3
- 1.0
1.3
1.5
1.7
1.8
1.9
2.0
2.1
180.
180.
170.
170.
170.
160.
160.
160.

170.
160.
150.
150.
140.
140.
140.
140.

150.
130.
120.
120.
120.
120.
120.
120.

140.
110.
110.
100.
no.
100.
100.
100.

140.
100.
110.
110.
no.
no.
no.
no.

-------
      Di bromochloropropane
     Table  1  (continued)
  DESIGN  CRITERIA  - March  1989
Design
Number

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Plant
Capacity
(MGD)
4.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
 2.
 2.
 2.
 2.
 2.
 2.
 2.
10
10
10
10
10
10
10
 2.10
   00
   00
   00
   00
   00
   00
   00
 5.00

 8.80
 8.80
 8.80
 8.80
 8.80
 8.80
 8.80
 8.80

13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0

27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0
Removal
Efficiency
(%)
50. '
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
50.
80.
90.
95.
96.
98.
99.
99.5
. 50.
80.
90.
95.
96.
98.
99.
99.5
Cost Optim-
Stripping
Fractor
1.0
1.3
1.5
1.7
1.8
1.9
2.0
2.1
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
1.0
1.2
1.5
1.7
1.7
1.9
2.0
2.0
140.
100.
100.
100.
100.
 99.
 98.
 97.

130.
100.
 97.
 96.
 96.
 95.
 94.
 94.

130.
 96.
 93.
 91.
 91.
 90.
 89.
 89.

130.
 95.
 91.
 89.
 89.
 88.
 88.
 87.

130.
 91.
 87.
 85.
 85.
 84.
 84.
 83.
t
                                                                B

-------
    Di bromochloropropane

    Table 1 (continued)
DESIGN CRITERIA - March 1989
Design
Number

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Plant
Capacity
(MGD)
210.
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
430.
Average
Flow
{MGD)
120.
120.
120.
120.
120.
120.
120.
120.
270.
270.
270.
270.
270.
270.
270.
270.
            50.
            80.
            90.
            95.
            96.
            98.
            99.
            99.5

            50.
            80.
            90.
            95.
            96.
            98.
            99.
            99.5
1.0
1.2
1.5
1.7
1.7
1.8
1.9
2.0

1.0
1.2
1.5
1.7
1.7
1.8
1.9
2.0
120.
 85.
 80.
 79.
 79.
 78.
 78.
 77.

120.
 80.
 75.
 74.
 74.
 73.
 73.
 73.

-------
I
D

-------
                          Di bromochloropropane

                                Table 2
                        SYSTEM SIZE - March 1989
Design
Number
Loadi
Liquid
(GPM
ft-2)
ngs
Air
(SCFM
ft-2)
Air:
Water
Ratio
Mass
Trans.
Coef.
(sec-1)
Number
of
Columns
Col umn
Diameter
(ft)
Packing
Height
(ft)
Air
Flow
(SCFM)
Air
Pressure
(inch
H20)
  1
  2
  3
  4
  5
  6
  7
  8

  9
 10
 11
 12
 13
 14
 15
 16

 17
 18
 19
 20
 21
 22
 23
 24

 25
 26
 27
 28
 29
 30
 31
 32

 33
 34
 35
.36
 37
 38
 39
 40
9.7
5.9
4.8
4.3
4.1
3.8
3.6
3.4
240.
260.
260.
260.
260.
260.
260.
250.
190.
330.
400.
450.
470.
500.
530.
550.
0.0039
0.0029
0.0026
0.0024
0.0023
0.0022
0.0021
0.0021
9.3
6.3
5.1
4.5
4.4
4.1
3.8
3.7
230.
240.
240.
240.
240.
240.
240.
240.
180.
290.
350.
400.
410.
440.
460.
480.
0.0038
0.0030
0.0026
0.0024
0.0024
0.0023
0.0022
0.0021
9.0
6.3
5.1
4.6
4.4
4.1
3.9
3.7
220.
220.
220.
220.
220.
220.
220.
220.
180.
260.
320.
360.
370.
400.
420.
440.
0.0036
0.0029
0.0026
0.0024
0.0023
0.0022
0.0022
0.0021
8.8
6.2
5.1
4.5
4.4
4.1
3.9
3.7

8.7
6.2
5.5
4.9
4.8
4.5
4.3
4.1
220.  180.
210.  250.
210.  300.
210.  340.
210.  350.
210.  380.
210.  400.
210.  420.

210.  180.
200.  240.
210.  280.
210.  310.
210.  320.
210.  350.
210.  360.
210.  380'.
0.
0.
0.
 .0035
 .0028
 .0025
0.0023
0.0023
0.0022
0.0021
0.0021
0.0035
0.0028
 .0027
 .0025
 .0024
0.0023
0.0023
0.0022
0.
0.
0.
                               0
                               0
                               0
                              .0
                              .0
                              .0
                              .0
                              .0

                              .0
                              .0
                              .0
                              .0
                              .0
                              .0
                              .0
                              .0

                               0
                               0
                               0
                               0
                               0
                               0
                               0
                             1.0
                              1.5
                              1.9
                              2:1
                              2.2
                              2.3
                              2.4
                              2.4
                              2.5

                              2.9
                              3.5
                              3.9
                              4.1
                              4.2
                              4.3
                              4.5
                              4.6

                              5.2
                              6.2
                              6.9
                              7.2
                              7.3
                              7.6
                              7.9
                              8.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.3
1.3
1.4
1.4
1.5
8.1
9.6
10.6
11.3
11.4
11.8
12.2
12.4
13.5
16.0
16.0
16.0
16.0
16.0
16.0
16.0
                           6.1
                          12.
                          15.
                          19.
                          20.
                          23.
                          27.
                          30.

                           6.1
                          13.
                          17.
                          21.
                          22.
                          26.
                          29.
                          33.
                           6.
                          14.
                          18.
                          22.
                          23.
                          27.
                          31.
                          35.
                             1
 6.1
15.
21.
26.
27.
32.
36.
41.
         410.
         730.
         890.
        1000.
        1000.
        1100.
        1200.
        1200.

        1500.
        2300.
        2800.
        3200.
        3300.
        3600.
        3800.
        3900.

        4600.
        6600.
        8100.
        9100.
        9400.
       10000.
       11000.
       11000.
6.1
14.
19.
23.
25.
29.
33.
37.
11000.
15000.
18000.
21000.
21000.
23000.
24000.
25000.
31000.
40000.
47000.
53000.
54000.
58000.
61000.
63000.
3.4
4.5
5.2
5.8
6.0
6.6
7.2
7.8

3.3
4.5
5.1
5.7
5.9
6.4
7.0
7.6

3.1
4.2
4.7
5.3
5.5
6.0
6.5
7.0

3.1
4.0
4.5
5.0
5.2
5.7
6.2
6.7

3.0
4.0
4.8
5.4
5.6
6.2
6.8
7.4

-------
  Di bromochloropropane
  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Loadings
Liquid
(GPM
ft-2)
8.6
6.4
5.4
4.8
4.7
4.4
4.2
4.0
8.6
6.3
5.3
4.7
4.6
4.3
4.1
3.9
8.5
6.2
5.2
4.6
4.5
4.2
4.0
3.9
8.5
6.2
5.2
4.6
4.5
4.2
4.0
3.8
8.4
6.1
5.1
4.5
4.4
4.1
3.9
3.8
Air
(SCFM
ft-2)
210.
200.
200.
200.
200.
200.
200.
200.
210.
190.
200.
200.
200.
200.
200.
200.
210.
190.
190.
190.
190.
190.
190.
190.
210.
190.
190.
190.
190.
190.
190.
•190.
210.
190.
190.
190.
190.
190.
190.
190.
Air:
Water
Ratio

180.
230.
280.
310.
320.
340.
360.
380.
180.
230.
280.
310.
320.
340.
360.
370.
180.
230.
280.
310.
320.
340.
360.
370.
180.
230.
280.
310.
320.
340.
360.
370.
180.
230.
270.
310.
320.
340.
360.
370.
Mass
Trans.
Coef.
(sec-1)
0.0035
0.0029
0.0026
0.0024
0.0024
0.0023
0.0022
0.0022
0.0035
0.0028
0.0026
0.0024
0.0023
0.0022
0.0022
0.0021
0.0035
0.0028
0.0025
0.0023
0.0023
0.0022
0.0021
0.0021
0.0035
0.0028
0.0025
0.0023
0.0023
0.0022
0.0021
0.0021
0.0034
0.0028
0.0025
0.0023
0.0022
0.0022
0.0021
0.0020
Number
of
Columns

1.9
2.6
3.1
3.5
3.5
3.8
4.0
4.1
4.4
6.0
7.2
8.0
8.3
8.8
9.3
9.6
7.3
9.9
12.0
13.4
13.8
14.7
15.5
16.1
10.6
14.4
17.4
19.5
20.0
21.4
22.5
23.4
20.9
28.7
34.8
38.9
40.0
42.8
45.0
46.7
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0 -
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
6.1
16.
21.
26.
27.
32.
36.
41.
6.0
16.
21.
26.
27.
32.
37.
41.
6.0
16.
21.
26.
27.
32.
37.
41.
6.0
16.
21.
26.
27.
32.
37.
41.
6.0
Air
Flow

(SCFM)
82000
100000
120000
140000,
140000.
150000.
160000.
170000.
190000.
Air
Pressure
(inch
H20)
3.0
4.1
4.6
5.2
5.3
5.9
6.4
6.9
3.0
230000. 4.0
280000.
320000.
330000.
350000.
370000.
380000.
310000.
380000.
460000.
520000.
530000.
570000.
600000.
630000.
440000.
550000.
670000.
750000.
770000.
830000.
870000.
900000.
870000.
16. 1100000.
21. 1300000.
26. 1500000.
27. 1500000.
32. 1600000.
37. 1700000.
41. 1800000.
4.5
5.0
5.2
5.7
6.2
6.7
3.0
3.9
4.4
4.9
5.1
5.5
6.0
6.5
3.0
3.9
4.4
4.8
5.0
5.5
5.9
6.4
3.0
3.8
4.3
4.7
4.9
5.3
5.8
6.2
                                                             I
                                                             8

-------
  Di bromochloropropane

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Loadings
Liquid
(GPM
ft-2)
8.3
6.0
4.9
4.4
4.3
4.0
3.8
3.7
8.2
5.9
4.8
4.3
4.2
3.9
3.7
3.6
Air
(SCFM
ft-2)
210.
180.
180.
180.
180.
180.
180.
180.
200.
180.
170.
180.
180.
180.
180.
180.
Air:
Water
Ratio

180.
230.
270.
310.
320.
340.
360.
370.
180.
220.
270.
310.
310.
340.
350.
370.
Mass
Trans.
Coef.
(sec-1)
0.0034
0.0027
0.0024
0.0022
0.0022
0.0021
0.0020
0.0020
0.0034
0.0026
0.0023
0.0022
0.0021
0.0021
0.0020
0.0019
Number
of
Columns

87.0
121.0
147.3
164.8
169.4
181.2
190.4
197.8
180.0
253.2
309.6
346.6
354.9
381.0
400.5
416.1
Col umn
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
Air
Flow

(SCFM)
6.0 3600000
16. 4400000
21. 5300000
26. 6000000
Air
Pressure
(inch
H20)
2.9
3.7
4.1
4.5
28. 6200000. 4.7
32. 6600000
37. 6900000
41. 720000Q
5.1
5.5
5.9
6.0 7400000. 2.9
16. 9000000
21. 11000000
26. 12000000
28. 13000000
32. 13000000
37. 14000000
41. 15000000
3.6
4.0
4.4
4.5
4.9
5.3
5.7

-------
I
B

-------
    Di bromochloropropane

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12 ,
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Estimated Capital Costs
Process
($K)
5.4
8.9
11.
14.
15.
17.
20.
22.
11.
19.
24.
30.
32.
38.
43.
48.
20.
38.
51.
64.
68.
80.
93.
100.
36.
71.
97.
120.
130.
150.
180.
200.
77.
160.
220.
280.
300.
370.
430.
490.
Support
($K)
8.9
11.
13.
14.
14.
16.
17.
19.
15.
.20.
23.
27.
28.
32.
35.
38.
24.
36.
45.
54. .
56.
65.
73.
81.
41.
65.
83.
100. .
110.
120.
140.
160.
81.
140.
180.
230.
250.
. 290.
340.
380.
Indirect
($K)
9.4
13.
16.
18.
19.
22.
24.
27.
17.
25.
31.
37.
39.
45.
51.
57.
29.
48.
63.
77.
81.
95.
110.
120.
50.
89.
120.
150.
150.
180.
210.
240.
100.
190.
260.
340.
360.
430.
500.
570.
Total
($K)
24.
33.
40.
46.
48.
55.
61.
67.
42.
63.
79.
94.
99.
110.
130.
140.
73.
120.
160.
190.
210.
240.
270.
310.
130.
220.
300.
370.
390.
460.
530.
600.
'260.
490.
670.
850.
910.
1100.
1300.
1400.
Operating
Cost
($K Year-1)
0.59
0.94
1.2
1.4
1.5
1.7
2.0
2.2
1.5"
2.5
3.2
3.9
4.1
4.7
5.3
5.9 .
3.6
6.2
8.0
9.9
10.
12.
14.
15.
. 8.3 '
14.
18.
22.
23.
27.
31.
34.
23.
37.
50.
62.
65.
76.
87. '
97.
Yearly
Cost
($K Year-1)
3.4
4.8
5.8
6.9
7.2
8.2
9.1
10.
6.4
9.9
12.
15..
16.
18. =.
20.
23.
12.
21.
27.
33.
35.
40.
46.
52.
23.
40.
53.
65.
69.
81.
93.
110.
54.
95.
130.
160.
170.
200. .
240.
. 270.
Production
Cost
($ Kgal-1)
1.65
2.35
2.85
3.35
3.51
3.99
4.46
4.93
0.73
1.13
1.42
1.70
1.79
2.06
2.33
2.60
0.39
0.65
0.85
1.04
1.10
1.28
K46
1.64
0.28
0.48
0.63
0.78
0.82
0.97
1.1.1
1.25
0.21
0.37
0.50
0.63
0.67
0.80
0.92
1.04

-------
    Di bromochloropropane

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Estimated Capital Costs
Process
($K)
190.
400.
570.
730.
780.
950.
1100.
1300.
410.
890.
1300.
1600.
1700.
2100.
2500.
2800.
670.
1400.
2000.
2600.
2800.
3400.
4000.
4600.
950.
2100.
2900.
3800.
4100.
4900.
5700.
6500.
1800.
4000.
5700.
7300.
7800.
9500.
11000.
13000.
Support
($K)
180.
340.
460.
580.
620.
740.
860.
980.
380.
740.
1000.
1300.
1400.
1700.
1900.
2200.
610.
1200.
1700.
2100.
2300.
2700.
3200.
3600.
860.
1700.
2400.
3000.
3200.
3900.
4500.
5200.
1600.
3300.
4600.
5900.
6300.
7500.
8800.
10000.
Indirect
($K)
240.
480.
670.
860.
920.
1100.
1300.
1500.
520.
1100.
1500.
1900.
2100.
2500.
2900.
3300.,
840.
1700.
2400.
3100.
3300.
4000.
4700.
5400.
1200.
2500.
3500.
4500.
4800.
5800.
6700.
7700.
2300.
4700.
6700.
8600.
9300.
11000.
13000. '
15000.
Total
($K)
610.
1200.
1700.
2200.
2300.
2800.
3300.
3700.
1300.
2700.
3800.
4800.
5200.
6200.
7300.
• 8300.
. 2100.
4400.
6100.
7900.
8400.
10000.
12000.
14000.
3000.
6200.
8800.
11000.
12000.
15000.
17000.
19000.
5700.
12000.
17000.
22000.
23000.
28000.
33000.
38000.
Operating
Cost
($K Year-1)
65.
110.
140.
170.
180.
210.
240.
270.
150.
240.
320.
390.
420.
480.
550.
620.
260.
410.
540.
660.
700.
820.
930.
1000.
380.
600.
790.
960.
1000.
1200.
1300.
1500.
790.
1200.
1600.
1900.
2000.
2400.
2700.
3000.
Yearly
Cost
($K Year-1)
140.
250.
340.
430.
450.
540.
620.
710.
310.
560.
760.
960.
1000. .
1200.
1400.
1600.
510.
920.
1300.
1600.
1700.
2000.
2300.
2600.
740.
• 1300.
1800.
2300.
2400.
2900.
3300.
3800.
1500.
2600.
3600.
4500.
4800.
5700.
6500.
7400.
Production
Cost
($ Kgal-1)
0.18
0.32
0.44
0.56
0.59
0.70
0.81
0.92
0.17
0.31
0.42
0.53
0.56
0.67
0.77
0.87
0.16
0.29
0.39
0.49
0.53
0.62
0.72
0.82
0.16
0.28
0.38
0.48
0.51
0.61
0.70
0.80
0.15
0.27
0.36
0.46
0.49
0.58
0.66
0.75
                                                                I

-------
    Di bromochloropropane

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
Estimated Capital Costs
Process
($K)
7200.
16000.
23000.
29000.
31000.
38000.
44000.
50000.
15000.
32000.
46000.
59000.
63000.
76000.
89000.
96 100000.
Support
($K)
6100.
13000.
18000.
23000.
25000.
30000.
35000.
40000.
12000.
26000.
37000.
48000.
51000.
62000.
Indirect
($K)
8700.
19000.
27000.
34000.
37000.
44000.
52000.
59000.
17000.
38000.
54000.
70000.
75000.
91000.
72000. 110000.
83000. 120000.
Total
($K)
22000.
47000.
67000.
87000.
93000.
110000.
130000.
150000.
44000.
95000.
140000.
180000.
190000.
230000.
270000.
310000.
Operating
Cost
($K Year-1)
3500.
5300.
6800.
8200.
8700.
10000.
11000.
13000.
7800.
12000.
15000.
18000.
19000.
22000.
240001
27000.
Yearly
Cost
($K Year-1)
6100.
11000.
15000.
18000.
20000.
23000.
27000.
30000.
13000.
23000.
31000.
39000.
41000.
49000.
56000.
63000.
Production
Cost
{$ Kgal-1)
0.14
0.25
0.33
0.42
0.45
0.53
0.61
0.69
0.13
0.23
0.31
0.39
0.42
0.49
0.57
0.64

-------
1

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
          Ethylene Dibromide (EDB)
  Henry's  Coefficient = 0.014 at 12 Deg.  C
   U.S.  Environmental  Protection  Agency
          Office  of  Drinking  Water
         Technical Support  Division
          Cincinnati,  Ohio 45268

-------
I
1
i

-------
  Ethylene Dibromide (EDB)

          Table 1
DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98 '
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
Cost Optim
Stripping
Fractor
2.4
3.0
3.4
3.6
3.8
2.1
2.6
2.9
3.1 '
3.2
1.9
2.4
2.6
2.8
2.9
1.8
2.2
2.4
2.6
2.7
1.7
2.1
2.3
2.5
2.6
1.6
1.9
2.1
2.3
2.4
                                      150.
                                      150.
                                      140.
                                      140.
                                      140.

                                      150.
                                      140.
                                      140.
                                      120.
                                      130.

                                      130.
                                      120.
                                      120.
                                      120.
                                      110.

                                      110.
                                      no.
                                      100.
                                      100.
                                      100.

                                       99.
                                       95.
                                       93.
                                       92.
                                       91.

                                      100.
                                       99.
                                       97.
                                       96.
                                       96.

-------
    Ethylene Dibromide  (EDB)
      Table  1  (continued)
  DESIGN CRITERIA - March  1989.
Design
Number

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Plant
Capacity
(MGD)
11.0
11.0
n.o
11.0
11.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0 .
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
    00
    00
    00
    00
  5.00

  8.80
  8.80
  8.80
  8.80
  8.80
 13
 13
 13,
 13,
 13.0

 27.0
 27.0
 27.0
 27.0
 27.0

120.
120.
120.
120.
120.

270.
270.
270.
270.
270.
Removal
Efficiency
(*)
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
90.
98.
99.5
99.9
99.98
Cost Optinr
Stripping
Fractor
1.6
1.9
2.1
2.3
2.3
1.6
1.9
2.1
2.3
2.3
1.6
1.9
2.1
2.2
2.3
1.5
1.9
2.1
2.2
2.3
1.5
1.9
2.1
2.2
2.3
1.5
1.9
2.1
2.2
2.3
99.
95.
94.
92.
92.

95.
90.
89.
88.
87.

93.
89.
87.
86.
85.
84.
83.
82.
81.

82.
78.
77.
76.
75.

77.
73.
72.
71.
71.
I

-------
Ethylene Dibromide (EDB)

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3 .
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 .
25
26 ,
27
28 .
29
30
Loadings
Liquid
(GPM
ft-2)
8.9 *
7.2
6.5 '
6.1
5.8
10.
8.0
7.3
6.6
6.5
10.
8.2
7.5
7.0
6.7
10.
8.2
7.5
7.1
6.8
. 10.
8.2
7.5
7.1
6.8
11.
8.9
8.2
7.7
7.4
Air
(SCFM
ft-2)
220.
'230.
230.
.230.
" 230.
220.
220.
220.
210.
220.
-200.
200.
210.
210.
210.
190.
190.
190.
190.
190.
180.
180.
180.
180.
180.
180.
180.
180.
180.
180.
Air:
Water
Ratio

190.
240.
.260.
280.
300.
160.
'210.
•230.
240.
260.
150.
190.
200.
220.
230.
140.
170.
190.
200.
210.
^130.
160.
180.
190.
200.
•120.
150.
170.
180.
190.
Mass •
Trans.
Coef.
(sec-1)
0.0052
0.0046
6.0043
0.0041
0.0039
0.0057
0.0049
0.0046
0.0042
0.0042
0.0057
0.0049
0.0046
0.0044
0.0043
0.0055
0.0049
0.0046
0.0044
0.0043
0.0055
0.0048
0.0045
0.0044
0.0042
0.0057
0.0051
0.0048
0.0046
0.0045
Number
of
Columns

.1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
i.o
•1.5
1.9
2.0
2.1
. 2.2
..Column
Diameter

(ft)
1.5
1.7
1.8
1.9
1.9
2.8
.3.1
3.2
3.4
3.4
4.8
5.4
5.6
5.8
-6.0
7.5
8.4
8.8 -
9.0
9.2
12:6
13.9
14.5
15.0
15.3
16.0
16.0
16.0
16.0 <
16.0
Packing
Height

(ft)
13.
20.
26.
33.
40. -
14.
23.
29.
36.
44.
16.
24.
31.
39.
47.
16.
25.
33.
41.
49.
17: .
26.
34.
43.
52.
18.
- 28:
37.
46.
56.
Air
.Flow

(SCFM)
420
530
590
630
660
1300
1700
1800
Air
Pressure
(inch
• H20)
4.4
5.7
6.7
7.9
9.0
4.8
5.9
7.0
2000. 7.6
2100
3700
4700
5100
5500
5800
8400
11000
12000
12000
13000
22000
27000
30000
32000
34000
55000
68000
75000.
79000.
83000.
9.2
4.6
. . 5.6
6.6
7.6
8.6
4.3
5.3
6.2
7.2
8.2
•4.1
5.1
5.9
6.8
7.8
4.4
5.5
6.4
7.5
8.6

-------
Ethyl ene Di bromide (EDB)
  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Numbar


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Loadings
Liquid
(GPM
ft-2)
11.
8.7
8.1
7.6
7.3
10. •
8.6
7.9
7.5
7.2
10.
8.5 •
7.8 -
7.4
7.1
10.
8.4
7.7
7.3'
7.0
9.9
8.1
7.5
7.1
6.8
9.7
7.9
7.3
6.9
6.6
Air
(SCFM
ft-2)
170.
180.
180.
180.
180.
170.
170.
180.
180.
180.
170.
170.
170.
180.
180.
170.
170.
170.
170.
170.
160.
160.
170.
170.
170.
160.
160.
160.
160.
160.
Air:
Water
Ratio

120.
150.
170.
180.
180.
120.
150.
170.
180.
180.
120.
150.
170.
180.
180.
120.
150.
170.
180.
180.
120.
150.
160.
180.
180.
120.
150.
160.
180.
180.
Mass
Trans.
Coef.
(sec-1)
0.0056
0.0050
0.0047
0.0046
0.0045
0.0056
0.0049
0.0047
0.0045
0.0044
0.0055
0.0049
0.0046
0.0045
0.0044
0.0054
0.0048
0.0046
0.0044
0.0043
0,0053
0.0047
0.0045
0.0043
0.0042
0.0052
0.0046
0.0043
0.0042
0.0041
Number
of
Columns

3.6
4.3
4.7
5.0
5.2
6.0
7.2
7.9
8.3
8.7
8.7
10.5
11.4
12.1
12.6
17.3
21.0
22.9
24.2
25.2
73.4
89.2
96.9
102.7
106.8
153.8
187.6
203.9
216.3
224.9
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16-. 0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0 •
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height
,.
(ft)
18.
28.
37.
46.
56.
18.
28.
37. •
46.
56.
18.
28.
37.
46.
56.
18.
28.
37.
46.
56.
Air
Flow

(SCFM)
Air
Pressure
(inch
H20)
130000. 4.3
160000,
170000.
180000
*1 90000
200000
250000
280000
300000
310000.
290000.
370000.
400000.
430000
450000.
580000.
720000.
780000.
840000.
870000.
18. 2400000.
28; 2900000.
37. 3200000.
46. 3400000.
56. 3600000.
18. 4800000
28. 6000000
37. 6600000
46. 7000000
55. 7300000
5.3
6.2
7.3
8.3
4.2
5.2
6.0
7.0
8.0
4.1
5.1
5.9
6.9
7.8
4.0
5.0
5.7
6.7
7.6
.3.9
4.7
5.5
6.3
7.1
3.8
4.5
5.2
6.0
6.8
                                                              I

-------
   Ethylene Dibromide (EDB)

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
'9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Estimated Capital Costs
Process
($K)
7.9
11.
14.
18.
21.
16.
23.
29.
37.
44.
30.
46.
59.
74.
90.
54.
84.
110.
140.
170.
120.
180.
240.
310.
370.
270.
440.
590.
750.
910.
Support
($K)
10.
12.
14.
16.
18.
18.
22.
26.
31.
35.
31.
41.
50.
60.
70.
53.
73.
91.
110.
130.
110.
160.-
200.
250.
290.
240.
370.
480..
600.
720.
Indirect
<$K)
12.
15.
18.
22.
25.
22.
30.
36.
44.
51.
40.
57.
71.
88.
• 100.
70.
100.
130.
160.
190.
150.
220.
290.
360.
440.
340.
530.
700.
880.
1100.
Total
($K)
30.
39.
47.
56.
64.
55.
75.
92.
' 110.
130.
100.
140.
180.
220.
•260.
180.
260.
330.
410.
490.
370.
570.
' 730.
920.
1100.
850.
1300.
1800.
2200.
2700.
Operating
Cost
($K Year-1)
0.76
1.1
1.3
1.6
1.8
1.9
.2.7
3.3 .
3.9 .
4.7
4.5
• 6.5
•8.1
9.9
12.
9.8
14.
18.
22.
25.
26.
37.
46.
56.
^66.
72.
100.
130.
160.
190.
Yearly
Cost
($K Year-1)
4.3
5.7
6.8
. 8.1
9.4
8.4
12.
14.
17.-
20.
' 16. :
23. .
29.
36.
43.
31.
45.
57,
70.
83.
. 69.
100.
130.
160.
190. '
170. -
260.
340.
420. *
510.
Production
Cost
($ Kgal-1)
2.10
2.77
3.32
3.96
4.58
0.96
1.31
1.61
1.94
2.27
0.52
0.75
0.93
1.15
1.35
0.36
0.53
•0.67
0.83
0:99
0.27
0.40
0.51
0.64
0.76
0.22
0.34
0.44
0.55
0.66

-------
   Ethylene Dibromide (EDB)

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Estimated Capital Costs
Process
($K)
600.
980.
1300.
1700.
2000.
970.
1600.
2100.
2700.
3300.
1400.
2300.
3000.
3900.
4700.
2700.
4400.
5800.
7400.
9100.
11000.
17000.
23000.
29000.
36000.
22000.
35000.
47000.
60000.
73000.
Support
($K)
530.
810.
1100.
1300.
1600.
850.
1300.
1700.
2200.
2600.
1200.
1900.
2400.
3100.
3700.
2300.
3600.
4700.
6000.
7200. .
8800.
14000.
19000.
24000.
29000.
18000.
29000.
38000.
48000.
59000.
Indirect
(SK)
740.
1200.
1502.
2000.
2400.
1200.
1900.
2500..
3200.
3900.
1700.
2700.
3600.
4600.
5500.
3300.
5200.
6900.
8800.
11000.
13000.
21000.
27000.
35000.
42000.
26000.
42000.
55000.
71000.
86000.
Total
($K)
1900.
3000.
3900.
5000.
6000.
3000.
4800.
6300.
8000.
9700.
4300.
6900.
9000.
12000.
14000.
8200.
13000.
17000.
22000.
27000.
32000.
52000.
69000.
88000.
110000.
65000.
110000.
140000.
180000.
220000.
Operating
Cost
{$K Year-1)
170.
240.
300.
370.
430.
280.
410.
510.
620.
720.
410.
590.
730.
890.
1000.
840.
1200.
1500.
1800.
2100.
3600.
5100.
6300.
7600.
8900.
8000.
11000.
14000.
16000.
19000.
Yearly
Cost
($K Year-1)
390.
590.
760.
950.
1100.
640.
970.
1200.
1600.
1900.
920.
1400.
1800.
2200.
2700.
1800.
2700.
3500.
4400.
5300.
7400.
11000.
14000.
18000.
21000.
16000.
24000.
30000.
37000.
45000.
Production
Cost
($ Kgal-1)
0.21
0.32
0.41
0.52
0.62
0.20
0.30
0.39
0.49
0.58
0.19
0.29
0.38
0.47
0.57
0.18
0.28
0.36
0.45
0.53
0.17
0.26
0.33
0.41
0.49
0.16
0.24
0.30
0.38
0.45
                                                                1
                                                                1

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
      •   •        Compound:
                Ethyl benzene
  Henry's Coefficient  = 0.14 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
i
B

-------
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 *
27
28
29
30
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.-087
0.087
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
                            Ethyl benzene

                              Table 1
                    DESIGN  CRITERIA -  March 1989
                    0.006
                    0.006
                    0.006
                    0.006
                    0.006

                    0.024
                    0.024
                    0.024
                    0.024
                    0.024

                    0.086.
                    0.086
                    0.086
                    0.086
                    0.086
                   0.230
                   0.230
                     .230
                     .230
                     .230
0.
0.
0.
                   0.700
                   0.700
                   0.700
                   0.700
                   0.700
                     ,10
                     ,10
                     ,10
                     ,10
                   2.10
Removal
Efficiency
(%)
20. .
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
Cost Optinr
"Stripping
Fractor
2.3*
2.3*
2.3*
3.5*
3.6*
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
3.6*
3.7*
2.3*
2.3*
2.3*
3.4*
3.5*
2.3*
2.3*
2.3*
3.1*
3.2*
2.3*
2.3*
2.3*
2.9*
3.0*
 50.'
 50.'
 50.'
 98.
100.

 50.1
 50.'
 50.'
 67.
 72.

 50.'
 50.'
 50.'
100.
110.

 SO.1
 50.'
 50.'
 92.
 98.

 50.'
 50.'
 50.'
 81.
 86.

 50.<
 50.'
 50.'
 72.
 76.
Design parameter held to limiting  value.

-------
                              Ethyl benzene
                          Table 1 (continued)
                      DESIGN CRITERIA - March 1989
Design
Number
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Plant
Capacity
(MGD)
11.0
11.0
n.o •
11.0
11.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
                      5.00
                      5.00
                      5.00
                      5.00
                      5.00

                      8.80
                      8.80
                      8.80
                      8.80
                      8.80

                     13.0
                     13.0
                     13.0
                     13.0
                     13.0

                     27.0
                     27.0
                     27.0
                     27.0
                     27.0

                    120.
                    120.
                    120.
                    120.
                    120.

                    270.
                    270.
                    270.
                    270.
                    270.
Removal
Efficiency
(%)
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
20.
30.
50.
92.9
95.
Cost Optiirr
Stripping
Fractor
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
2.8*
2.9*
2.3*
2.3*
2.3*
2.8*
2.8*
2.3*
2.3*
2.3*
2.7*
2.8*
2.3*
2.3*
2.3*
2.7*
2.8*
50.
50.
50.
68.
73.

50.
50.
50.
67.
72.

50.
50.
50
67.
71.

50.'•
50. '
50.'
66.
69.

50.'
50. <
50.<
63.
67.

50.'
50.1
50.'
62.
66.
.*
                      i
*  Design parameter held to limiting value.

-------
                             Ethyl benzene
                               Table 2
                       SYSTEM SIZE - March 1989
Design
Number
•• Loadi
Liquid
(GPM
ft-2)
ngs
Air
(SCFM
ft-2)
Air:
Water
Ratio
Mass
Trans.
Coef.
(sec-1)
Number
. -of
Columns
Col umn
Diameter
(ft)
Packing
Height
(ft)
Air
Flow
(SCFM)
Air
Pressure
(inch
H20)
 1
 2
 3
 4
 5

 6
 7
 8
 9
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30
30.
30.
30.
30.
30.

30.
30.
30.
30.
30.

30.
30.
30.
30.
30.

30.
30.
30.
30.
30.

30.
30.
30.
30.
30.

30.
30.
30.
30.
30.
73.
73.
73.
110.
110.
18.
18.
18.
27.
29.
0.014
0.014
0.014
0.014
0.014
73.
73.
73.
88.
92.
18.
18.
18.
22.
23.
0.014
0.014
0.014
0.014
0.014
 73.
 73.
 73.
110.
120.

 73.
 73.
 73.
110.
110.

 73.
 73.
 73.
 99.
100.

 73.
 73.
 73.
 92.
 96.
18.
18.
18.
28.
29.

18.
18.
18.
27.
27.

18.
18.
18.
25.
25.

18.
18.
18.
23.
24.
0.014
0.014
0.014
0.014
0.014

0.014
0.014
0.014
 .014
 .014
0.
0.
0.014
0.014
0.014
0.014
0.014

0.014
0.014
0.014
0.014
0.014
                       1.0

                       1.0
                       1.0
                       1.0
                       1.0
                       1.0
           1.0
           1.0
       0.8
       0.8
       0.8
       0.8
       0.8

       1.6
       1.6
       1.6
       1.6
       1.6

       2.8
       2.8
       2.8
       2.8
       2.8

       4.4
       4.4
       4.4
       4.4
1.0    4.4
           1.0
       7.3
       7.3
       7.3
       7.3
       7.3

      11.9
      11.9
      11.9
      11.9
      11.9
  1.2
  2.0
  4.2
17. •
19.

  1.2
  2.0
  4.2
18.
21.

  1.2
  2.0
  4.2
17.
19.

  1.2
  2.0
  4.2
17.
19.

  1.2
  2,0
  4.2
18.
20.

  1.2
  2.0
.  4.2
18.
20.
   41.
   41.
   41.
   61.
   64.

  150.
  150.
  150.
  180.
  190.

  460.
  460.
  460.
  710.
  730.

 1100.
 1100.
 1100.
 1600.
 1700.

 3100.
 3100.
 3100.
 4100.
 4300.

 8200.
 8200.
 8200.
10000.
11000.
 2.1
 2.1
 2.3
 4.0
 4.5

 2.1
 2.1
 2.3
 3.5
 3.8

 2.1
 2.1
 2.3
 4.1
 4.5

 2.1
 2.1
 2.3
 3.9
 4.3

 2,1
 2.1
 2.3
 3.7
 4.1

,2.1
 2.1
 2.3
 3.6
 3.9

-------
       Ethyl benzene
  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number
Load'
Liquid
(GPM
ft-2)
ngs
Air
(SCFM
ft-2)
Air:
Mater
Ratio
Mass
Trans.
Coef.
(sec-1)
Number
of
Columns
Column
Diameter
(ft)
Packing
Height
(ft)
Air
Flow
(SCFM)
Air
Pressure
(inch
H20)
31
32
33
34
35

36
37
38
39
40

41
42
43
44
45

46
47
48
49
50

51
52
53
54
55

56
57
58
59
60
30.
30.
30.
30.
30.

30.
30.
30.
30.
30.

30.
30.
30.
30.
30.

30.
30.
30.
30.
30.

30.
30.
30.
30.
30.

30.
30.
30.
30.
30.
73.
73.
73.
89.
93.
.18.
18.
18.
22.
23.
0.014
0.014
0.014
0.014
0,014
73.
73.
73.
89.
92.
18.
18.
18.
22.
23.
0.014
0.014
0.014
0.014
0.014
73.
73.
73.
88.
91.
18.
,18.
. 18.
22.
23.
0.014
0.014
0.014
0.014
0.014
73.
73.
73.
87.
90.
18.
.18.
18.
22.
22.
0.014
0.014
0.014
0.014
0.014
73.
73.
73.
85.
88.

73.
73.
73.
84.
87.
18.
18.
18.
21.
22.

18.
18.
18.
21.
22.
0.014
0.014
0.014
0.014
0.014

0.014
0.014
0.014
0.014
0.014
              1.3
              1.3
              1.3
              1.3
              1.3

              2.1
              2.1
              2.1

              3.0
              3.0
              3.0
              3.0
              3.0

              5.9
              5.9
              5.9
              5.9
              5.9
             24.
             24.
             24.
             24.
             24,

             49,
             49.
             49,
             49.
                            16.0
                            16.0
                            16.0
                            16.0
                            16.0

                            16.0
                            16.0
                            16.0
                            16.0
                            16.0
                            16.0
                            16.0
                            16.
                            16,
                        .0
                        .0
             49.5
16.0

16.0
16.0
16.0
16.0
16.0

16.0
16.0
16.0
16.0
16.0

16.0
16.0
16.0
16.0
16.0
 1.2
 2.0
 4.2
18.
21.

 1.2
 2.0
 4.2
18.
21.

 1.2
 2.0
 4.2
18.
21.

 1.2
 2.0
 4.2
18.
21.

 •1.2
 2.0
 4.2
18.
21.

 1.2
 2.0
 4.2
19,
21.
 19000.
 .19000.
 19000.
 23000.
 24000.

 31000.
 31000.
 31000.
 37000.
 38000.

 44000.
 44000.
 44000.
 53000.
 55000.

 87000.
 87000.
 87000.
100000.
110000.

360000.
360000.
360000.
410000.
430000.

730000.
730000.
730000.
840000.
870000.
2.1
2.1
2.3
3.5
3.9

2.1
2.1
2.3
3.5
3.8

2.1
2.1
2.3
3.5
3.8

2.1
2.1
2.3
3.5
3.8

2.1
2.1
2.3
3.4
3.7

2.1
2.1
2.3
3.4
3.7

-------
                                          Ethyl benzene
                                           Table 3
                                 ESTIMATED COST - March 1989
Design
Number

1
2
3"
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Estimated C
Process
($K)
1.9
• 2.0
2.4
4.6
5.0
4.6
4.8
5.5
10.
11.
7.1
7.6
8.9
17.
19.
11.
.12.
,14.
28.
31.
20.
22.
27.
55.
60.
43.
46.
55.
110.
120.
Support
($K)
6.7
6.7
6.9
8.2
8.4
11.
11.
11.
14.
15.
16.
16.
17.
22.
23.
24. '
24.
26.
35.
36.
41.
42.
45.
64.
68.
79..
81.
88.
130.
140.
pital Costs
ndirect
.($K)
5.6
5.8
6.1
8.4
8.8
10.
10.
11.
16.
17.
15.
16.
17..
26.
27.
23.
24.
26.
41.
44.
40.
42.
47.
78.
83.
80.
84.
94.
160.
170.
Total
($K)
14.
14.
15.
21.
22.
25.
26.
28.
40.
43.
39.
. 40.
43.
65.
69.
57.
59.
66.
100.
110.
100.
110.
120.
200.
210.
200.
210.
240.
400.
430.
Operating
Cost
($K Year-1)
0.20
0.20
0.23 .
0.37 .
0.40
0.61 .
0.62
' 0.67
1.0 •
1.1
1.3
1.3
1.4
2.3
2.4
2.7
2.8
3.0
4.8
5.1
7.1
7.3
7.9
12.
13.
20.
20.
22.
33.
35.
*' Yearly
Cost
($K Year-1)
•1.9-
1.9
2.0
2.9
3.0
3.6
3. '7
3.9
5.8
6.1
5.8
6.0
6.5
9.9
11.
9.4
9.8
11.
- 17.
18.
19.
20.
22.
35.
38.
43.
45.
50.
80.
86.
Production
Cost
{$ Kgal-1)
0.91
0.93
1.00
1.40
1.47
0.41
0.42
0.45
0.66
.0.70
0.18
0.19
0.21
0.32
0.34
0.11
0.12
0.13
0.20
0.22
0.07
0.08
0.09
0.14
0.15
0.06
0.06
0.06
0.10
0.11
:i

-------
         Ethyl benzene
    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Estimated Capital Costs
Process
($K)
90.
96.
110.
230.
250.
140.
150.
180.
370.
400.
210.
220.
260.
520.
570.
390.
420.
490.
1000.
1100.
1600.
1700.
1900.
3900.
4200.
3100.
3300.
3900.
7800.
8500.
Support
($K)
150.
150.
170.
250.
270.
230.
240.
260.
390.
420..
320.
330.
350.
550.
590.
560.
580.
630.
1000.
1100.
1800.
1800.
2100.
3600.
3900.
3300.
3500.
3900.
7000.
7500.
Indirect
($l<)
160.
160.
180.
320.
340.
240.
260.
290.
500. •
540.
340.
360.
400.
700.
760.
620.
650.
740.
1300.
1400.
2200.
2300.
2600.
4900.
5300.
4200.
4500.
5100.
9700.
11000.
Total
($K)
400.
410.
460.
800.
860.
620.
650.
720.
1300.
1400.
860.
900.
.1000.
1800.
1900.
1600.
1600.
1900.
3300.
3600.
5500.
5800.
6700.
12000.
13000.
11000.
11000.
13000.
24000.
27000.
Operating
Cost .
($K Year-1)
46.
47.
51.
76.
81.
79.
82.
87.
130.
140.
120.
120.
130. , '
190.
200.
240.
250.
260.
390.
420.
.1100.
1200.
1200.
1800.
1900.
2700.
2700.
2900.
4100.
4300.
Yearly
Cost
($K Year-1)
93.
96.
110.
170.
180.
150.
160.
170.
280.
300.
220.
230.
250.
400.
. 430.
430.
440.
480.
780.
840.
1800.
1900.
2000.
3200.
3500.
3900.
4100.
4400.
7000.
7400.
Production
Cost,
($ Kgal-1)
0.05
0.05
0.06
0.09
0.10
0.05
0.05
0.05
0.09
0.09
0.05
0.05
0.05
0.08
0.09
0.04
0.04
0.05
0.08
0.09
0.04
0.04
0.05
0.07
0.08
0.04
0.04
0.04
0.07
0.08
                                                                E
                                                               B

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                  m-Xylene
  Henry's Coefficient « 0.11 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
I
 fi
 i

-------
                              ni-Xylene
                              Table 1
                    DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
• 0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
                    0.006
                    0.006
                    0.006
                    0.006
                    0.006
                    0.006
                    0.006

                    0.024
                    0.024
                    0.024
                     .024
                     .024
                    0.024
                    0.024
0.
0.
                      086
                      086
                      086
                      086
                      086
                    0.086
                    0.086
                   0.230
                   0.230*
                   0.230
                   0.230
                   0.230
                   0.230
                   0.230

                   0.700
                   0.700
                   0.700
                   0.700
                   0.700
                   0.700
                   0.700
                   2,
                   2,
                   2.
                   2.
                   2,
                   2.
  10
  10
  10
  10
  10
  10
                   2.10
Design parameter held to limiting value.
Removal
Efficiency
(*)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinr
Stripping
Fractor
1.8*
1.8*
2.2*
2.4*
2.9*
3.2*
3.4*
1.8*.
1.8*
1.8*
1.9*
3.1*
3.5
3.9
1.8*
1.8*
2.4* .
2.6*
3.0*
3.2*
3.4
1.8*
1.8*
2.2*
2.4*
2.8*
3.0*
3.2
1.8*
1.8*
2.0*
2.2*
2.6*
2.8*
3.0
1.8*
1.8*
1.9*
2.0*
2.5*
2.6*
2.8
 50.'
 50.'
 66.
 77.
110.
130.
140.

 50.'
 50.'
 50.'
 52.
130.
130.
130.

 50.'
 50.'
 76.
 87.
120.
130.
130.
 50.*
 50.*
 67.
 77.
100.
120.
130.

 50.*
 50.*
 59.
 67.
 91.
100.
110.

 50.*
 50.*
 52.
 60.
 82.
 92.
 99.

-------
                            m-Xylene
                      Table 1 (continued)
                  DESIGN CRITERIA - March' 1989
Design
Number

43
44
45
46
47
48
49 .
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
* n»
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
«'inn naram
                   .00
                   ,00
                   ,00
                   ,00
                   ,00
                   ,00
                  5.00

                  8.80
                  8.80
                  8.80
                  8.80
                  8.80
                  8.80
                  8.80

                 13.0
                 13.0
                 13.0
                 13.0
                 13.0
                 13.0
                 13.0

                 27.0
                 27.0
                 27.0
                 27.0
                 27.0
                 27.0
                 27.0

                120.
                120.
                120.
                120.
                120.
                120.
                120.

                270.
                270.
                270.
                270.
                270.
                270.
                270.
Removal
Efficiency
(*)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optimi
" Stripping
Fractor
1.8*
1.8*
1.8*
2.0*
2.4*
2.6*
2.7*
1.8*
1.8*
1.8*
2.0*
2.4*
2.6*
2.7*
1.8*
1.8*
1.8*
1.9*
2.4*
2.5*
2.7*
1.8*
1.8*
1.8*
1.9*
2.3*
2.5*
2.7*
1.8*
1.8*
1.8* '
1.9*
2.3*
2.5*
2.6
1.8*
1.8*
1.8*
1.9*
2.3*
2.4*
2.6
50.*
50."
50.*
56.
77.
88.
97.

50.*
50.*
50."
56.
76.
86.
95.

50.*
50.*
50."
55,
75.
85.
94.

50.*
50.*
50.*
54.
74.
84.
92.

50.*
50.*
50.*
53.
72.
81.
88.
50.*
50.*
50.*
51.
70.
80.
81.
1
D
Design parameter held to limiting value.

-------
         m-Xylene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4.
5
6
7 -
8
9
10
11
12
13
14

15
16
17
18
19 .
20
21
22
23
24 .
25
26
27
28
29
30
31
32
33
34 .
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30. -
30.
30.
30.
30.
30.
30.
28.
26..

30.
30.
30.
30.
30.
30.
29.
30.
30. .
30.
30.
30.
30.
30.
30. .
30.
30.
30.
30.
30.
30. '
30. "
30.
30.
30.
30. .
30.
29.
Air
(SCFM
ft-2)
73.
73.
87.
96.
120.
130.
140.
73.
73.
73.
76.
130.
. 130.
140.

73.
. 73.
95.
100.
120.
130.
130.
73.
73.
88.
96.
110.
120.
.130.
73.
' 73.
81.
• 88.
• no.
110.
120.
.73;
73.
75.
82.
99.
110.
no:-
Air:
Water
Ratio

18.
18.
22.
24.
29.
32.
34.
18.
18.
18.
19.
31.
35.
39.

18.
18.
24.
26.
30.
32.
34.
18.
'18.
22.
24.
29.
30.
32.
18.
18.
20.
22.
26.
28.
30.
18.
18.
19.
21.
25.
27.
28.
Mass
Trans.
Coef.
(sec-1)
0,014
0.014.
0.014'
0.014.
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.013

0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.0
.0
.0

. .0
.0
1.0
1.0
• 1.0
1.0
1.0
: i.o
1.0
1.0
•• i.o
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
' 1.0
i.o
1.0
Column
Di ameter
"
(ft)
0.8
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
116
1.7
•i
2.8
2.8
2.8
2.8
2.8
2.8
2.9
4.4
4.4
4.4
4.4
4.4
4.4
'4.4
7.3
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9 •
11.9
12.0
Packing
Height

(ft)
1.7
3.2
8.1
9.6
15.
20.
27.
1.7
3.2
8.7
10.
15.
19.
24.

1.7
3.2
7.9
9.4
15.
20.
26.
1.7
3.2
8.1
9.6
16.
21.
27.
1.7
3.2
8.3
9.9
16.
21.
28.
1.7
3.2
8.6
10.
17.
22.
28.
Air
Flow

(SCFM)
41
41
48
53
65.
71
75
150.
.150.
150.
150.
250.
280.
310.

460.
460.
600.
640.
760.
810.
860.
iioo.
1100.
1300.
1400.
1700.
1800.
•1900.
3100.
3100.
3400.
3700.
4400.
4700.
5000.
8200.
8200.
8400.
: 9100.
11000.
12000.
13000.
Air
Pressure
(inch
H20)
2.1
2.2
2.7
2.9
4.1
5.2
6.6
2.1
2.2
. 2.5
2.7
4.3
5.0
5.8

2.1
2.2
2.7 ,
3.0
4.2
5.2
6.3
2.1
2.2
2.7
2.9
4.0
5.0
6.2
2.1 •
2.2
2.6
2.8
3.8
4.7
5.8
2.1
2.2
2.6
2.8
3.7
4.5
5.4

-------
        m-Xylene
  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30. -
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
Air
(SCFM
ft-2)
73.
73.
73.
79.
96.
100.
110.
73.
73.
73.
79.
95.
100.
110.
- 73.
73.
73.
78.
95.
100.
110.
73.
73.
73.
77.
94.
100.
110.
73.
73.
73.
76.
92.
99.
100.
73.
73.
73.
75.
91.
98.
100.
Air:
Water
Ratio

18.
18.
18.
20.
24.
26.
27.
18.
18.
18.
20.
24.
26.
27.
18.
18.
18.
19.
24.
25.
27.
18.
18.
18.
19.
23.
25.
27.
18.
18.
18.
19.
23.
25.
26.
18.
18.
18.
19.
23.
24.
26.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
. of
Columns

1.3
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
- 5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
24.4
49.5
49.5
49.5
49.5
49.5
49.5
51.6
Col umn
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0.
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
1.7 .
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
22.
29.
1.7
3.2
8.7
10.
17.
23.
29.
1.7
3.2
8.7
1.1.
17.
23.
Air
Flow

(SCFM)
19000
19000.
19000
20000
24000
26000
28000
31000
31000
31000
33000
40000
43000
45000
44000
44000
44000
47000
57000
Air
Pressure
(inch
H20)
2.1
2.2
2.5
2.7
3.6
4.4
5.4
2.1
2.2
2.5
2.7
3.6
4.3
5.4
2.1
2.2
2.5
. 2.7
3.6
61000. 4.3
65000
5.4
87000. 2.1
87000
87000.
91000
110000
120000
130000
360000
360000
360000
370000
450000
480000
510000
730000
730000
730000
740000
900000
970000
29. -1100000
2.2
2.5
2.7
3.6
4.3
5.3
.2.1
2.2
2.5
2.7
3.5
,4.2
5.2
2.1
2.2
2.5
2.7'
3.5
4.2
.. 4.9
                                                             I

-------
          m-Xylene

          Table 3   -
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Costs
Process
($K)
2.0
• 2.2
3.1
3.3
4.4
5.2
6.4
4.7
5.2
7.0
7.6
9.8
12.
14.
7.4
8.3
11.
12.
16.
20.
24.
11.
13.
18.
20.
27.
32.
.39.
21.
24.
•35.
39.
52.
63.
77.
45.
51.
73.
81.
110.
130.
160.
Support
($K)
6.7
6.8
7.3
7.5
8.1
8.6
9.2
11.
11.
12.
12.
14.
15.
16.
16.
17.
19.
19.
22...
24.
26.
24.
25.
29.
30.
34.
37.
42.
42.
44.'
51. .'.
53.
63. .
70.
79.
80.
85.
100.
110.
130.
140.
160.
Indirect
($K)
5.7
5.9
6.8
7.1
8.2
9.1
10.
10.
11.
13.
13.
15.
17.
20.
. 15.
• 17.
20.
21..
25.
28.
33.
23.
25.
31.
33.
40.
46.
53.
41.
45.
57.
60.
75.
87.
100.
82.
89.
110.
120.
. 150.
180.
210.
Total
($K)
14.
15.
17.
18.
. 21.
23.
26.
26.
27.
32.
. 33.
39.
43.
49.
39.
42.
50.
53.
63.
71.
83.
58.
63.
77.
82.
100.
120.
130.
100.
110.
140.
150.
190.
220.
260.
210.
220.
290.
310.
< 390.
450.
530.
Operating
Cost
($K Year-1)
0.20
0.22
0.27
0.29
0.37
0.43
0.51
0.62
0.65 .
0.77-
0.82
1.1
- 1.2
• 1.4
- 1.3
1.4
1.7
1.8
2.2
2.6
3.1
2.7 '
2.9-
-3.5
3.8
4.7
5.5
6.5
7.2
7.6
. *9.1 -
9.7
12.
14.
17.
20.
21.
25.
26.
33.
38.
44.
. Yearly
Cost
($K Year-1)
1.9
2.0
2.3
2.4
2.8
3.1
3.5
3.6
3.8.
4.5
4.7
5.6
6.3
7.2
5.9
6.3*
7.6
8.0 .
9.7.
11.
13.
9.6
10. -
13.
13.
17.
19.
22.
19.
21.
: 26.
28.
34.
40.
47.
44.
47.
59.
63.
78.
90.
110.
Production
Cost
($ Kgal-1)
0.92
0.97
1.12
1.17
1.37
1.52
1.73
0.41
0.43
0.51
0.54
0.64
0.72
0.82
0.19
0.20
0.24
0.25
0.31
0.35
0.41
0.11
0.12
0.15
0.16
0.20
0.23
0.26
0.08
0.08
0.10
0.11
0.13
0.16
0.18
0.06
0.06
0.08
0.08
0.10
0.12
0.14

-------
          m-Xylene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
94.
110.
150.
160.
220.
260.
320.
150.
170.
240.
260.
350.
420.
520.
210.
240.
340.
370.
500.
600 .
740.
410.
460.
650.
710.
960.
1100.
1400.
1600.
1800.
2500.
2800.
3700.
4500.
5500.
3300.
3600.
5100.
5600.
7500.
9000.
11000.
Support
($K)
150.
160.
190.
200.
250.
280.
320.
230.
250.
300.
320.
380.
440.
510.
320.
340.
420.
440.
540.
610.
710.
570.
610.
750.
800.
990.
1100.
1300.
1800.
2000.
2500.
2700.
3500.
4100.
4900.
3400.
3700.
4800.
5200.
6700.
7900.
9600.
Indirect
($K)
160.
170.
220.
240. :
300.
360.
420.
250.
270.
350. •
380.
480.
560.
670.
350.
380.
490.
530.
680.
800.
950.
640.
700.
920.
990.
1300.
1500.
1800.
2200.
2500.
3300.
3600.
4700.
5600.
6800.
4300.
4800.
6500.
7100.
9300.
11000.
14000.
Total
($K)
410.
440.
570.
610.
770.
900.
1100.
630.
690.
890.
960.
1200.
1400.
1700.
880.
960.
1200.
-1300.
1700.
2000.
2400.
1600.
1800.
2300.
2500.
3200.
3800.
4500.
5700.
6300.
8400.
9100.
12000.
14000.
17000.
11000.
12000.
16000.
18000.
24000.
28000.
34000.
Operating
Cost
($K Year-1)
47.
49.
57.
61.
75.
87.
100.
81.
85.
99.
100,
130.
150.
170.
120.
120.
150.
150.
190.
220.
260.
250.
260.
300.
320.
390,
450.
520.
1200.
1200.
1400.
1500.
1800.
2000.
2400.
2700.
2800.
3200.
3400.
4100.
4600.
5300.
Yearly
Cost
($K Year-1)
95.
100.
120.
130.
170.
190.
230.
150.
170.
200.
220.
270.
320.
370.
220.
240.
290.
310.
390.
450.
540.
430.
460.
570.
610.
770.
890.
1100.
1800.
1900.
2400.
2500.
3200.
3700.
4400.
4000.
4200.
5100. •
5500.
6800.
7900.
9300.
Production
Cost
{$ Kgal-1)
0.05
0.06
0.07
0.07
• 0.09
0.11
0.12:
0.05
0.05
0.06
0.07
0.08
0.10
0.12
0.05
0.05
0.06
0.07
0.08
0.10
0.11
0.04
0.05
0.06
0.06
0.03
0.09
0.11
0.04
0.04
0.05
0.06
0.07
0.08
0.10
0.04
0.04
0.05
0.06
0.07
.0.08
0.09

-------
   Estimated Equipment Size and Cost .for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
             o-Dichlorobenzene
  Henry's Coefficient = 0.031 at 12 Deg. C
    U.S.  Environmental Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati, Ohio 45268

-------
i

-------
                           o-Dichlorobenzene
                                Table 1
                      DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 -
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80.
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow,
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50,
92.9
95.
14.
20.
40.
50.
92.9
95.
Cost Optim
Stripping
Fractor
0.9*
0.9*
0.9*
0.9*
2.0
3.2
0.9* . .
0.9*
0.9*
1.1
2.6
2.7
0.9* '
0.9*
0.9*
1.0*
2.3
2.4
0.9*
0.9*
1.0
1.0
2.1
2.3
1.0
1.0
1.0'
1.0
2.0
2.1
1.0
1.0
1.0
1.0
1.9
1.9
                                                            130.
                                                            130.
                                                            130.
                                                            140.
                                                            130.
                                                            130.

                                                            130.
                                                            130.
                                                            130.
                                                            180.
                                                            150.
                                                            140.

                                                            130.
                                                            130.
                                                            130.
                                                            160.
                                                            140.
                                                            130..

                                                            130.,
                                                            130.,
                                                            160.
                                                            150.
                                                            120.
                                                            120.

                                                            160.
                                                            150.
                                                            140.
                                                            140.
                                                            100.
                                                            100.

                                                            150.
                                                            150.
                                                            140.
                                                            130.
                                                             97.
                                                            100.
*  Design parameter held to limiting value.

-------
       o-Dichlorobenzene
      Table 1  (continued)
  DESIGN CRITERIA -  March  1989.
                                                                 B
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66.
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
•26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430. -
430.
  5.00
  5.00
  5.
  5,
  5,
00
00
00
  5.00

  8.80
  8.80
  8.80
  8.80
  8.80
  8.80

 13 ;0
 I3;o
 13.0
 13.0
 13.0
 13.0

 27.0
 27.0
 27.0
 27.0
 27.0
 27.0

120.
120.
120.
120.
120.
120.

270.
270.
270.
270.
270.
270.
Removal
Efficiency
(X)
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40. -
50.
92.9
95.
14.
20.
40.
50.
92.9
95.
14.
20.
40.
50.
92.9 '
95.
Cost Optimi
Stripping
Fractor
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0- '
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
1.0
1.0
1.0
1.0
1.8
1.9
Air Gradient
(N m-2 m-1)

   150,
   150.
   140.
   140.
   100.
   100.

   150.
   150.
   140.
   130.
    96.
    96.

   150.
   150.
   140.
   130.
    95.
    94.

   150.
   150.
   140..
   130.
    90.
    89.

   150.
   140.
   130.
   130.
    83.
    82.

   140.
   140.
   130.
   120.
    77.
    76.
I

-------
   o-Di chlorobenzene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 .
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
17.
12.
30.
30.
30.
30.
15.
15.
30.
30.
30.
30.
16.
15.
30.
30.
30.
30.
16.
16.
30.
30.
29. '
29.
16.
15.
30.
30.
29.
28.
17.-
17.
Air
(SCFM
ft-2)
130.
130.
130.
130.
170.
190.
130.
130.
130.
150.
190.
190.
130.
130.
130.
140.
: 180.
180.
130.
130.
140.
140.
170.
170.
140.
140.
140.
140.
160.
160.
140.
140.
140.
140.
150.
150.
Air:
Water
Ratio

32.
32.
32.
33.
72.
110.
32.
32.
33.
38.-
91.
96.
32.
32.
32.
36.
82.
86.
32.
32.
35.
35.
76.
81.
35.
35.
35.
.35.
71.
76.
35.
* 35.
35.
35.
67.
69.
Mass
Trans.
Coef.
(sec-1)
0.012
0.012
0.012
0.012'
0.0084
0.0068
-0.012
0.012
0.012
0.012
0.0078
.0.0076
0.012
0.012
0.012
0.012
0.0081
0.0078
0.012
0.012
0.012
0.012
0.0081
0.0078
0.012
0.012
0.012
0.011
0.0079
0.0077
0.012
0.012
0.011
0.011
0.0080
0.0080
Number
. of
Columns

1.0
. 1.0
- 1.0
1.0
.0
.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
no
1.0
1.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
Column
Diameter

(ft)
0.8
0.8
0..8
0.8
1.1
1.3
1.6
1:6
1.6
1.6
.2..12
2.3
2.8
2.8 .
2.8
2.8
3.8
3.9
4.4
4.4
4.4
4.4
5.9
6.1
7.3
7.3
7.4
7.4
9.9
10.1
11.9
12.0
12.1
12.2
16.0
16.0
Packing
Height

(ft)
1.1
1.6
4.4
6.5
20.- •
18.
1.1
1.6
4.3
6.0
17.
19.
• 1.1
1.6
4.4
6.2
18.
21. .
1.1
1.6
4.2
6.2
19.
21.
1.0
1.6
4.1
6.2
20.
22.
1.0
1.6
4.1
6.2
21.
24.
Air
Flow

(SCFM)
72
72
72
74
160
250
260
260
260
310
740
. 780
810
810
810
900
'2000
2200
2000
2000
2100
2100
4600
4900
5900
5900
5900
5900
12000.
13000.
16000.
16000.
16000.
16000.
30000.
31000.
Air
Pressure
(inch
H20)
2.2
2.3
2.7
3.1
5.2
4.7
2.2
2.3
2.7
3.3
5.1
5.4
2.2
2.3
. - 2.7 '
3.2
5.1
5.4
2.2
. . 2.3
2.8
3.2
4.9
5.1
2.2
2.3
2.7
3.1
4.6
4.8
2.2
2.3
2.7
3.0
4.5
5.1

-------
                          o-Dichlorobenzene
                         Table 2 (continued)
                       SYSTEM SIZE - March 1989
Design
Number
Loadi
Liquid
(GPM
ft-2)
ngs
Air
(SCFM
ft-2)
Air:
Water
Ratio
Mass
Trans.
Coef.
(sec-1)
Number
of
Columns
Column
Di ameter
(ft)
Packing
Height
(ft)
Air
Flow
(SCFM)
Air
Pressure
( i nch
H20)
37
38
39
40
4.1
42

43
44
45
46
47
48

49
50
51
52
53
54

55
56
57
58
59
60

61
62
63
64
65
66

67
68
6?
70
71
72
30.
30.
29.
29.
17.
17.

30.
29.
29.
28.
17.
16.

30.
29.
29.
28.
17.
30.
29.
29.
28.
17.
16.

29.
29.
28.
28.
16.
15.

29.
29.
28.
27.
16.
15.
140.
140.
140.
140.
150.
150.
35.
35.
35.
35.
65.
68.
0.012
0.012
0.012
0.011
0.0083
0.0080
140.
140.
140.
140.
150.
150.
140.
140.
130.
130.
140.
'140.

140.
140.
130.
140.
35.
35.
35.
35.
65.
68.
35.
-35.
35.
36.
64.
68.

35.
35.
35.
36.
64.
68.
0.012
0.012
0.011
0.011
0.0081
0.0079
140.
140.
140.
130.
150.
150.
35.
35.
35.
35.
65.
68.
0.012
0.012
0.011
0.011
0.0081
0.0079
140.
140.
140.
130.
140.
140.
35.
35.
35.
35.
64.
68.
0.012
0.012
0.011
0.011
0.0080
0.0077
0.012
0.012
0.011
0.011
0.0078
0.0076

0.012
0.012
0.011
0.011
0.0076
0.0074
                       1.3
                       1.3
                       1.3
                       1.3
                       2.2
                       2.3

                       2.1
                       2.1
                       2.2
                       2.2
                       3.7
                       3.8

                       3.0
                       3.0
                      .3.1
                       3.2
                       5.3
                       5.6

                       6.0
                       6.0
                       6.2
                       6.3
                      10.6
                      11.1
                      24.
                      24.
                      25,
                      26,
                      45,
                      47.2

                      50.8
                      51,
                      52,
                      54,
                      95,
                             16.0
                             16.0
                             16.0
                             16.0
                             16:0
                             16.0

                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16:0
                             16.0
                             16
                             16
                             16
                      16.0

                      16.0
                      16.0
                      16.0
                      16.0
                      16.0
                      16.0

                      16.0
                      16.0
                      16.0
                      16.0
                      16.0
                      16.0

                      16.0
                      16.0
                      16.0
                      16.0
                      16.0
                                       1.0
                                       1.6
                                       4.1
                                       6.2
                                      22.
                                      24.
                                1.0
                                1.6
                                4.1
                                6.2
                               22.
                               24.
                           1.0
                           1.6
                           4.1
                           6.1
                          22.
                          24.
                                 36000.
                                 36000.
                                 36000.
                                 36000.
                                •66000.
                                 70000.

                                 59000.
                                 59000.
                                • 59000.
                                .59000.
                                110000.
                                110000.
1.0
1.6
4.1
6.2
22.
24.
86000,
86000.
86000.
86000.
160000.
160000.
;1.0
1.6
4.1
6.2
22.
24.
170000.
170000.
170000.
170000.
310000.
320000.
                                            690000.
                                            690000.
                                            690000.
                                            690000.
                                           1300000.
                                           1300000.
                      99.3   16.0
                          .1.0 1400000.
                           1.5 1400000.
                           4.1 1400000.
                          ,6.1 1400000.
                          22.  2600000.
                          24.  2700000.
2.2
2.3
2.7
3.0
4.8
5.0

2.2
2.3
2.7
3.0
4.6
4.9

2.2
2.3
2.7
3.0
4.6
4.8

2.2
2.3
2.7
3.0
4.4
4.7

2.2
2.3
2.7
2.9
4.2
4.4

2.2
2.3
2.7
2.9
4.1
4.3
                                                               1

-------
                                      o-Dichlorobenzene <

                                           Table 3   .   .
                                 ESTIMATED COST =- March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.1
2.2
2.6
3.0
7.3
8.0
5.0
5.2
6.2
6.8
14.
15.
7.3
7.7
9.5
11.
26.
28.
11.
12.
15.
17.
45.
49.
22.
23.
29.
34.
92.
100.
48.
51.
62.
71.
200.
220.
Support
($K)
6.8
6.8
7.1-
7.3
9.8
10.
11.
11.
12.
12.
17.
17.
16.
17.
18.
18.
28.
29.
24.
24.
26.
28.
46.
49.
42.
43.
47.
50.
91.
98.
83.
84.
93.
99.
190. .
210.
Indirect
($K)
5.8
5.9
6.4
6.8
11.
12.
10.
11.
12.
12.
20..
21.
15.
16.
18.
19.
35.
38.
23.
24.
27.
30.
59.
65.
42.
' 44.
50.
55.
120.
130.
86.
88.
100.
110.
260.
280.
Total
($*)
15.
15.
16.
17.
28.
30.
27.
27.
29.
31.
51.
54.
39.
40.
45.
48.
88.
96.
'59.
60.
69.
75.
150.
'160.
110.
110.
130.
140.
300.
330.
220.
220.
260.
280.
650.
710.
Operating
Cost
($K',Year-l)
0.22
• 0.23
0.26
. 0.29
• 0.62
0.71
0.69
0.70
0.78
0.86
• '1.6 •
1.7
'1.4
1.4
1.6
1.8
3.6
3.9
3.0
3.1
3.5
3.8
7.7
8.4
8.2
8.4
9.4
10.
20.
21.
23.
23.
26.
28.
54.
59.
Yearly
Cost.
($K Year-1)
1.9
2.0
2.1
2.3
3.9 -
4.3
3.8
3.9
4.2
4.5
7.5
8.1
6.0
6.1
6.9
7.5
14. ,
15.
9.9
10.
12.
13.
. 25. -
28.
• 21.
21.
24.
26.
"55.
60.
48.
50.
56.
61.
130.
140.
Production
Cost
($ Kgal-1)
0.95
0.97
1.05
1.12
1.93
2.09
0.43
0.44
0.48
0.52
0.86
0.92
0.19
0.20
0.22
0.24
0.45
0.48
0.12
0.12
0.14
1 0.15
0.30 ,
0.33 ''
0.08
0.08
0.09
0.10
0.22
0.24
0.06
0.06
0.07
0.08
0.17
0.19
:J

-------
     o-Dichlorobenzene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
100.
110.
130.
150.
430.
490.
160.
170.
210.
240.
700.
790.
230.
240.
300.
340.
1000.
1100.
450.
470.
570.
650.
1900.
2200.
1800.
1900.
2300.
2600.
7600.
8500.
3600.
3800.
4500.
5200.
15000.
17000.
Support
($K)
160.
160.
180.
190.
400.
440.
240.
250.
280.
300.
640.
710.
340.
340.
380.
410.
910.
1000.
600.
610.
690.
750.
1700,
1900. •
1900.
2000.
2300.
2500.
6500.
7200.
3600.
3800.
4400.
4900.
13000.
14000.
Indirect
($K)
170.
180.
200.
220.
550.
610.
270.
270.
320. .
350.
880.
980.
370.
380.
440.
490.
1300.
1400.
690.
710.
820.
920.
2400.
2700.
2400.
2500.
3000.
3400.
9200.
10000.
4800.
4900.
5800.
6600.
19000.
21000.
Total
($K) :
430.
440.
510.
560.
1400.
1500.
670.
690.
800.
880.
. 2200.
2500.
940.
970.
1100.
1200.
3200.
"3500.
1700.
1800.
2100.
2300.
6000.
6700.
6200.
6400.
7500.
8500.
23000.
26000.
12000.
12000.
15000.
17000.
47000.
52000.
Operating
Cost
($K Year-1)
53.
55.
61.
65.
130.
140.
92.
94.
100.
110.
210.
230.
140.
140.
150.
'160.
310.
340.
280.
290.
320.
340.
640.
. 690.
1300.
1300.
1500.
1600.
2800.
3000.
3000.
3100.
3400.
3600.
6200.
6700.
Yearly
Cost
($K Year-1)
100.
110.
120.
130.
290.
320.
170.
180.
200.
220.
480.
520.
250.
250.
280.
310. .
. 680.
750.
480.
500.
560.
610.
1300.
1500.
2000.
2100.
2300.
2600.
5500.
6100.
4400.
4600.
5100.
5500.
12000.
13000.
Production
Cost.
($ Kgal-1)
0.06
0.06
0.07
0.07
0.16
0.17
0.05
0.05
0.06
0.07
0.15
0.16
0.05
0.05
0.06
0.07
0.14
.0.16
0.05
0.05
0.06
0.06
0.14
0.15
0.05
0.05
0.05
0.06
0.13
0.14
0.05
0.05
0.05
0.06
0.12
0.13
                                                               I

-------
   j
I
                              Estimated Equipment Size and Cost .for

                           Removal of Phase II SOCs from Drinking Water

                                               Via

                                   Packed Column Air Stripping

                                            March 1989
                                            Compound:

                                             o-Xylene

                             'Henry's Coefficient = 0.1 at 12 Deg. C
                               U.S. Environmental Protection Agency
                                     Office of Drinking Water
                                    Technical Support Division
                                      Cincinnati, Ohio 45268

-------
I

-------
                                 o-Xylene

                                 Table  1
                       DESIGN  CRITERIA  - March  1989 .
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
• 19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087-
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80 -
4.80
4.80
4.80
Average
flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
- 0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
2;iO
Removal
Efficiency
(%)
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinr
Stripping
Fractor
1.7*
1.7*
2.1*
2.3*
- 2.8*
3.0*
3.2*
1.7*
1.7*
1.7*
1.8*
3.0
3.4
3.8
1.7*
1.7*
2.3*
2.4*
2.8*
3.0
3.4
1.7* '
1.7*
2.1*
2.3*
2.7*
2.9*
3.1
1.7*
1.7*
1.9*
2.1*
2.5*
2.7*
2.9
1.7*
1.7* '
1.8*
2.0*
2.3*
2.5*
2.8
                                                              50.'
                                                              50.'
                                                              72.
                                                              83.
                                                             120.
                                                             140.
                                                             150.

                                                              50.i
                                                              50. '•
                                                              so.-
                                                              57.
                                                             130.
                                                             130.
                                                             130.

                                                              50.'
                                                              50.1
                                                              83.
                                                              94.
                                                             120.
                                                             140.
                                                             130.
                                                              50.*
                                                              50.*
                                                              73.
                                                              83.
                                                             110.
                                                             130.
                                                             120,-

                                                              50.*
                                                              50.*
                                                              64.
                                                              73.
                                                              99.
                                                             110.
                                                             110.

                                                              50.*
                                                              50.*
                                                              57.
                                                              65.
                                                              88.
                                                             100.
                                                              98.
*  Design parameter held to limiting value.

-------
                            o-Xylene

                      Table  1  (continued)
                  DESIGN  CRITERIA - March  1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
* no
• Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210. '
210.
210.
210.
210.
210.
210.
430. •
430.
430.
430.
430.
430.
430.
<
                                     50.'
                                     57.
                                     78.
                                     88.
                                     87.

                                     50.'
                                     50.'
                                     50.'
                                     56.
                                     76.
                                     83.
                                     81.
I

-------
        o-Xylene

        Table 2
SYSTEM-SIZE - March 1989
Design
Number


1
2
3 -
4
5
6
7
8
9
10
11
12
13
'14 '
15
16
17-
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
' 30.
30.
30.
30.
30.
27.
25.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
30.
28.
Air
(SCFM
'ft-2)
' 73.
73.
92.
100.
120.
130.
•140.
73.
73.
73.
80.
130.
140.
140.
73.
73.
100.
110.
•130.
130.
140.
73.
73.
93.
100.
120.
130.
130.
"'" 73.
73.
85.
'93.
1*10.
120.
120.
73.
' 73.
80.
87-.
100.
110.
110.
Air:
Water
Ratio

18.
18.
23.
25.
30.
33.
35.
18.
18.
18.
20.
33.
38.
42.
-18.
18.
25.
27.
•31.
.33.
37.
18.
' 18.
23.
25.
29.
32.
34.
18.
18.
21.
23.
28.
29.
32.
1-8.
18.
20.
22.
26.
28.
31.
-Mass ,
Trans.
Coef.
(sec-1)
0.013
o.'ois
0.014
0.014
0.014
0.014
0.014
0.013
0.013
0.013'
0.014
0.014
0.013
0.012
0.013
0.013
0.014
0.014
0.014'
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013 •
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
'0.014 '
0.014-
0.014-
0.014
0.013 '
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
. 1.0
1.0
1.0
1.0
1.0
1.0
1.0
r.o
1.0
1.0
1.0
1.0
• i.o
1.0
1.0
1.0
1.0
.1.0
1.0
1.0
1.0
1.0
•1.0
1.0
. 1.0
1.0
• i.o
1.0
M.O
1.0
Column
Diameter

(ft)
0.8
0.8
0.8
0.8 "
0.8
0.8
0.8
1.6
1.6
1.6
1.6 -
1.6
1V7
1.7-
2.8
2.8
2.8
2.8
2.8
2.8
2.9'
4.4
4.4
4.4
4.4
4,4
4.4
4.5
7.3
7.3
7.3
7.3
7.3
7.3
7.5
11.9
11.9
11.9
11.9.
11.9
11.9
12.3. '
Packing
Height

(ft) ;
1.7
' 3.3
8.3
9.8
16.
21.
27.
1.7
3.3
9.1 •
11.
15.
19.
24.
1.7
3.3
8.0
9.5
• 16.
21.
26.
. 1.7
3.3
8.2
9.8
16.
21*.
27.
1.7
3.3
8.5
10.
16.
22.
28.
1,7
3.3
8.7
10.
17.
22.
28.
Air
Flow

(SCFM)
41
41
51.
56
68.
74
v 78
150
150.
150.
' 160.
270.
300.
340
460
460
- 630
670.
790.
840.
930.
1100.
Air
Pressure
(inch
H20)
2.1
2.2
2.7
3.0
4.3
5.5
7.1
2.1
2.2
2.6
2.8
4.5
5.1
5.8
2.1
2.2
2.8
3.1
4.4
5.5
6.3
2.1
1100. 2.2
1400.
1500.
1800.
1900.
2100.
3100.
3100.
" 3600.
3900.
4600.
4900.
5400.
8200.
8200.
8800.
9600.
12000.
12000.
14000.
2.7
3.0
4.2
5.2
5.9
2.1
2.2
' 2.7
2.9
4.0
5.0
5.8
2.1
2.2
2.6
2.8
3.8
4.7
5.4

-------
        o-Xylene
  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Loadings
Liquid
(6PH
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
•30.
30. .
30.
30.
30.
30.
30.
30. -
30.
30.
30.
30.
30.
30.
29.
30. ,
30.
30.
30.
30.
30.
28.
30.
30.
30.
30.
30.
29.
27.
Air
(SCFM
ft-2)
73.
73.
77.
84.
100.
110.
110.
73.
73.
- 76..
83.
100.
110.
110.
73.
73.
76.
83.
99.
110.
110.
73.
73.
75.
81.
98.
110.
110.
•73.
73.
73.
-' 80.
97.
100.
110.
73.
73.
73.
79.
. 95.
100.
•100.
Air:
Water
Ratio

18.
, 18.
19.
21.
25.
27.
28.
18.
18.
19.
21.
25.
27.
28.
18.
18.
19.
21.
25.
27.
28.
18.
18.
19.
20.
24.
26.
28.
18.
18.
18.
20.
24.
26.
28.
18.
18.
18.
20.
24.
26.
28.
Mass
Trans.
Coef.
(sec-1)
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.014
0.014
0.014
0.013
0.013
0.013
0.013
0.014'
0.014
0.014 "
0.013
Number
of
Col umns

1.3
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
6.0
24.2
24.2
24.2
24.2
24.2
24.2
25.6
49.5
49.5
49.5
49.5
49.5
50.4
54.1
Column
Diameter

(ft)
16.0 -
16.0'
16.0
16.0
16.0 .
16.0
16.0 .
16.0
16.0
16.0 .
16.0 .
16.0 .
. 16.0
16.0,
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0 •<
16.0
16.0 '
16.0
16.0
16.0" .
16.0
16.0 -
16.0
16.0
Packing
Height

(ft)
.1.7
3.3
8.9
10.
17.
23.
30.
1.7
3.3
8.9
11.
17.
23.
30.
1.7
3.3
9.0
11.
17.
23.
30.
1.7
3.3
9.0
11.
17.
23.
30.
1.7
3,3
9.1
11.
18.
23.
29.
1.7
3.3
9.1
11.
18.
Air
Flow

(SCFM)
19000.
19000.
19000.
21000.
26000.
28000.
29000.
31000.
31000.
32000.
35000.
42000.
45000.
47000.
44000.
44000.
45000.
50000.
Air
Pressure
(inch
H20)
2.1
2.2
2.6
2.8
3.8
. 4.6
5.8
2.1
2.2
2.6
2.8
3.8
4.6
5.8
2.1
2.2
2,6.
2.8
60000. 3.7
64000.
68000.
87000.
87000.
88000.
96000.
120000.
120000.
130000.
360000.
4.6
5.7
2.1
2.2
2.6
2.8
3.7
4.6
5.5
2.1
360000. 2.2
360000.
390000.
470000.
500000.
550000.
730000.
730000.
730000.
790000.
950000.
23. 1000000.
29. 1100000.
2.6
2.8
3.7
4.5
5.2
2.1
2.2
2.6
2.8
3.7
4.4
4.9
                                                              I

-------
                                 o-Xylene
                                 Table 3
                       ESTIMATED COST - March 1989
Design
Number
Process
 ($K)
     Estimated Capital Costs
Support
 (SK)
Indirect
  ($K)
jsts
Total
($K)
Operating
Cost
{$K Year-1)
Yearly
Cost
($K Year-1)
Production
• Cost
{$ Kgal-1)
1
2
3
4
5
6 :
7
8
9
10
11
12
13
14
15"
16-
17
18
19
20
21
t
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
2.0
2.2
3.1
3.4
4.5
5.4
6.5
4.7
5.2
7.1
7.8
9.9
12.
14.
7.4
8.4
12.
. 13.
17.
20.
24.

11.
13.
18.
20.
27.
33.
41.
21.
24.
36.
39.
53.
64.
. 80.
45.
52.
74.
82.
110.
130.
170.
6.7
6.9
7.3
7.5
8.1
8.6
9.3
11.
11.
12.
13.
14.
15.
16.
16.
17.
19.
20.
22.
24.
27.

24.
25.
29.
30.
34.
38. .
43.
42.
44.
51.
54.
63.
71.
81..
80.
85.
100.
110.
130...
140. ,
170.
5.7
6.0
6.8
7.1
8.3
9.2
10.
10.
11.
13.
13.
16.
17.
20.
15.
17.
20.
21.
25.
29.
33.

23.
25.
31.
33.
40.
46.
55.
41.
45.
57.
61.
.76.
88.
110.
82.
.89.
120.
120.
160.
180.
220.
14.
15.
17.
. 18.
21.
23.
26.
26.
27.
32.
34.
40.
44.
. 50.
39.
42.
50.
, 53.
64.
. 72.
84.

58.
63.
78.
83.
.100.
120.
140.'
100..
110.
140.
150.
190.
220.
270.
210.
230.
290.
310.
390.
--460.
550.
0.20
0.22
0.27
0.30
0.38
0.44
0.52
0.62
0.65
0.78
0.83
1.1
1.2
' 1.4
1.3
1.4
1.7
1.8
2.3
. .2.7
• 3.1

2.7
2.9
3.6
• 3.8
4.8
5.6
6.6
7.2
7.6
9.3
9.9
12.
14.
17.
20.
. 21.
25.
27.
34.
39.
45.
1.9
2.0
2.3
2.4
2.8
3.2
3.6
3.6
3.8
4.5
4.8
5.7
6.4
7.3
5.9
6.3 ,
7.6
8.1
9.8
11.
13.
9.6
10. -, .
13.
14.
17.
19.
23.
20. ••
21.
26.
28.
35. .
41.
48. •
45.
48.
60.
64.
80.
93.
110.
0.93
0.97
1.13
1.18
1.38
1.55
1.76
0.41
0.44
0.52
0.54
0.65
0.73
0.83
0.19
0.20
0.24
0.26
0.31
0.36
0.42
0.11
0.12
0.15
0.16
0.20
0.23
0.27
0.08
0.08
0.10
0.11
0.14
0.16
0.19
0.06
0.06
0.08
0.08
0.10
0.12
0.14

-------
         o-Xylene
    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70 '
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
94.
no.
150.
170.
220.
270.
330.
150.
170.
240.
270.
360.
430.
530.
210.
240.
350.
380.
510.
620.
760.
410.
460.
660.
730.
980.
1200.
1500.
1600.
1800.
2600.
2800.
3800.
4600.
5700.
3300.
3700.
5200.
5700'.
7700.
9300.
12000.
Support
($K)
150.
160.
200.
210.
250.
280.
330.
230.
250.
300.
320.
390.
440.
520.
320.
340.
420.
450.
550.
630.
730.
570.
610.
760.
810.
1000.
1200.
1400.
1800.
2000.
2600.
2800.
3500.
4200.
5000.
3400.
3700.
4900.
5300.
6900.
8200.
10000.
Indirect
($K)
160.
180.
230.
240. '
310.
360.
430.
250.
270.
360.
380.
490.
580.
690.
350.
380.
500.
540.
690.
810.
970.
640.
700.
930.
1000.
1300.
1500.
1800.
2300.
2500.
3400.
3700.
4800.
5700.
7100.
4400.
4800.
6600.
7200.
9500.
11000.
14000.
Total
($K)
410.
'. 440.
570.
620.
780.
• 920.
1100.
630.
690.
900.
970.
. 1200.
1500.
1700.
890.
970.
1300.
1400.
1800.
2100.
2500.
1600.
1800.
2400.
2500.
3300.
3900.
4700.
5700.
6300.
8600.
9300.
12000.
15000.
18000.
11000.
12000.
17000.
18000.
24000.
29000.
36000.
Operating
Cost
($K Year-1)
47.
49.
58.
62.
77. .
89.
110.
81.
85.
100.
110.
130.
150.
180.
120.
120.
150.
160.
190.
220.
270.
250.
- 260.
300.
320.
400.
460.
540.
1200.
1200.
1400.
1500.
1800.
2100.
2400.
2700.
2800.
3300.
3400.
4200.
4700.
5400.
Yearly
Cost
($K Year-1)
95.
100.
130.
130.
170.
200.
230.
160.
170.
210.
220.
280.
320.
: 390.
220.
240.
- 300.
320.
400.
. 470. -
550.
440.
470.
580.
620.
780.
920.
1100.
1800.
1900.
2400.
2600.
3300.
3800.
. 4500.
4000.
- 4300.
5200.
5600.
7000.
8100.
9600.
Production
Cost
($ Kgalrl)
0.05
0.06
0.07
0.07
0.09
0.11
0.13
0.05
0.05
0.06
0.07
0.09
0.10
0.12.
0.05
0.05
0.06
0.07
0.08
0.10
0.12,
0.04
0.05
0.06
0.06
0.08
0.09
0.11
0.04
0.04
0.06
0.06
0.07
0.09
0.10
0.04
0'.04
0.05
0.06
0.07
0.08
0.10
                                                               I
                                                                i

-------
  ,                          Estimated Equipment Size and Cost for
                         Removal  of Phase II SOCs from Drinking Water;
                                             Via
                                 Packed Column Air Stripping
                                          March 1989
                                          Compound:
                                           p-Xylene
                           Henry's Coefficient = 0.12.at 12 Deg.  C
                             U.S.  Environmental  Protection Agency
                                   Office of Drinking Water
                                  Technical  Support  Division
                                    Cincinnati,  Ohio 45268
:i

-------
1
c

-------
                                 p-Xylene

                                 Table 1
                       DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
.0.024
0.024
0.024
0.024
0.024
0.024'
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270 -
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
• 4.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
• 0.086
'0.230
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10 •
2.10
2.10
2.10
2.10
2.10 *•
Removal
Efficiency
(%).
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90;
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optimi
Stripping
Fractor
2.0*
2.0*
2.3*
2.5* -
3.1*
3.3*
3.5*
2.0*
2.0*
2.0*
2.0*
2.5*
3.6
4.0
2.0*
2.0*
2.5*
2.7*
3.2*
3.4*
• 3.5*
2.0*
2.0*
2.3*
2.5*
3.0*
3.2*
3.4*
2.0*
.. 2.0*
2.1*
2.3*
2.8*
3.0*
3.1*
2.0*
2:0*
2.0*
2.1*
2.6*
2.8*
3.0*
                                                              50.'
                                                              50.'
                                                              61.
                                                              71.
                                                             100.
                                                             120.
                                                             130.

                                                              50.'
                                                              50.1
                                                              50.'
                                                              50.'
                                                              70.
                                                             130.
                                                             130.

                                                              50.'
                                                              50.'
                                                              71.
                                                              81.
                                                             110.
                                                             120.
                                                             130.

                                                              50.'
                                                              50.'
                                                              62.
                                                              71.
                                                              97.
                                                             110.
                                                             120.

                                                              50.'
                                                              50.'
                                                              54.
                                                              62.
                                                              85.
                                                              97.
                                                             110.

                                                              50."
                                                              50."
                                                              50."
                                                              55.
                                                              76.
                                                              86.
                                                              96.
*  Design parameter held to limiting  value.

-------
                             p-Xylene
                       Table  1  (continued)
                   DESIGN CRITERIA  - March  1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Plant
Capacity
(MGD) •
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0 .
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430. .
                     00
                     00
                     00
                     00
                     00
                     00
                   5.00

                   8.80
                   8.80
                   8.80
                   8.80
                   8.80
                   8.80
                   8.80

                  13.0
                  13.0
                  13.0
                  13.0
                  13.0
                  13.0
                  13.0

                  27.0
                  27.0
                  27.0
                  27.0
                  27.0
                  27.0
                  27.0

                 120.
                 120.
                 120.
                 120.
                 120.
                 120.
                 120.

                 270.
                 270.
                 270.
                 270.
                 270.
                 270.
                 270.
     tow.   ,     c.iv.           jo.
Design parameter held to limiting value
Removal
Efficiency
W
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
25.
40. -
70.
76.
90.
95.
98.
25.
40.
70.
76.
90.
95.
98.
Cost Optinr
Stripping
Fractor
2.0*
2.0*
2.0*
2.1*
2.5*
2.7*
2.9*
2.0*
2.0*
2.0*
2.0*
2.5*
2.7* .
2.8*
2.0*
2.0*
2.0*
2.0*
2.5*
2.7*
2.8*
2.0*
2.0*
2.0*
2.0*
2.4*
2.6*
2.8* .
2.0*
2.0*
2.0*
2.0*
2.4*'
2.6*
2.7*
2.0*
2.0*
2.0*
2.0*
2.4*
2.5*
2.7*
50.'
50.'
50.'
53.
72.
82.
91.

50.
50.'
50.'
51.
71.
81.
89.

50.'
50.'
50.'
51.
70.
80.
88.

50.'
50.'
50.'
50.
69.
78.
87.

50.'
50.'
50.'
50.'•
67.
76.
83.

50.
50.
50.
50.
65.
74.
82.
1

-------
       p-Xylene  .

        Table 2 '
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10 .
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 "
39
40
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30. .
30.
30.
30.
30.
29.
27.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
.30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
83.
91.
110.
120.
130.
73.
73.
73.
73.
90.
130.
130.
73.
73.
91.
99.
120.
120.
130.
73.
73.
84.
91.
110.
120.
120.
73.
, 73.
78.
84.
100.
110.
120.
73.
73.
73.
78.
95.
100.
110.
Air:
Water
Ratio

18.
18.
21.
23.
28.
30.
32.
18.
18.
18.
18.
23.
33.
36.
18.
18.
23.
25.
29.
31.
32.
18.
18.
21.
23.
27.
29.
31.
18.
18.
19.
21.
25.
27.
29.'
18.
18.
18.
20.
24.
26.
27.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014 .
0.014
0.014
0.013
0.014
0.014
0.014
0.014
0.014^
0.014
0.014
0.014
0.014,
0.014 .
0.014
0.014
0.014
0.014
0.014 .
0.014
0.014 .
0.014
0.014
0.014
0.014
0.014
0.014.
0.014
0.014
0.014
0.014
0.014
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
-1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
. 1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6'
1.7
2.8
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4,4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
7.3.
11.9
11.9
11.9
11.9
11.9
11.9
11.9.
Packing
Height

(ft)
1.7
3.1
8.0
9.4
15.
20.
26.
l.*7
3.1
8.3
10.
17.
19.
24.
. 1.7
3.1
.7.8
9.2
15.
20.
26.
1.7
3.1
7.9
9.4
15.
20.
26.
1.7
3.1
8.2
9.7
16.
21.
27.
1.7
3.1
8:3
10.
16. .
21.
28.
Air
Flow

(SCFM)
41
41
46
Air
Pressure
(inch
H20)
2.1
2.2
2.6
51. 2.8
63
68
72
150
150
150
150.
3.9
- 4.9
. '6.2
2.1
2.2
2.5
2.6.
180. 3.4
260.
290.
460.
460.
570.
620.
730.
770.
810.
1100.
1100.
1300.
1400.
1700.
1800.
1900.
3100.
3100.
3200.
3500.
4200.
4600.
4800.
8200.
8200.
8200.
8700.
11000.
11000.
12000.
5.0
5.7
2.1
2.2
2.7
2.9
4.0
4.9
6.2
2.1
2.2
' 2.6
2.8
3.8
4.7
. .5.9
.2.1
2.2
2.6
2.7
3.7
4.5
5.6
2.1
2.2
2.5
2.7
3.5
4.2
5.3

-------
         p-Xylene
  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30. ,
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
76.
92.
100.
110.
73.
73.
73.
75.
91.
99.
100.
73.
73.
73.
75.
91.
98.
100.
73.
73.
73.
74.
90.
97.
100.
73.
73.
73.
73.
88.
95.
100.
73.
73.
73.
73.
87.
94.
99.
Air:
Water
Ratio

18.
18.
18.
19.
23.
25.
26.
18.
18.
18.
19.
23.
25.
26.
18.
18.
18.
19.
23.
24.
26.
'18.
18.
18.
18.
22.
24.
26.
18.
18.
18.
18.
22.
24.
25.
18.
18.
18.
18.
22.
23.
25.
Mass
Trans.
Coef.
(sec-1)
0.014
0.014
0.014'
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.01.4
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
Number
of
Columns

1.3
1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
3.0
.5.9
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
49.5
49.5
Col umn
Diameter

.(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16:0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0<
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
1.7
3.1
8.3
10.
16.
21.
28.
1.7
3.1
8.3
10.
17.
21.
28.
1.7
3.1
8.3
10.
17.
22.
28.
1.7
3.1
8.3
10.
17.
22.
29.
1.7
3.1
8.3
10.
17.
22.
29.
1.7
3.1
Air
Flow

(SCFM)
19000.
19000.
19000.
19000.
23000.
25000.
27000.
31000.
31000.
31000.
31000.
38000.
41000.
43000.
44000.
44000.
44000.
45000.
54000.
59000.
62000.
87000.
87000.
87000.
87000.
110000.
110000.
120000.
360000.
360000.
360000.
360000.
430000.
460000.
490000.
730000.
730000.
8.3 730000.
10. 730000.
17. 860000.
22. 930000.
29. 990000.
Air
Pressure
(inch
H20)
2.1
2.2
2.5
2.7
3.5
4.2
5.1
2.1
2.2
2.5
2.7
3.4
4.1
5.1
2.1
2.2
2.5
2.6
3.4
4.1
5.1
2.1
2.2
2.5
2.6
3.4
4.1
5.0
2.1
2.2
2.5
2.6
3.4
4.0
5.0
2.1
2.2
2.5
2.6
'3.4
4.0
4.9
                                                             I
                                                             D

-------
           p-Xylene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
, 16
1 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Estimated Capital Cc
Process
($K)
2.0
2.2
3.0
3.3
4.3
5.2
6.2
4.7
5.2
6.9
7.5
9.8
11.
14.
7.4
8.3
11.
12.
16.
19.
23.
11..
13.
18.
20.
26.
32.
39.
21.
24.
35.
38.
51.
62.
75.
45.
51.
'72.
79.
110.
130.
160,
Support
($K)
6.7
6.8
7.3
. 7.5
8.0
8.5
9.1.
11.
11.
12.
12.
14.
15.
16.
16.
17.
19.'
19..
22..
24.
26. .
24.
25.
28.
29.
34.
37.
41.
42.
44.
51.
53.
62.
69.
78.
80.
84.
100.
100.
120.
140.
160.
Indirect
<$K)
5.7
5.9
6.8
7.0
8.1
9.0
10.
10.
11.
12.
. 13.
15.
17.
19.
15.
16.
20.
•- 21.
25.
28.
32.
23.
25.
30.
32.
39. •
45.
52.
41.
45.
56.
60.
74.
85.
100.
82.
89.
110.
120.
150.
170.
210.
;s
fotal
$k)
14.
15.
17.
18.
21.
23.
25.
26.
27.
31.
33.
39.
43.
49.
39.
42.
50. ,
52.
62.
71.
82. ,
58.
63.
77.
81.
99.
110.
130.
100.
no.
140.
150.
190.
220.
250.
210.
220.
280.
300.
380.
440.
520.
Operating
Cost
($K Year-1)
0.20
0.21
0.27
0.29
0.36
0.42
0.49
0.62
0.65
. 0.76
0.81
1.00
* 1.2
1.4
1.3
1.4
1.7
1.8 .
2.2
2.5
3.0
2.7
. 2.9
3.5
3.7
4.6
5.3
. 6.3
7.2
7.6
9.0
9.6
12.
14.
16.
20.
21.
25.
26.
32.
37.
43.
Yearly
Cost
($K Year-1)
1.9
2.0
2.3
2.4
2.8
3.1
3.5
3.6
3.8
4.4
4.7
5.6
6.2
7.1
5.9
6.3
7.5
7.9
9.5
11.
13.
9.6
10.
13.
13.
16.
19.
22.
19.
21.
26.
27.
34.
39.
46.
44.
47.
58.
62.
77.
89.
100.
Production
Cost
($ Kgal-1)
0.92
0.96
1:11
1.16
1.35
1.50
1.70'
0.41
0.43
0.51
0.53
0.64
0.71
0.81
0.19
0.20
0.24
0.25
0.30
0.34
0.40
0.11
0.12
0.15
0.16
0.19
0.22
0.26
0.08
0.08
0.10
0.11
0.13
0.15
0.18
0.06
' 0.06
0.08
0.08
0.10
0.12
0.14

-------
          p-Xylene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
93.
100.
150.
160.
220.
260.
320.
150.
170.
230.
260.
350.
410.
510.
210.
240.
330.
370.
490.
590.
720.
410.
460.
640.
700.
940.
1100.
1400.
1600.
1800.
2500.
2700.
3700;
4400.
5400.
3200.
3600.
5000.
5500.
7400.
8800.
11000.
Support
($K)
150.
160.
190.
200.
240.
270.
320.
230.
250.
300.
310.
380.
430.
500.
320.
340.
410.
440.
530 :
600.
700.
570.
600.
740.
790.
970.
1100.
1300.
1800.
2000.
2500.
2700.
3400.
4000.
4700.
3400.
3700.
4800.
5200.
6600.
7800.
9300.
Indirect
($K)
160.
170.
220.
240.
300.
350.
410.
250.
270.
350.
370.
470.
550.
660.
350.
380.
490.
530.
670.
780.
930.
640.
690.
900.
980.
1300.
1500.
1800.
2200.
2500.
3300.
3600.
4600.
5500.
6600.
4300.
4800.
6400.
7000.
9200.
11000.
13000.
Total
($K)
410.
440.
560.
600.
760.
880.
1000.
630.
680.
B80.
950.
1200.
1400.
1700.
880.
960.
1200.
1300.
1700.
2000.
2400.
1600.
1800.
2300.
2500.
3200.
3700.
4400.
5700.
6200.
8300.
9000.
12000.
14000.
17000.
11000.
12000.
16000.
18000.
23000.
27000.
33000.
Operating
. Cost
($K Year-1)
47.
49.
57.
60.
73.
84.
98.
81.
84.
98.
100.
130.
140.
170.
120.
120.
140.
150.
180.
210.
250.
240.
260.
300.
310.
380.
440.
• 510.
1200.
1200.
1400.
1400.
1700.
2000.
2300.
2700.
2800.
3200.
3300.
4000.
4500.
5200.
Yearly
Cost
($K Year-1)
94.
100.
120.
130..
160:
190.
220.
150.
160.
200.
210.
270.
310.
360.
220.
240.
290."
310,
380.
440.
520.
430.
460.
570.
600.
750.
870.
1000.
1800.
1900.
2400.
2500.
3100. .
3600.
4300.
4000.
4200.
5100.
5400.
6700. <
7700.
9100.
Production
Cost
($ Kgal-1)
0.05
0.06
0.07
0.07
0.09
0.10
0.12
0.05
0.05
0.06
0.07
0.08
O.lCi
0.11
0.05
0.05
0.06
0.06
0.08
0.09
0.11
0.04
0.05
0.06
0.06
0.08
0.09
0.10
0.04
0.04
0.05
0.06
0.07
0.08
0.10
0.04
0.04
0.05
0.05
0.07
0.08
0.09

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                  Styrene
  Henry's Coefficient • 0.05 at 12 Deg.  C
    U.S.  Environmental  Protection  Agency
          Office of Drinking  Water
         Technical  Support  Division
           Cincinnati,  Ohio 45268

-------
I
fi
 I

-------
                              Styrene

                              Table 1
                    DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6 •
7
8
9
10
11
12
13'
14
15
16
17
18
19
20
21
22
23
24
25 .
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
2.10
Design parameter held to limiting value.
Removal
Efficiency
(*)
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99. *
Cost Optim-
Stripping
Fractor
1.1*
1.3* •••
1.7*
2.1
2.5
2.6
2.8
0.9*
1.5*
2.1
2.6
3.0
3.2
3.5
1.2*
1.4*
1.9
2.3
2.7
2.9
3.1
1.1*
1.3*
1.8
2.2
2.5
2.7
2.9
1.1*
1.2*
1.7
2.0
2.4
2.5
2.7
1.0*
.1.2*
1.6
1.9
2.3
2.4
2.6
                                                           80.
                                                          no.
                                                          180.
                                                          160.
                                                          140.
                                                          140.
                                                          130.

                                                           58.
                                                          140.
                                                          150.
                                                          140.
                                                          140.
                                                          140.
                                                          140.

                                                           96.
                                                          120.
                                                          150.
                                                          140.
                                                          140.
                                                          130.
                                                          120.

                                                           85.
                                                          110.
                                                          150.
                                                          130.
                                                          120.
                                                          120.
                                                          120.

                                                          74.
                                                          97.
                                                         120.
                                                         110.
                                                         110.
                                                         100.
                                                         100.

                                                          66.
                                                          87.
                                                         100.
                                                          98.
                                                          94.
                                                          92.
                                                          90.

-------
                                 Styrene
                           Table 1 (continued)
                       DESIGN CRITERIA - March 1989
Design
Number

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0 ,
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
430.
                       5,
                       5,
                       5,
                       5,
                       5.
                       5.
00
00
00
00
00
00
                       5.00

                       8.80
                       8.80
                       8.80
                       8.80
                       8.80
                       8.80
                       8.80

                      13.0
                      13.0
                      13.0
                      13.0
                      13.0
                      13.0
                      13.0

                      27.0
                      27.0
                      27.0
                      27.0
                      27.0
                      27.0
                      27.0

                    120.
                    120.
                    120.
                    120.
                    120.
                    120.
                    120.

                    270.
                    270.
                    270.
                    270.
                    270.
                    270.
                    270.
*  Design parameter held  to limiting value.
Removal
Efficiency
(%)
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
50.
60.
80.
90.
96.
97.5
99.
•Cost Opt im-
Stripping
Praetor
1.0*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1* •
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1.1*
1.5
1.8
2.1
2.2
2.4
0.9*
1,1*
1.5
1.8
2.1
2.2
2.4
 62.
 82.
 120.
 110.
 100.
 100.
 100.

 62.
 81.
 110.
 100.
 99.
 97.
 95.

 61.
 80.
 110.
 99.
 96.
 95.
 93.

 60.
 79.
100.
 95.
 92.
 90.
 89.

 59.
 77.
 93.
 88.
 84.
 83.
 82.

 58.
 76.
 86.
 81.
 78.
 77.
 76.
I
                                                             c
                                                                                      i

-------
        Styrene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 .
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 .
34 '
35
36
37
38
39
40 •
41
42
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
25.
22.
21.
19.
30.
30.
25.
21.
19.
18.
17.
30.
30.
27.
23.
20.
19.
18.
30.
30.
28.
23.
21.
20.
18.
30.
30.
27.
23.
20.
20.
18.
30.
30.
26.
23.
20.
19.
18.
Air
(SCFM
ft-2)
98.
120.
150.
160.
160.
160.
160.
80.
140.
160.
160.
170.
170.
170.
. 110.
130.
150.
160.
.160.
160.
160.
100.
120.
150.
150.
150.
150.
160.
94.
110.
130.
140.
140..
140.
150.
87.
100.
120.
130:
130.
140.
140.
Air:
Water
Ratio

24.
29.
38.
46.
54.
57.
62.
20.
34.
47.
57.
67.
71.
77.
27.
31.
42.
51.
60.
63.
68.
25.
29.
39.
48.
56.
58.
63.
23.
27.
37.
45,
52.
55.
59.
22.
26.
35.
43.
49.
52.
56.
Mass
Trans .
Coef.
(sec-1)
0.013
0.013
0.013
0.012
0.011
0.010
0.0098
0.012
0.013
0.012
0.011
0.0097
0.0094
0.0090
0.013
0.013
0.012 -
0.011
0.010
0.0098
0.0092
0.013
0.013
0.013
0.011
0.010
0.0099
0.0095
0.013
0.013
0.012
0.011
0.010
0.0098
0.0094
0.012
0.013
0.012
0.011
0.0099
0.0097.
0.0093
Number
of
Col umns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
; i.o
1.0
1 ,0.
1.0
1.0,
1.0
1.0
1.0
1.0
1.0
: 1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8 .
0.8
0.9
1.0
1.0
1.0
1.6
1.6
1.8
1.9
2.0
2.1
2.1
2.8
2.8
3.0
3.2
3.4
3.5
3.7
4.4
4.4
4.5
5.0
5.3
5.4
5.6
7.3
7.3
7.7
8.3
8.8
9.0
9.3
11.9
11.9
12.7
13.7
14.5
14.8
15.2
Packing
Height

(ft)
5.6
7.3
13. •
18.
23.
26.
31.
6.3
6.8
11.
15.
20.
23.
28.
5.3
7.0
12.
16.
22.
24.
29.
5.5
7.3
13.
17Y
22.
25.
31.
5.7
7.6
13.
18.
23.
26.
32.
6.0
7.9
13.
18.
24.
27.
33.
' Air
Flow

(SCFM)
55,
65.
84.
100.
120.
130
140
160
270
Air
Pressure
(inch
H20)
2.6
3.0
4.9
5.4
6.0
6.3
7.0
2.5
3.2
380. 4.1
460.
540.
570.
620
680
790
1000
1300
1500.
1600.
1700
1500
1800
4.7
5.4
5.8
6.6
2.6
3.1
4.3
4.8
5.6
5.9
6.3
2.6
3.0
2400. 4.3
2900.
4.7
3400. 5.4
3500.
5.7
3800. 6.4
3900.
4600.
6100.
7500.
8700.
9200.
9900.
9700.
11000.
16000.
19000.
22000.
23000.
25000.
2.5
2.9
4.0
4.4
5.0
5.3
5.9
2.5
2.9
3.7
4.2
4.7
5.0
5.6

-------
        Styrene

  Table 2 (continued)
SYSTEM SIZE - March 1989
! Design
Number


43 :•
44
4E
46
47
48
49
50
51
52
53
5^
55
5-:
5;
5?
59
60 •
6' •
6.
6..

64
65
66
67
63
69
70
71
72
73
7-
7:
7f
r
7.
7:
8C
s;
8;
82
84
Loadings
Liquid
(GPM
ft-2)
30.
30.
28.
24.
22.
21.
20.
30.
30.
28.
24.
22.
21.
20.
30.
3j!
28.
24.
21.
21.
19.

t">
*»•*•»
30.
27.
23.
21.
20.
19.
30.
30.
26.
23.
20.
20.
18.
30.
30.
26.
22.
20.
19.
18.
Air
{SCFM
ft-2)
84.
100.
130.
130.
140.
140.
140.
84.
99.
120.
130.
130.
130.
140.
84.
98.
120.
130.
130.
130.
140.

83.
98.
120.
130.
130.
130.
130.
81.
96.
120.
120.
130.
130.
130.
81.
95.
110.
120.
120.
120.
130.
Air:
Water
Ratio

21.
25.
33.
40.
46.
49.
52.
21.
25.
33.
40.
46.
49.
52.
21.
24.
33.
40.
46.
49.
52.

21.
24.
33.
40.
46.
49.
52.
20.
24.
33.
40.
46.
49.
52.
20.
24.
33.
40.
46.
49.
52.
Mass
Trans.
Coef.
(sec-1)
0.012
0.013
0.013
0.011
0.011
0.010
0.0099
0.012
0.013
0.012
0.011
0.010
0.010
0.0098
0.012
0.013
0.012
0.011
0.010
0.010
0.0097

0.012
0.013
0.012
0.011
0.010
0.0099
0.0096
0.012
0.013
0.012
0.011
0.0099
0.0097
0.0093
0.012
0.013
0.012
0.011
0.0097
0.0095
0.0091
Number
of
Columns

1.3
1.3
1.3
1.5
'1.7
1.8
1.9
2.1
2.1
2.2
2.6
2.9
3.0
3.2
3.0
3.0
3.3
3.8
4.2
4.4
4.6

5.9
5.9
6.5
7.5
8.4
8.7
9.2
24.2
24.2
27.5
31.9
35.7
37.1
39.2
49.5
49.5
58.0
67.2
75.2
78.2
82.8
Col limn
.Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16:0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0

16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
6.1
8.1
14.
19.
25.
29.
35.
6.2
8.1
14.
19.
25.
28.
35.
6.2
8.2
14.
19.
25.
28.
35.

6.2
8.2
14.
19.
25.
28.
34.
6.3
8.3
14.
19.
25.
28.
Air
Flow

(SCFM)
21000.
25000.
34000.
Air
Pressure
(inch
H20)
2.5
2.8
4.0
41000. -4.5
47000
50000
53000
5.2
5.6
6.3
35000. 2.5
41000.
55000.
67000.
77000.
81000.
87000.
50000.
59000.
80000.
97000.
110000.
120000.
130000.

97000.
120000.
160000.
190000.
220000.
230000.
250000.
390000.
470000.
640000.
780000.
900000.
950000.
34. 1000000.
6.3
8.4
800000.
940000.
14. 1300000.
19. 1600000.
25. 1900000.
28. 1900000.
34. 2100000.
2.8
3.9
4.4
5.1
5.4
6.1
2.5
2.8
3.9
4.3
5.0
5.3
6.0
1
2.5
2.8
3.8
4.2
4.8
5.1
5.7
2.5
2.8
3.6
4.0
4.6
4.9
5.4
2.5
2.8
3.5
3.9
4.4
4.6
5.2
                                                             I
                                                             0

-------
                                 Styrene

                                 Table 3
                       ESTIMATED COST - March 1989
Design
Number
   1
   2
   3
   4
   5
   6
   7

   8
   9
  10
  11
  12
  13
  14

  15
  16
  17
  18
  19
  20
  21

  22
  23
  24
  25
  26
  27
  28

  29
  30
  31
  32
  33
  34
  35

  36
  37
  38.
  39
  40
  41
  42
    Estimated Capital  Costs
($K)   I

   2.7
   3.1
   4.2
   5.4
   6.9
   7.7
   9.2

   6.3
   7.0
   9.2
  11.
  14.
  16.
  18.

.   9.9
  11.
  15.
  20.
  25.
  28.
  34.

  16.
  18.
  25.
  33.
  43.
  48.
  58.

  30.
  35.
 •50.
  66.
  87.
  97.
120.

  64.
  73.
110.
140.
190.
210.
250.
upport
($K)
7.1
7.3
8.0
8.7
9.6
10.
11.
12.
12.
14.
15.
16.
17.
19.
18.
19.
21.
24.
27.
29.
33.
27.
28.
33. *
38.
45.
48.
54.
48.
51.
61.
72.
86.
94.
110.
94.
100.
120.
150.
180.
200.
230.
Indirect
($K)
6.4
6.8
8.0
9.2
- 11.
12.
13.
12.
13.
15.
17.
20.
21.
24.
18.
20.
24.
29.
34.
, 37.
43.
28.
30.
38.
47.
57.
63.
73.
51.
56.
. 73.
91.
110.
130. '
150.
100.
110.
150.
: 190.
240.
270.
320.
5
3tal
«C)
16.
17.
20.
23.
27.
29.
33.
30.
32.
38.
43.
51.
54.
62.
46.
49.
60.
72.
87.
95.
110.
71.
77.
96.
120.
140.
160.
190.
130.
140.
180.
230.
290.
320.
370.
260.
290.
380.
480.
610.
680.
800.
Operating
Cost
($K Year-1)
0.25
0.28
0.38
0.47
0.58
0.63
0.74
0.74
0.85
1.1
1.3
1.5
1.6
1.9
1.6
1.8
2.3
2.8
3.4
3.7
4.2
3.3
3.7
4.9
5.9
7.2
7.9
9.1
8.7
9.7
13.
-15.
18.
20.
23.
24.
26.
34.
. 41.
49.
54.
62.
Yearly
Cost
($K Year-1)
2.2
2.3
2.8
3.2
3.8
4.1
. 4.6
4.2
4.6
5.5
6.3
7.4
8.0
9.1
7.0
7.5
9.4
.- 11.
14.
15.
17.
12.
13.
16.
20.
24.
26.
31.
24.
26. •
34.
42.
52.
57.
67.
55.
60.
79.
97.
120. -
130.
160.
Production
Cost
($ Kgal-1)
1.06
1.12
1.35
1.57 .
1.85
1.99
2.26
0.48
0.52
0.62
0.72
0.85
0.91
1.04
0.22
0.24
0.30
0.36
0.43
0.47
0.54
0.14
0.15
0.19
0.23
0.29
0.32
0.37
0.09
0.10
0.13
0.16
0.20
0:22
0.26
0.07
0.08
0.10
0.13
0.16
0.17
0.20

-------
          Styrene
    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

• 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 '
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Estimated Capital Costs
Process
($K)
130.
150.
220.
290.
390.
440.
540.
210.
240.
350.
470.
630.
710.
870.
300.
340.
500.
670.
900.
1000.
1200.
570.
660.
950.
1300.
1700.
1900.
2400.
2300.
2600.
3800.
5100.
6800.
7700.
9400.
4500.
5200.
7600.
10000.
14000.
16000.
19000.
Support
($K)
180.
190.
240.
300.
370.
410.
480.
280.
300.
380.
470.
590.
650.
770.
390.
420.
530.
660.
830.
920.
1100.
690.
760.
980.
1200.
1600.
1700.
2100.
2300.
2600.
3500.
4500.
5900.
6500.
7900.
4400.
4900.
6800.
8900.
12000.
13000.
16000.
Indirect
($K)
200.
230.
300.
390.
500.
550.
670.
320.
350.
480.
620.
800.
890.
1100.
450.
500.
670.
870.
1100.
1300.
1500.
830.
930.
1300.
1700.
2200.
2400.
2900.
3000.
3400.
4800.
6300.
8300.
9300.
11000.
5800.
6600.
9500.
13000.
17000.
19000.
23000.
Total
($K)
520.
570.
760.
970.
1300.
1400.
1700.
810.
900.
1200.
1600.
2000.
2200.
2700.
1100.
1300.
1700.
2200.
2900.
3200.
3800.
2100.
2300.
3200.
4200.
5400.
6100.
7300.
7600.
8500.
12000.
16000.
21000.
24000.
29000.
15000.
17000.
24000.
32000.
42000.
47000.
58000.
Operating
Cost
($K Year-1)
55.
61.
80.
96.
120.
130.
150.
95.
100.
140.
160.
200.
220.
250.
140.
150.
200.
240.
290.
310.
360.
290.
320.
410.
490.
590.
640.
730.
1300.
1500.
1900.
2200.
2600. .
2800.
3200.
3100.
3400.
4200.
4900.
5800.
6300.
7100.
Yearly
Cost
($K Year-1)
120.
~ 130.
170.
210.
260.
290.
" 340.
190.
210.
280.
350. '
440.
480.
570.
270.
300.
400.
500.
630.
690.
810.
530.
590.
790.
980.
1200.
1400.
1600.
2200.
2500.
3300.
•4100.
5100.
5600.
6600.
4800.
5300. .
7000.
8700.
11000.
12000. •'*
14000. '
Production
Cost
($ Kgal-1)
0.06
0.07
0.09
0.12
0.14
0.16
0.19
0.06
0.07
0.09
0.11
0.14
0.15
0.18
0.06
0.06
0.08
0.10
0.13
0.15
0.17
0.05
0.06
0.08
0.10
0.12
0.14
0.16
0.05
0.06
0.07
0.09
0.12
0.13
0.15
0.05
0.05
0.07
0.09
0.11
0.12!
0.14
                                                                I

-------
   Estimated Equipment Size and Cost.for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
         trans-1,2-Dichloroethylene
  Henry's Coefficient = 0.12 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
fl

-------
                    trans-1,2-Di chloroethylene
                             Table 1
                   DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant .
Capacity
(MGD)
0.024'
0.024
0.024
0.024-
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087;
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
.80
.80
.80
.80
.80
.80
4.80
4.80
4.80
4.80
4.80
4.80
Average
Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(*)
.30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
Cost Optinr
Stripping
Fractor
2.0*
2.5*
2.8*
3.0*
3.3*
3.6*
2.0*
2.0*
2.2*
2.4*
3.5*
4.1 -
2.0*
2.7*
3.0*
3.1*
3.3*
3.6
2.0*
2.5*
2.8*
2.9*
3.1*
3.4*
2.0*
2.3*
2.6*
2.7*
2.9*
3.2*
2.0*
2.2*
2.4*
2.5*
2.7*
3.0*
                                                          50.*
                                                          73.
                                                          87.
                                                          97.
                                                         110.
                                                         140.

                                                          50.*
                                                          50.
                                                          59.
                                                          66.
                                                         130.
                                                         130.

                                                          50.*
                                                          84.
                                                          96.
                                                         110.
                                                         120.
                                                         130.

                                                          50.*
                                                          74.
                                                          85.
                                                          94.
                                                         110.
                                                         120.

                                                          50.*
                                                          65.
                                                          75.
                                                          82.
                                                          94.
                                                         110.

                                                          50.*
                                                          58.
                                                          66.
                                                          73.
                                                          83.
                                                          98.
Design parameter held to limiting value,

-------
                       trans-1,2 -Di chloroethylene

                          Table 1 (continued)
                      DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                      5,
                      5.
                      5,
                      5,
                      5,
00
00
00
00
00
                      5.00

                      8.80
                      8.80
                      8.80
                      8.80
                      8.80
                      8.80

                     13.0
                     13.0
                     13.0
                     13.0
                     13.0
                     13.0

                     27.0
                     27.0
                     27.0
                     27.0
                     27.0
                     27.0

                    120.
                    120.
                    120.
                    120.
                    120.
                    120.

                    270.
                    270.
                    270.
                    270.
                    270.
                    270.
*  Design parameter held to limiting value.
Removal
Efficiency
W
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
30.
80.
86.
90.
95.
99.
Cost Optim
Stripping
Fractor
2.0* .
2.1*
2.3*
2.5*
2.7*
2.9*
2.0*
2.1*
2.3*
2.4*
2.6*
2.9*
2.0*
2.1*
2.3*
2.4*
2.6*
2.9*
2.0*
2.0*
2.2*
2.4* •
2.6*
2.8*
2.0*
2.0*
2.2*
2.3*
2.5*
2.8*
2.0*
2.0*
2.2*
2.3*
2.5*
2.8
50.*
55.
63.
70.
80.
93.

50..*
53.
62:
68.
78.
91.

50.*
53.
61.
67.
77.
91.

50.*
52.
60.
66.
76.
89.

50.*
50.
58.
64.
73.
86.

50.*
50.*
57.
63.
72.
81.
I
                                                                                      1

-------
trans-l,2-Dichloroethylene

         Table 2
 SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 -
33
34
35
36
Loadings
Liquid
(6PM
ft-2)
30.
30. ,
30.
30.
30.
30.
30.
30.
30.
30.
30.
27.
30.
30.
30.
30.
30.
30.
30.
30.
30. -
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
93.
100.
110.
120.
130.
73.
74.
82.
88.
130.
130.
73.
100,
110.
120.
120.
•130.
73.
94.
100.
110.
120.
130.
73.
86.
94.
100.
110.
120.
73.
80.
88.
93.
100.
110.
Air:
Water
Ratio
•
18.
23.
26.
27.
30.
33.
18.
18.
20.
22.
32.
37.
18.
25.
27.
29.
30.
33.
18.
23.
25.
27.
29.
31.
18.
21.
23.
25.
27.
29.
18.
20.
22.
23.
25.
27.
Mass
Trans.
Coef.
(sec-1)
0.016
0.016
0.016
0.016
0.016
0.017
0.016
0.016
0.016
0.016
0.016
0.015
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
Number
of
Col umns

1.0
.1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1..6
1.6
1.6
1.7
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
Packing
Height

(ft)
1.8
9.3
11.
13.
17.
27.
1.8
10.
12.
14.
17.
25.
1.8
9.0
11.
13.
17.
26.
1.8
9.3
11.
13.
17.
- 27.
1.8
.9.5
12.
14.
18.
28.
1.8
9.8
12.
14.
18.
29.
Air
Flow

(SCFM)
41.
52.
57.
61.
' 67.
74.
150.
150.
160.
180.
260.
300.
460.
630.
680.
720.
760.
830.
1100.
1400.
1500.
1600.
1700.
1900.
3100.
3600.
3900.
4100.
4500.
4900.
.8200.
8900.
9700.
10000.
11000.
12000.
Air
Pressure
(inch
H20)
2.1
2.8
- 3.2
3.6
4.4
6.5
2.1
2.6
2.9
3.2
4.6
5.8
2.1
2.9
3.3
3.7
4.5
6.4
2.1
2.8
3.2
3.5
4.3
6.1
2.1
2.8
3.1
3.4
4.1
5.7
2.1
2.7
3.0
3.3
3.9
5.4

-------
trans-l,2-Dichloroethylene

   Table 2 (continued)
 SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 .
52
53
54
55
56
57
58 .
59
60
61
62
63
64
65
66
67
68
59
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
Air
(SCFM
ft-2)
73.
78.
85.
90.
98.
110.
73.
77.
84.
89.
97.
110.
73.
76.
83.
89.
. 96.
110.
73.
76.
83.
88.
95.
100.
73.
74.
81.
86.
93.
100.
73.
73.
80.
85.
92.
100.
Air:
Water
Ratio

18.
19.
21.
23.
24.
27.
18.
19.
21.
22.
24.
26.
18.
19.
21.
22.
24.
26.
18.
19.
21.
22.
24.
26.
18.
18.
20.
21.
23.
26.
is:
18.
20.
21;
23.
25.
Mass
Trans.
Coef.
(sec-1)
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016'
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
0.016
Number
of
Columns

1.3
1.3
1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
50.3
Column
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0*
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
1.8
9.9
12.
14.
19.
29.
1.8
10.
12.
14.
19.
29.
1.8
10.
12.
14.
19.
29.
1.8
10.
12.
14.
19.
29.
1.8
10.
12.
15.
19.
29.
1.8
10.
13.
15.
19.
Air
Flow

(SCFM)
19000.
20000.
22000.
23000.
25000.
27000.
31000.
32000.
35000.
37000.
40000.
44000.
44000.
46000.
50000.
53000.
58000.
63000.
87000.
89000.
97000.
100000.
110000.
120000.
360000.
360000.
390000.
420000.
450000.
500000.
730000.
730000.
800000.
840000.
920000.
29. 1000000.
Aii"
Pressure
(inch
H20)
2.1
2.7
3.0
3.2
3.8
5.3
2.1
2.7
2.9
3.2
3.8
5.3
2.1
2.7
2.9
3.2
3.8
5.2
2.1
2.7
2.9
3.2
3.8
5.2
2.1
2.6
2.9
3.2
3.7
5.1
2.1
2.6
2.9
3..1
- 3.7
5..0

-------
 trans -1 , 2-Di chl oroethyl
          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1 16
f 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 .
34
35
36
Estimated Capita1] Costs
Process
($K)
2.0
3.3
3.6
4.0
4.7
- 6.3
4.8
7.5
8.3
9.1
10.
14.
7.5
12.
14:
15.
18.
24.
11.
20.
22.
24.
29.
39.
21.
38.
42.
47.
56.
77.
45.
79.
89.
98.
120.
160.
Support
($K)
6.7
7.4
7.7
7.9
8.3
9.2
11.
12.
13.
13.
14.
16.
16.
19.
20.
21.
23.
26.
24.
29.
31.
32.
35.
42.
42.
53. •
56.
59.
65.
79.
81.
100.
no.
120.
130.
160.
Indirect
($K)
5.7
7.0
7.4
7.8
8.5
10.
'10.
13.
• "14.
15.
. 16.
fi20-
16.
21.
22.
23.
26.
33.
23.
32.
35.
37.
42.
53.
42.
' 59.
65.
69.
79.
100.
83.
120.
130.
140.
160.
'210.
Total
($K)
14.
18.
19.
20.
21.
26.
26.
. 33.
35.
37.
41.
49.
39.
- 52.
56.
59.
66.
83.
59.
81.
87.
93.
110.
130.
100.
. 150.
160.
180.
200.
260.
210.
300.
330.
360.
410.
530.
Operating
Cost
($K Year-1)
0.20
0.29
. 0.31
0.34
0.39
0.51
0.62
0.81
0.88
0.94
, 1.1
1.4
1.3
1.8
1.9
2.1
2.4
3.0
2.7
.3.7
4.0
•.. 4.3
5.0
6.4
7.3
9.6
10.
11.
13.
16.
20.
26.
. 28.
30.
34.
44.
Yearly
Cost
($K Year-1)
1.9
2.4
2.5
2.6
2.9
3.5
3.6
4.7
5.0
5.3
5.9
7.2
5.9
7.9
8.5
9.0
10.
13.
9.7
13.
. 14.
15.
17.
22.
20.
27.
30.
32.
36.
47.
45.
62.
67.
72.
82. ,
110.
Production
Cost
($ Kgal-1)
0.93
1.16
1.23
1.29
1.42
1.72
0.41
0.53
0.57
0.60
0.67
0.82
0.19
0.25
0.27
0.29
0.32
0.41
0.11
0.16
0.17
0.18
0.21
0.26
0.08
0.11
0.12
0.12
0.14
0.18
0.06
0.08
0.09
0.09
0.11
0.14

-------
 trans-1,2-Dichloroethylene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
94.
160.
180.
200.
240.
320.
150.
260.
290.
320.
380.
520.
220.
370.
410.
450.
540.
730.
410.
700.
780.
860.
1000.
1400.
1600.
2700.
3100.
3400.
4000.
5500.
3300.
5500.
6100.
6800.
8000.
11000.
Support
($K)
150.
200.
220.
230.
260.
320.
230.
310.
340.
360.
400.
510.
320.
440.
470.
500.
560.
710.
570,
790.
850.
910.
1000.
1300.
1800.
2700.
3000.
3200.
3700.
4800.
3400.
5200.
5700.
6200.
7200.
9500.
Indirect Total
($K) 1 <$K) -
160. 410.
240. 600.
260. 650.
280. 710.
320. 820.
420. 1100.
250. 640.
370. 940.
410. 1000.
440. 1100.
510. 1300.
670. 1700.
350. 890.
520. 1300.
580. 1500.
620. 1600.
720. 1800.
950. 2400.
640. 1600.
970. 2500.
1100. 2700.
1200. 2900.
1400. 3400.
1800. 4500.
2300. 5700.
3600. 9000.
3900. 10000.
4300. 11000.
• 5000. 13000.
6700. 17000.
4400. 11000.
7000. 18000.
7700. 20000.
8500. 21000.
9900. 25000.
13000. 34000.
Operating
Cost
($K Year-1)
47.
60.
65.
69.
79.
100. .
81.
100.
110.
120.
140.
170.
120.
150.
160.
170.
200.
250.
250.
310.
340.
360.
410.
520.
1200.
1400.
1600.
1700.
1900.
2300.
2700.
3300.
3600.
3800.
4200.
5300.
Yearly
Cost
($K Year-1)
95.
130.
140.
150.,
170.
230.
160.
210.
230.
250.
290. .
370.
220.
. 310.
330.
360.
410.
530.
440.
600.
650.
710.
810.
1000.
1800.
2500.
2700.
• 2900.
3400.
' 4300.
4000.
5400.
5900.
6300.
7200.
9200.
Production
Cost
($ Kgal-1)
0.05
0.07
0.08
0.08
0.10
0.12
0.05
0.07
0.07
0.08
0.09
0.12
0.05
0.06
0.07
0.08
0.09
0.11
0.04
0.06
0.07
0.07
0.08
0.11
0.04
0.06
0.06
0.07
0.08
0.10
0.04
0.05
0.06
0.06
0.07
0.09
                                                               I

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
            Tetrachloroethylene
  Henry's Coefficient = 0.22 at 12 Deg. C
    U.S.  Environmental Protection Agency
          Office of Drinking Water
         Technical Support Division
           Cincinnati, Ohio 45268

-------
1
I

-------
                           Tetrachloroethylene

                                 Table 1
                       DESIGN CRITERIA -  March  1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024 .
0.087
0.087
, 0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650 .
0.650
0.650
1.80
1.80 .
1.80
1.80
1.80
1.80 .
4.80
4.80
4.80 -
4.80
4.80
4.80
Average
. Flow
(MGD)
0.006
0.006
0.006
0.006
0.006
0.006
0.024
0.024
0.024
0.024
0.024
0.024
0.086
0.086
0.086
0.086
0.086
0.086
0.230
0.230
0.230
0.230
0.230
0.230
. 0.700
0.700
0.700
0.700
0.700
0.700
2.10
2.10
2.10
2.10
2.10
2.10
Removal
Efficiency
(%)
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
• 99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95. .
98.
99.'
99.8
Cost Optim
Stripping
Fractor
3.7*
4.2*
4.6*
• 5.1*
5.3*
. 5.6*
3.7*
3.7*
3.7*
4.0*
4.2*
4.5*
3.7*
4.4*
4.8*
5.1*
5.3*
5.5*
• 3.7*
4.1*
4.5*
4.8* •
.5.0*
5.2*
3.7*
- 3.8*
4.2*
4.4*
- 4.6*
4.8*
3.7*
• 3.7*
3.9*
4.2*
4.3*
4.5*.
                                                              50.*
                                                              62.
                                                              73.
                                                              85.
                                                              91.
                                                             100.
                                                              50.
                                                              50.
                                                              50.
                                                              58.
                                                              63.
                                                              70.
                                                              50.*
                                                              68.
                                                              78.
                                                              86.
                                                              91.
                                                              97.

                                                              50.*
                                                              61.
                                                              70.
                                                              78.
                                                              82.
                                                              89.

                                                              50.*
                                                              53.
                                                              61.
                                                              69.
                                                              72.
                                                              78.

                                                              50.*
                                                              50.*
                                                              54.
                                                              61.
                                                              65.
                                                              71.
*  Design parameter held to limiting value.

-------
                       Tetrachloroethylene
                       Table I (continued)
                   DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
. Plant
Capacity
(MGD) •
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                   5,
                   5.
                   5.
                   5,
                   5,
00
00
00
00
00
                   5.00

                   8.80
                   8.80
                   8.80
                   8.80
                   8.80
                   8.80

                  13.0
                  13.0
                  13.0
                  13.0
                  13.0
                  13.0

                  27.0
                  27.0
                  27.0
                  27.0
                  27.0
                  27.0

                 120.
                 120.
                 120.
                 120.
                 120.
                 120.

                 270.
                 270.
                 270.
                 270.
                 270.
                 270.
Removal
Efficiency
(%)
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
50.
90.
95.
98.
99.
99.8
Cost Optiml
Stripping
Fractor
3.7*
3.7*
3.7*
4.0*
4.2* •
4.4* .
3.7*
3.7* .
3.7* ,
4.0*
4.1*
4.3*
3.7*
3.7* '
3.7*
3.9*
' 4.1* '
4.3*
3.7*
3.7*
3.7*
3.9*
4.1*
4.3*
3.7*
3.7*
3.7*
3.8*
4.0*
4.2*
3.7*
3.7*
3.7*
3.8*
3.9*
4.1*
50.*
50.*
51.
58.
62.
67.

50.*
50.*
51.
57.^
61.
66.

50.*-
50.*
50.
56.
60.
65.
                                     50.
                                     50.
                                     50.
                                     55.
                                     59.
                                     64.

                                     50.
                                     50.
                                     50.
                                     53.
                                     57.
                                     62.

                                     50.
                                     50.
                                     50.
                                     52.
                                     55.
                                     60.
Design parameter held to limiting value.

-------
  Tetrachloroethylene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30,
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30. -.
30.
Air
{SCFM
ft-2)
73.
84.
93.
100.
110.
110.
73.
73.
73.
81.
85.
91.
73.
89.
97.
100.
110.
110.
73.
83.
90.
97.
,100.
100.
73.
76.
83'.
89.
92.
97.
73.
73.
77.
84.
87.
91.
Air:
Water
Ratio

18.
21.
23.
25.
26.
28.
18.
18.
18.
20.
21.
23.
18.
22.
24.
26.
26.
27.
'18.
21.
23.
24.
25.
26.
18.
19.
21.
22.
23.
24.
18.
18.
19.
21.
22.
23.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015,
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015,
0.015
0.015
0.015
0.015
0.015
Number
of
Col umns

1,0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
-1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
2.8
2.8
2.8
2.8
2.8.
2.8
4.4
4.4
4.4
4-. 4
4.4
4.4
7.3
7.3
7.3
7.3
7.3
7.3
11.9
11.9
11.9
11.9
11.9
11.9
Packing
Height

(ft)
3.7
13.
17.
23.
27.
36.
3.7
14.
18,
24.
28.
38.
3.7
13.
17.
23.
27.
36.
3.7
14.
18.
23.
27.
36.
3.7
14.
18.
23.
28.
37.
3.7
14.
18.
24.
28.
38.
Air
Flow

(SCFM)
41.
47.
52.
56.
59
62
150
150.
150.
160.
170.
180.
460.
560.
600.
640.
660.
690.
1100.
1200.
1400.
1500.
1500.
1600.
3100.
3200.
3500.
3700.
3900.
4000.
8200.
8200.
8600.
9300.
9600.
10000.
Air
Pressure
(inch
H20)
2.2
3.0
3.6
4.4
5.0
6.4
2.2
2.9
3.1
3.7
4.2
5.3
2.2
3.1
3.7
. 4.4
5.0
6.3
2.2
3.0
3.5
. 4.2
4.7
6.0
2.2
2.9
3.4
4.0
4.5
5.6
2.2
2.9
3.2
3.8
4.2
5.3

-------
                          Tetrachloroethylene
                         Table 2 (continued)
                       SYSTEM SIZE - March 1989
Design
Number
• Loadi
Liquid
(GPM
ft-2)
ngs
Air
(SCFM
ft-2)
Air:
Water
Ratio
Mass
Trans.
Coef.
(sec-1)
Number
of
Columns
Col umn
Di ameter
(ft).
Packing
Height
(ft)
Air
Flow
(SCFM)
Air
Pressure
(inch
H20)
37
38
39
40
41
42

43
44
45
46
47
48

49
50
51
52
53
54

55
56
57
58
59
60

61
62
63
64
65
66

67
68
69
70
71
72
30.
30.
30.
30.
30.
30.

30.
30.
30.
30.
30.
30.

30.
30.
30.
30.
30.
30.

30.
30.
30.
30.
30.
30.

30.
30.
30.
30.
30.
30.

30.
30.
30.
30.
30.
30.
73.
73.
75.
81.
84.
73.
73.
73.
77.
80.
84.

73.
73.
73.
76.
79.
83.
18.
18.
19.
20.
21.
22.
18.
18.
18.
19.
20.
21.

18.
18.
18.
19.
20.
21.
0.015
0.015
0.015
0.015
0.015
0.015
73.
73.
74.
80.
83.
87.
'18.
18.
18.
20.
21.
22.
0.015
0.015
0.015
0.015
0.015
0.015
73.
73.
74.
79.
82.
87.
18.
18.
18.
20.
21.
22.
0.015
0.015
0.015
0.015
0.015
0.015
73.
73.
73.
79.
81.
86.
18.
18.
18.
20.
20.
21.
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015

0.015
0.015
0.015
0.015
0.015
0.015
 1.3
 1.3
 1.3
 1.3
 1.3
 1.3

 2.1
 2.1
 2.1
 2.1
•2.1
 2.1

 3.0
 3.0
 3.0
 3.0
 3.0
 3.0

 5.9
 5.9
 5.9
 5.9
 5.9
 5.9
24,
24
24.2
24.2
24.2
24.2
49
49
49
49
49
 5
,5
,5
,5
,5
49.5
16.0
16.0
16.0
16.0
16.0
16.0

16.0
16.0
16.0
16.0
16.0
16.0

16.0
16.0
16.0
16.0
16.0
16.0

16.0
16.0
16.0.
16.0
16.0
16.0

16.0'
16.0
16.0
16.0
16.0
16.0

16.0
16.0
16.0
16.0
16.0
16.0
3.7
14.
18.
24.
28.
38.
19000.
19000.
19000.
21000.
21000.
22000.
3.7
14.
18.
24.
28.
38.
31000
31000
31000
33000
35000
36000
3.7
14.
18.
24.
28.
38.
44000
44000
44000
48000
50000
52000
3.7
14.
18.
24.
29.
39.
87000.
87000.
87000.
93000.
96000.
100000.
3.7
14.
18.
24.
29.
39.
360000.
360000.
360000.
370000.
390000.
410000.
 3.7
14.
18.
24.
29.
39.
730000.
730000.
730000.
750000.
780000.
820000.
2.2
2.9
3.2
3.7
4.1
5.1

2.2
2.9
3.2
3.7
4.1
5.1

2.2
2.9
3.1
3.7
4.1
5.1

2.2
2.9
3.1
3.7
4.1
5.0

2.2
2.9
3.1
3.6
4.0
4.9

2.2
2.9
3.1
3.6
4.0
4.9

-------
     Tetrachloroethylene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Costs
Process
($K)
2.3
3.9
4.6
5.5
6.2
7.8
5.4
8.7
10.
12.
14.
17.
8.7
15.
17.
21.
23.
29.
14.
24.
28.
34.
39.
49.
26.
46.
55.
66.
75.
95.
54.
95.
110.
140.
-150.
190.
Support
($K)
6.9
7.8
8.2
8.7
9.1
10.
11.
13.
14.
15.
16.
18.
17.
21.
22.
24.
26.
29.
25.
32.
35.
38.
41. '
48.
45.
58.
64.
72.
77.
91.
86.
120.
130.
140.
160.
190.
Indirect
($K)
6.0
7.7
8.4
9.3
10.
12.
11.
14.
16.
18.
19.
' 23.
17.
23.
26.
29.
- 32.
39.
26.
37.
41.
48.
52.
63.
46.
68.
78.
90.
100.
120.
92.
140.
160.
180.
. 200.
250.
Total
($K)
15.
19.
21.
24.
25.
29.
27.
36.
40.
45.
49.
57.
43.
59.
66.
74.
81.
97.
. 64.
92.
100.
120.
130.
160.
120.
170.
200.
230.
250.
310.
230.
350.
400.
460.
510.
630.
Operating
Cost
($K Year-1)
0.22
0.32
0.36
0.42
0.47
0.57
0.66
0.89
0.99
1.1
1.2
1.5
1.4
2.0
2.2
2.5
2.8
3.4
3.0
4.1
4.6
5.3
5.8
7.0
. 7.8
10.
12.
14.
15.
18.
22.
28.
32.
36.
40.
48.
Yearly
• Cost
($K Year-1)
2.0
2.6
2.8
3.2
3.4
4.0
3.9
5.1
" 5.7
6.4
7.0
8.2 .
6.4-
8.8
9.9
11.
12.
15.
• 11. .
15.
17.
19.
21.
26.
21.
31.
35.
40.
44.
54.
49.
69.
79.
91.
100.
120.
Production
Cost
($ Kgal-1)
0.98
1.27
1.39
1.56
1.68
1.96
0.44
0.58
0.65
0.73
0.79
0.94
0.20
0.28
0.32
0.36
0.39
0.47
0.13
0.18
0.20
0.23
0.25
0.31
0.08
0.12
0.14
0.16
0.1-7
0.21
0.06
0.09
0.10
0.12
0.13
0.16

-------
     Tetrachloroethylene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process [Support
($K) | ($K).
110. 160.
190. 220.
230. 250.
270. 290.
310. 310.
390. 370.
180. 250.
310. 350.
360. 390.
440. 450.
490. 490.
630. 590.
250. 350.
430. 490.
520. 550.
620. 630.
700. 690.
890. 830.
480. 620.
830. 890.
990. 1000.
1200. 1200.
1300. 1300.
1700. 1500.
1900. 2000.
3200. 3100.
3800. 3600.
4600. 4200.
5200. 4600.
6600. 5700.
3800. 3800.
6400. 5900.
7700. 6900.
9200. 8100.
10000. 9100.
13000. 11000.
Indirect
($K)
180.
270.
310.
370.
410.
500.
280.
430.
500.
580.
650.
790.
390.
600.
700.
820.
910.
1100.
720.
1100.
1300.
1500.
1700.
2100.
2600.
4100.
4800.
5800.
6500.
8000.
5000.
8100.
9500.
11000.
13000.
16000.
Total
($K)
450.
690.
790.
930.
1000.
1300.
710.
1100.
1300.
1500.
1600.
2000.
990.
1500.
1800.
2100.
2300.
2800.
1800.
2800.
3300.
3900.
4300.
5400.
6500.
10000.
12000.
15000.
16000.
20000.
13000.
20000.
24000.
29000.
32000.
40000.
Operating
Cost
($K Year-1)
50.
65.
73.
83.
91.
110.
86.
110.
120.
140.
160.
190.
130.
170.
180.
210.
230.
270.
260.
340.
380.
430.
470.
560.
1200.
1600.
1700.
1900.
2100.
2500.
2900.
3600.
3900.
4400.
4800.
5600.
Yearly
Cost
($K Year-1)
100.
150.
170.
. 190.
210..
260.
170..
240.
270.
310.
. 350.
420.
240.
340.
390.
450..
500.
610.
480.
670.
760.
- 890.
980.
1200.
2000.
2800.
3200.
3700.
4000.
4900.
4300.
6000.
6800.
7800.
8600.
10000.
Production
Cost
($ Kgal-1)
0.06
0.08
0.09
0.10
0.12
0.14
0.05
0.07
0.08
0.10
0.11
0.13
0.05
0.07
0.08
0.10
0.10
0.13
0.05
0.07
0.08
0.09
0.10
0.12
0.05
0.06
0.07
0.08
.0.09
0.11
0.04
0.06
0.07
0.08
0.09
0.11

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                  Toluene
  Henry's Coefficient = 0.13 at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
I

-------
                                 Toluene

                                 Table 1
                       DESIGN CRITERIA - March 1989.
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 .
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650,
0.650
0.650.
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
                       0.006
                       0.006
                        .006
                        .006
                       0.006
                       0.006
0.
0.
                       0.024
                       0.024
                       0.024'
                       0.024
                       0.024
                       0.024

                       0.086
                       0.086
                       0.086
                       0.086
                       0.086
                       0.086

                       0.230
                       0.230
                       0.230
                       0.230
                       0.230
                       0.230

                       0.700
                       0.700
                       0.700
                       0.700
                       0.700
                       0.700

                       2.10
                       2.10
                       2.10
                       2.10
                       2.10
                       2.10
*  Design parameter held to limiting value.
Removal
Efficiency
(%)
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
Cost Optim
Stripping
Fractor
2.2*
2.2*
2.2*
2.7*
3.5*
3.7*
2.2*
2.2*
2.2*
2.2*
3.8
4.0
2.2*
2.2*
2.2*
2.9*
3.6*
3.7*
2.2*
2.2*
. 2.2*
2.7* .
3.4*
3.5*
2.2*
2.2*
2.2*
2.5*
3.2*
3.3*
. 2.2*
2.2*
2.2*
2.3*
3.0*
3.1*
 50.*
 50.*
 50.*
 72.
120.
120.

 50.*
 50.*
 50.*
 50.*.
130.
120.

 50.*
 50.*
 50. .
 81.
120.
120.

 50.*
 50.*
 50.*
 72.
110.
110.
                                       50.
                                       50.
                                       50.
                                       62.
                                       94.
                                       99.
                                       50.*
                                       50.*
                                       50.*
                                       56.
                                       84.
                                       89.

-------
                                 Toluene

                           Table 1  (continued)
                       DESIGN CRITERIA - March  1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0 ;
18.0
18.0
18.0
18.0
18.0
26.0 "
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
                       5,
                       5,
                       5.
                       5.
                       5,
00
00
00
00
00
                       5.00

                       8.80
                       8.80
                       8.80
                       8.80
                       8.80
                       8.80

                      13.0
                      13.0
                      13.0
                      13.0
                      13.0
                      13.0

                      27.0
                      27.0
                      27.0
                      27.0
                      27.0
                      27.0

                     120.
                     120.
                     120.
                     120.
                     120.
                     120.

                     270.
                     270.
                     270.
                     270.
                     270.
                     270.
*  Design parameter held to  limiting  value.
Removal
Efficiency
(%)
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
33.
40.
60.
80.
96.7
98.
Cost Optinv
Stripping
Fractor
2.2*
2.2*
2.2*
2.2*
2.9*
3.0*
2.2*
2.2*
2.2*'
2.2* "
2.9*
2.9*
2.2*
2.2*
2.2*
2.2*
2.8*
2.9*
2.2*
2.2*
2.2*
2.2* .
2.8*
2.9*
2.2*
2.2*
2.2*
2.2*
2.8*
2.8*
2.2*
2.2*
2.2*
2.2*
2.7*
2.8*
50.1
50.'
50. '•
53.
80.
85.

50.'
50.'
50.'
51.
79.
83.

50. <
50. <
50.'
51.
78.
82.

50.*
50.*
50.*
50.
76.
80.

50.*
50.*
50.*
50.*
74.
78.

50.*
50.*
50.*
50.*
72.
76.
1
                                                                                       I

-------
        Toluene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 ,
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
.30.
30. .
30.
Air
(SCFM
ft-2)
73.
73.
73.
92.
120.
130.
73.
73.
73.
•73.
130.
130.
73.
.73.
74.
99.
120.
130.
73.
73.
73.
92.
120.
120.
73.
73;
..73.
'84:'
110.
• 110:
73.
73.
73.
7y.
100;
100.
Air:
Water
Ratio

18.
18.
18.
23.
30.
31.
18.
18.
18.
18.
32.
34.
18.
18.
18.
25.
31.
31.
18.
18.
18.
23.
29.
30.
18.
18.
18.
21.
27.
28.
18.
18.
18.
20.
25.
26.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015 •
0.015
0.015
0.015.
0.015
0.015
0.015
0,015
0.015
0.015
0.015 •
0.015
0.015
0.015"
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
• 1.0
1.0
1.0
1.0
1.0
1.0
1.0
•1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Diameter

(ft)
0.8
0.8
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.6
1.6
1.6
2.8
2.8
2.8
2.8
2.8
2.8
4.4
4.4
4.4
4.4
4.4
4.4 .
7.3
7.3-
7.3
7.3
7.3
7.3
11.9
11.9
.11.9
11.9
11.9
11.9
Packing
Height

(ft)
2.2
2.9
5.6
10.
21.
24.
2.2
2.9
5.6
11.
21.
23.
2.2
2.9
5.6
9.7
21.
24;
2.2
2.9
5.6
10.
21.
25.
2.2
2.9
5.6
10.
22.
25.
2.2
2.9
5.6
10.
23.
26.
Air
Flow

(SCFM)
41.
41.
41.
51.
67.
70.
150.
150.
150.
150.
260.
Air
Pressure
(inch
H20)
2.1
2.2
2.4
2.9
5.0
5.7
2.1
2.2
2.4
2.7
5.2
270. 5.6
460.
460.
460.
620.
770.
790.
1100.
1100.
lioo.
1400.
1700.
1800.
3100.
3100.
3100.
3500.
4500.
4600.
8200.
8200.
8200.
8700.
11000.
12000.
2.1
2.2
2.4
3.0
5.1
5.7
2.1
2.2
2.4
2.9 .
4.8
5.4
2.1
2.2
2.4
2.8
4.5
5.1
2.1
2.2
2.4
2.7
4.3
4.8

-------
       Toluene
  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
30.
Air
(SCFM
ft-2)
73.
73.
73.
76.
98.
100.
73.
73.
73.
75.
97.
100.
73.
73.
73.
75.
97.
100.
73.
73.
73.
74.
95.
98.
73.
73.
73.
73.
94.
97.
73.
73.
73.
73.
92.
95.
Air:
Water
Ratio
-
18.
18.
18.
19.
24.
25.
18.
18;
18.>
19.
24.
25.
18.
18.
18.
18.
24.
25.
18.
18.
18.
18.
24.
24.
18.
18.
18.
18.
23.
24.
18.
18.
18.
18.
23.
24.
Mass
Trans.
Coef.
(sec-1)
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
0.015
Number
of
Columns

1.3
1.3
1.3
.1.3
1.3
1.3
2.1
2.1
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
-3.0
3.0
5.9
5.9
5.9
5.9
5.9
5.9
24.2
24.2
24.2
24.2
24.2
24.2
49.5
49.5
49.5
49.5
49.5
49.5
Col umn
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0 .
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0-
16.0
16.0
16.0 .
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0.
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

.(ft)
2.2
2.9
5.6
11.
23.
26.
2.2
2.9
5.6
ir.
23.
26.
2.2
2.9
5.6
11.
23.
26.
2.2
2.9
5.6
11.
23.
27.
2.2
2.9
5.6
11.
23.
27.
2.2
2.9
5.6
11.
23.
27.
Air
Flow

(SCFM)
19000
Air'
Pressure
(inch
H20)
' 2.1
19000. 2.2
19000.
19000.
25000
26000
31000
31000
31000
2.4
2.7
4.2
4.7
2.1
2.2
. 2.4
31000. 2.7
41000.
42000.
44000
44000.
44000
45000
58000.
60000.
87000.
87000.
87000.
.87000.
110000.
120000.
360000.
360000
360000
360000
460000
470000
4.2
4.7
2.1
2.2
2.4
2.7
4.2
4.7
2.1
2.2
2.4
2.7
4.2
4.6
2.1
2.2
2.4
2.7
4.1
4.6
730000. 2.1
730000
730000
730000
920000
950000
2.2
. ' 2.4
2.7
, 4.1
4.5
                                                             I

-------
                                Toluene
                                 Table 3
                       ESTIMATED COST - March 1989
Design
Number
   1
   2
   3
   4
   5
   6

   7
   8
   9
  10
  11
  12

  13
  14
  15
  16
  17
  18

  19
  20
  21
  22
  23
  24

  25
  26
  27
  28
  29
  30

  31
  32
  33
  34
  35
  36
Estimated Capital Costs
nocess
[*)
2.1
2.2
2.6
3.4
5.4
5.9
4.9
5.1
6.0
7.7
12.
13.
7.7
8.1
9.8
13.
20.
22.
12.
13.
15.
20.
33.
36.
22.
24.
29.
39.
64.
71.
47.
50.
61.
82.
130.
150.
Support
($K)
6.8
6.8
7.1
7.5
8.6
8.9
11.
11.
12.
12.
15.
16.
17.
17.
18.
20.
24.
25.
24.
25.
27.
30.
38.
40.
42.
43.
47.
54.
70.
75.
82.
84.
92.
110.
140.
150.
Indirect
($K)
5.8
5.9
6.3
7.1
9.2
9.7
10.
10.
11.
13.
18.
19.
16.
16.
18.
21.
29.
31.
24.
24.
28.
33.
46.
50.
42.
. 44.
50.
61.
88.
96.
85.
88.
100.
120.
180.
200.
Total
($K)
15.
• 15.
16.
18.
23.
25.
26.
27.
29.
33.
44.
47.
40.
41.
46.
53.
73.
78.
60.
62.
70.
83.
120.
130.
110.
110.
130.
150.
220.
240.
210.
220.
250.
310.
460.
500.
Operating
Cost
($K Year-1)
0.21
0.21
0.24
0.29
0.43
0.47
0.63
.0.64
0.70
0.82
1.2
1.3
1.3
1.4
1.5
' 1.8
2.6
2.8
2.8
2.9
3.1
3.8
5.5
5.9
7.4
7.5,.
8.2
9.7
14.
15. .
20.
21.
23.
26.
38.
41.
Yearly
Cost
($K Year-1)
• 1.9
2.0
2.1
2.4
3.1
3.4
3.7
3.8
4.1
4.7
6.4
6.8
6.0
6.2
6.9
8.0
11.
12.
9.8
10.
11.
14.
19.
21.
20.
21.
23.
28.
• 40.
44.
46.
47.
52.
63.
. 91.
99.
Production
Cost
($ Kgal-1)
0.94
0.96
1.03
1.18
1.54
1.64
0.42
0.43
0.47
0.54
0.73
0.78
0.19
0.20
0.22
0.26
0.35
0.38
0.12
0.12
0.13
0.16
0.23
0.25
0.08
0.08
0.09
0.11
0.16
0.17
0.06
0.06
0.07
0.08
0.12
0.13

-------
           Toluene

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process (Support
($K) 1 ($K)
98. 160.
100. 160.
120. 180.
170. 210.
270. 280.
300. 300.
160. 240.
170. 240.
200. 270.
270. 320.
430. 440.
480. 480.
220. 330.
230. 340.
280. 370.
380. 440.
610. 620.
680. 670.
430. 580.
450. 600.
540. 670.
720. 810.
1200. 1100.
1300. 1200.
1700. 1900.
1800. 1900.
2100. 2200.
2800. 2800.
4600. 4100.
5100. 4500.
3400. 3500.
3600. 3600.
4300. 4200.
5600. 5300.
9100. 8000.
10000. 8800.
Indirect
($K)
170.
170.
200.
240.
360.
390.
260.
270.
310.
380.
570.
630.
360.
370.
430.
540.
810.
890.
660.
690.
790.
1000.
1500.
1700.
2300.
2400.
2800.
3700.
5700.
6300.
4500.
4700.
5500.
7200.
11000.
12000.
Total
($K)
420.
. 430.
500.
610.
910.
1000.
650.
680.
770.
970.
1400.
1600.
910.
950.
1100.
1400.
2000.
2200.
1700.
1700.
2000.
2500.
3800.
4200.
5900.
6100.
7200.
9200.
14000.
16000.
11000.
12000.
14000.
18000.
28000.
31000.
Operating
Cost
($K Year-1)
' 48.
49.
53.
61.
86.
93.
82.
84.
91.
100.
150.
160.
120.
120.
130.
150.
220.
230.
250.
250.
280.
320.
440.
480.
1200.
1200.
1300.
1500.
2000.
2200.
. 2700.
2800.
3000.
3400.
4600.
4900.
Yearly
Cost
($K Year-1)
97.
100.
110.
130.
190.
210.
160.
160.
180.
220.
320.
350.
230.
230.
260. .
310.
460.
500.
450.
460.
510.
610.
900.
980.
1900.
1900.
2100.
2600.
3700.
4000.
4100.
4200.
4600.
5500.
7900.
8600.
Production
Cost
($ Kgal-1)
0.05
0.05
0.06
0.07
0.11
0.12
0.05
0.05
0.06
0.07
0.10
0.11
0.05
0.05
0.05
0.07,
0.10
0.10
0.05
0.05
0.05
0.06
0.09
0.10
0.04
0.04
0.05
0.06
0.08
0.09
0.04
0.04
0.05
0.06
0.08
0.09

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
            1,2-Dichloropropane
  Henry's Coefficient - 0.043 at 12 Deg. C
    U.S. Environmental Protection Agency
          Office of Drinking Water
         Technical Support Division
           Cincinnati, Ohio 45268

-------
I
6
i

-------
    1,2-Di chloropropane

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Estimated Capital Costs
Process
($K)
130.
230.
310.
380.
410.
490.
210.
370.
490.
620.
660.
790.
300.
520.
710.
890.
940.
1100.
580.
1000.
1400.
1700.
1800.
2200.
2300.
4000.
5400.
6700.
7200.
8500.
4600.
8000.
11000.
14000.
15000.
17000.
Support
($K)
180.
250.
310.
370.
390.
440.
280.
390.
490.
580.
610.
710.
390.
550.
690.
830.
870.
1000.
700.
1000.
1300.
1600.
1600.
1900.
2300.
3600.
4700.
5800.
6100.
7200.
4400.
7200.
9400.
12000.
12000.
14000.
Indirect
($K)
210.
310.
400.
490.
520.
610.
320.
500.
640.
790.
840.
980.
450.
700.
910.
1100.
1200.
1400.
840.
1300.
1700.
2100.
2300.
2700.
3000.
5000.
6600.
8200.
8700.
10000.
5900.
10000.
13000.
17000.
18000.
21000.
.Total
($K)
520.
790.
1000.
1200.
1300.
1500.
820.
1300.
1600.
2000.
2100.
2500.
1100.
1800.
2300.
2800.
3000.
3500.
2100.
3300.
4400.
5400.
5700.
6700.
7600.
13000.
17000.
21000.
22000.
26000.
15000.
25000.
33000.
42000.
44000.
53000.
Operating
Cost
($K Year-1)
57.
82.
99.
120.
120.
140.
97.
140.
170.
200.
210.
230.
140.
210.
250.
290.
300.
340.
300.
420.
510.
580.
610.
690.
1400.
1900.
2300.
2600.
2700.
3000.
3200.
4300.
5100.
5800.
6000.
6700.
Yearly
Cost
($K Year-1)
120.
180.
220.
260.
280.
320.
190.
290.
360.
430.
450.
520.
280.
410.
520.
620.
650.
750.
540.
810.
1000.
1200.
1300.
1500.
2300.
3400.
4200.
• 5000.
5300.
6100.
4900.
7300.
9000.
11000.
11000.
13000.
Production
Cost
{$ Kgal-1)
0.06
0.10
0.12
0.14
0.15
0.17
0.06
0.09
0.11
0.13
0.14
0.16
0.06
0.09
0.11
0.13
0.14
. 0.16
0.06
0.08
0.10
0.12
0.13
0.15
0.05
0.08
0.10
0.11
0.12
0.14
0.05
0.07
0.09
0.11
0.11
0.13

-------
                          1,2-Dichloropropane
                                Table 1
                      DESIGN CRITERIA - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
                      0.006
                      0.006
                      0.006
                      0.006
                      0.006
                      0.006

                      0.024
                      0.024
                      0.024
                      0.024
                      0.024
                      0.024
                      0.
                      0.
                      0.
                      0.
                      0.
086
086
086
086
086
                      0.086

                      0.230
                      0,230
                      0.230
                      0.230
                      0.230
                      0.230

                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      0.700
                      2.
                      2.
                      2.
                      2.
                      2.
10
10
10
10
10
                      2.10
Removal
Efficiency
W
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
'80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
Cost Optinr
Stripping
Fractor
1.0*
1.6
2.0
2.3
2.4
2.6
1.2*
2.0
2.5
2.8
2.9
3.2
1.1*
1.8
2.2
2.5
2.6
2.8
1.1*
1.7
2.1
2.4
2.4
2.6
1.0*
1.6
2.0
2.2
2.3
2.5
0.9*
1.5
1.9
2.1
2.2
2.3
 93.
170.
150.
140.
140.
130.

130.
150.
150.
140.
140.
130.

110.
150.
140.
140.
130.
130.

 97.
140.
130.
120.
120.
120.

 86.
120.
110.
110.
100.
100.

 77.
100.
 97.
 93.
 93.
 91.
                                                              I
                                                              fi
*  Design parameter held to limiting value.

-------
                       1,2-Di chloropropane
                       Table 1 (continued)-
                   DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
. 56
57
58 .
59
60
61
62
. 63
64
65
66
67
68
69
70
71
72
Plant •
Capacity
(MGD)
11.0
11.0
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
• 18.0
18.0
26.0
26.0
. 26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0.
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430. -
430.
430.
430.
                   5.00
                   5,
                   5,
                   5,
                   5,
00
00
00
00
                   5.00

                   8.80
                   8:80
                   8.80
                   8.80
                   8.80
                   8.80

                  13.0
                  13.0
                  13.0
                  13.0
                  13.0
                  13.0

                  27.0
                  27.0
                  27.0
                  27.0
                  27.0
                  27.0

                 120.
                 120.
                 120.
                 120.
                 120.
                 120.
                 270.
                 270.
                 270.
                 270.
                 270.
Removal
Efficiency
(%)
50.
80.
• 90. :
95.
96.
98..
. 50.
80.
90.
95.
96.
98.
50.
80.
90.
95.
96.
98.
50.
80.
- 90.
95.
96.
98.
50.
• 80.
90.
95. .
96.
98. .
50.
. 80.
90.
95.
96.
98.
Cost Optinr
Stripping
Fractor
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.5
1.8 •
2.0
2.0
2.2
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.5
1.8
2.0
2.0
2.2
0.9*
1.4
1.8
2.0
2.0
2.2
0.9*
1.4
1.8
• 2.0
2.0
2.2
 74.
110.
100.
100.
100.
100.

 74.
110.
100.
 98.
 98.
 96.

 74.
100.
 99.
 96.
 96.
 94.

 74.
100.
 94.
 91.
 91.
 89.

 74.
 92.
 87.
 84.
 83.
 82.

 74.
 85.
 80.
 78.-
 77.
 76.
Design parameter held to limiting value.

-------
  1,2-Dichloropropane

        Table 2
SYSTEM SIZE - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Load
Liquid
(GPM
ft-2)
30.
28.
23.
21.
20.
19.
30.
23.
20.
18.
18.
16.

30.
25.
21.
19.
19.
18.
30.
25.
21.
19.
19.
18.
30.
25.
21.
19.
19.
18.
30.
24.
21.
19.
19.
17.
ings
Air
(SCFM
ft-2)
110.
160.
160.
160.
160.
170.
130.
160.
170.
180.
180.
170.

120.
160.
160.
170.
170.
170.
110.
150.
150.
160.
160.
160.
100.
140.
140.
150.
150.
150.
96.
130.
130.
140.
140.
140.
Air:
Water.,
Ratio

27.
42.
51.
58.
60.
65.
32.
52.
64.
73.
75.
81.

29.
47.
57.
65.
67.
72.
27.
44.
54.
60.
62.
67.
25.
41.
50.
57.
58.
63.
24.
39.
48.
54.
56.
60.
Mass •
Trans.
Coef.
(sec-1)
0.013
0.013
0.012
0.011
0.010
0.0099
0.013
0.011
0.010
0.0096
0.0094
0.0089

0.013
0.012
0.011
0.010
0.0098
0.0094
0.013
0.012
0.011
0.010
0.0099
0.0094
0.013
0.012
0.011
0.0099
0.0097
0.0094
0.013
0.012
0.010
0.0098
0.0096
0.0092
Number
of
Columns

1.0.
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Col umn
Di ameter
'(ft)
0.8
0.9
1.0
1.0
1.0
1.1
1.6
1.8
2.0
.2.1
2.1
2.2

2.8
3.1
3.4
3.5
3.6
3.7
4.4
4.8
5.2
5.4
5.5
5.7
7.3
8.0
8.6
9.1
9.2
9.5
11.9
13.2
14.2
15.0
15.1
15.6
Packing
Height
(ft)
5.6
13.
17.
21.
22.
26.
5.1
11.
15.
18.
20.
23.

5.3
12.
16.
20.
21.
25.
5.5
12.
16.
20.
22.
26.
5.8
13.
17.
21.
23.
27.
6.0
13.
17. .
22.*
23.
27.
Air
Flow
(SCFM)
Air
Pressure
1 1 nch
^ i 1 1 %* 1 1
H20)
59. - 2.6
94. 4.7
110.
130.
130.
150.
260.
420.
520.
590.
610.
650.
4
730.
1200.
1400.
1600.
1700.
1800.
1700.
2600.
3200.
3700.
3800.
4100.
4200.
6900.
8400.
9500.
9800.
11000.
11000.
18000.
21000.
24000.
25000.
27000.
5.2
5.7
5.9
6.3
2.8
4.1
.4.6
5.2
5.4
5.6

2 7
fc • *
4.2
4.7
5.3
5.4
6.0
2.7
4.1
4.6
5.1
5.2
5., 7
2»6
' 3.!9
4.,3
4. ,7
4. ,9
5.4
2.6
3.6
4.1
4.5
4.6
5.0
                                                             t
                                                            i

-------
  1,2-Di chloropropane

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


37
38
39
40
41
42
43
44
45
46
47
48
49
50
I 51
> 52
53
54
! 55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Loadings
Liquid
(GPM
ft-2)
30.
26.
22.
21.
20.
19.
30.
26.
22.
20.
20.
19.
30.
25.
22.
20.
20.
19.
30.
25.
22.
20.
19.
18.
30.
24.
21.
19.
19.
18.
30.
24.
20.
19.
18.
17.
Air
(SCFM
ft-2)
94.
130.
140.
140.
140.
140.
94.
130.
130.
140.
140.
140.
94.
130.
130.
140.
140.
140.
94.
120.
130.
130.
130.
140.
94.
120.
130.
130.
130.
130.
94.
120.
120.
130.
130.
130.
Air:
Water
Ratio

23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
52.
56.
23.
37.
45.
51.
> 52.
56.
Mass
Trans.
Coef.
(sec-1)
0.013
0.012
0.011
0.010
0.010
0.0098
0.013
0.012
0.011
0.010
0.010
0.0097
0.013
0.012
0.011
0.010
0.010
0.0096
0.013
0.012
0.011
0.010
0.0098
0.0095
0.013
0.011
0.010
0.0097
0.0096
0.0092
0.013
0.011
0.010
0.0095
0.0094
0.0090
Number
of
Columns

1.3
1.5
1.7
1.8
1.9
2.0
2.1
2.4
2.8
3.1
3.1
3.3
3.0
3.5
4.1
4.5
4.6
4.8
5.9
• 7.0
8.2
8.9
9.1
9.7
24.2
29.9
34.6
38.0
38.9
41.1
49.5
62.9
72.9
80.0
81.9
86.7
Column .
Diameter

(ft)
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
6.1
14.
18.
23.
.24.
29.
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
. 24.
29.
6.1
14.
18.
23.
24.
29.
6.1
14.
18.
23.
Air
Flow

(SCFM)
24000.
Air
Pressure
(inch
H20)
2.6
38000. 3.9
46000.
52000.
53000.
57000.
39000.
62000.
76000.
85000.
87000.
94000.
56000.
90000.
110000.
120000.
130000.
140000.
110000.
180000.
210000.
240000.
250000.
270000.
450000.
720000.
880000.
990000.
24. 1000000.
29. 1100000.
6.1
930000.
14. 1500000.
18. 1800000.
23. 2000000.
24. 2100000.
28. 2200000.
4.4
4.9
5.1
5.6
2.6
3.8
4.3
4.8
4.9
5.4
2.6
3.8
4.2
4.7
4.9
5.3
2.6
3.7
4.1
4.6
4.7
5.2
2.6
3.5
4.0
4.4
4.5
4.9
2.6
3.4
3.8
4.2
4.3
4.7

-------
    1,2-Dichloropropane

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Estimated Capital Cc
Process
<$K)
2.7
4.3
5.6
6.7
7.1
8.3
6.4
9.3
12.
• 14.
14.
17.
10.
16.
20.
24.
26.
30.
16.
26.
34.
42.
44.
52.
31.
52.
68.
85.
90.
110.
65.
110.
150.
180.
190.
230.
Support
($K)
7.1
8.1
8.8
9.5
9.7
10.
12.
14.
15.
16.
17.
18.
18.
21.
24.
27.
28.
30.
27.
34.
39.
44.
45.
50.
48.
62.
74.
85.
89.
100.
95.
130.
150.
180.
190,
210.
Indirect
/ (I/ I
^ ^Iv I
6.5
8.1
9.4
11.
11.
12.
12.
15.
17. '
20.
20.
23.
18.
24.
29.
34.
35.
40.
28.
39.
48.
56.
59.
67.
52.
75.
93.
110.
120.
130.
100.
160.
200.
240.
250.
290.
5
Dtal
SK)
16.
21.
24.
27.
28.
31.
30.
38.
44.
49.
' 51.
57.
46.
61.
73.
85.
88.
100.
71.
98.
120.
140.
150.
170.
130.
190.
240.
280.
300.
340.
260.
390.
500.
600.
630.
730.
Operating
Cost
($K Year-1)
0.26
0.39
0.48
0.57
0.60
0.68
0.80
1.1
1.3
1.5
1.5
1.7
1.6
2.4
2.9
3.3
3.5
4.0
3.4
5.0
6.1
7.1
7.4
8.4
8.9
13.
16. .'
18.
19.
22.
24.
35.
42.
49.
' 51.
57.
Yearly
Cost
($K Year-1)
2.2
2.8
3.3
3.7
3.9
4.3
4.3
5.5
6.4
7.3 '
7.5
8.4
7.0
9.6
11.
13.
14.
16.
12.
17.
20.
24.
25.
28.
24.
35.
43.
51.
54.
61.
55.
81.
100.
120.
130.
140.«
Production
Cost '
($ Kgal-1)
1.06
1.37
1.60
1.82
1.89
2.11 '.
0.49
0.63
0.73
0.83
0.86
0.96
0.22
0.30
0.36
0.42
0.44
0.50
0.14
0.20
0.24
0.28
0.30
0.34
0.09
0.14 !
0.17
0.20
0.21
0.24
0.07
0.11
0.13
0.16
0.16
0.19
                                                               t
                                                               3

-------
   Estimated Equipment Size and Cost.for
Removal of Phase II SOCs from Drinking Water
                    Via
      • Packed Column Air Stripping
                 March 1989
                 Compound:
                 Toxaphene
 j
 Henry's Coefficient - O.'ll at 12 Deg. C
    U.S.  Environmental  Protection Agency
          Office  of Drinking  Water
         Technical  Support  Division
           Cincinnati,  Ohio 45268

-------
I
B

-------
Design    Plant
Number   Capacity
          (MGD)
   1
   2
   3
   4

   5
   6
   7
   8

   9
  10
  11
  12

  13
  14
  15
  16

  17
  18
  19
  20

  21
  22
  23
  24
0.024
0.024
0.024
0.024

0.087
0.087
0.087
0.087

0.270
0.270
0.270
0.270

0.650
0.650
0.650
0.650

1.80
1,
1,
1,

4.
4,
4,
80
80
80

80
80
80
                                Toxaphene

                                 Table 1
                       DESIGN CRITERIA - March
                                     1989
0.006
0.006
0.006
0.006

0.024
0.024
0.024
0.024

0.086
0.086
0.086
0.086

0.230
0.230
0.230
0.230

0.700
0.700
0.700
0.700
  10
  10
  10
4.80
          2.10
Removal
Efficiency
(%}
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98:
50.
80.
90.
98.
50.
80.
90.
98.
50.
80.
90.
98.
Cost Optinr
Stripping
Fractor
1.8*
2.7*
3.1*
3.4*
1.8*
2.1*
3.3 '
4.1
1.9*
2.8*
3.1*
3.6
1.8*
2.6*
2.9*
3.3
1.8*
2.4*
2.7*
3.1
1.8*
2.3*
2.6*
3.0
 50.*
 94.
120.
150.

 50.*
 65.
130.
120.

 52.
100.
120.
130.

 50.*
 91.
110.
120.

 50.*
 80.
 97.
110.

 50.*
 71.
 86.
 97.
 *   Design  parameter held  to limiting  value.

-------
                            Toxaphene
                       Table 1 (continued)
                   DESIGN CRITERIA - March 1989
Design
Number

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Plant
Capacity
(MGD)
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
430.
430.
430.
430.
                                         Cost Optimized Parameters
                                         Stripping I   Air Gradient
                                          Fractor  [   (N m-2 m-1)
                   5.00
                   5.00
                   5.00
                   5.00

                   8.80
                   8.80
                   8.80
                   8.80

                  13.0
                  13.0
                  13.0
                  13.0

                  27.0
                  27.0
                  27.0
                  27.0

                 120.
                 120.
                 120.
                 120.

                 270.
                 270.
                 270.
                 270.
50.
80.
90.
98.

50.
80.
90.
98.

50.
80.
90.
98.

50.
80.
90.
98.

50.
80.
90.
98.

50.
80.
90.
98.
1.8*
2.2*
2.5*
2.8*

1.8*
2.2*
2.5*
2.8*

1.8*
2.2*
2.4*
2.7*

1.8*
2.1*
2.4*
2.7

1.8*
2.1*
2.4*
2.7

1.8*
2.1*
2.3*
2.8
 50.*
 67.
 83.
100.

 50.*
 66.
 81.
 98.

 50.*
 65.
 80.
 98.

 50.*
 64.
 79.
 95.

 50.*
 62.
 76.
 87.

 50.*
 61.
 74.
 80.
Design parameter held to limiting value.

-------
       Toxaphene

        Table 2
SYSTEM SIZE - March 1989
Design
Number


1
2
3
4
5 '
6
7
8
9
10
11
12 '
13
14
15
16
17
18
19
20
21
22
23
24
Loadings
Liquid
(6PM
ft-2)
30.,
30.
30.
30.
30.
30.
29.
25.
30.
30.
30.
28.
30.
30.
30.
29.
30.
30.
30.
29.
30.
30.
30.
28.
Air
(SCFM
ft-2)
73.
110.
120.
140.
73.
86.
130.
140.
76.
110.
130.
140.
73.
110.
120.
130.
73.
98.
110.
120.
73.
91..
100.
110.
Air:
Water
Ratio

18.
27.
31.
35.
18.
21.
33.
41.
19.
28.
31.
36.
18.
26.
29.
33.
18.
24.
27.
31.
18.
23.
26.
30.
Mass
Trans.
Coef.
(sec-1)
0.010
0.011
0.011
0.011
0.010
0.011
o.on
0.0096
0.010
0.011
0.011
0.010
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.010
Number
. of
Columns

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
. "1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
• Col umn
01 ameter

(ft)
0.8
0.8
0.8
0.8
1.6
1.6
1.6
1.7
2.8
2.8
2.8
2.9
4.4
4.4
4.4
4.5
7.3
7.3
7.3
7.4
11.9
11.9
11.9
12.2 .
Packing
Height

(ft)
5.9
14.
20.
34.
5.9
15.
19.
31.
. 5.8
14.
20.
33.
5.9
14.
20.
34.
5.9
14.
21.
35.
5.9
15.
21.
36.
Air
Flow

(SCFM)
41
60
69
77
150
170
270
330
470
700.
780
910
1100.
1600
1800
2000
3100.
4100.
4600.
5200.
8200.
10000.
11000.
13000.
Air
Pressure
(inch
H20)
2.4
3.6
4.9
. 8.2
2.4
3.2
5.0
6.7
2.4
3.7
5.0
• 7.3
2.4
3.6
4.7
7.2
2.4
3.4
4.5
6.7
2.4
3.3
4.3
6.3

-------
     Toxaphene

  Table 2 (continued)
SYSTEM SIZE - March 1989
Design
Number


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Loadings
Liquid
(GPM
ft-2)
30.
30.
30.
. 30.
30.
30.
30.
30.
30.
30.
30.
30.
30. .
30.
30.
30.
30.
30.
30.
29.
30.
30.
30.
28.
Air
(SCFM
ft-2)
73.
88.
100.
110.
73.
88.
99.
110.
73.
87.
. 98.
110.
73.
86.
97.
110.
73.
84.
95.
110.
73.
83.
94.
100.
Air:
Water
Ratio

18.
22.
25.
28.
18.
22.
25.
28.
18.
22.
24.
27.
18.
21.
24.
27.
18.
21.
24.
27.
18.
21.
23.
28.
Mass
Trans.
Coef.
(sec-1)
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.011
0.010
0.011
0.011
0.010
0.010
0.011
0.011
0.010
Number
of
Col umns

1.3
1.3
1.3
1.3
2.1
2.1
2.1
2.1
3.0
3.0
3.0
3.0
5.9
5.9
'5.9
5.9
24.2
24.2
24.2
25.2
49.5
49.5
49.5
53.3
Col umn
Di ameter

(ft)
16.0 .
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
Packing
Height

(ft)
. 5.9
15.
21.
37.
5.9
15.
22.
38.
5.9
15:
22.
38.
5.9
15.
22.
38.
5.9
15.
22.
37.-
5.9
15.
22.
Air
Flow
-
(SCFM)
Air
Pressure
(inch
H20)
19000. 2.4
23000
25000.
29000.
3.2
4.2
6.6
31000. 2.4
36000.
41000.
46000.
44000.
52000.
59000.
66000.
87000.
100000.
110000.
130000.
360000.
410000.
460000.
530000.
730000.
830000.
930000.
37. 1100000.
3.2
4.2
6.5
. 2.4
3.2
4.1
6.5
2.4
3.2
4.1
6.4
2.4
- 3.2
4.1
6.0
2.4
3.2
4.0
5.6

-------
         Toxaphene

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
!15
16
17
18
19
20
21
22
23
24
Estimated Capital Costs
Process
($K)
2.7
4.1
5.2
. 7.7
6.1
9.3
11.
16.
10.
15.
19.
29.
16.
25.
32.
48.
30.
48.
62.
95.
62.
100.
130.
200.
Support
($K)
7.1
7.9
8.5
10.
12.
13.
15.
18.
18.
21.
24.
29.
27.
33.
37.
47.
48.
60.
69.
91.
93.
120.
140.
190.
Indirect
($K)
6.4
7.8
9.0
12.
.12.
15.
17.
22.
18.
24.
28.
38.
28.
38.
45.
63.
51.
. 71.
86.
120.
100.
140.
180.
250.
Total
($K)
16.
20.
23.
29.
29.
38.
43.
57.
46.
60.
71.
96.
70.
95.
110.
160.
130.
180.
220.
310.
260.
360.
440.
640.
Operating
Cost
($K Year-1)
0.24
0.34
0.42
0.60
0.71
0.95
1.2
1.6
1.5
2.1
2.6
3.6
3.2
4.4
5.3
7.5
8.3
11.
14.
19.
23.
30.
37.
51.
Yearly
Cost .
($K Year-1)
2.1
2.7
3.1
4.0
4.1
5.4
6.3
8.2
6.9
9.1
11.
15.
11.
16.
19.
26.
23.
32.
39.
55.
53.
73.
89.
130.
Production
Cost
{$ Kgal-l)
1.04
1.30
1.50
1.97
0.47
0.61
0.71
0.94
0.22.
0.29
0.35
0.47
0.14
0.18
0.22
0.31
0.09
0.13
0.15
0.22
0.07
0.10
0.12
0.16

-------
         Toxaphene
    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Estimated Capital Costs
Process
($K)
130.
200.
260.
390.
200.
320.
420.
630.
290.
460.
590.
900.
550.
880.
1100.
1700.
2200.
3400.
4400.
6800.
4300.
6900.
8800.
14000.
Support Indirect
($K) 1 ($K) '
180. 200.
230. 290,
270. 350.
370. 500.
270. 310.
360. 450.
430. 550.
590. 800.
380. 440.
510. 630.
610. 780.
830. 1100.
680. 800.
930. 1200.
1100. 1500.
1600. 2100.
2200. 2900.
3200. 4400.
4000. 5500.
5800. 8200.
4300. 5600.
6300. 8600.
7800. 11000.
12000. 17000.
Total
($K)
500.
720.
880.
1300.
790.
1100.
1400.
2000.
1100.
1600.
2000.
2900.
2000.
3000.
3700.
5400.
7300.
11000.
14000.
21000.
14000.
22000.
28000.
42000.
Operating
Cost
($K Year-1)
53.
70.
84.
120.
92.
120.
150.
200.
130.
180.
210.
300.
280.
360.
440.
610.
1300.
1700.
2000.
2700.
3000.
3800.
4500.
6000.
Yearly
Cost
($K Year-1)
110.
150.
190.
270.
180.
250.
310.
440.
260.
360.
440.
630.
520.
710.
870.
1200.
2200.
3000.
3600. -
5100.
4700.
6400.
7700.
11000.
Production
Cost
($ Kgal-1)
0.06
0.08
0.10
0.15
0.06
0.08
0.10
0.14
0.06
0.08
0.09
0.13
0.05
0.07
0.09
0.13
0.05
0.07
0.08
0.12
0.05
0.06
0.08
0.11
                                                                I

-------
   Estimated Equipment Size and Cost for
Removal of Phase II SOCs from Drinking Water
                    Via
        Packed Column Air Stripping
                 March 1989
                 Compound:
                 Heptachlor
  Henry's Coefficient • 0,034 at 12 Deg.  C
    U.S.  Environmental  Protection Agency
          Office of Drinking Water
         Technical  Support Division
           Cincinnati,  Ohio 45268

-------
I
 I

-------
                             Heptachlor

                              Table 1
                    DESIGN CRITERIA - March
                       1989
Design
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Plant
Capacity
(MGD)
0.024
0.024
0.024
0.024
0.024
0.024
0.087
0.087
0.087
0.087
0.087
0.087
0.270
0.270
0.270
0.270
0.270
0.270
0.650
0.650
0.650
0.650
0.650
0.650
1.80
1.80
1.80
1.80
1.80
1.80
4.80
4.80
4.80
4.80
4.80
4.80
                    0.006
                    0.006
                    0,006
                    0.006
                    0.006
                    0.006

                    0.024
                    0.024
                    0.024
                    0.024
                    0.024
                    0.024
                    0,
                    0.
                    0,
                    0,
                    0.
086
086
086
086
086
                    0.086

                    0.230
                    0.230
                    0.230
                    0.230
                    0.230
                    0.230

                    0.700
                    0.700
                    0.700
                    0.700
                    0.700
                    0.700

                    2.10
                   2.
                   2.
                   2.
                   2.
10
10
10
10
                   2.10
Removal
Efficiency
(%)
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
Cost Optim
Stripping
Fractor
1.2*
1.4
2.1
3.5
3.7
4.3
1.5
1.8
2.6
3.0
3.1
3.6
1.3
1.6
2.3
2.7
2.8
3.2
1.2
1.5
2.2
2.5
2.6
3.0
1.2
1.4
2.0
2.3
2.4
2.8
1.1
1.3
1.9
2.1
2.2
2.5
 180.
 170.
 120.
 120.
 120.
 120.

 160.
 160.
 140.
 140.
 120.
 130.

 160.
 150.
 140.
 130.
 130.
 120.

 150.
 140.
 120.
 110.
 110.
 no.

 130.
 120.
 100.
 99.
 100.
 96.

110.
100.
 92.
100.
100.
 99.
Design parameter held to limiting value.

-------
          Heptachlor  i

     Table 1 (continued)
 DESIGN CRITERIA - March 1989
Design
Number

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Plant
Capacity
(MGD)
11.0
11.0 .
11.0
11.0
11.0
11.0
18.0
18.0
18.0
18.0
18.0
18.0
26.0
26.0
26.0
26.0
26.0
26.0
51.0
51.0
51.0
51.0
51.0
51.0
210.
210.
210.
210.
210.
210.
430.
430.
430.
430.
430.
430.
   ,00
   ,00
   ,00
   .00
   .00
 5.00

 8.80
 8.80
 8.80
 8.80
 8.80
 8.80

 13.0
 13.0
 13.0
 13.0
 13.0
 13.0

 27.0
 27.0
 27.0
 27.0
 27.0
 27.0

120.
120.
120.
120.
120.
120.

270.
270.
270.
270.
270.
270.
Removal
Efficiency
Cost
Optimi
Stripping
(%) Fractor
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
60.
70.
90.
96.
97.
99.7
1.
1.
1.
2.
' 2.
2.
1.
1.
1.
2.
2.
! 2-
i l-
i.
! i
i 2
! 2
; 2
i
0
3
8
1
2
5
0
3
8
1
2
5
0
3
8
1
.2
.5
.0
1.3
! 1-8
: 2.1
2.2
2.5
1
1
1 1
! 2
2
2
; i
i 1
1
2
2
2
.0
.3
.8
.1
.2
.5
.0
.2
.8
.1
.2
.5
Air Gradient
(N m-2 m-1)

   120.
   110.
   100.
    99.
    99.
    95.

   110.
   110.
    97.
    94.
    93.
    90.

   110.
   100.
    95.
    92.
    91.
    88.

   110.
    99.
    90.
    88.
    87.
    84.

   100.
    91.
    83.
    81.
    80.
    78.

     99.
     86.
     77.
     75.
     75.
     72.
c
                                                                  1

-------
         Heptachlor

          Table 3
ESTIMATED COST - March 1989
Design
Number

1
2
3
4
5
.6
7
8
,9
10
11
12
13
14
15
16
17
18
19
20
21
22 ,
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Es1
Process
($K)
3.8
4.6
7.6
9.8
10.
16.
8.4
9.8
15.
19.
21.
31.
14.
17.
27.
35.
38.
59.
23.
23:
47.
62.
67.
110.
45.
56.
96.
130.
140.
220.
96.
120.
210.
280.
300.
480.
:i mated (
Support
($K)
7.8
8.3
10.
11.
12.
15.
13.
14.
17.
20.
20.
27.
20.
22.
29.
34.
36.
49.
32.
35.
47.
57.
61.
86.
58.
65.
93.
120.
120.
180.
~120.
130.
200.
250.
270. -
400.
Capital C(
Indirect
($K)
7.6
8.4
12.
14.
15.
: 20.
14.
15.
21.
25.
• -27.
38.
22.
25.
36.
46.
48. .
71.
36.
41.
61.
78.
84.
130.
68.
79.
.120.
160.
170.
260.
.140.
170.
270.
350.
370.
580.
>sts •
Total
(SK)
" 19.
21.
29.
35.
37.
50.
35.
39.
53.
64.
68.
95.
57.
64.
92.
120.
120.
180.
90.
100.
160.
200.
210.
320.
170.
200.
310.
410.
430.
660.
350.
420.
670.
870.
940.
1500.
Operating
. Cost
($K Year-1)
0.35
0.42
0.63
0.84
0.89
1.3
1.0
1.1
1.6
2.0
2.1
3.0
2.2
2.5
3.7
4.7
5.0
7.2
4.6
5.3
7.9
9.9
11.
.15.
12.
14.
20.
25.'
27.-
39:
32.
37. '
54.
69.
74.
110.
Yearly
Cost
($K Year-1)
2.6
2.9
4.0
5.0
5.2
7.1
5.2
5.7
7.8"
9.5
10.
14.
8.8
10.
14.
18.
19.
28.
15.
17. .'
26.
33.
35.
53.
32.
37.
57. "
73.
78.
120.
. 74. -
86.
130.
170.
180.
280.
Production
Cost
($ Kgal-1)
1.28
1.43
1.98
2.43
2.55
3.49
0.59
0.65
0.89
1.08
1.14
1.62
0.28
0.32
0.46
0.58
0.61'
0.90
0.18
0.21
0.31
0.39
0.42
0.62
0.12
0.15
0.22
0.28
0.30
0.46
0.10
0.11 .
0.17
0.22
0.24
0.37

-------
         Heptachlor

    Table 3 (continued)
ESTIMATED COST - March 1989
Design
Number

37
38
39
40
41
42
43
44
45 (
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
6:
61
63
64
65
66
67
6£
69
7C
71
72
Estimated Capital Costs
Process
($K)
200.
250.
440.
610.
660.
1100.
320.
400.
720.
990.
1100.
1700.
450.
570.
1000.
1400.
1500.
2500.
860.
1100.
2000.
2700.
2900.
4800.
3400..
4300.
7800.
11000.
12000.
19000.
6900.
8700.
16000.
22000.
£3000.
38000.
Support
($K)
230.
260.
410.
530.
570.
880.
360.
420.
660.
860.
920.
1400.
500.
590.
930.
1200.
1300.
2000.
910.
1100.
1800.
2300.
2500.
3900.
3200.
3900.
6600.
8900.
9600.
15000.
6200.
7700.
13000.
18000.
19000.
31000.
Indirect
($K)
280.
330.
560.
750.
810.
1300.
440.
530.
900.
1200.
1300.
2100.
620.
760.
1300.
1700.
1900.
3000.
1200.
1400.
2400.
3300.
3600.
5700.
4300.
5400.
9500.
13000.
14000.
22000.
8600.
11000.
19000.
26000.
28000.
45000.
Total
($K)
700.
850.
. 1400.
1900.
2000.
3200.
1100.
1300.
2300.
3100.
3300.
5200.
1600.
1900.
3200.
4300.
4700.
7500.
2900.
3600.
6200.
8300.
9000.
14000.
11000.
14000.
24000.
32000.
35000.
56000.
22000.
27000.
48000.
66000.
71000.
110000.
Operating
Cost
($K Year-1)
76.
87.
130.
160.
170.
250.
130.
150.
220.
270.
290.
420.
190.
220.
320.
400.
420.
610.
390.
440.
650.
810.
850.
1200.
1800.
2000.
2800.
3500.
3700.
5300.
4100.
4500.
6300.
7700.
8200.
11000.
Yearly
Cost
($K Year-1)
160.
190.
290.
. 380.
410.
630.
260.
310.
490.
630.
680.
1000.
370.
440.
700.
910.
970. -
1500.
740.
870.
1400.
1800.
1900.
2900.
. 3100.
3600.
5600.
7300.
7800.
12000.
6600.
7700.
12000.
15000.
17000.
25000.
Production
Cost
($ Kgal-1)
0.09
0.10
0.16
0.21
0.23
0.34
0.08
0.10
0.15 .
0.20
0.21 ;
0.32 ;
0.08 '
0.09
0.15
0.19
0.21
0.31
0.07
0.09
0.14
0.18 .
0.19
0.30
0.07
0.08
0.13
0.17
0.18
0.27
0.07
0.08
0.12
0.16
0.17
0.25
                                                                I
                                                                Q

-------
                              Heptachlor

                               Table 2
                       SYSTEM SIZE - March
                                    1989
Design
Number
Load-
Liquid
(6PM
ft-2)
ngs
Air
{SCFM
ft-2)
Air:
Water
Ratio
Mass
Trans.
Coef.
(sec-1)
Number
of
Columns
Column
Diameter
(ft)
Packing
Height
(ft)
Air
Flow
(SCFM)
Air
Pressure
(inch
H20)
 1
 2
 3
 4
 5
 6

 7
 8
 9
10
11
12

13
14
15
16
17
18

19
20
21
22
23
24

25
26
27
28
29
30

31
32
33
34
35
36
30.
26.
18.
12.
12.
10.

25.
22.
16.
14.
13.
12.

27.
23.
17.
15.
15.
13.

27.
24.
17.
15.
15.
13.

27.
23.
17.
15.
15.
13.

27.
23.
17.
17.
16.
15.
150.
160.
160.
190.
190.
190.
38.
46.
67.
110.
120.
140. •
0.0092
0.0084
0.0065
0.0051
0.0050
0.0046
160.
170.
180.
190.
180.
190.
47.
57.
84.
98.
100.
120.
0.0082
0.0076
0.0062
0.0057
0.0054
0.0051
150.
160.
170.
180.
180;
180.
42.
51.
75.
87.
90.
100.
0.0086
0.0079
0.0064
0.0059
0.0058
0.0053
150.
150.
160.
170.
170.
170.
40.
48.
70.
81.
83.
97.
0.0086
0.0078
0.0064
0.0059
0.0058
0.0053
140.
140.
150.
150.
160.
160.

130.
130.
140.
150.
150.
160.
37.
45.
65.
76.
78.
91.

36.
43.
62.
68.
70.
81.
0.0084
0.0077
0.0063
0.0058
0.0058
0.0053

0.0082
0.0075
0.0062
0.0062
0.0061
0.0057
                       1.0
                       1.0
                       1.0
                       1.0
                       1.0
                       1.0
                        ,0
                        .0
                        .0
                        .0
                       1.0
                       1.0
1.0
1.0

1.0
1.0
1.0
1.0
1.0
1.1
 0.8
 0.9
 1.1
 1.3
 1.3
 1.4

 1.7
 1.9
 2.2
 2.3
 2.4
 2.5

 3.0
 3.2
 3.7
 4.0
 4.0
 4.3

 4.6
 4.9
 5.7
 6.1
 6.2
 6.6

 7.7
 8.2
 9.6
10.2
10.3
11.0
12,
13,
15.8
16.0
16.0
16.0
11.
14.
22.
24.
26.
40.

 9.2
12.
20.
26.
28.
44.

10.
12.
21.
28.
30.
47.

10.
13.
22.
29.
31.
49.

11.
13.
23.
30.
33.
51.

11.
14.
23.
33.
36.
56.
   85.
  100.
  150.
  260.
  260.
  310.

  380.
  460.
  680.
  790.
  810.
  950.

 1100.
 1300.
 1900.
 2200.
 2300.
 2600.

 2400.
 2900.
 4200.
 4900.
 5000.
 5900.

 6200.
 7500.
11000.
13000.
13000.
15000.

16000.
19000.
28000.
30000.
31000.
36000.
4.4
4.8
5.3
5.6
5.9
8.0

3.8
4.2
5.5
6.4
6.3
9.1

4.0
4.3
5.5
6.4
6.7
9.0

3.9
4.2
5.2
6.1
6.3
8.4

3.7
4.0
4.9
5,7
6.0
8.0

3.5
3,7
4.7
6.1
6.5
8.8

-------
                              Heptachlor

                         Table 2 (continued)
                       SYSTEM SIZE - March 1989
Design
Number
Load
Liquid
(6PM
ft-2)
ngs
Air
(SCFM
ft-2)
Air:
Water
Ratio
Mass
Trans.
Coef.
(sec-1)
Number
of
Columns
Column
Diameter
(ft)
Packing
Height
(ft)
Air
Flow
(SCFM)
Air
Pressure
(inch
H20)
37
38
39
40
41
42

43
44
45
46
47
48

49
50
51
52
53
54

55
56
57
58
59
60

61
62
63
64
65
66

67
68
69
70
71
72
28.
25.
19.
17.
16.
14.

28.
24.
18.
16.
16.
14.

28.
24.
18.
16.
16.
14.

27.
24.
18.
16.
15.
14.

27.
23.
17.
15.
15.
13.

27.
22.
17.
15.
15.
13.
130.
130.
150.
150.
150.
160.

130.
130.
140.
150.
150.
150.
120.
130.
140.
140.
140.
150.
       34.
       41.
       59.
       68.
       70.
       80.

       34.
       41.
       59.
       68.
       70.
       81.
34.
41.
59.
68.
70.
80.
0.0086
0.0079
0.0066
0.0061
0.0061
0.0056

0.0084
0.0078
0.0065
0.0061"
0.0060
0.0055
120.
130.
140.
150.
150.
150.
34.
41.
59.
68.
70.
80.
O.OOS4
0.0077
0.0065
0.0060
0.0059
0.0055
0.0083
0.0076
0.0064
0.0059
0.0058
0.0054
120.
120.
130.
140.
140.
140.
34.
40.
58.
68.
70.
81.
0.0082
0.0074
0.0062
0.0058
0.0057
0.0053
 1.3
 1.5
 2.0
 2.3
 2.3
 2.6

 2.2
 2.6
 3.4
 3.8
 3.9
 4.4

 3.2
 3.7
 5.0
 5.6
 5.7
 6.4

 6.4
 7.5
 9.9
11.1
11.4
12.8
                      26.
                      31<
                      42,
                      47,
                      48.
                      54.6
                      16.0
                      16.0
                      16.0
                      16.0
                      16.0
                      16.0

                      16.0
                      16.0
                      16.0
                      16.0
                      16.0
                      16.0

                      16.0
                      16.0
                      16.0
                      16.0
                      16.0
                      16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
                             16.0
120.
120.
130.
130.
140.
140.
34.
40.
58.
68.
70.
81.
0.0081
0.0073
0.0061
0.0056
0.0055
0.0051
55.9
66.4
88.8
99.6
102.1
115.2
16.0
16.0
16.0
16.0
16.0
16.0
12.
15.
25.
33.
36.
56.
                          12.
                          15.
                          25.
                          33.
                          35.
                          56.

                          12.
                          14.
                          25.
                          33.
                          35.
                          55.

                          12.
                          14.
                          24.
                          33.
                          35.
                          55.

                          12.
                          14.
                          24.
                          32.
                          35.
                          55.
                                 34000.
                                 42000.
                                 60000.
                                 69000.
                                 71000.
                                 82000.
12.
15.
25.
33.
35.
56.
56000
68000
98000
110000
120000
130000
       81000.
       98000.
      140000.
      160000.
      170000.
      190000.

      160000.
      190000.
      280000.
      320000.
      330000.
      380000.

      650000.
      790000.
     1100000.
     1300000.
     1400000.
     1600000.

     1300000.
     1600000.
     2300000.
     2700000.
     2800000.
     3200000.
3.7
4.0
5.1
6.0
6.3
8.5

3.7
3.9
5.0
5.8
6.1
8.2

3.6
3.9
4.9
5.7
6.0
8.0

3.6
3.8
4.7
5.5
5.8
7.7

3.5
3.6
4.5
5.2
5.5
7.3

3.4
3.5
4.3
5.0
5.2
6.9
t

-------