&EPA
          United States
          Environmental Protection
          Agency
            Office of Water
            4304
EPA 822-B-00-021
December 2000
Ambient Water Quality
Criteria Recommendations
Information Supporting the Development
of State and Tribal Nutrient Criteria

Rivers and Streams in
Nutrient Ecoregion XII

-------

-------
                                          EPA 822-B-00-021

      AMBIENT WATER QUALITY CRITERIA RECOMMENDATIONS
INFORMATION SUPPORTING THE DEVELOPMENT OF STATE AND TRIBAL
                        NUTRIENT CRITERIA

                                FOR

         RIVERS AND STREAMS IN NUTRIENT ECOREGION XII
                       Southeastern Coastal Plain

                    including all or parts of the States of

                  Alabama, Florida, Georgia, Mississippi

                    and the Tribes within the Ecoregion
            U.S. ENVIRONMENTAL PROTECTION AGENCY

                         OFFICE OF WATER
               OFFICE OF SCIENCE AND TECHNOLOGY
           HEALTH AND ECOLOGICAL CRITERIA DIVISION
                         WASHINGTON, D.C.
                          DECEMBER 2000

-------

-------
                                  FOREWORD

       This document presents EPA's nutrient criteria for Rivers and Streams in Nutrient
 Ecoregion XII. These criteria provide EPA's recommendations to States and authorized Tribes
 for use in establishing their water quality standards consistent with section 303(c) of CWA.
 Under section 303(c) of the CWA, States and authorized Tribes have the primary responsibility
 for adopting water quality standards as State or Tribal law or regulation. The standards must
 contain scientifically defensible water quality criteria that are protective of designated uses.
 EPA's recommended section 304(a) criteria are not laws or regulations - they are guidance that
 States and Tribes may use as a starting point for the criteria for their water quality standards.

       The term "water quality criteria" is used in two sections of the Clean Water Act, Section
 304(a)(l) and Section 303(c)(2).  The term has a different impact in each section. In Section 304,
 the term represents a scientific assessment of ecological and human health effects that EPA
 recommends to States and authorized Tribes for establishing water quality standards that
 ultimately provide a basis for controlling discharges or releases of pollutants or related
 parameters.  Ambient water quality criteria associated with specific waterbody uses when
 adopted as State or Tribal water quality standards under Section 303 define the level of a
 pollutant (or, in the case of nutrients, a condition) necessary to protect designated uses in ambient
 waters.  Quantified water quality  criteria contained within State or Tribal water quality standards
 are essential to a water quality-based approach to pollution control. Whether expressed as
 numeric criteria or quantified translations of narrative criteria within State or Tribal water quality
 standards, quantified criteria serve as a critical basis for assessing attainment of designated uses
 and measuring progress toward meeting the water quality goals of the Clean Water Act.

       EPA is developing section 304(a) water quality criteria for nutrients because States and
 Tribes consistently identify excessive levels of nutrients as a major reason why as much as half
 of the surface waters surveyed in  this country do not meet water quality objectives, such as full
 support of aquatic life.  EPA expects to develop nutrient criteria that cover four major types of
 waterbodies - lakes and reservoirs, rivers and streams, estuarine and coastal areas, and wetlands
 - across fourteen major ecoregions of the United States.  EPA's section 304(a) criteria are
 intended to provide for the protection and propagation of aquatic life and recreation. To support
 the development of nutrient criteria, EPA is publishing Technical Guidance Manuals that
 describe a process for assessing nutrient conditions in the four waterbody types.

       EPA's section 304(a) water quality criteria for nutrients provide numeric water quality
 criteria, as well as procedures by which to translate narrative criteria within State or Tribal water
 quality standards.  In the case of nutrients, EPA section 304(a) criteria establish values for causal
 variables (e.g., total nitrogen and total phosphorus) and response variables (e.g., turbidity and
 chlorophyll a). EPA believes that State and Tribal water quality standards need to include
 quantified endpoints for causal and response variables to provide sufficient protection of uses
 and to maintain downstream uses. These quantified endpoints will most often be expressed as
numeric water quality criteria or as procedures to translate a State or Tribal narrative criterion
into a quantified endpoint.
                                                                                      n

-------
              EPA will work with States and authorized Tribes as they adopt water quality
criteria for nutrients into their water quality standards. EPA recognizes that States and
authorized Tribes require flexibility in adopting numeric nutrient criteria into State and Tribal
water quality standards. States and authorized Tribes have several options available to them.
EPA recommends the following approaches, in order of preference:

       (1) Wherever possible, develop nutrient criteria that folly reflect localized conditions and
       protect specific designated uses using the process described in EPA's Technical Guidance
       Manuals for nutrient criteria development. Such criteria may be expressed either as
       numeric criteria or as procedures to translate a State or Tribal narrative criterion into a
       quantified endpoint in State or Tribal water quality standards.

       (2) Adopt EPA's section 304(a) water quality criteria for nutrients, either as numeric
       criteria or as procedures to translate a State or Tribal narrative nutrient criterion into a
       quantified endpoint.

       (3) Develop nutrient criteria protective of designated uses using other scientifically
       defensible methods and appropriate water quality data.
                                               Geoffrey
                                               Office o
 Grubjfe, Director
cienge and Technology
                                                                                     111

-------
                                     DISCLAIMER

       This document provides technical guidance and recommendations to States, authorized
Tribes, and other authorized jurisdictions to develop water quality criteria and water quality
standards under the Clean Water Act (CWA) to protect against the adverse effects of nutrient
overenrichment. Under the CWA, States and authorized Tribes are to establish water quality
criteria to protect designated uses. State and Tribal decision-makers retain the discretion to adopt
approaches on a case-by-case basis that differ from this guidance when appropriate and
scientifically defensible.  While this document contains EPA's scientific recommendations
regarding ambient concentrations of nutrients that protect aquatic resource quality, it does not
substitute for the CWA or EPA regulations; nor is it a regulation itself. Thus it cannot impose
legally binding requirements on EPA, States, authorized Tribes, or the regulated community, and
it might not apply to a particular situation or circumstance. EPA may change this guidance in the
future.
                                                                                    IV

-------

-------
                               EXECUTIVE SUMMARY
Nutrient Program Goals
       EPA developed the National Strategy for the Development of Regional Nutrient Criteria
(National Strategy) in June 1998.  The strategy presents EPA's intentions to develop technical
guidance manuals for four types of waters (lakes and reservoirs, rivers and streams, estuaries and
coastal waters, and wetlands) and produce section 304(a) criteria for specific nutrient ecoregions
by the end of 2000. In addition, the Agency formed Regional Technical Assistance Groups
(RTAGs) which include State and Tribal representatives working to develop more refined and
more localized nutrient criteria based on approaches described in the waterbody guidance
manuals. This document presents EPA's current recommended criteria for total phosphorus, total
nitrogen, chlorophyll a, and turbidity for rivers and streams in Nutrient Ecoregion XII
(Southeastern Coastal Plain) which were derived using the procedures described in the Rivers
and Streams Nutrient Criteria Technical Guidance Manual (U.S. EPA,  2000b).

       EPA's ecoregional nutrient criteria are intended to address cultural eutrophication- the
adverse effects of excess nutrient inputs. The criteria are empirically derived to represent
conditions of surface waters that are minimally impacted by human activities and protective of
aquatic life, and recreational uses.  The information contained in this document represent starting
points for States and Tribes to develop (with assistance from EPA) more refined nutrient criteria.

       In developing these criteria recommendations, EPA followed a process which included,
to the extent they were readily available, the following elements critical to criterion derivation:'

•     Historical and recent nutrient data in Nutrient Ecoregion Xn.
      Data sets from Legacy STORET, NASQAN, and NAWQA were used to assess nutrient
      conditions within Nutrient Ecoregion XII from 1990 to 1998.

•     Reference sites/reference conditions in Nutrient Ecoregion XII.
       Reference sites/reference conditions in Nutrient Ecoregion XH  were based on the stream
      population distribution approach using a representative sample of all streams within the
      Ecoregion (see Nutrient Criteria Technical Guidance Manual-Rivers and Streams, July
      2000, EPA-822-BOO-002). The 25th percentile of all data for TN and TP, chlorophyll a
      (where applicable in slower moving, deeper streams) and turbidity data sets resulted in
      the following values: TP: 4.0 mg/L, TN: 0.9 mg/L, water column chlorophyll a: 0.4
      Aig/L, and turbidity of approximately 2.0 NTU.  In streams characterized by high humic
      content, the water color may limit plant growth and in this case nutrient transport
      downstream becomes potentially of greater importance. The Aggregate Ecoregion and
      Level JJI ecoregion values are similar because this Ecoregion contains only one
      subecoregion.  States and Tribes are urged to determine their own reference sites for
      rivers and streams within the ecoregion at different geographic scales and to compare
      them to EPA's reference  conditions.

-------
•     Models employed for prediction or validation.
      EPA did not identify any specific models used in the ecoregion to develop nutrient
      criteria. States and Tribes are encouraged to identify and apply appropriate models to
      support nutrient criteria development.

•     RTAG expert review and consensus.
      EPA recommends that when States and Tribes prepare their nutrient criteria, they obtain
      title expert review and consent of the RTAG.

•     Downstream effects of criteria.
      EPA encourages the RTAG to assess the potential effects of the proposed criteria on
      downstream water quality and uses.

      In addition, EPA followed specific QA/QC procedures during data collection and
analysis: All data were reviewed for duplications.  All data are from ambient waters that were
not located directly outside a permitted discharger. The data used to develop Ecoregion XII
nutrient criteria met the following QA/QC parameters: all data have reproducible analytical
techniques associated with them; all measured data are from certified laboratories.

      The following tables contain a summary of Aggregate and level IE ecoregion values for
TN, TP, water column chl a, and turbidity:

      BASED ON 25th PERCENTILES ONLY
Nutrient Parameters
Total phosphorus C"g/L)
Total nitrogen (mg/L)
Chlorophyll a (Aig/L) (Spectrophotometric
method)
Turbidity (NTU)
Aggregate Nutrient Ecoregion^XII
Reference Conditions (same as EcoR'75)
40.0
0.9
0.40
1.9
                                                                                   VI

-------
                    NOTICE OF DOCUMENT AVAILABILITY

This document is available electronically to the public through the INTERNET at:
(http://www.epa.gov/OST/standards/nutrient.html). Requests for hard copies of the document
should be made to EPA's National Service Center for Environmental Publications (NSCEP),
11029 Kenwood Road, Cincinnati, OH 45242; (513) 489-8190 or toll free (800) 490-9198.
Please refer to EPA document number EPA-822-B-00-021.
                                                                               vn

-------

-------
                              ACKNOWLEDGMENTS

The authors thankfully acknowledge the contributions of the following State and Federal
reviewers: EPA Region 4; the States of Florida and Georgia; the Tribes within the Ecoregion;
EPA Headquarters personnel from the Office of Wetlands, Oceans and Watersheds, Office of
Wastewater Management, Office of General Counsel, Office of Research and Development, and
the Office of Science and Technology.  EPA also acknowledges the external peer review efforts
of Eugene Welch (University of Washington), Robert Carlson (Kent State University), Steve
Heiskary (Minnesota Pollution Control Agency), Greg Denton and Sherry Wang (Tennessee
Department of Environment and Conservation), and Gerhard Kuhn (U.S. Geological Survey).
                                                                                 vin

-------

-------
                          LISTS OF TABLES AND FIGURES
Figures

Figure 1

Figure 2

FigureS

Figure 4a

Figure 4b


Tables

Table 1


Table 2

Table 3
Aggregate Ecoregion XII  	7

Aggregate Ecoregion XII with level IE ecoregions shown  	8

Sampling locations within each level in ecoregion   	11

Illustration of data reduction process for stream data	18

Illustration of reference condition calculation	19
Rivers and Streams records for Aggregate Ecoregion XTI-Southern
Coastal Plain	 12

Reference conditions for Aggregate Ecoregion XII streams  ... 13

Reference conditions for level El ecoregion streams	14
                                                                                     IX

-------

-------
                               TABLE OF CONTENTS

Foreword	 a

Disclaimer	iv

Executive Summary	v

Notice of Document Availability	 vii

Acknowledgments	viii

List of Tables and Figures	ix

Table of Contents  	x

1.0 Introduction	1

2.0 Best Use of this Information	4

3.0 Area Covered by This Document (waterbody type and ecoregion)  	6
       3.1  Description of Aggregate Ecoregion XH-Southern Coastal Plain 	6.
       3.2  Geographical Boundaries of Aggregate Ecoregion XII  	7
       3.3  Level III Ecoregions within Aggregate Ecoregion XII	8

4.0 Data Review for Rivers and Streams in Aggregate Ecoregion XII  	9
       4.1  Data Sources	 T	9
       4.2  Historical Data from Aggregate Ecoregion XE (TP, TN, Chi a, Turbidity)	9
       4.3  QA/QC of Data Sources  	10
       4.4  Data for All Rivers/Streams within Aggregate Ecoregion XH 	10
       4.5  Statistical Analysis of Data	10
       4.6  Classification of River/Stream Type	16
       4.7. Summary of Data Reduction Methods	16

5.0 Reference Sites and Conditions in Aggregate Ecoregion XH	17

6.0 Models Used to Predict or Verify Response Parameters  	17

7.0 Framework for Refining Recommended Nutrient Criteria for Rivers and Streams in
    Aggregate Ecoregion XH	20
       7.1 Example Worksheet for Developing Aggregate Ecoregion and Subecoregion Nutrient
          Criteria  	20

                                                                                   x

-------
       7.2  Tables of Refined Nutrient Water Quality Criteria for Aggregate Ecoregion XII and
            Level HE Subecoregions 	21
       7.3  Setting Seasonal Criteria	23
       7.4  When Data/Reference Conditions Are Lacking  	23
       7.5  Site-Specific Criteria Development	23

8.0  Literature Cited  	24

9.0 Appendices	24
                                                                                    XI

-------
 1.0    INTRODUCTION

 Background

       Nutrients are essential to the health and diversity of our surface waters. However, in
 excessive amounts, nutrients cause hypereutrophication, which results in overgrowth of plant life
 and decline of the biological community.  Excessive nutrients can also result in potential human
 health risks, such as the growth of harmful algal blooms - most recently manifested in the
 Pfiesteria outbreaks of the Gulf and East Coasts. Chronic nutrient overenrichment of a
 waterbody can lead 'to the following consequences: low dissolved oxygen, fish kills, algal
 blooms, overabundance of macrophytes, likely increased sediment accumulation rates, and
 species shifts of both flora and fauna.

       Historically, National Water Quality Inventories have repeatedly shown that nutrients are
 a major cause of ambient water quality use impairments. EPA's 1996 National Water Quality
 Inventory report identifies excessive nutrients as the leading cause of impairment in lakes and the
 second leading cause of impairment in rivers (behind siltation). In addition, nutrients were the
 second leading cause of impairments reported by the States in their 1998 lists of impaired waters.
 Where use impairment is documented, nutrients contribute roughly 25-50% of the impairment
 nationally. The Clean Water Act establishes a national goal to achieve, wherever attainable,
 water quality which provides for the protection and propagation offish, shellfish, and wildlife
 and recreation in and on the water. In adopting water quality standards, States and Tribes
 designate uses for their waters in consideration of the Clean Water Act goals, and establish water
 quality criteria that contain sufficient parameters to protect those uses. To date, EPA has not
 published information and recommendations under section 304(a) for nutrients to assist States
 and Tribes in establishing numeric nutrient criteria to protect uses when adopting water quality
 standards.
       In 1995, EPA gathered a set of national experts and asked the experts how to best deal
with the national nutrient problem.  The experts recommended that the Agency not develop
single criteria values for phosphorus or nitrogen applicable to all water bodies and regions of the
country. Rather, the experts recommended that EPA put a premium on regionalization, develop
guidance (assessment tools and control measures) for specific waterbodies and ecological regions
across the country, and use reference conditions (conditions that reflect pristine or minimally
impacted waters) as a basis for developing nutrient criteria.

       With these suggestions as starting points,  EPA developed the National Strategy for the
Development of Regional Nutrient Criteria (National Strategy), published in June 1998.  This
strategy presented EPA's intentions to develop technical guidance manuals for four types of
waters (lakes and reservoirs, rivers and streams, estuaries and coastal waters, and wetlands) and,
thereafter, to publish section 304(a) criteria recommendations for specific nutrient ecoregions.
Technical guidance manuals for lakes/reservoirs and rivers/streams were published in April 2000
and July 2000, respectively. The technical guidance manual for estuaries/coastal waters will be
published in spring 2000 and the draft wetlands technical guidance manual will be published by

-------
December 2001. Each manual presents EPA's recommended approach for developing nutrient
criteria values for a specific waterbody type. In addition, EPA is committed to working with
States and Tribes to develop more refined and more localized nutrient criteria based on
approaches described in the waterbody guidance manuals and this document.

Overview of the Nutrient Criteria Development Process

       For each Nutrient Ecoregion, EPA developed a set of recommendations for two causal
variables (total nitrogen and total phosphorus) and two early indicator response variables
(chlorophyll a and some measure of turbidity). Oilier indicators such as dissolved oxygen and
macrophyte growth or speciation, and other fauna and flora changes are also deemed useful.
However, the first four are considered to be the best suited for protecting designated uses.

       The technical guidance manuals describe a process for developing nutrient criteria that
involves consideration of five factors. The first of these is the Regional Technical Assistance
Group (RTAG), which is a body of qualified regional specialists able to objectively evaluate all
of the available evidence and select the value(s) appropriate to nutrient control in the water
bodies of concern. These specialists may come from such disciplines as limnology, biology,
natural resources management— especially water resource management, chemistry, and ecology.
The RTAG evaluates and recommends appropriate classification techniques for criteria
determination, usually physical within an ecoregional construct.

       The second factor is the historical information available to establish a perspective of the
resource base. This is usually data and anecdotal information available within the past ten-
twenty five years. This information gives evidence about the background and enrichment trend
of the resource.

       The third factor is the present reference condition. A selection of reference sites chosen
to represent the least culturally impacted waters of the class existing at the present time. The
data from these sites is combined and a value from the distribution of these observations is
selected to represent the reference condition, or best attainable, most natural condition of the
resource base at this time.

       A fourth factor often employed is theoretical or empirical models of the historical and
reference condition data to better understand the condition of the resource.
       The RTAG comprehensively evaluates the other three elements to propose a candidate
criterion (initially one each for TP, TN, chl a, and some measure of turbidity).

       The last and final element of the criteria development process is the assessment by the
RTAG of the likely downstream effects of the criterion. Will there be a negative, positive, or
neutral effect on the downstream waterbody? If the RTAG judges that a negative effect is likely,

-------
 then the proposed State/Tribal water quality criteria should be revised to ameliorate the potential
 for any adverse downstream effects.

       While States and authorized Tribes would not necessarily need to incorporate all five
 elements into their water quality criteria setting process (e.g., modeling may be significant in
 only some instances), the best assurance of a representative and effective criterion for nutrient
 management decision making is the balanced incorporation of all five elements, or at least all
 elements except modeling.

       Because some parts of the country have naturally higher soil and parent material
 enrichment, and different precipitation regimes, the application of the criterion development
 process has to be adjusted by region.  Therefore, an ecoregional approach was chosen to develop
 nutrient criteria appropriate to each of the different geographical and climatological areas of the
 country. Initially, the continental U.S. was divided into 14 separate ecoregions of similar
 geographical characteristics.  Ecoregions are defined as regions of relative homogeneity in
 ecological systems; they depict areas within which the mosaic of ecosystem components (biotic
 and abiotic as well as terrestrial and aquatic) is different than adjacent areas in a holistic sense.
 Geographic phenomena such as soils, vegetation, climate, geology, land cover, and physiology
 that are associated with spatial differences in the quantity and quality of ecosystem components
 are relatively similar within each ecoregion.

       The Nutrient ecoregions are aggregates of U.S. EPA's hierarchal level HI ecoregions. As
 such, they are more generalized and less defined than level III ecoregions. EPA determined that
 setting ecoregional criteria for the large scale aggregates is not without its drawbacks  - variability
 is high due to the lumping of many waterbody classes, seasons, and years worth of multipurpose
 data over a large geographic area. For these reasons,  the Agency recommends that States and
 Tribes develop nutrient criteria at the level IE ecoregional scale and at the waterbody  class scale
 where those data are readily available. Data analyses and recommendations on both the large
 aggregate ecoregion scale as well as more refined scales (level ffl ecoregions and waterbody
 classes), where data were available to make such assessments, are presented for comparison
 purposes and completeness of analysis.

 Relationship of Nutrient Criteria to Biological Criteria

       Biological criteria are quantitative expressions of the desired condition of the aquatic
 community. Such criteria can be based on an aggregation of data from sites that represent the
 least-impacted and attainable condition for a particular waterbody type in an ecoregion,
 subecoregion, or watershed. EPA's nutrient criteria recommendations and biological criteria
recommendations have many similarities in the basic  approach to their development and data
requirements.  Both are empirically derived from statistical analysis of field collected  data and
expert evaluation of current reference conditions  and historical information.  Both utilize direct
measurements from the environment to integrate  the effects of complex processes that vary
according to type and location of waterbody. The resulting criteria recommendations, in both
cases, are efficient and holistic indicators of water quality necessary to protect uses.

-------
       States and authorized Tribes can develop and apply nutrient criteria and biological criteria
in tandem, with each providing important and useful information to interpret both the nutrient
enrichment levels and the biological condition of sampled waterbodies. For example, using the
same reference sites for both types of criteria can lead to efficiencies in both sample design and
data analysis. In one effort, environmental managers can obtain information to support
assessment of biological and nutrient condition, either through evaluating existing data sets or
through designing and conducting a common sampling program. The traditional biological
criteria variables of benthic invertebrate and fish sampling can be readily incorporated to
supplement a nutrient assessment. To demonstrate the effectiveness of this tandem approach,
EPA has initiated pilot projects in both freshwater and marine environments to investigate the
relationship between nutrient overenrichment and apparent declines in diversity indices of
benthic invertebrates and fish.

2.0    BEST USE OF THIS  INFORMATION
       EPA recommendations published under section 304(a) of the CWA serve several
purposes, including providing guidance to States and Tribes in adopting water quality standards
for nutrients that ultimately provide a basis for controlling discharges or releases of pollutants.
The recommendations also provide guidance to EPA when promulgating Federal water quality
standards under section 303(c) when such action is necessary. Other uses include identification
of overenrichment problems, management planning, project evaluation, and determination of
status and trends of water resources.

       State water quality inventories and listings of impaired waters consistently rank nutrient
overenrichment as a top contributor to use impairments.  EPA's water quality standards
regulations at 40 CFR §131.11(a) require States and Tribes to adopt criteria that contain
sufficient parameters and constituents to protect the designated uses of their waters. In addition,
States and Tribes need quantifiable targets for nutrients in their standards to assess attainment of
uses, develop water quality-based permit limits and source control plans, and establish targets for
total maximum daily loads (TMDLs).

       EPA expects States and Tribes to address nutrient overenrichment in their water quality
standards, and to build on existing State and Tribal initiated efforts where possible. States and
Tribes can address nutrient overenrichment through establishment of numerical criteria or
through use of new or existing narrative criteria statements (e.g., free from excess nutrients that
cause or contribute to undesirable or nuisance aquatic life or produce adverse physiological
response in humans, animals, or plants). In the case of narrative criteria, EPA expects that States
and Tribes establish procedures to quantitatively translate these statements for both assessment
and source control purposes.

       The intent of developing ecoregional nutrient criteria is to represent conditions of surface
waters that are minimally impacted by human activities and thus protect against the adverse
effects of nutrient overenrichment from cultural eutrophication.  EPA's recommended process
for developing such criteria includes physical classification of waterbodies, determination of

-------
 current reference conditions, evaluation of historical data and other information (such as
 published literature), use of models to simulate physical and ecological processes or determine
 empirical relationships among causal and response variables (if necessary), expert judgement,
 and evaluation of downstream effects. To the extent allowed by the information available, EPA
 has used elements of this process to produce the information contained in this document. The
 values for both causal (total nitrogen, total phosphorus) and biological and physical response
 (chlorophyll a, turbidity) variables represent a set of starting points for States and Tribes to use in
 establishing their own criteria, in standards to protect uses.  -

       In its water quality standards regulations, EPA recommends that States and Tribes
 establish numerical criteria based on section 304(a) guidance, section 304(a) guidance modified
 to reflect site-specific conditions, or other scientifically defensible methods. For many
 pollutants, such as toxic chemicals, EPA expects that section 304(a) guidance will provide an
 appropriate level of protection without further modification in most cases.  EPA has also
 published methods for modifying 304(a) criteria on a site-specific basis, such as the water effect
 ratio, where site-specific conditions warrant modification to achieve the intended level of
 protection. For nutrients, however, EPA expects that, in most cases, it will be necessary for
 States and authorized Tribes to identify with greater precision the nutrient levels that protect
 aquatic life and recreational uses.  This can be achieved through development of criteria modified
 to reflect conditions at a smaller geographic scale than an ecoregion such as a subecoregion, the
 State or Tribe level, or specific class of waterbodies. Criteria refinement .can occur by grouping
 data or performing data analyses at these smaller geographic scales. Refinement can also occur
 through further consideration of other elements of criteria development, such as published
 literature or models.

       The values presented in this document generally represent nutrient levels that protect
 against the adverse effects of nutrient overenrichment and are based on information available to
 the Agency at the time of this publication. However, States and Tribes should critically evaluate
 this information in light of the specific designated uses that need to be protected. For example,
 more sensitive uses may require more stringent values as criteria to ensure adequate protection.
 On the other hand, overly stringent levels of protection against the adverse effects of cultural
 eutrophication may actually fall below levels that represent the natural load of nutrients for
 certain waterbodies. In cases such as these, the level of nutrients specified may not be sufficient
 to support a productive fishery. In the criteria derivation process, it is important to distinguish
 between the natural  load associated with a specific waterbody and current reference conditions,
 using historical data and expert judgement.  These elements of the nutrient criteria derivation
 process are best addressed by States and Tribes with access to information and local expertise.
 Therefore, EPA strongly encourages States and Tribes to use the information contained in this
 document and to develop more refined criteria according to the methods described in EPA's
 technical guidance manuals for specific waterbody types.

       To assist in the process of further refinement of nutrient  criteria, EPA has established ten
Regional Technical Advisory Groups (experts from EPA Regional Offices and States/Tribes).  In
the process of refining criteria, States and authorized Tribes need to provide documentation of

-------
data and analyses, along with a defensible rationale, for any new or revised nutrient criteria they
submit to EPA for review and approval.  As part of EPA's review of State and Tribal standards,
EPA intends to seek assurance from the RTAG that proposed criteria are sufficient to protect
uses.

       In the process of using the information and recommendations contained in this document,
as well as additional information, to develop numerical criteria or procedures to translate
narrative criteria, EPA encourages States and Tribes to:

•      Address both chemical causal variables and early indicator response variables. Causal
       variables are necessary to provide sufficient protection of uses before impairment occurs
       and to maintain downstream uses. Early response variables are necessary to provide
       warning signs of possible impairment and to integrate the effects of variable and
       potentially unmeasured nutrient loads.
•      Include variables that can be measured to determine if standards are met, and variables
       that can be related to the ultimate sources of excess nutrients.
•      Identify appropriate periods of duration (i.e., how long) and frequency (i.e., how often) of
       occurrence in addition to magnitude (i.e., how much).  EPA does not recommend
       identifying nutrient concentrations that must be met at all times, rather a seasonal or
       annual averaging period (e.g., based on weekly measurements) is considered appropriate.
       However, these seasonal or annual central tendency measures should apply each season
       or each year, except under the most extraordinary of conditions (e.g., a 100 year flood).

3.0    AREA COVERED BY THIS DOCUMENT

       The following sections provide a general description of the aggregate ecoregion and its
geographical boundaries. Descriptions of the level IE ecoregions contained within the aggregate
ecoregion are also provided.

3.1    Description of Aggregate Ecoregion XII-Southern Coastal Plain

       The hot, low-lying Southern Coastal Plain ecoregion contains concentrations of swamps,
marshes, and lakes.  The region is nearly level; it has more lakes than the neighboring
Southeastern Temperate Forested Plains and Hills (IX) or the Southern Florida Coastal Plain
(Xm) and it is flatter than Region IX. It is underlain by limestone and has a sandy mantle of
varying thicknesses. Sand hills reach over 200 feet elevation and are nutrient-poor. Karst
topography occurs and is particularly extensive in the Big Bend area from eastern Wakulla
County south to Pasco County. Thousands of lakes dot the region and have varying trophic
states; they are far more numerous than in adjacent nutrient regions. Woodlands, forests, citrus
orchards, vegetable farming, and pastures dominate most of the region.  Locally, urban and
suburban areas are common and have grown rapidly in the last fifty years.  Surficial water quality
has been significantly affected by human activity including urban development, industry,
agriculture, silviculture, water management activity, and mining. Stream nutrient levels have

-------
been increased by runoff from sewage treatment plants, weathered rock, phosphate mines,
fertilizer plants, citrus orchards, and other farms. Dissolved oxygen concentrations have been
lowered by the effects of nutrient enrichment. Suspended sediment has been added to streams by
agriculture and logging. Lake quality varies throughout the region.  Highest median total
phosphorus levels and total nitrogen concentrations are in the lakes of the southwest.

3.2    Geographical Boundaries of Ecoregion XII

       Ecoregion XII encompasses the southeast corner of Geogia (excluding the immediate
coastline) and a large segment of central and Gulf of Mexico coastal Florida (Figure 1).
             Aggregate Nutrient Ecoregion 12
Figure 1.     Aggregate Ecoregion XII.

-------
 3.3     Level HI Ecoregions Within Aggregate Ecoregion XII

 There is one Level m ecoregion contained within Aggregate Ecoregion XII (Figure 2). The
 following provides brief descriptions of the climate, vegetative cover, topography, and other
 ecological information pertaining to this subecoregion.
                      Aggregate Nutrient Ecoregion 12
                             Ecoregion ID
Figure 2.     Ecoregion XII with level III subecoregion shown.
75. Southern Coastal Plain
This Aggregate Ecoregion XII consists only of a single subecoregion (subecoregion 75). The
Southern Coastal Plain consists of mostly flat plains with numerous swamps, marshes and lakes.
This ecoregion is warmer, more heterogeneous, and has a longer growing season and coarser
textured soils than the Middle Atlantic Coastal Plain. Once covered by a forest of beech,
sweetgum, southern magnolia, slash pine, loblolly pine, white oak, and laurel oak, land cover in
the region is now mostly longleaf-slash pine forest, oak-gum-cypress forest in some low lying
areas, pasture for beef cattle, and urban development.

-------
 Suggested Ecoregional subdivisions or adjustments.

        To date, rivers and streams in this document have not been classified into further physical
 types.  This would be a necessary activity if additional refinement to the reference conditions and
 key nutrient indicator variables is desired. EPA recommends that the RTAG evaluate the
 adequacy of EPA nutrient ecoregional and subecoregional boundaries and refine them as needed
 to reflect local conditions.
 4.0   DATA REVIEW FOR ECOREGION XII

       The following section describes the nutrient data EPA has collected and analyzed for this
 Ecoregion, including an assessment of data quantity and quality. The data tables present the data
 for each causal parameter- total phosphorus and total nitrogen (both reported and calculated
 from TKN and nitrite/nitrate), and the primary response variables- some measure of turbidity
 and chlorophyll a. These are the parameters which EPA considers essential to nutrient
 assessment because the first two are the main causative agents of enrichment and the two
 response variables are the early indicators of system enrichment for most of the surface waters
 (see Chapter 3 of the Rivers and Streams Nutrient Criteria Technical Guidance Manual [U.S.
 EPA, 2000b] for a complete discussion on choosing causal and response variables.)

 4.1    Data Sources

       Data sets from Legacy STORET, NASQAN, and NAWQA were used to assess nutrient
 conditions froml990 to 1999. EPA recommends that the RTAGs identify additional data sources
 that can be used to supplement the data sets listed above.  In addition, the RTAGs may utilize
 published literature values to support quantitative and qualitative analyses.

 4.2    Historical Data from Ecoregion XII  for TP, TN, Chlorophyll a and Turbidity

       The long-term trend over the past 50 years has been for major urbanization and other land
 uses to occur in this ecoregion with attendant high potential for increased nutrient over-
 enrichment. Many lakes in this ecoregion are inter-connected via rivers and groundwater (e.g.,
 Karst topography) so that cross-contamination is highly plausible. Demographics suggest that'
 human population and land uses will continue to exacerbate the nutrient enrichment problem.
 Many of the rivers within Ecoregion XH lie within a short distance of the coast and the coast has
 continued to be a favorite location for development. EPA recommends that States/Tribes assess
 long-term trends observed over the past 50 years. This information may be obtained from
 scientific literature or documentation of historical trends. To gain additional perspective on more
recent trends, it is recommended that States and Tribes assess nutrient trends over the last 10
years (e.g., what do seasonal trends indicate?)

-------
4.3    QA/QC of data sources

An initial quality screen of data was conducted using the rules presented in Appendix C.  Data
remaining after screening for duplications and other QA measures (e.g., poor or unreported
analytical records, sampling errors or omissions, stations associated with outfalls, storm water
sewers, hazardous waste sites) were the data used in the statistical analyses.

       Rivers and streams stations were located in the following States: AL, GA, FL, MS, and
LA (very few).  These States were contacted regarding the quality of their data. The following
States provided information on the methods used to sample and analyze their waters: FL and
GA. These States indicated that a Standard method or an approved EPA method was used.  The
remaining States did not provide information prior to the publication of this document.

4.4    Data for all rivers and streams within Aggregate Ecoregion XII

       Figure 3 shows the location of the sampling stations within the subecoregion. Table 1
presents all data records for all parameters for Aggregate Ecoregion XH and the subecoregion
within the Aggregate Ecoregion.  More rivers occur in Georgia than lakes in Ecoregion XII
which is consistent with increased sampling in that State. The rivers of the Florida panhandle
appear to be sampled with a level of effort comparable to that of the Florida peninsula. Slightly
less sampling is suggested for the few rivers located in the States of AL and MS.

4.5    Statistical Analysis of Data

       EPA's Technical Guidance Manual for Developing Nutrient Criteria for Rivers and
Streams describes two ways of establishing a reference condition.  One method is to choose the
upper 25th percentile (75th percentile) of a reference population of streams. This is the preferred
method to establish a reference condition. The 75th percentile was chosen by EPA since it is
likely associated with minimally impacted conditions, will be protective of designated uses, and
provides management flexibility. When reference streams are not identified, the second method
is to determine the lower 25th percentile of the population of all streams within a region. The 25th
percentile of the entire population was chosen by EPA to represent a surrogate for an actual
reference population.  Data analyses to date indicate that the lower 25th percentile from an entire
population roughly approximates the 75th percentile for a reference population (see case studies
for Minnesota lakes in the Lakes and Reservoirs Nutrient Criteria Technical Guidance Document
[U.S. EPA, 2000a], the case study for Tennessee streams in the Rivers and Streams Nutrient
Criteria Technical Guidance Document [U.S. EPA, 2000b], and the letter from Tennessee
Department of Environment and Conservation to Geoffrey Grubbs [TNDEC, 2000]).  New York
State has also presented evidence that the 25th percentile and the 75th percentile compare well
based on user perceptions of water resources (NYSDEC, 2000).
                                                                                     10

-------
          Aggregate Nutrient Ecoregion  12
              River and Stream Stations
      Level III Eeoregions  r~~~\ us States
                       ' •   Stations
                  100
100
200 Miles
 H
4-
Figure 3.   Map of sampling locations within the level III ecoregion.
                                                        11

-------
Table 1.      Stream records for Aggregate Ecoregion XII -Southern Coastal Plain

# of River & Stream
Systems
# of Stream Stations
Key Nutrient Parameters
(listed below)
- # of records for Turbidity
(all methods)
- # of records for Chlorophyll
a (all methods) + Periphyton
- # of records for Total
Kjeldahl Nitrogen (TKN)
- # of records for Nitrate +
Nitrite (NO2 + NO3)
- # of records for Total
Nitrogen (TN)
- # of records for Total
Phosphorus (TP)
*Total # of records for key
nutrient parameters
Aggregate
Ecoregion
xn
773
1838

26,020
20,918
28,981
21,460
5,317
28,773
131,469
Sub
ecoR 75
773
1838

26,020
20,918
28,98 r
21, 460
5317
28,773
131,469
                                          *Note: See Section 7.5
             Definitions used to complete Table 1:<
             1. # of records refers to the total count oT observations forthaf parameter
             over the entire decade (1990-1999) forthat particular aggregate'or
             subecoregion. These are counts for all seasons over that decade f'Xv'
                                                       "    .'-'*<.'•<,    '—,'
             2. # of stream stations refers to the total number of river and stream
             stations within the aggregate or,subecoregion from which nutrient data,   •
             were collected. Since streams and rivers can cross ecoregional
             boundaries, it is important to notejiat onlyjhose portions of a-river or
             stream (and data associated with those stations) that exist within the
             ecoregion are included within this table, * „   ,      ~ '   '""/    •'
                                                                                         12

-------
        Tables 2 and 3 present potential reference conditions for both the aggregate ecoregion and
the subecoregions using both methods. However, the reference stream column is left blank
because EPA does not have reference data and anticipates that States/Tribes will provide
information on reference streams. Appendices A and B provide a complete presentation of all
descriptive statistics for both the aggregate ecoregion and the level III subecoregion.
       Table 2.
            Reference conditions for aggregate ecoregion XII streams.
Parameter
TKN (mg/L)
NO, + NO, (mg/L)
TN (mg/L) - calculated
TN (mg/L) - reported
*TP («g/L)
Turbidity (NTU)
Turbidity (FTU)
Turbidity (JCU)
Chlorophyll a («g/L) -F
Chlorophyll a («g/L) -S
Chlorophyll a (z/g/L) -T
Periphyton CM a (mg/rrf)
No. Of
. Streams
N++
479
428
NA
90
466
234
270
-
-
171
169
-
Reported values
Min
0.00
0.00
0.00
0.23
0.00
0.2
0.1
-
-
0.0
0.0
-
Max
5.00
8.77
13.77
3.39
2475.0
64.5
43.8
-
-
92.1
79.4
-
25"1 Percentiles based
on all seasons data for
the Decade
P25-all seasons*
,0.56
0.02
O.S8
0.90
40.00
1.9
2.0
-
-,
0.4
1.1
-
Reference Streams **
P75 -all seasons












*Note: see Section 7.5
 P25:
>P75:
                  25? percentile of all data.  < -;
           -H-
 E  •
 "s"
;T
,NA
        as determined by the Rional Technical sAss§tance l
        Me,dSan for aH^seasons' 25* percentiles, Erg.this value was^calZ&atedlrom/our
        seasons! 25*y^cent%sHtf Ihe seasonal 25* jpergentile (P25) TF, value^are'- spring   -
        lOag/L summert-SMg/l,^ fall 12«g/L, and;winrer 'Sug/lS, the-median-vaiue of all seasons
        P25wfflbellwg/L>  4  /'^ -.'<"/    J  -   .  M'          -*   _v Y %,  -
            J   /          'J*'B '~* -V^~- ^>      --if    ^^      f                 t-,  / f   £
        H == largestValuet'eported for a 'decade /-Season.' \-  ' ',_,  ,y f/       "    r~     ,
                                                     "''!'
                  INjep&rted is.,actual lijf vafoe repotted in t§e/database for one sample.   ,"
                  ©Uqrophyll«meas«fMbyFIiiorbmetricmelkodwiflLacidcoiTec'6oflT'* ,cj
                  Chlorophyll a measured by iSpectspp&otometiic metiiod with acid"coirectipji.
                                                                                            13

-------
              Table 3 presents potential reference conditions for rivers and streams in the Level
IE subecoregions within the Aggregate Ecoregion. Note that the footnotes for Table 2 apply to
Tables 3.
       Table 3.
Reference conditions for level III ecoregion 75 streams.
Parameter
TKN (mg/L)
NO, + NO, (mg/L)
TN (mg/L) - calculated
TN (mg/L) - reported
TP(«g/L)
Turbidity (NTU)
Turbidity (FTU)
Turbidity (JCU)
Chlorophyll a («g/L) -F
Chlorophyll a (ug/L) -S
Chlorophyll a (ugfL) -T
Periphyton Chi a (mg/m1)
No. of
Streams
N~
479
428
NA
90
466
234
270
-
-
171
169
-
Reported values
Min
0.00
0.00
0.00
0.23
0.00
0.2
0.1
-
-
0.0
0.0
-
Max
5.00
8.77
13.77
3.39
2475.0
64.5
43.8
-
-
92.1
79.4
-
25'" Percentiles based
on all seasons data for
the Decade
P25-aIl seasons*
0.56
0.02
0.58
0.90
40.00
1.9
2.0
-
-
0.4
1.1
-
Reference Streams **
P75 - all seasons












*Notc: see Section 7.5
                                                                                       14

-------
     Definitions used in fillingxTables 2 and 3 - Reference Condition tables, "^47 f\- *-  •"'"}, "- *•-,

     "if Number of Streams in TableJ^refeis ios the largest number ofstreams and jrivers for which data -
     existed'for33given^easb^within*an aggregate nutrient ec0regton.v    ~    ~  ••<-«

     2. Number^of Streams inTable ^refers to the number of streams and rivers fo&which datalsxisted for - -
     ,the summer months sinc.e sommerjs^generally wto thetgreatest &iqurit of ntftiient,sampliflg"'is
     Vonducted.'If,ariother season greatly predominate!, notification is'mlde (s^springj f=fell,-wj=wmter),  "s ^
                       ~    ^   ' **     *  ^ ,   *s     r        "'^               '    t       *''*
                    <• *               T^~, 'i' ^"       '"      ^    "      *         "•* f*.   S-  ' *)  ,
     3. Medians, Ait values (rain, max, and 25* pe{centiles}-included in tire table are based on watetbody-4-
     "medians. "All- data for,a particular parameter within a^streaililbr the decade wfcre; reduced to one median
     for th'atstearn; Tljis pfeyents_oYer-representation of indiviSal waterbodies with a"gr^at -^      *,'  x         -^ r ,  , , ar4    ~   ^^^

     5.,. A 25lh.percen|ile for a season is "best'derived with"data-from a minimum of 4 steeanu^easoii.  ~,
     However this^able provides 25iperc^ntiles~'flhat were derived with^ess.tfaan 4 stteams/season in order
     to retain all irrformation-for.all seasons. In"calculating the 25*-percentile;for^"seasoa-with less than 40
     stream medians, the statistical program joitomatically used thejEdatimmn valae~within the less-4han-4 -
     population, jtf kSss-than 4 streams jvfee'tised ittdeveloping a seasohal-quartiie and-or all-seasons
    ..median, the^entry4s£jagjged(zz). '*  -   ,  ',"" ^T^-*         -    *     ^     "• • --1  .-   -^
Preferred Data Choices and Recommendations When Data Are Missing

1. Where data are missing or are very low in total records for a given parameter, use 25th
percentiles for parameters within an adjacent, similar subecoregion within the same aggregate
nutrient ecoregion or when a similar subecoregion can not be determined, use the the 25th
percentile for the Aggregate ecoregion or consider the lowest 25th percentile from a subecoregion
(level III) within the aggregate nutrient ecoregion. The rationale being that without data, one
may assume that the subecoregion in question may be as sensitive as the most sensitive
subecoregion within the aggregate.

2. TN calculated: When reported Total Nitrogen (TN) median values are lacking or very low in
comparison to TKN and Nitrate/Nitrite-N. values, the medians for TKN and nitrite/nitrate-N were
added, resulting in a calculated TN value.   The number of samples (N) for calculated TN is not
filled in since it is represented by two subsamples of data:  TKN and nitrite/nitrate-N. Therefore,
N/A is placed in this box.

3. TN reported: This is the median based on reported values for TN from the database.
                                                                                               15

-------
4. Chlorophyll a: Medians based on all methods are reported, however, the acid corrected
medians are preferred to the uncorrected medians. In developing a reference condition from a
particular method, it is recommended that the method with the most observations be used.
Fluorometric and Specrrophotometric are preferred over all other methods. However, when no
data exist for Fluorometric and Spectrophotometric methods, Trichromatic values may be used.
Data from the variance techniques are not interchangeable.

5. Periphyton:  Where periphyton data exist, record them separately  For periphyton-dominated
streams, a measure of periphyton chlorophyll is a more appropriate response variable than
planktonic chlorophyll a.  See Table 4, p. 101 of the Rivers and Streams Nutrient Technical
Guidance Manual (U. S. EPA, 2000b) for values of periphyton and planktonic chlorophyll a
related to eutrophy in streams.

6. Secchi depth: The 75th percentile is reported for Secchi depth since this is the only variable
for which the value of the parameter increases with greater clarity. (For lakes and reservoirs
only.)

7. Turbidity units:  All turbidity units from all methods are reported. FTUs and NTUs are
preferred over JCUs. If FTUs and NTUs do not exist, use JCUs.  These units are not
interchangeable.  Turbidity is chosen as a response variable in streams since it can be an indicator
of increasing algal biomass due to nutrient enrichment. See pages 32 -33 of the Rivers and
Streams Nutrient Technical Guidance'Manual for a discussion of turbidity and correlations with
algal growth.

8. Lack of data: A dash (-) represents missing, inadequate, or inconclusive data. A zero (0) is
reported if the reported median for a parameter is 0 or if the component value is below detection.
4.6.    Classification of River/Stream Type

       Although some lake classification has been done for Florida, similar work on Florida
rivers is still in the conceptual and early development stages. It is anticipated that assessing the
data by stream type will further reduce the variability in the data analysis. There were no readily
available classification data in the National datasets used to develop these criteria.  States and
Tribes are strongly encouraged to classify their streams before  developing a final criterion.

4.7.    Summary of Data Reduction Methods

       All descriptive statistics were calculated using the medians for each stream within
ecoregion XII, for which data existed. For example, if one stream had 300 observations for
phosphorus over the decade or one year's time, one median resulted.  Each median from each
                                                                                     16

-------
 stream was then used in calculating the percentiles for phosphorus for the aggregate nutrient
 ecoregion/subecoregion (level El ecoregion) by season and year (Figures 4a & b).

 5.0    REFERENCE SITES AND CONDITIONS IN ECOREGION XII

 Reference conditions represent the natural, least impacted conditions or what is considered to be
 the most attainable conditions. This section compares the different reference conditions
 determined from the two methods and establishes which reference condition is most appropriate.

 A priori determination of reference sites. The preferred method for establishing reference
 condition is to choose the upper percentile of an a priori population of reference streams.  States
 and Tribes are encouraged to identify reference conditions based on this method.

 Statistical determination of reference conditions (25th percentile of entire database.) See Tables
 2 and 3 in section 4.0.
RTAG discussion and rationale for selection of reference sites and conditions in Ecoregion XII.
The RTAG should compare the results derived from the two methods described above and
present a rationale for the final selection of reference sites.

6.0    MODELS USED TO PREDICT OR VERIFY RESPONSE PARAMETERS

       The RTAG is encouraged to identify and apply relevant models to support nutrient
criteria development. The following are three scenarios under which models may be used to
derive criteria or support criteria development.

•     Models for predicting correlations between causal and response variables

•     Models used to verify reference conditions based on percentiles

•     Regression models used to predict reference conditions in impacted areas
                                                                                    17

-------
CO
3
 V-4
.2
 CO
 g
••a
 §

I
                                                                                     S3
                                                                                     S3


                                                                                     £
                                                                                     CS
                                                                                     

-------
               fx<
JS

II
a s s
fi'Sisj
s.2|-f
IQQ£>
S?
in
               oo
                     «
                   1111

                   Jill
               CL,
               00
6
in
                               .s
li
to .a
X<
                                         LU

                                         O
                                         o
                                         O
            o
            ce
            n
                                CM
                                       in
                                       C\]
                                     §,2
                        a

                        •2
A
u


|

•^
•P*
T3


O
O


o
a
                                                      CL>
                                                      a
                                                      o
                                                     •-s
                                                      es
                                                      cc
                        I
                        DJD

-------
7.0    FRAMEWORK FOR REFINING RECOMMENDED NUTRIENT CRITERIA
       FOR RIVERS AND STREAMS IN AGGREGATE ECOREGION XII

Information on each of the following six weight of evidence factors is important to refine the
criteria presented in this document. All elements should be addressed in developing criteria, as
is expressed hi our nutrient criteria technical guidance manuals. It is our expectation that EPA
Regions, States, and Tribes (as RTAGs) will consider these elements as States/Tribes develop
their criteria. This section should be viewed as a work sheet (sections are left blank for this
purpose) to assist in the refinement of nutrient criteria. If many of these elements are ultimately
unaddressed, EPA may rely on the proposed reference conditions presented in Tables 3a-l and
other literature and information readily available to the HQ nutrient team to develop nutrient
water quality recommendations for this ecoregion.

7.1    Example Worksheet for Developing Aggregate Ecoregion and Subecoregion
       Nutrient Criteria

•      Literature sources
      Historical data and trends
      Reference condition
      Models
                                                                                  20

-------
       RTAG expert review and consensus
       Downstream effects
7.2   Tables of Refined Nutrient Water Quality Criteria for Aggregate Ecoregion XII and
      Level III Subecoregions for TP, TN, Chi a, Turbidity (where sufficient data exist)
Aggregate Ecoregion XII- Southeastern
Coastal Plain
Total Phosphorus (/^g/L)
Total Nitrogen (mg/L)
Chlorophyll a (^g/L or mg/m2)
Turbidity (NTU or other units)
Other (Index; other parameter such as DO)
Proposed Criterion





      Literature sources
                                                                                 21

-------
       Historical data and trends
      Reference condition
•     Models
      RTAG expert review and consensus
      Downstream effects
                                                                                   22

-------
Ecoregion #75 Southern Coastal Plain
Total Phosphorus (/ug/L)
Total Nitrogen (mg/L)
Chlorophyll a Cug/L or mg/m2)
Turbidity (NTU or other units)
Other (Index; other parameter such as DO)
Proposed Criterion





 7.3    Setting Seasonal Criteria


       The criteria presented in this document are based in part on medians of all the 25th
 percentile seasonal data (decadal), and as such are reflective of all seasons and not one particular
 season or year. It is recommended that States and Tribes monitor in all seasons to best assess
 compliance with the resulting criterion. States/Tribes may choose to develop criteria which
 reflect each particular season or a given year when there is significant variability between
 seasons/years or designated uses that are specifically tied to one or more seasons of the year (e.g.,
 recreation, fishing). Using the tables in Appendix A and B, one can set reference conditions
 based on a particular season or year and then develop a criterion based on each individual season.
 Obviously, this option is season-specific and would also require increased monitoring within
 each season to assess compliance.


 7.4    When Data/Reference Conditions are Lacking


       When data are unavailable to develop a reference condition for a particular parameter(s)
 within a subecoregion, EPA recommends one of three options:  (1) Use data from a similar
 neighboring subecoregion (e.g., if data are few or nonexistent for the northern cascades, consider
 using the data and reference condition developed for the cascades); or (2) Use the 25th
 perecentiles for the Aggregate ecoregion; or (3) Consider using the lowest of the yearly medians
 for that parameter calculated for all the subecoregions within the Aggregate Ecoregion.


 7.5    Site-Specific Criteria Development


       Criteria may be refined in a number of ways. The best way to refine criteria is to follow
the critical  elements of criteria development as well as to refer to the Rivers and Streams Nutrient
 Criteria Technical Guidance Manual (U.S. EPA, 2000b). The Technical Guidance Manual
presents sections on each of the following factors to consider in setting criteria:
                                                                                     23

-------
-  refinements to ecoregions (Section 2.3)
-  classification of waterbodies (Chapter 2)
-  setting seasonal criteria to reflect major seasonal climate differences and accounting for
       significant or cyclical precipitation events (high flow/low flow conditions) (Chapter 4)


"Note: Some areas within an Ecoregion may justify special consideration.  For example, one
stakeholder, the IMC Agrico phosphate mining company has provided data to suggest that some
streams in their Florida mining district naturally carry a much higher phosphorus concentration
than other similar streams outside of the natural geologically rich phosphorus bearing soils. The
available data suggest that natural and anthropogenically high phosphate concentrations are
associated with low stream water column chlorophyll a concentrations.  It is appropriate for the
RTAG to review these and other data and define location-specific reference conditions.


8.0    LITERATURE CITED


       NYSDEC (New York State Department of Environment and Conservation). 2000.
       Memorandum from Scott Kishbaugh to Jay Bloomfield, September 26, 2000, regarding
       reference lakes for nutrient criteria.


       TNDEC (Tennessee Department of Environment and Conservation). 2000. Letter to
       Geoff Grubbs, October 5, 2000, containing comments on draft nutrient criteria
       recommendations.


       U.S. EPA.  2000a. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs,
       U.S. Environmental Protection Agency, Washington, DC.  EPA-822-BOO-001.


       U.S. EPA.  2000b. Nutrient Criteria Technical Guidance Manual: Rivers and Streams,
       U.S. Environmental Protection Agency, Washington, DC.  EPA-822-B00-002.


9.0    APPENDICES


A. Descriptive Statistics Data Tables for Aggregate Ecoregion


B. Descriptive Statistics Data Tables for Level in Subecoregions within Aggregate Ecoregion
C. Quality Control/Quality Assurance Rules
                                                                                  24

-------
                    APPENDIX A




Descriptive Statistics Data Tables for Aggregate Ecoregion

-------

-------





H
•H
X

. .
c
0
•H
O)
CD
£_
O
O
JJ
•1

0.
r-l
t_
.fj
3
z.

CD

CO
CT
03
£_
O)
O)

































to
E
CO
CD
c_
•H
CO

_
CO

CO
^
CD

•H
DC


























C
O
CO
CO
CD
CO

•^
C
CO

CO
•o
CO
o
CO
o

>^
JO
CO
o
•r-t
•H
CO
-H
•H
CO
•H
CO

CO
>
•H
•I-J
O.
•H
f
O
CO
CD
Q
















C
CO
•H
T3
CO
S,
1

1
O)
3
1

'l
o
CD
OL
CO
0
4—1
>,
jTT
a.
i
co
r-i

0

c_
CO
•H
CD
E
CO
£_
CO
O-
















in
o
a.
in
o.
•z.
I— 1
Q
UJ
in
CM
CL
in
a.






^
0





cc
cr
UJ
a
CO




^> '
UJ
Q
a
h-
co




x
^^
^g




•z.
I— 1
s
•z.

5

Z

0
CO

UJ
CO
0
o
CO
in
CM
in
o
co
CO
o
o
o
•
o




CM
^~
CM





CM
^~
,J






CD
•
CO
T~





^f
O5
•
i«^
co


o
o
o
o

CD
CD



i
_J
^^
U-
05
in
co
o
CO
CO
o
o
o
•
o




CO
p^
T—





|^»
O
^J






o
•
^f
T"





1O
OJ
•
0
o
T~

O
O
o
CD
CO
^^

f^M
03

I-H
cr
a.
CO
O)
co
CO
CD
T—
CM
CO
CO
in
o
0
0
•
o




*sf*
^J"
T~





O)
O)
0






O)
•
CM
T™





o
*^"
•
CM
CD


O
O
o
CO
O)
CO

^
EC
UJ
2=5
•s.
12
co
CM
in
CO
in
CO
CO
T-
O
o
o
«
o




^'
T"-
CM





^*
CO
CJ






CD
«
0
T~





0
CM
•
CD
cn


o
0
o
CO
o>
*
O)
in
cr
UJ
H-
*z.
t— l
5=

-------
CM
                    in
                    O)
                    o.
                     o  o  in  co
                     co  en  o>  en
                            CM  i-  CM  T-
                    m
                    r^
                    o_
                     o  o  in  co
                     co  05  O)  en

                     CM  1-  CM  T-
                   Q
                   UJ
                            o o  to  co
                            CO O>  O)  O)
                           CM
                                   CM
                   to
                   CM
                   0_
                     o  o  w  co
                     co  o  o>  o>
                           CM  •>-  CM  T-
         c
         o
         co  c
         co  co
         »  Q.
    CO  .Q CO
 C  TJ
 CD  C
•H  CO

•M  W

2;  o

 to  -H
•H  £E
 CO
 D)
 CD
 C_
 O>   '
 D>
       (O  O
       O  4-»
 CO Q-
•H    |
4->  CO
 CO rH
•H JC
CO O

 CD  C_
 >  0)
•H *->
•H  0)
 Q.  E
•H  CO
£_  C_
O CO
CO O_
CD
O
                   in
                   a.
                   o
             cc
             cc
             LU
             O

             CO
                   O
                   a
                   co
                  X
                     o  o  in  co
                     CO  O)  O)  O>
                           CM
                                   CM  i-
                           o  o  in  co
                           CO  O  O)  C>

                           CM  i^  C\j  i-'
                          o  o in co
                          CO  O5 O) O5
                            •    •   •   •
                          CM  i- CM T-
                          o  o  in  co
                          CO  O)  O)  O>
                          CM  -r-  CM  T-
                  3
                  LU
                  CO
                              o  o:  cc
                              Z  UJ  LU
                   —i  er s
                   <  0_ 13
                   LL.  CO CO

-------
                    LO
                    05
                    O_
 03  o>  in  co

 f~-  O5  CO  CO
 CM  CO  •<*  CM
                    r-
                    Q_
 r~-  o  r^  CM
 CM  Is-    •  N-
  .    .  o    •
                    Q
                    UJ
                            CM  CM  T-  O
                            CM  T-  -i-  i-
                            CM  CO
                                         CM
                    in
                    CM
                    0.
 ••-  ^t  co  o
 00  CM  ^f  O
                            O 1-  T-





1-1
n
X

• •
c
o
-H
O5
,
.Q





C
CO
•H
•D
CD
^g
|
t
|
O5
3
|
^3
i
O

in
Q.






>
o





cc
cc
UJ
a

CM
T~
•
0




O
0
CM





^~
^~
•

CM
T~
•
O




^«
m
^~





a>
CO


CNJ
T*
•
0




CM
in
^~





CM
^~
•

o
o
*
o




CD
CO
T""





f^
co

CO
cs
a>
£_
O)
O)
     CO   i.


 -  s  :•
 CO   CO  -H
 C-  -i-l  JZ
 CD  ^-J  O
 >   CO
•H  -H   £_
CC  CO   CD

     CD   CD
     >   s
    •H   CO
    •H   t-
     a.  co
    •H  O.

     o
     CO

    Q
                    co
                    UJ
                    O
                    co
                            T-  O T-  O
 co  in  in  in

 CO  i-  'S-  O
                            o>  co  T-  o
                            CO  T-  CD  i-
                            i-  CO  CO  CM
                            o  in  co  r>-
                            o  o  o  o
                            o  o  o  o
                            o  o  o  o
                            T-  CM  in  co
                            co  co  in  CD
                            CD
                                    05  m
                            T—  05  co  in
                            in  CD  co  •^~
                   UJ
                   CO
                                o  cr  or
                                •Z.  UJ  UJ
-I  CC  S
<  Q-  :D
u.  co  eo

-------
                  in
                  o>
                  Q.
                         r>  W
a  t_
2  CO

0)  -H
•H  OC
CO
CD
0)

CO
co
cz
o
W
co  c
CD  CO
CO  -H
    •O
•a  CD

53

CD    I
"O  O)
CO  3
o    I
CD  O
Q  CO
    a.
>»<0.
X)    I
    o
OT  -M
o  >>
•H  J=
•H  0-.
W    I
•H  £1

a  J=
•M  O
CO

CO  CD
>  -H
•H  CD
•H  E
a. co

C_  CO
o  a.
co
CD
                  in
                  a.
                  o
QC
cc
UJ
Q

CO
                  UJ
                  a

                  co
                  X
                  <
                          CO  O  O  CO
                          O  CM  CO  CM
                          O O  O  O
                          CD O  O  CO
                          O CM  CO  CM
                           •   *    •   •

                          O O  O  O
                          o  o o  in
                          CO  O O  CM
                          O  CM CD  CM
                  UJ
                          CO  O O 'CO
                          O  CM CD  CM

                          CD  CD CJ  O
                  O

                  3
                  HI
                  CO
                              o cc  cc
                              •Z. UJ  LU
                          _J  M S  I-
                          _i  tr s  z
                          <  O- 3  M
                          U.  CO CO  S

-------
in
o>
Q.
o  co  in  co
CD  in  h-  o
h-  CD  co  o
LO
t^
a.
o  in  co  co
co    •  •*  o
i-  CM  T-  T-
1-1
Q
LU
        o  o  o   o
o  o
LO  -3-
in  o
•
C










CO
£
CO
0)
c_
•H




CO
CO
f-
03

•H
OC













C
0
CO
CO
03
CO
T3
C
CO

03
T3
CO
O
03
Q

>^
_Q

CO
0
•H
CO
•H
^j
CO

CO

CD
>
•H
^_i
ca.
•H
£_
O
CO

Q

C
CO
•H
•o
03
^
1

I
O>
3
1
Q-
I-H
a
£_
CD
±j
O)
gs
CO
L-
ca
a.

_








LO
O_
^»
o





cr
cr
LU
Q
1—
CO



^>
LU
o
a
t—
CO




X

s




o
o
f^
^J«
CM





i—
•
f^
O)





CD
CD
rr






O
O
•
o
o
CM
CM
O
in
LO
CD
CM





O3
•
LO
05





O3
f**.
^^






O
o
•
o
o
co
CM
O
LO
^»
T—
CM





in
•
in
CO





o
T—
^






0
o
»
o
in
CO
T—
O
in
o
CO
CM





^
o







h-
O)
<5f






o
o
•
o
0
co
CM
         o  o  o  o
         in  o  o  LO

         N  LO  LO  r^-
•Z.      CO  -r-  CM  i-
  ro
LU      i-  i-  T-  i-
         co  in  co  co
         CM  CM  CM  CM
O
CO

LU
co
    C3 EC  OC
    •Z LU  LU

_J  CC S  Z.
<  Q. Z)  HH
a.  co co  S

-------
to
                    to
                    o>
                    Q_
  o  tn  co  o
  o  in  co  co
                            co  co
                                        01
                            in  10  o  o
                            O)  "*t  i—  CO
                            tO
                                    CD  CO
                    Q
                    LU
                            O  O  CO  CO
                            r^  CD  o  co
                            in  co  in
                    in
                    CM
                    D.
 o  in  in  co
 CD  CO  O)  •<*
                                in  co  CD
M
M
X
• •
C
o
•H
O)
CO
c.
o
o
LU

•M
C
CO
•H
£_
•H

32
CO
•»->
CO
0)
CO
c_
ra





w
€
co
CD
t.
+->
CO

•Q
c
co

CO
I_
CO
•H
cc





c
o
CO
CO
CD
CO
•o
CO

o
•a
CO
o
CD
a

>,
X]

CO
o
•H
^_i
CO
•H
•H
CO
CO

CD
>
•H
•H


C
CO
•H
TD
CD
S

f
|
a>
E
I

/•s

c_
CD
•(-•
U
CO
J_
ca
a.


in
a.
>
o





cc
cc
LU
a
H-
co




>
LU
§
l-
co




0 0
O 0
CM CO
v r^
CO OJ






^J- CO
T" T~
. ,
o o






co o
^ fs.
T— t—





o in
0 O
CM T
•"3- CO
CO CM






co co

• .
o o






o m
N. CD
Y~ -^





       C-
       o
       CO
       CD
       o
 o  o  o  o
 CO  O5  O  •*
  •   •   •   •

 O)  T—  T-  O
                           o  o  o  in
                           o  in  in  CM
                           «    •  CM    •
                   <
                   LU
                           CM  CO  CO  CO
                           in  co  en  CM
                           m  CD
                           m  co  ^r  co
                           in  co  r»-  m
                   o
                   co
                   LU
                   CO
    fS  CC  CC
    Z  LU  LU
_J  M  S  I-
-I  DC  S  Z
<  a.  rs  M
Lt-  CO  CO  S

-------
H
H

.
~
5
H
3>

5
.D
J

J
'
i
1
_
j
3
^

1>
^
S
35
D
_
3)
if



























CO
CO
0)
c_
+->
CO



../

CO
L-
03

•H
CC



























d Season
c
CO

o>
^3
C8
0>
Q

>i
o

to
0
•H
•H
CO
•H
•H
CO
+->
CO

CO
>
•H
•H
Q.
•H
£_
O
CO
03
Q
















cz
CO
-H
T3
0>
E
Jl
1

g
|
CO
o

]
CM
0


c_
0}
•H
03
gs
CO
c_
CO
a.






















in
a.
in
a.
•z.
<
i— i
a
LLJ
s
in
CM
Q.
in
Q.

>
O




CC
CC
111
0
1—
CO




>
LLJ
Q
O
1-
co




^
s




•z.
t-(
s
•z.
<
LLJ
•s.

z:

z
0
CO
<
LU
CO
CO
r-
o
CO
ca
o
r--
o
o
CM
o
o
o
o

o
en
CM




co
o

d






in
CO

o"





CO

o>



o
o
0
CM
CM

O
CO
. CO
CO


t
_I
<
Li-
CD
CM
O
O
O
O
d
o
o
d

CD
co
CM




Tj"
o
•
0






^f
f>^
•
0





co
•
CO



o
o
o
CO
CM

O
^
CM
"*
O

1— 1
CC
a.
CO
CO
o
en
^
o
CD
O
O
CM
O
0
O
O
O

CM
CO
CM




CO
O
•
0






en
in

d





o
CO
•
in



o
o
o
CM
CM

O
CO
CM
"*
CC
LLJ
5

•=>
CO
CO
en
o
CO
CM
o
co
o
o
0
o
o
o
d

in
in
CM




CO
o

0






co

-------
co
                   in
                   en
                   CL-
     O  O  O
     in  o  to
     co  o  co
     CM  CM  CM
                   in
                   t^-
                   o.
 o  o  o  m
 CM  CD  CO  CO
 T-  -i-  CM  i-
                   M
                   o
                   ID
 o  o  o  o

 o  o  m  in
 in  CD  in  in
                  m
                  CM
                  0_
 o  in  o o

 O' CM  O O
 CO  CO  CM CM
 c
 o
•H
 0) CO
 CO  E
 t-  co
 O  CO
 o  c_
UJ  4->
    CO

 C  TJ
 CO  C
•H  CO

•H  (0

Z  CO

 CO  -H
•H  EC
 03
 O)
 o>

 O)
 D)
 O
 CO TJ
 CO  CO
 CO 3E
 CO J


 I  J
 «  3

 CO D_
 •a    I
 CO  W.
 o  ca

 s-'
 >,«'
«Q  4-1
    CO
 CO  J=
 o . a.
•H  CO
•M  O

•H  Q.
•H  O
 CO  .C
•M  -H
CO  C_
    O
 CD
 >  C_
•H  a>
 if  j^j

 a. co
•H  s
 c-  co
 o  t_
 co  ca
 co  a.
                  in
                  a.
                  o
                  cc
                  cc
                  UJ
                  a

                  co
                  LU
                  a
                  a

                  co
                  x
 o  o  in  o
  .   .   .  o
 o  in  CM    •
 i-  t-  T-  m
 co  in co  o>
 ••3-  CM ro  •«-
 CM  CM i-  CM
 co  ^ co  co
 CM  CO O  CO
 CO CM  T-  T-
 co co  f^  co
 in in  TT  in
                          o o  o  o
                          o o  o  o

                          o o  o  o
                          o in  o  in
                          h- co  o  co
                          CM CM  CM  CM
                         o  o  m  o
                           .    .   .  o
                         o  in  CM   •
                         T-  T-  T-  UJ
                         CM  o  o  m
                         •*f  U)  -  O
                         CM  i-  T-  T-
                  O

                  3
                  UJ
                  CO
    CD  cc  en
    •Z.  UJ  UJ
_1  M  S  K-
_J  CC  S  Z
<  O-  ID  W
u.  co  co  S

-------
  LO

  O)

  Q.
  CO  N-  CO  O

  O  O)  O  •<-


  CM  T-  CM  CM
  in
  r--
  o.
 CO   O  O  O

 CM   i-  CO  f-
 o
 in
 in  i-  CD  h-
 O5  00  O)  I--


 O  O  O  O
 in
 CM
 Q_
 co  •<*•  in  in
 m  in  CD  m

 o  o  o  o
^
5
H
D
J
U




H

•J
3
|

>
_;
0
3)
i

3
3






CO
CO
o
c_
•H
CO



CO

CO
£_
Q)
>
•H
£C












0
CO
CO
0)
CO
T3
cz
CO
(U
T3
CO
o
CD
Q

>»
.Q

CO
O
•H
•H
CO
-H
•i— I
CO
•H
CO

CD
>
•H
•H
Q.
•H
£.
O
CO
CD
Q
_Median
	 i
i
0>
£
|
zz
v^
H-

c_
0)
•H
CD
E
CO
c_
CO
0_









in
Q.
>
o
or
tr
LU
o
i-
co




>
LU
a
o
i—
CO




x
<
s




o
co

CO
o
•
o






CO
co

0





o
0

in



co
o

CO
o

CD






^f
CO

o





T_
CM

in



CO
CM
O
CO

CO
o

o






co
co

CD





0
o

in



CM
eg
o
in
CD

CO
o

o






^
in

o





^
o>

CO



         o  o  o  o
         o  o  o  o
         o  o  o  o
<
LU
CO   O  •<*•  O>
O>   O)  CD  CO
        O  O  T-  O
        co  co
        CO  CO
LU

CO
                cr  cr
                LU  LU
-J  CC  S
<  a.  =>
u_  co  co

-------
            in
            o>
            Q-
T  O  O  CO
CM  O  CM  i-
                    CM  CM  CM  CM
            in
            f-
            Q.
h-  O  CM
in  co  in
            o
            OJ
                    TT  03  CO  O)
                    (M  O  CM  O
            in
            CM
            0.
CD  CO  CO  •*
0)  co  o  co

O  O  O  O
X
* *
c
0

OJ
0)
C_
o
o
IU

4->

CD
•H
C_
•H
3


Q)
4->
CO
g"
£_
O>





CO
E
CO

£_
•H
55

•O

CO

CO
C_
O3
>
•H
tr




c
o
CO
CO
o>
CO
73
C
CO

CD
•o
co
o
CD
a

>i
J2

W
O
•H
4->
to
•H
•H
CO
4->
CO

CD
>

•i-"


c
CO
•H
•a
CD
Jg
1

"*!

cr
i

i-

£_
CD
4-J
CD
E
CO
c_
CO
o.

-
in
Q.

>
O





cr
cr
at
Q
f-
co




>
at
a
a
H-
co


o
CO
0

0







in
o
•
o






CM
m
•
o



0

CD
^






m
o
•
o






CM
in
•
o



CO
CD
0

CD
co






in
o
•
o






m
^f
•
o



CVJ
in
o

CD
T^






co
o
•
o






•<*•
co  co  CM  co
                    o  in  o  in
                    in  "i-  ^  CM
                    CM  i-  CO  CO
            LLI
                    o)  co  N- ro
                    CM  T-  CM i-
                        •* O O>
                        o> o> co
            o
            CO
            LU
            CO
    O  OC DC
    Z  LJ UJ
_J  i-(  S I-
_j  cc  s z
<  Q-  ID l-l
U_  CO  CO S

-------
                     LO
                     OT
                     O.
                      o  o  o  in
                      co  o  
                      CM  CM  CM  T-
                     Q
                     UJ
                      o  o  in  o
                           .  o
                      o  o  T-  m
                      o)  o      r-
                     in
                     CM
                     a.
                     o  o  o  o

                     o  o  o  o
                     •s-  <»•  <*•  co
         c
         o
         w
         CO
         >    I
CO  J3   OJ

     w   3|
     U  Q.
-o  -H  (—
•H  W   CO
    £-  -H
    CU
CO
D)
CD


O)
O)
        CO   CD


        CO   CO


        CD   CO
 Q.
•H


 O
 
 CD
Q
             o
             a:
             az
             UJ
                    CO
                    UJ
                    o
                    a

                    co
                     f   O  O  ffi
                     in   co  "3-  in
eo  in

co  T
                                         o

                                         co
                     t^  r^  i- CM
                     CO  T-  •!- t*-
                     CM  co  co CM
                             o  o  o  o
                             o  o  o  o

                             o  d  CD  d
                             o  o  o  in
                             OJ  CO  CO  CO
                             CO  CM  CM  CM
                             O  O  O  O
                             o  o  o  o
                             o  o  o  o
                    <
                    LU
                     O  CO  T-  T-
                     ro  ro  CM  N.
                     r-  T-  CM  T-
                            o  in  CD  co
                            CO  (^.  CD  CO
                    o
                    CO
                    <
                    UJ
                    CO
                         cser.cc
                         2  UJ  UJ
                    _|  !_)  S  (_
                    -1  CC  S  Z
                    <  a.  13  I-H
                    U-  CO  CO  S

-------
CM
                    to
                    O
                    Q.
        O  O  O  O


        o  •«•  co  co
                    in
                    r^
                    OL
        o  o  in  o
        O  O  O  *f

        in  in  CD  10
                    Q

                    LU
                            oooo
                            o  o  TT  T-
                            co  co  co  co
                    in
                    CM
                    a.
        oooo
        co  o  o  o
                            i-  CM  CM  CM
        c
        o
        co
        03
        CD
(-1      CO
in
a.
o  in  o  o
co  en  o  o
        o  o  i-  -r-
c
0
•H
O>
CD
C.
o
o
LU

C
CO
•H
c_
4_*
=>
2

0>
•H
CO
CO
CO
£_
CO

<







CO
^
co
CO
c_

•H
CC











co
CO
•o
ca
o
CD
Q

>J
.Q
CO
o
•H
•H
CO
•H
^j
CO
4-"
CO

CD
>
•H
4-J
Q.
•H
O
CO
CD
O
CO
•H
•a
CD
^g»
1
=)

LL.
1
c_
•n
J-

c_
CO
•H

It 1
a
a
^~
CO




X





                            r*.  o  co  co
                            O)  i-  O  CO
                            CO  T-  CM  i-
                            CM  CO  CO  •*
                            oooo
                            •*  co  t-  o
                            O5  T—  CO  ^f
                            co  in  in  CD
                            in
                            CD
            o  o  o
            o  o  in
                            ro  en  CM  CM
                            co  •*  co  r^
                            oooo
                            o  in  o  o
                            o  CM  o  co
        CD  h~
        o  co
                                        CM
                                        co
                                    in
                            O  CJ  O  O)
                            co  r*  N.  ^^
                            CM  CM  CM  CM
                    LU

                    CO
            o  a:  cc
            Z  UJ  UJ
        _J  H-l  S  I—
        _i  oc  s.  -z.
        <  a.  zs  M
        u.  co  co  s

-------
                 If)
                 O)
                 a.
                          o  o  o  o
                          m  Is-  to  co
                          i-  CM  CM  CM
                 in
                 N.
                 Q_
  co  co  o  to
  in  03  CM  O)
                         co  co  co  co
                 a
                 LLJ
                         o  co   o
                         to  i-   co
                         co
                                      to
                                 co  co
                 to
                 cvj
                 o_
  o  o  o  o
  O)  CM  <
<

• •
~
0
-i
O)
33
1_
3













CO
E
CO
CD
C
o
CO
CO
CD
CO

•Q
C
03

0)
T3
CO
O
CD
Q









C
CO
•H
^5
CD
s
1
3

IO
o_






>
o





cc

o
co

o




^>
CM







CO
05
.
o




CO
CO
^»






o
co

C5




o>
t—
TK






o
co

c>




CM
CM






    CO
    o
..a  -i-i
    •H
CO  CO
L.  -H
 >   CO   CD
•H  +J   E
CC  CO   CO
         S-
     CD   CO
     >  a.
    •H
    •l-i
     a.
    •H

     o
     CO
    CD
    Q
                cc
                UJ
                Q

                CO
                UJ
                Q
                Q

                CO
                X
                <
 TT  1^  CO  h>
 •*•  CO  IO  IO

 O  O  CD  C5
 en  co   t^  CM
 IO    •   T-  ^
   .  o    •   •
 CD  •>-   CO  CO
 o  o  o  o
 to  o  o  in

 •*  CO  1-  5J-
 t^  CD  CD  to
                        o  o  o  o
                        o  o  o  o
                        CO  i-  CM  T-
               1
 o  in  co  cvj
 co  r**.  oo  o>
  •   •   •   •
 IO  N.  CO  CD
                       Is- "3-  •sf  to
                       CM CO  CO  i-
                       CM CM  OJ  CM
               O
               CO
               UJ
               CO
    CD  CC CC
    Z  LU LU
-J  I-H  S J-
-I  QC  S Z
<  a.  D M
u.  co  co 3

-------

-------
                                  APPENDIX B
Descriptive Statistics Data Tables for Level in Subecoregions Within Aggregate Ecoregion

-------

-------
                         a>
                         O-
                                 o  01  o> •»—
                                 o  in  oo  •«-
                                 CO  CO  CO  CVJ
                         LO
                         N.
                         a.
        in
        CVJ
    •t  
    o    •  eo
                                 in  eo  i-  in
                         O
                         LLJ
        N.  T-  T-  CO
        O  !>-  CM  CO

        i-  i-  co  i-
                         in
                         C\J
                         a.
        co  o>  co
        co  m  to
                                 o  o  o  o
     c
     o
     co   c
     as   ca
     CD  -H
    CO  T3
                         in
                         a.
                         o
         o  o  o  o
         o  o  o  o

         o  o  o  o
         w  co  •*  •*
         1-  N.  t  1-
         CM  i-  t-  CM
     CD   O>
    •O   3
 CO   CO     I
 E   O  <
 CD   at
 CD  Q
         O
         CD
+J   >>  Q.
•"•  J3  CO


     CO   O
—   O  -H
CO --H   >«
    •M  J=
CO   CO  Q.
£-  -H     I
O  -H   CO
>   CO  -H
•H  -M- J=
ec  co  o

     CD   £-
     >   <13
    •H  4->
    +J   CD

     a.  £
    •H   CO
     L.   £_
     O   CO
     co  n.
     CD
    Q
cc
cc
LU
a
LLJ
O
O


CO
CVJ  N-  O  t
i-  o  ro  eo
CO  O  O)  CO

CO  •*  CM  O
         ^y  to  o  o
         O)  CM  't  CM

         f«.  O  CM  CO
         CO  O  CO  O)
                                 o  o  o  o
                                 o  o  o  o
                                 o  o  o  o
                         <
                         LLJ
                                 O  CO  CO  CO
                                 ^  CO  O>  O5
                                 CO  f-  CO
                                 co  i-
                                              en
                         o
                         CO
                         CO
            (S cr  cc
            •Z. LU  LLJ
        -I  H-1 S  f-
        -1  DC S  2
        <  o_ :D  1-1
        LL.  CO CO  S
                 O   CD  H-<

                 O   >  M

                LU   CD  l-H
                                 1X5  LO  LO  LO

-------
CM
                            in
                            o>
                            a.
     o o  to  oo

     CO O)  C)  O)
      •   •    •    •

     CM i-  CM  i-
                                   o  o  to  co
                                   CO  O)  O)  O)
                                   CM
                                           CM  -i-
                           a
                           tu
    o  o  in  co
    oo  o>  o)  o)
     •   •   •   •
    CM  -i-  CM  i-
                           in
                           OJ
                           a.
    o o  in  co
    CO CD  O)  O)
     •   •    •    •

    CM i-  CM  i-
                           in
                           a.





w
1— 1
X

*•
c
o
•H
OJ
CO
t_
o
0
UJ

•H
C
CO
•H
£_
•H
3
t3f

CO
•H
CO
CB
CO
C_
a
D)
^c


















CO
m
co
CO
c_
4>J
CO

•o
c
co

CO
£_
co
>
•H
CC












C
0
CO
co
CD
CO

•a
c
co

Q)
T>
CO
0
CO
a

>^
f**

CO
o
•H
•H
CO

4->
CO
•H
CO

CO
>
•H
•H
Q.
•H
C_
O
CO
CO
0


c
ca
•H
•o
CO
S

_J
1

^3
i
=5
|
O
CO
Q.
CO
I
0
4->
>,
JZ
CL
|
CO
iH

O

C.
CO
•H
CO

CO
£_
co
a.


   o  o  in  co
   co  en  co  o>
     •    •   •   0

   CM  T-  CM  i-
                          CC
                          CC
                          LU

                          O
                          UJ
                          a
                          a

                          co
                         x
                         <
  o  o  in  co
  co  a>  o>  a>

  CM  T-  CM  i-^
                                 o  o  in  co
                                 co  CD  o>  o>
                                CM
                                        CM  T-
                        <
                        UJ
 o  o  in  co
 CO  CO  CD  O)


 CM  T-  CM  T-
                        o
                        CO

                        5
                        CO
     fscr.cc
     Z UJ  LU
-1 DC  S
< a.  3
U_ CO  CO
                O   CO  Ki

                O   >  t-(

               UJ   CO  H
in  in  in  in

-------
                      vn
                      O)
                      a.
                               f*~  O>  co  co
                               CM  CO  •*  CM
                       in
                       r--
                       o_
        I*-  o  f-  CM
        CM  N-    •  N-
                                   r-  T-
                       a
                       LLJ
                               CM  CM  T-  O
                               CM  T-  i-  i-
                               CM  CO
                                           CM
                       in
                       CM
                       a.
        T-  rf  CO  O
        co  CM  ^r  o

        O  T-  1-  T-
   c
   o
   (O
   CO
   CD
   CO
       co
   •a  -H
  • c  -o
   CO  0)
   03    I
   -a  _i
0  CO    I
=  O  O)
0  CD  3
D  a    i
                       in
                       a.
                       o
cc
cc
LLJ
O

CO
        CM  CM  CM  O
        T-  T-  T-  O
                               O  O  O  O
        O  i-  CM  CO
        o  in  in  co
        CM  T-  i-  i-
                            T- O3 CM h-
                            T- CO T- 00
                            T- O i-  O
.a   o
    •H
 tn   £_


£   «'
 CO  i-H
•H  JZ
•H  O
 CO
•H   C-
CO   03
    •I-J
 CD   CC
 >   '
•H
4->   £-
 Q.  CO
•H  O.

 O
 CO
 03
Cl
       CO
                       01
                       Q
                       a

                       CO
        co  in  in in

        CO  i-  rf O
                               en  co  T-  o
                               co  T-  co  i-
                               T-  eo  co  CM
                               o  in  eo  h-
                               o  o  o  o
                               o  o  o  o
                               o  o  o  o
                       <
                       LLJ
                               i-  CM  in  co
                               co  co  in  co
                               CD
                                       en  in
                               T-  o   co   in
                               m  CD   CD   •^r
                       o
                       co
                       LLJ
                       CO
            (3  CC  CC
            2  UJ  LU
        —I  M  S  I—
        -i  or  s  z
        <  a.  z>  M
        u-  co  co  s
               O  03  1—I
               O  >  H-l
               UJ  OJ  (-1
                               in  in  in  in

-------
                              in
                              O)
                              Q-
                                      co  o  o co
                                      O  CM  (O CM
                                       •   •   •   •
                                      O  O  O O
                              If)
                              N-
                              O_
                                     CO  O  O  CO
                                     O  CM  (O  CM
                                       •    •    •    •
                                     O  O  O  O
                             t-l
                             0
                             UJ
                                     CD  O  O  CO
                                     O  CM  CO  CM
                                      •   •   •   •
                                     O  O  O  O
                             in
                             CM
                             n_
                                     co  o o co
                                     O  CM CO CM
                                      •   •   •   •
                                     O  O O O
                             in
                             a.
         C
         O
         CO
         ca  c
         CD  CO
         CO  -H
             •O
         •O  05
                                    CD  O  O  CO
                                    O  CM  CD  CM

                                    O  O  O  O
 O      CD    |
 •H     "O  D>
 O  W  CO  13
 CD  m  o    |
 t-  CO  CD  O
 O  CD Q  CD
 CJ  £_      Q.
 UJ +J  >, CO
                            cc
                            ££
                            UJ
                            a
 C  T3   W  +J
 »
•H   CO  -H  JC
 C.      -HO.
+-»   W   W    I
 =J   C-  -H  J3
2   CD  +J  ^H
 _    >  CO  J=
 CD  -H  +->  CJ
•H  OC  CO
O)
CD
D)
     C.
 CD  CD
 >  -M
•H  CD
•H  E
 Q.  CO
•H  C_
 C-  CO
 O D_
CO
CD
Q
                           UJ
                           Q
                           o
                           x:
                           <
                                   CO  O  O
                                   O  CM  CO
CO
CM
                                   O  O O O
                                  o  o  o  in
                                  CO  O  O  CM
                                  O  CJ  CO  CM
                          UJ
                                  CD  O  O  CO
                                  O  CM  CO  CM
                                   •   •   •   •
                                  o  o  o  o
                         LU
                         CO
                                     o  a:  cc
                                     2  UJ  UJ
                                 -J  DC  S
                                 <  a.  5
                                 U.  CO  CO
                 O  O  I—<
                 O  >  M
                 UJ  O  n
                                     to

-------
                         in
                         O3
                         Q-
                             o  co  in  co
                             to  m  r»  o
                             !*•  O  00  CO
                         in
                         N
                         Q.
                             o  in  co  co
                             co   -  ^  o
                             1-  CM  t-  T-
                        I-H
                        O
                        LLJ
                                 O  O  O  O
        o  o
        m  ^r
                                     in  o
                                     rr  co
                         m
                         CM
                         Q_
                                 o  o  in  o
                                 o  in  CM  in
                                 CM  CM  OJ  T-
c.
o
CO
CO
CD
CO

-a
£Z
CO

CD
T3
CO
O
CD
Q
         C
         CO
        -H
        T5
         CD
CO
CO

+-1   >.  cn
 ~
                         in
                         Q.
                        o
CC
CC
LU
Q

CO
                             O  O  O  O
                              •  in  in  m
                             o   •   •    •
        r-.  in  •*  o
        ^-  CO  i-  CO
        CM  CM  CM  CM
T-  0)  in  •>*
  .    .    .  o
r^-  in  m  T-
o>  en  co
CO
    C/3
    O
    -H
in  tn
£-
         0)
CD  +J  +J
>  CO   CD
    +->   E
    CO   CO
         £_
    CD   CO
    >  Q.
    -H
    4->
    a.
    •H
    l_
    O
    CO
    CO
    o
                    UJ
                    O
                    Q

                    CO
                                 to  o>  o  h-
                                 CO  h-  i-  O5
                            o  o o  o
                            o  o o  o

                            o  o o  d
                            o  o in  o
                            CM  CO CO  CO
                            CM  CM T-  CM
                                o  o  o   o
                                «j  o  o   in
                                    in  to
                                CO  i-  CM i-
                                CO  CO  O) O)
                                co  in  co  co
                                CM  OJ  CM  CM
                        O

                        3
                        LU
                        CO
                                        CC  CC
                                        LU  LU
                            -J  CC  S
                            <  Q- O
                            U.  CO  CO
                O  CD  t-H
                O  >  l-l
               UJ  CD  H-l
                            in  in

-------
   CD
                               in
                               O)
                               CL
                               o  in  co  o
                               o  in  co  co
                                       co  co
                                                   o>
                              se
                              Q-
                              m tn  o  o
                              O) ^  T-  CO
                                      co
                                              CD co
                              o
                              LU
                              O  O  CO  CO
                              h-  CO  O  CO
                               •    •    •    •
                              in  co  in  r*-
                              in
                              CM
                              CL.
                              o  in  m  eo
                              CO  CO  O>  Tf
                               •   •   •   •
                              *fr  m  co  co
                             in
                             a.
 x
 CD  CO
 p  g
 f-  ca
 O  CD
 o  £_
Ul -H
 c  -a
 CD   C
•H   CO

4->   O)
 =3   C-
z:   a>

 O  -H
4J  £C
 CO
 O)
 CD
£_
CD
  O
  (0
  CO
  CD
 CO

 T3

  CO

  CD  CO
 T3  -H
  CO  T3
 O  CD
         ><    I
        JQ  D)

             S
 O  O
•H  a
•H
 CO  £.
•H  Q>
•H  -H
 CO  CD
+-•  m
eo  co

CD  CO
>  a.
 cc.
 cc
 LU
                     CO
LU
O
a

co
>c
<
                             o  o o  m
                             o  o o  o
                             CM  CO CVJ  «3-
                                     i-  N-  •*  CO
                                     CO  CM  CO  CVJ
 ^"  CO  CO  CO
 T—  T—  T-  V—
  •   •   •    •
 o  o  o  o
 co  o  o  m
 Is-  r*-  Is-  CD
o  o  o  o
co  ro  o  tj-
  •    •    •    •
O  i-  i—  O
        c_
        o
        co
        CD
       a
                           o o  o
                           o in  in
                           tn   •  CM
                                                in
                                                CM
                           <
                           LU
                           CM  CO  CO  CO
                           in  co  at  CM

                           in  < Q- ID l-(
                          U- CO CO S
                  O  CD
                  O  >
                  LU  CD
                          tn  in  m  m

-------
                         in
                         o
                         Q_
        co  o  r—  co
        i**-  ^  .co  o>
        o  -r-  O  o
                         in
                         f-
                         Q-
co  •tt
CM  CM
                     co
                     CM
                                 O  O  O  O
                                 h-  r^  co  co
                                 O  CD  CD  O

                                 O  CD*  O  O
                         in
                         CM
                         Q_
        CM  T-  CM  f-
        0000

        CD*  CD  CD  O
     O
     £0
     CO
     CO
    CO

    T3   C
     C   CO
     CO  -H
        T3
     CD   CD
    T3  S
W   CD
=   O  _1
CO   CD     I
CD  Q   O)
                         in
                         a.
o
cc
cr
01
o
co
        o  o  o  o
        o  o  o  o
        O*  CD  O  CD
o  co   CM  in
en  co   co  in
CM  CM   CM  CM
CO  ^f  CO  CO
0000

O  O  O*  CD
'••  -C5  CO
        O
     co  s:
-   o     I
CO  -H  C\J
    +J  O
  z
£-  -H
CD  4->   £_
>   CO   CD
•H  +-"  ^
DC  CO   CD
         £
     CD   CO
     >   £_
    •H   CO
    •H  Q-
     Q.
    •H
     £_
     O
     CO
     CD
    Q
LU
O
CO
X
<
in
CO
         a>  co
         LO  CO
        o  o  o  o
rr  ^-  o  o
CO  CO  CO  N>
        en  co  in  co
                                 o o  o  o
                                 o o  o  o
                                 0000
                         <
                         LU
                                 CM  CO  CM  t^-
                                 CM  CM  CM  CM
                                 o  o  o  o
                                 ;o   N.  so  o
                                 CO   CM  CM  O
                                 co   •*  <3-  co
                         o
                         CO
                         LLJ
                         CO
            o   or  cc
            2:   LU  UJ
        -1  ft   S  H-
        _i  rr   s  2
        <  O-   ID  H-1
        U-  CO   CO  ^
                 O   CD  M
                 O   >  l-l
                III   CD  H-1
        in  m  in   in

-------
 SO
                             in
                             CD
                             CL
         in  o  o  o
         1-  in  o  in
         N-  co  o  co
             CM  CM  CM
                             m
                             N
                             CL.
         o  o  o  in
         CM  CO  CO  CD
         T-  i-  CM  i-
                            Q
                            HI
         O  O  O  O

         d  d  in  in
         in  co  in  in
                            in
                            CM
                            o.
        o  in  o o
          •    •    •   •
        O  CM  O O
        CO  CO  CM CM
         c
         o

         co  cp
         CD E
        CO    I

        T»    |
         Cv  O)
         CO  D
         CD a.
C
O
H
O  CO   CO   (0
CD   E   O   CO
C-   CO   CD
O   CD  O
O   C.
JJ
    .    ..o1
    CO  .0  -H
+•*          CO
C  T5   CO  SI
CD  C   O  Q.
H  CO  -H  CO
C-      -MO
•M  to   co  x:
    t-  -H  Q.
Z

CD  -H
»-•  CC
CO
O>

        >  £_
        •H  CD
        1f  t^t

        CL CD
        •H  m
        t~  CO
        O  C-
        to  co
        CD  Q_
        Q
                            in
                            Q-
                            O
                            CC
                            CC
                            lit
                            a

                            CO
UJ
Q
o

CO
                                    o  o  m  o
                                    o  in  CM
                                    i-  T-  -^-  m
        co  in  CD  o>
        ••a-  CM  o>  i-
        CM  CM  T-  CM
        CO  "^  CO  CO
        CM  CO  O  CO
                                    CO  CM  i-  i-
                                    CO  CO  N-  CO
                                    in  in  TJ-  m
        o  o  o  o
        o  o  o  o
         •   •   •   •
        o  o  o  o
        o  in  o  in
        r*.  co  o  co
        CM  CM  CM  CM
                                   o o in o
                                     .   .   . o
                                   o in CM
                           <
                           LU
       CM  o)  o  in
       •  n
                   010)1-1
       in  in  m  to

-------
                         in
                         ro
                         o_
        co  N-  co  o
        o  o>  o  T-
                                 CM
                                         cvj  CM
                         in
                         r^
                         o_
        co  o  o  o
          co  05  r*»
        dodo
                        in
                        CM
                        D_
        co  TJ-  in  in
        in  to  (o  in
        o  o  o  o
     c
     o
     CO
     CO
     (V
    CO

    TD
     c
     CO   'C
         CO
     CD  -H
    T3  T3
 CO   CO   0>
 EOS
 CO   CD     |
 o>  o  _l|

•H   >.  O)
                         in
                         0-
o
cr
QC
LU
O

CO
        N  CO  CO  CM
        i-  T-  CM  CM

        O  O  O  O
        CD
                i-  m
                CD  CO
CO  CO  CO  CO
o  o  o  o
o  o  o  o
     CO  S
c   o  ^:
co  -H  i—
    •H
CO   CO   C-
£-  -H   OJ
OJ  -H  -t->
>   CO   03
•H  4-J   E
DC  CO   CO

     CD   CO
     >  Q-
LLJ
Q
O

CO
co  ^t  co  r-
co  co  co  in
o  o  o  o
        o  -r-  o  *a-
        O  CM  O  O)
                                in  in  in  co
    O
    CO
    CD
    Q
                                o  o  o  o
                                o  o  o  o
                                o  o  o  o
                                co  o  ^-  en
                                en  en  o  co
                                o  o  i-  o
                                CD  CO  O5  t-
                                CO  CO  t^-  •<*•
                        O
                        CO
                        LU
                        CO
                                    O
                                        LU  UI
       —I   QC S
       <   0- Z>
       U.   CO CO
                O  O>  HH
                O  >  l-l
                LU  CO  H-i
       in  to
                   LO

-------
                             in
                             O)
                             a.
                  • O  CD
                  CM  O CM  i-
                                     CM  CM  CM  CM
                             to
                             f-
                             O_
                  N-  O  OJ  -<3-
                  in  co  m  co
                             a
                             LU
                                     rf  CO  CO  O>
                                     CM  O  CM  O
                             in
                             CM
                             a.
                  CD  CO  CO  ^f
                  en  co  o)  co
                                     O  O  O  O
         c
         o
         CO
         co
         CD
-t      CO

5      1

 • •      co
 c          c
 O      CD  CO
•H      T3 -H
 O)  C/>  CO "a
 CD  E  O  CD
 t-  CO  CO 5s
 O  CO  O    I
 o  c.     _i
LU +J  >,    |
    CO  JO  0>

 C T3  CO  El
 CO  C  O Z
•H
     co

     CO   CO   t.
     t_  -H   Q)
     CO  +-1  -H
         CO   CD
CD  -H       __
•H  OC  CO   CO
CO           C_
O3     CD   CO
CD      >  0.
C-      -H
CO     ^
CO     Q.
<      -H

        O

        0}
        O
                             m
                             Q.
                             O
                             QC
                             cc
                             UJ
                             O

                             CO
                            LU
                            a
                            a

                            co
                            X
                            <
                                     O
                                     CD
                          CO  CM
                          CD  in
                                     o  o  o  o
                                     O  CD  CO  CO
                                     •^-  •*  co  TJ-
                  in  in  in  co
                  o  o  o  o
                  o  o  o  o
                  CM  CM  m  •*
                  in  m  rr  in
                  o  o  o  o
                  in  co  o  co
                  co  m  oo  Tt

                  co  co  CM  co
                                    o  m  o  in
                                    10  Tf  ^-  CM
                                    CM  -i-  CO  CO
                            <
                            UJ
                                    O>  CO  N  O)
                                    CM  T-  CM  i-
                                    •f  •*•  0  O
                                    O)  O5  O5  O3
                            O

                            3
                            LU
                            CO
                     cs  cc  cc
                     2  LU  LU
                 -1  t-H  S  I-
                 -1  CC  S  Z
                 <  Q.  3  1-1
                 i>-  CO  CO  3
 O   CO  t-l
 O   >  t-i
UJ   0)  HH
                                   m  in  in  m

-------
                        e»
                        o.
                                CD  h-  CO
                        m
                        f-
                        Q.
                                O  O  CO  O
                                CO  O  IO  O
                                CM  CM  CM  i-
                        Q
                        LU
                                O  O  in  O
                                  .    .  o   •
                                O  O  i-  U5
                                O>  O       !"•-
                        in
                        CM
                        CL
                                o  o  o   o

                                O  CD  O   CD
                                n-  •*  <*   co
    c
    o
    CO
    CO
    09
    CO

    •a
    c
    CO
        c
    03  CO
    T3  -H
CO  CO  13
£  O  CD
CO  CD  E
CD  0    I

    >.  "'l
    £%  ^)

    CO    I
-00.
CO  -H  I—
CO  CO
i-  -H
03
        0}
    -H
>  CO  CD
    +->  £
    CO  CO
        C-
    03  CO
    >  a.
    •H
    O
    CO
    0)
    a
                        o
                        cr
                        cc
                        LU
                        o
                        co
                        LU
                        a
                        a

                        co
                        X
                                o  o  o  o
                                o  o  o  o
                                o  o  o  o
                                T-  O  O  O)
                                in  co  <»  LO
                                oo  in 'S-  o
                                co  t <*  co
                                h-  h- -i-  CM
                                eo  i- T-  r>-
                                CM  CO CO  CM
                                o  o  o o
                                o  o  o o

                                CD  CD  O O
                                o  o  o in
                                CM  CD  CO CO
                                CO  CM  CM CM
                                o  o  o   o
                                o  o  o   o
                                o  o  o   o
                        <
                        LU
                                O  CO  i-  T-
                                a>  a>  CM  t»-
                                i-  -i-  CM  t-
                                o  in  co  co
                                CO  N  CO  CO
                                •*  •«•  ••a-  •^r
                        o
                        CO
                        <
                        LU
                        CO
                                    O  CC  CC
                                    2  LU  LU
                                -I  M  S  t-
                                -1  DC  S  2:
                                <  a.  =>  i-<
                                LU  CO  CO  S
                o   a> >-H
                O   > H-l
               UJ   03 1-1
                                in  in  in  vn

-------
CM
                            10
                            0>
                            Q.
   O  O  O  O

   o°  'fr  ed  eo
                            to
                            N.
                            Q.
   o  o  to  o
   O  O  O  •<*•

   10  10  co  10
                            o
                            LU
   o  o  a>  o
   o  o  t  T-
    *   •   •   •
   CO  CO  CO  CO
                            to
                            CM
                            D_
   o  o  o  o
   co  o  o  o
    •   •   •   •
   T-  CM  CM  CM
       o
       CO
       CO
       co
       CO
                            to
                            Q.
                           o
                                     O  U5
                                     CO  O)
           O  O
           O  O
                                   O O r- T-
  N- O CO CO
  o> T- o co
         co  c
 c          co
 O      CD -H
"rH     "O "O
 OJ  CO  CO  CD
 CD  E  O E
 £••  CO  CD    I
 O  0) Q 3
 O  C_     |—
tU 4J  >, LL.
    CO J3    I

 C T3  W C_
 CO  C  O 3
•H  CO -H I—
 t-     4->
•M  W CO £-
3  t. -H CD
Z CD +J -H
    > CO CO

4-> CC CO CO
CO          {_
O>     CD  CO
»      >  D.
t-      -H
C3)     +-*
co     n.
<      «H

        o
        CO
                           cc
                           DC
                           iu
                           a

                           co
                           ai
                           Q
                           o
                           co
  CO  T-  CM  i-
  CJ  CO  CO  1^-

  o  o  o  o
  •*  co  T—  o
  O  ^-  CO  *3"
  CO  10  10  CO
                                   to o  o  o
                                   CO O  O  1O

                                   O) CO  CM  CM
                                   CO *J-  CO  h~
                                  O  O  O  O
                                  o  to  o  o
                                  O  CM  O  CO
                                  CO  N  Tf  CM
                                  O  CO  T-  CO
                                    »   »   •    •
                                  M-  ^  to  TJ-
                                  O  CM  O  O)
                                  CO  1^  h-  TJ-
                                  CM  CM  CM  CM
                         LU
                         CO
    O  EC  DC
    Z  UJ  LU
-J M  S  I-
-J CC  E  2
< a_ zs  1-1
U- CO CO  S
                   I  -H
                 O  CO  n
                 O  >  t-i
                LU  (U  HH
jp  to  to  to

-------
                       o>
                       Q.
                               O  O  O  O
                               in  Is-  CO  CO
                               T-  CM  CM  CM
                       in
                       f-
                       Q.
                            co  co  o
                            in  co  CM
                                        in
                                        CD

                           co   co  co  co
                       o
                       LLJ
                               o  co o in
                               in  T- co '«•
                               co
                                        co  co
                       in
                       CM
                       o.
                            o  o  o  o
                            en  CM  ^  co

                            T^  CM  CM  t-
c
o
co
CO

CO

T3

CO   C
     CO
CO  -H
T3  T3
CO   05
O
=   O

g
                       in
                       Q_
                        o
                    cc
                    cc
                    LU
                    o

                    CO
                            O  CO  O  O
                            co  en  co  co

                            o  o  o  o
                                Tf  CO  O)  CM
                                CM  CO  T-  CM
                                    N.  co  Is-
                                    co  in  in
                             o  o  o  o
CO
o
        !_
        3
CO -H  I—
   +-•
CO  CO  £-
   -H  Q>
CD 4-1  -H
>  CO  O
H +->  E
r co  co

    o  co
    >  Q-
    Q.
   •H
                    o
                    o
                    CO
                    X
                    <
                             a>  co  r*-  CM
                             m    •»-«*•
                              .  o
                             CD  T-  co  co
                             o  o  o  o
                             in  o  o  in
                               •    •    •    •
                             rr  co  i-  •*
                             Is-  CD  eo  m
    CO
    o
    o
                                o  o  o  o
                                o  o  o  o
                                CO  T-  CM  i-
                        <
                        LU
                                o  in  co  CM
                                CO  h-  CO  O)
                                in
                                        <«•  in
                                 CM  CO  CO  T-
                                 CM  CM  CM  CM
                        O

                        3
                        HI
                        co
                                    crs
                                        tr cc
                                        LU LU
                                 cc  s
                                 a.  Z3
                                 co  co
                 O   CD  HH

                 O   >  H-t

                LU   CD  M
                                in   in   LO in

-------

-------
           APPENDIX C
Quality Control/Quality Assurance Rules

-------

-------
          INDUS
          CORPORATION
 Kno wledge-Based SoJutions
Support for the Compilation and Analysis of
National Nutrient Data
15 Nutrient Ecoregion/Waterbody Type Summary
Chapters	.
Prepared for:
       Robert Cantilli
       Environmental Protection Agency
       OW/OST/HECD
Prepared by:
       INDUS Corporation
       1953 Gallows Road
       Vienna, Virginia 22182
Contract Number:
Task Number:
Subtask Number:
68-C-99-226
04
4
August 8, 2000

-------

-------
 15 Nutrient Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226, TO# 04

                                    CONTENTS
August 8, 2000
1.0    BACKGROUND	.,1
       1.1    Purpose	1
       1.2    References	'.1

2.0    QA/QC PROCEDURES	2
       2.1    National Data Sets	3
       2.2    State Data	3
       2.3    Laboratory Methods	4
       2.4    Waterbody Name	4
       2.5    Ecoregion Data	5

3.0    STATISTICAL ANALYSIS REPORTS	5
       3.1    Data Source Reports  	•	6
       3.2    Remark Code Reports 	7
       3.3    Median of Each Waterbody	7
       3.4    Descriptive Statistic Reports 	7
       3.5    Regression Models	8

4.0    TIME PERIOD	8

5.0    DATA SOURCES AND PARAMETERS FOR THE AGGREGATE NUTRIENT
       ECOREGIONS	9
       5.1    Lakes and Reservoirs	9
             5.1.1   Aggregate Nutrient Ecoregion 2	9
             5.1.2   Aggregate Nutrient Ecoregion 6	10
             5.1.3   Aggregate Nutrient Ecoregion 7	10
             5.1.4   Aggregate Nutrient Ecoregion 8  	11
             5.1.5   Aggregate Nutrient Ecoregion 9  	12
             5.1.6   Aggregate Nutrient Ecoregion 11	12
             5.1.7   Aggregate Nutrient Ecoregion 12  	.-	13
             5.1.8   Aggregate Nutrient Ecoregion 13  	13
       5.2    Rivers and Streams	-	14
             5.2.1   Aggregate Nutrient Ecoregion 2	14
             5.2.2   Aggregate Nutrient Ecoregion 3  	15
             5.2.3   Aggregate Nutrient Ecoregion 6  	16
             5.2.4   Aggregate Nutrient Ecoregion 7   	16
             5.2.5   Aggregate Nutrient Ecoregion 9	~	17
             5.2.6   Aggregate Nutrient Ecoregion 11  	18
             5.2.7   Aggregate Nutrient Ecoregion 12  	19
                                          n

-------
15 Nutrient Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226. TO# 04

             5.2.8   Aggregate Nutrient Ecoregion 14  	
                                                         August 8, 2000

                                                        	20
APPENDIX A
APPENDIX B

APPENDIX C
Process Used to QA/QA the Legacy STORET Nutrient Data Set
Process for Adding Aggregate Nutrient Ecoregions and Level in
Ecoregions
Glossary
                                          in

-------
15 Nutrient Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226, TO# 04

1.0    BACKGROUND
August 8. 2000
The Nutrient Criteria Program has initiated development of a national Nutrient Criteria Database
application that will be used to store and analyze nutrient data. The ultimate use of these data
will be to derive ecoregion- and waterbody-specific nutrient criteria ranges. EPA converted
STOrage and RETrieval (STORET) legacy data, National Stream Quality Accounting Network
(NASQAN) data, National Water-Quality Assessment (NAWQA) data, and other relevant
nutrient data from universities and States/Tribes into the database. The data imported into the
Nutrient Criteria Database will be used to develop national nutrient criteria ranges.

1.1    Purpose

The purpose of this deliverable is to provide EPA with information regarding the data used to
create the statistical reports which will be used to derive ecoregion- and waterbody-specific
nutrient criteria ranges for Level HI ecoregions. There are fourteen aggregate nutrient
ecoregions. Each aggregate nutrient ecoregion is divided into smaller ecoregions referred to as
Level m ecoregions. EPA will determine criteria ranges for the waterbody types and Level ffi
ecoregions within the following aggregate nutrient ecoregions:

•      Lakes and Reservoirs
              Aggregate Nutrient ecoregions: 2,6,7, 8,9,11,12,13

•      Rivers and Streams
       -      Aggregate Nutrient ecoregions: 2, 3, 6, 7, 9, 11, 12, 14

1.2    References

This section lists documents that contain baselines, standards, guidelines, policies, and references
that apply to the data analysis. Listed editions were valid at the time of publication. All
documents are subject to revision, but these specific editions govern the concepts described in
this document.

Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs (Draft).- EPA, Office of
Water, EPA 822-D-99-001, April 1999.

Nutrient Criteria Technical Guidance Manual: Rivers and Streams (Draft).  EPA. Office of
Water, EPA S22-D-99-003, September 1999.

Guidance for Data Quality Assessment: Practical Methods for Data Analysis. EPA, Office of
Research and Development, EPA- QA/G-9, January 1998.

-------
 15 Nutrient Ecoregion/Watertiody Type Summary Chapters, Contract # 68-C-99-226. T0# 04

 2.0    QA/QC PROCEDURES
August 8, 2000
 In order to develop nutrient criteria, EPA needed to obtain nutrient data from the states. EPA
 requested nutrient data from the states and forwarded the data sets to INDUS via e-mail and/or
 US mail.  In addition, EPA tasked INDUS to convert data from three national data sets. EPA
 provided INDUS with a Legacy STORET extraction to convert into the database. The United '
 States Geologic Survey (USGS) sent INDUS a CD-ROM with NASQAN data to convert.
 INDUS downloaded NAWQA files from the USGS Web site to convert the data. In total,
 INDUS converted and imported the following national and state data sets into the Nutrient
 Criteria Database:

       Legacy STORET.
       NAWQA
       NASQAN
 •      Region 1
 •      Region 2 - Lake Champlain Monitoring Project
 •      Region 2 - NYSDEC Finger Lakes Monitoring Program
 •      Region 2 - NY Citizens Lake Assessment Program
.•      Region 2 - Lake Classification and Inventory Survey
       Region 2 - NYCDEP (1990-1998)
       Region 2 - NYCDEP (Storm Event data)
 •      Region 2 - New Jersey Nutrient Data (Tidal Waters)
 •      Region 5
 •      Region 3.
 •      Region 3 - Nitrite Data
 •      Region 3 - Choptank River files
 •      Region 4 - Tennessee Valley Authority
       Region 7 - Central Plains Center for BioAssessmeht (CPCB)
       Region 7 - REMAP
 •      Region 2 - Delaware River Basin Commission (1990-1998)
 •      Region 3 - PA Lake Data
 •      Region 3 - University of Delaware
 •      Region 10
 •      University of Auburn

 As part of the conversion process, INDUS performed a number of Quality Assurance/Quality
 Control (QA/QC) steps to ensure that the data was properly converted into the Nutrient Criteria
 Database.  Section 2 explains the steps performed by INDUS to convert the data.

-------
15 Nutnem Ecoresion/Waterbody Type Summary Chapters, Contract # 68-C-99-226, TO# 04

2.1    National Data Sets
August 8.2000
INDUS converted three national data sets into the Nutrient Criteria Database: Legacy STORET
data, NASQAN data, and NAWQA data. A previous EPA contractor performed the extraction of
Legacy STORET data and documented the QA/QC procedures used on the data. This
documentation is included in Appendix A.  INDUS performed minimal QA/QC on the Legacy •
STORET data set because the previous contractor completed the steps outlined in Appendix A.
INDUS and EPA also agreed to convert the NAWQA and NASQAN data sets with minimal
QA/QC on the assumption that the source agency, the USGS, QA/QC'd the data.

For each of the three national data sets, INDUS ran queries to determine if 1) samples existed
without results and 2) if stations existed without samples. Per Task Order Project Officer
(TOPO) direction, these records were deleted from the system. For analysis purposes, EPA
determined that there was no need to keep station records with no samples and sample records
with no results. INDUS also confirmed that each data set contained no duplicate records.

In addition, INDUS deleted all composite results from the Legacy STORET data. Per TOPO
direction, it was decided that composite sample results would not be used in the statistical
analysis.

2.2    State Data

Each state data set was delivered in a unique format. Many of the data sets were delivered to
INDUS without corresponding documentation. INDUS analyzed each state data set in order to
determine which parameters should be converted for analysis. INDUS obtained a master
parameter table from EPA and converted the parameters in the state data sets according to those
that were present in the EPA parameter table. INDUS converted all of the data elements in the
state data sets that mapped directly to the Nutrient Criteria Database; data elements that did not ,
map to the Nutrient Criteria Database were not converted. In some cases, state data elements that
did not directly map into the Oracle database were inserted into a comment field within the
database.  Also. INDUS maintained an internal record of which state data elements were inserted
into the comment field.

As part of the data clean-up efforts, INDUS determined whether or not there were any duplicate
records in the state data sets and deleted the duplicate records. INDUS checked the waterbody,
station, and sample entities for duplicate records. In addition, INDUS deleted station records
with no samples and sample records with no results.  INDUS also deleted waterbody records that
were not associated with a station. In each case, INDUS maintained an internal record of how
many records were deleted. -

If INDUS encountered referential integrity errors, such as samples  that referred to stations that
did not exist, or if INDUS was unsure of whether a record was a duplicate, INDUS contacted the

-------
 15 Nutrient Ecoregjon/Waterfaody Type Summary Chapters, Contract # 68-C-99-226. TO* 04
August 8, 2000
agency directly via e-mail or phone to resolve any issues that arose. INDUS saved an electronic
copy of each e-mail correspondence with the states to ensure that a record of the decision was
maintained.  INDUS also contacted each agency to determine which laboratory methods were
used for each parameter.

Finally, INDUS examined the remark codes of each result record in the state data sets.  INDUS
mapped the remark codes to the STORET remark codes listed in Table 2 of Appendix A. If any
of the state result records were associated with remark codes marked as "Delete" in Table 2 of.
Appendix A, the result records were not converted into the database.

23     Laboratory Methods

Many of the state data sets did not contain laboratory method information. In addition,
laboratory method information was not available for the three national data sets. In order to
determine missing laboratory method information, EPA tasked another contractor to contact the
data owners to obtain the laboratory method. In some cases, the data owners responded and the
laboratory methods were added to the database.

2.4     Waterbody Name and  Class Information

A large percentage of the data did not have waterbody-specific information. The only waterbody
information contained in the three national data sets was the waterfaody name, which was
embedded in the station 'location description' field. Most of the state data sets contained
waterbody name information; however, much of the data was duplicated throughout the data sets.
Therefore, the waterbody information was cleaned manually. For the three national data sets, the
'location description' field was  extracted from the station table and moved to a temporary table.
The 'location description' field  was sorted alphabetically. Unique waterbodies were grouped
together based on name similarity and whether or not the waterbodies fell within the same  '   >
county, state, and waterbody type.  Finally, the 'location description' field was edited to include
only waterbody name information, not descriptive information.  For example, 110 MILE CREEK
AT POMONA DAM OUTFLOW, KS  PO-2 was edited to 110 MILE CREEK. Also, if 100
MILE CREEK was listed ten times in New York, but in four different counties, four 100 MILE
CREEK waterbody records were created.

Similar steps were taken to eliminate duplicate waterbody records in the state data sets. If a
number of records had similar waterbody names and fell within the same state, county,  and
waterbody type, the records were grouped to create a unique waterbody record.

Most of the waterbody data-did not contain depth, surface area, and volume measurements.  EPA
needed this information to classify waterbody types.  EPA attempted to obtain waterbody class

-------
15 Nutrient Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226. TO# 04
August 8,2000
information from the states.  EPA sent waterbody files to the regional coordinators and requested
that certain class information be completed by each state. The state response was poor; therefore,
EPA was not able to perform statistical analysis for the waterbody types by class.

2.5    Ecoregion Data

Aggregate nutrient ecoregions and Level IE ecoregions were added to the database using the
station latitude and longitude coordinates. If a station was lacking latitude and longitude
coordinates or county information, the data were not included in the statistical analysis.
Appendix B lists the steps taken to add the two ecoregion types (aggregate and Level HI) to the
Nutrient Criteria Database.  The ecoregion names were pulled from aggregate nutrient ecoregion
and Level ffl ecoregion Geographical Information System (GIS) coverages.  In summary, the
station latitude and longitude coordinates were used to determine the ecoregion under the
following circumstances:

•      The latitude  and longitude coordinates fell within the county/state listed in the station
       table.
       The county data was missing.

The county centroid was used to determine the ecoregions under the following circumstances:

       The latitude  and longitude coordinates were missing, but the state/county information was
       available.
       The latitude  and longitude coordinates fell outside the county/state listed hi the station
       table.  The county information was assumed to be correct; therefore, the county centroid
       was used.

If the latitude and longitude coordinates fell outside the continental US county coverage file
(i.e., the point fell in the ocean or Mexico/Canada), the nearest ecoregion was assigned to the
station.
3.0    STATISTICAL ANALYSIS REPORTS

Aggregate nutrient ecoregion tables were created by extracting all observations for a specific
aggregate nutrient ecoregion from the nutrient criteria database. Then, the data were reduced to
create tables containing only the yearly median values. To create these tables, the median value
for each waterbody was calculated using all observations for each waterbody by Level III
ecoregion, year, and season. Tables of decade median values were created from the yearly
median tables by calculating the median for each waterbody by Lsvel HI ecoregion by decade and
season.

-------
 15 Nutrient Ecoregion/Waierfaody Type Summary Chapters. Contract # 68-C-99-226. TO# 04
                                                                               August 8,2000
 The Data Source and the Remark Code reports were created using all observations (all reported
 values). All the other reports were created from either the yearly median tables or the decade
 median tables.  In other words, the descriptive statistics and regressions were run using the
 median values for each waterbody and not the individual reported values.

 Statistical analyses were performed under the assumption that this data set is a random sampled
 If this-assumption cannot be verified, the observations may or may not be valid. Values below
 the 1st and 99th percentile were removed from the Legacy STORET database prior to the creation
 of the national database. Also, data were treated according the Legacy STORET remark codes in
 Appendix A.

 The following contains a list of each report and the purpose for creating each report:

 •      Data Source—Created to provide a count of the amount of data and to identify the
       source(s).
 •      Remark Codes—Created to provide a description of the data.
 •      Median  of Each Waterbody by Year—This was an intermediate step performed to obtain
       a median value for each lake to be used in the yearly descriptive statistics -eports and the
       regression models.
       Median  of Each Waterbody by Decade—This was an intermediate step performed to
       obtain a median value for each lake to be used in the decade descriptive statistics.
 •      Descriptive Statistics—Created to provide EPA with the desired statistics for setting
       criteria levels.
 •      Regression Models—Created to examine the relationships between biological and
       nutrient variables.

Note: Separate reports were created for each season.

3.1     Data Source Reports

Data source reports were presented in the following forfta'ts:

•      The number and percentage of data from each data source were summarized in tables for
       each aggregate nutrient ecoregion by season and waterbody type.

•      The number and percentage of data from each data source were summarized in tables for
       each Level III ecoregion by season and waterbody type.

The 'Frequency' represents-the number of data values from a specific data source for each
parameter by data source. The 'Row Pet' represents the percentage of data from a specific data
source for each  parameter.

-------
 15 Nutrient Ecoregton/Watcrbody Type Summary Chapters. Contract * 68-C-99-226, TO# 04                     August 8,2000

 3.2    Remark Code Reports

 Remark code reports were presented in the following formats:

 •      The number and percentage of data associated with a particular remark code for each
       parameter were summarized in tables by Level HI ecoregion by decade and season.

 •      The number and percentage of data associated with a particular remark code for each
       parameter were summarized in tables by Level HI ecoregion by year and season.

The 'Frequency' represents the number of data values corresponding to the remark code in the
column. The 'Row Pet' represents the percentage of data that was associated with the remark
code in that row.

In the database, remark codes that were entered by the states were mapped to Legacy STORET
remark codes.  Prior to the analysis, the data were treated according to these remark codes. For
example, if the remark code was 'K,' then the reported value was divided by two. Appendix A
contains a complete list of Legacy STORET remark codes.

Note: For the reports, a remark code of 'Z'  indicates that no remark codes were recorded. It does
not correspond to'Legacy STORET code 'Z.'

3.3    Median of Each Waterbody

To reduce the data and to ensure heavily sampled waterbodies or years were not over represented
in the analysis, median value tables (described above) were created. The yearly median tables
and decade median tables were delivered to the EPA in electronic format as csv (comma
separated value or comma delimited) files.

3.4    Descriptive Statistic Reports

The number of waterbodies, median, mean, minimum, maximum, 5th, 25th, 75th, 95th percentiles,
standard deviation,  standard error, and coefficient of variation were calculated. The tables
(described above) containing the decade median values for each waterbody for each parameter
were used to create descriptive statistics reports for:

•      Level III ecoregioris by decade and season
•      Aggregate nutrient ecoregions by decade and season

-------
15 Nutnem Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226, TO# 04                     August 8.2000

In addition, the tables containing the yearly median values for each waterbody for each parameter
were used to create descriptive statistics reports for:

•      Level HI ecoregions by year and season

3.5    Regression Models

Simple linear regressions using the least squares method were performed to examine the
relationships between biological and nutrient variables in lakes and reservoirs, and rivers and
streams.  Regressions were performed using the yearly median tables.  Chlorophyll(s) in
micrograms per liter (ug/L), secchi in meters (m), dissolved oxygen in milligrams per liter
(mg/L), turbidity, and pH were the biological variables in these models.  When there was little or
no data for chlorophyll, then pH or dissolved oxygen was substituted for chlorophyll. .Secchi'
data were used in the lake and reservoir models, and turbidity data were used in the river and
stream models.  The nutrient variables in these models include: total phosphorus in ug/L, total
nitrogen in mg/L, total kjeldahl nitrogen in mg/L, and nitrate and nitrite in mg/L. Regressions
were also run for total nitrogen and total'phosphorus for ecoregions where both these variables
were measured.

Note: At  the time of creation of this document only regressions for aggregate nutrient ecoregion 7
for lakes  and reservoirs were delivered to the EPA. Regressions for the remaining aggregate
nutrient ecoregions will be delivered in August 2000.


4.0    TIME PERIOD

Data collected from January 1990 to December 1999 were used in the statistical analysis reports.
To capture seasonal differences, the data were classified as follows:

•      Aggregate nutrient ecoregions: 6, 7, and 8

       -     Spring:       April to May
       -     Summer:     June to August
       -     Fall:          September to October
             Winter:       November to March
       Aggregate nutrient ecoregions: 1, 2. 9. 10, 11, 12, and 13

              Spring:     -  March to May
              Summer:     June to August
       -      Fall:         September to November
              Winter:       December to February

-------
 15 Nutrient Ecoregion/Waterbody Type Summary Chapters, Contract # 68-C-99-226. TO# 04                    August 8, 2000

 5.0    DATA SOURCES AND PARAiMETERS FOR THE AGGREGATE NUTRIENT
 ECOREGIONS

 This section provides information for the nutrient aggregate ecoregions that were analyzed by
 waterbody type.  Each section lists the data sources for the aggregate nutrient ecoregion
 including: 1) the data sources, 2) the parameters included in the analysis, and 3) the Level III
 ecoregions within the aggregate nutrient ecoregions.

 Note: For analysis purposes, the following parameters were combined to form Phosphorous,
 Dissolved Inorganic (DIP):

 Phosphorus, Dissolved Inorganic (DIP)
 Phosphorus, Dissolved (DP)
 Phosphorus, Dissolved Reactive (DRP)
 Orthophosphate, dissolved, mg/L as P
 Orthophosphate (OPO4_PO4)

 5.1    Lakes and Reservoirs

 5.1.1   Aggregate Nutrient Ecoregion 2

 Data Sources:

 Legacy STORE!
 EPA Region 10

 Parameter:
                                                                                   t
 Chlorophyll A, Fluorometric, Corrected                 (ug/L)
 Chlorophyll A, Phytoplankton, Spectrophotometric Acid   (ug/L)
 Chlorophyll A, Trichromatic, Uncorrected               (ug/L)
 Phosphorous. Dissolved Inorganic (DIP)                 (ug/L)
 Dissolved Oxygen (DO)                               (mg/L)
 Nitrite and Nitrate, (NO2+NO3)                        (mg/L)
 Nitrogen, Total (TN)                                 (mg/L)
Nitrogen, Total Kjeldahl (TKN)       .                 (mg/L)
 Phosphorus. Total (TP)                               (ug/L)
 Phosphorus. Total Reactive                            (ug/L)
 SECCHI                ^                            (m)
pH   '

-------
IS Nutnent Ecoregion/Waterfaody Type Summary Chapters, Contract # 68-C-99-226. TO# 04

Level in ecoregions:

1,2,4, 5, 9,11,15,16,17,19,21,23,41, 77, 78

5.1.2   Aggregate Nutrient Ecoregion 6

Data Sources:

Legacy STORE!

Parameters:

Chlorophyll'A, Fluorometric, Corrected                 (ug/L)
Chlorophyll A, Phytoplankton, Spectrophotometric Acid   (ug/L)
Chlorophyll A, Trichromatic, Uncorrected               (ug/L)
Dissolved Oxygen (DO)                               (mg/L)
Nitrite and Nitrate, (NO2+NO3)                        (mg/L)
Nitrogen, Total (TN)                                  (mg/L)
Nitrogen, Total Kjeldahl (TKN)                        (mg/L)
Phosphorus, Total (TP)                                (ug/L)
SECCHI                         '                    (m)

Level III ecoregions:

46, 47,48, 54, 55, 57

5.1.3   Aggregate Nutrient Ecoregion 7

Data Sources:

LCMPD
Legacy STORET
NYCDEP
EPA Region 1

Parameters:

Chlorophyll A, Fluorometric Corrected                         (ug'L)
Chlorophyll A, Phytoplankton, Spectrophotometric Acid          (ug/L)
Chlorophyll A, Phytoplankton, Spectrophotometric, Uncorrected   (ug/L)
Chlorophyll A, Trichromatic, Uncorrected                      (ug/L)
Phosphorous. Dissolved Inorganic (DIP)                        (ug/L)
August 8, 2000
                                          10

-------
15 Nutnent EcoregiomWaterbody Type Summary Chapters, Contract # 68-C-99-226. T0# 04

Dissolved Oxygen (DO)                                     (mg/L)
Nitrite and Nitrate, (NO2+NO3)       •                       (mg/L)
Nitrogen, Total (TN)                                        (mg/L)
Nitrogen, Total Kjeldahl (TKN)                               (mg/L)
Phosphorus, Orthophosphate, Total as P                        (ug/L)
Phosphorus. Total (TP)                                      (ug/L)
SECCHI                                                  (m)

Level HI ecoregions:

51,52,53,56,60,61,83
                                                    *
5.1.4   Aggregate Nutrient Ecoregion 8

Data sources:

LCMPD
Legacy STORET
NYCDEP
NYCDEC
EPA Region 1
EPA Region 3

Parameters:

Chlorophyll A, Fluorometric, Corrected                     ,  (ug/L)
Chlorophyll A, Phytoplankton, Spectrophotometric Acid         (ug/L)
Chlorophyll A. Phytoplankton, Spectrophotometric, Uncorrected   (ug/L)
Chlorophyll A, Trichromatic, Uncorrected                      (ug/L)
Chlorophylls                                        '
Chlorophyll C
Phosphorous, Dissolved Inorganic (DEP)                       (ug/L)
Dissolved Oxygen (DO)                                     (mg/L)
Nitrite and Nitrate, (NO2+NO3)                              (mg/L)
Nitrogen, Total (TN)                                        (mg/L)
Nitrogen, Total Kjeldahl (TKN)                               (mg/L)
Phosphorus, Total (TP)                                      (US/L)
SECCHI                                    '              (m)

Level III ecoregions:

49, 50, 58, 62. 82
August 8. 2000
                                          11

-------
 15 Nutrient Ecoregton/Waterbody Type Summary Chapters, Contract * 68-C-99-226, TO# 04

 5.1.5  Aggregate Nutrient Ecoregion 9

 Data sources:

 Auburn University
 Legacy STORET
 EPA Region 4
August 8.2000
Chlorophyll A, Fluorometric, Corrected                        (ug/L)
Chlorophyll A, Pheophytin   .                                (ug/L)
Chlorophyll A, Phytoplankton, Spectrophotometric Acid          (ug/L)
Chlorophyll A, Phytoplankton, Spectrophotometric, Uncorrected   (ug/L)
Chlorophyll A, Trichromatic, Uncorrected                      (ug/L)
Phosphorous, Dissolved Inorganic (DIP)                        (ug/L)
Dissolved Oxygen (DO)                                      (mg/L)
Nitrite and Nitrate, (NO2+NO3)                               (mg/L)
Nitrogen, Total (TN)                                         (mg/L)
Nitrogen, Total Kjeldahl (TKN)                               (mg/L)
Phosphorus, Total (TP)                                       (ug/L)
SECCHI                                                   (m)

Level PI ecoregions:

29, 33, 35, 37, 40, 45, 64, 65, 71, 72, 74

5.1.6   Aggregate Nutrient Ecoregion 11

Data sources:

Auburn University
Legacy STORET
NYSDEC
EPA Region 3
EPA Region 4

Parameters:

Chlorophyll A. Fluorometric, Corrected                         (ug/L)
Chlorophyll A. Pheophytin                                   (ug/L)
Chlorophyll A, Phytoplankton. Spectrophotometric Acid          (ug/L)
                                         12

-------
15 Nutrient Ecoregion/Waterbody Type Summary Chapters, Contract # 68-C-99-226, TO# 04

Chlorophyll A, Phytoplankton, Spectrophotometric, Uncorrected
Chlorophyll A, Trichromatic, Uncorrected
Phosphorous, Dissolved Inorganic (DIP)
Dissolved Oxygen (DO)
Nitrite and Nitrate, (NO2+NO3)
Nitrogen, Total (TN)
Nitrogen, Total Kjeldahl (TKN)
Phosphorus, Total (TP)
SECCHI

Level HI ecoregions:

36,38, 39,66,67, 68,69, 70

5.1.7   Aggregate Nutrient Ecoregion 12

Data sources:

Legacy STORET

Parameters:
                       August 8. 2000
       (ug/L)
       (ug/L)
       (ug/L)
       (mg/L)
       (mg/L)
       (mg/L)
       (mg/L)
       (ug/L)
       (m)
Chlorophyll A, Phytoplankton, Spectrophotometric Acid
Chlorophyll A, Trichromatic, Uncorrected
Dissolved Oxygen (DO)
Nitrite and Nitrate, (NO2+NO3)
Nitrogen, Total (TN)
Nitrogen, Total Kjeldahl (TKN)
Phosphorus, Total (TP)
SECCHI

Level HI ecoregions:

75

5.1.8  Aggregate Nutrient Ecoregion 13

Data sources:

Legacy STORET
 (ug/L)
(ug/L)
(mg/L)
(mg/L)
(mg/L)
(mg/L)
(ug/L)
 (m)
                                          13

-------
   15 Nutnent Ecoregion/Watcrbody Type Summary Chapters. Contract # 68-C-99-226. TO# 04
   Parameters:

   Chlorophyll A, Fluorometric, Corrected                  (ug/L)
   Chlorophyll A, Phytoplankton, Spectrophotometric Acid   (ug/L)
   Chlorophyll A, Trichromatic, Uncorrected                (ug/L)
   Dissolved Oxygen (DO)                                (mg/L)
   Nitrite and Nitrate, (NO2+NO3)                         (mg/L)
   Nitrogen, Total (TN)                                   (mg/L)
   Nitrogen, Total Kjeldahl (TKN)                         (mg/L)
   Phosphorus, Total (TP)                                 (ug/L)
   SECCHI                                             (m)

   Level in ecoregions:
  76
  5.2   Rivers and Streams

  5.2.1   Aggregate Nutrient Ecoregion 2

  Data sources:

  Legacy STORET
  NASQAN
  NAWQA
  EPA Region 10

.  Parameters:

  Chlorophyll A, Fluorometric, Corrected                        (ug/L)
  Chlorophyll A, Phytoplankton, Spectrophotometric Acid         (ug/L)
  Chlorophyll A, Phytopiankton, chromotographic- fluorometric    (ug/L)
  Chlorophyll A, Trichromatic, Uncorrected                      (ug/L)
  Chlorophyll B, Phytoplankton, chromotographic- fluorometric    (ug/L)
  Phosphorous, Dissolved Inorganic (DIP)                       (ug/L)
  Dissolved Oxygen (DO)                                      (mg/L)
  Nitrite and Nitrate, (NO2+NO3)                               (mg/L)
  Phosphorus, Orthophosphate, Total as P                        (ug/L)
  Phosphorus, Total (TP) Reactive                              (ug/L)
  Nitrogen, Total  (TN)                                        (mg/L)
  Nitrogen, Total Kjeldahl (TKN)                               (mg/L)
  Phosphorus, Total (TP)                                      (ug'L)
August 8, 2000
                                           14

-------
15 Nutrient Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226. TO* 04

Turbidity                                                   (FTU)
Turbidity                    .                               (JCU)
Turbidity                                                   (NTU)

Level in ecoregions:

1, 2, 4, 5, 8, 9, 11, 15, 16, 17, 19, 21, 23, 41, 77, 78

5.2.2  Aggregate Nutrient Ecoregion 3

Data sources:

Legacy STORET
NASQAN
NAWQA
EPA Region 10

Parameters:

Chlorophyll A, Fluorometric, Corrected                        (ug/L)
Chlorophyll A, Phytoplankton, Spectrophotometric Acid         (ug/L)
Chlorophyll A, Phytoplankton, chromotographic- fluorometric    (ug/L)
Chlorophyll A, Trichromatic, Uncorrected                      (ug/L)
Chlorophyll B, Phytoplankton, chromotographic- fluorometric    (ug/L)
Phosphorous, Dissolved Inorganic (DIP)                        (ug/L)
Dissolved Oxygen (DO)                                      (mg/L)
Nitrite and Nitrate, (NO2+NO3)                               (mg/L)
Nitrogen, Total (TN)                                         (mg/L)
Nitrogen, Total Kjeldahl (TKN)                               (mg/L)
Phosphorus, Total (TP)                                       (ug/L)
Turbidity         "                                         (FTU)
Turbidity                                                   (JCU)
Turbidity                                                   (NTU)

Level III ecoregions:

6, 10, 12, 13, 14. 18. 20, 22, 24, 79, 80, 81
August 8. 2000
                                          15

-------
 15 Nutnent Ecoregion/Waterbody Type Summary Chapters, Contract # 68-C-99-226. TO# 04

 5.2.3   Aggregate Nutrient Ecoregion 6

 Data sources:

 Legacy STORE!
 NASQAN
 NAWQA
 EPA Region 5
 EPA Region 7

 Parameters:

 Chlorophyll A, Fluorometric, Corrected
 Chlorophyll A, Phytoplankton, Spectrophotometric Acid
 Chlorophyll A, Phytoplankton, chromotographic- fluorometric
 Chlorophyll A, Trichromatic, Uncorrected
 Chlorophyll B, Phytoplankton, chromotographic- fluorometric
 Phosphorous, Dissolved Inorganic (DIP)
 Dissolved Oxygen (DO)
Nitrite and Nitrate, (NO2+NO3)
Nitrogen, Total (TN)
Nitrogen, Total Kjeldahl (TKN)
 Organic, Phosphorus
Phosphorus, Total (TP)
Phosphorus, Orthophosphate, Total as P
Turbidity
Turbidity
Turbidity

Level HI ecoregions:

46,47, 48, 54, 55, 57

5.2.4   Aggregate Nutrient Ecoregion 7

Data sources:

LCMPD
Legacy STORET
NASQAN
NAWQA
NYCDEP
                 August 8, 2000
(ug/L)
(ug/L)
(ug/L)
(ug/L)
(ug/L)
(ug/L)
(mg/L)
(mg/L)
(mg/L)
(mg/L)
(ug/L)
(ug/L)
(ug/L)
(FTU)
(JCU)
(NTU)
                                         16

-------
 15 Nutrient Ecoregion/Waierbody Type Summary Chapters. Contract # 68-C-99-226. TO# 04

 Parameters:

 Chlorophyll A, Fluorometric, Corrected                         (ug/L)
 Chlorophyll A, Phytoplankton, Spectrophotornetric Acid          (ug/L)
 Chlorophyll A, Phytoplankton, Spectrophotornetric, Uncorrected   (ug/L)
 Chlorophyll A, Phytoplankton, chromotographic- fluorometric     (ug/L)
 Chlorophyll A, Trichromatic, Uncorrected                       (ug/L)
 Chlorophyll B, Phytoplankton, chromotographic- fluorometric     (ug/L)
 Phosphorous, Dissolved Inorganic (DIP)                        (ug/L)
 Dissolved Oxygen (DO)                                      (mg/L)
 Nitrite and Nitrate, (NO2+NO3)                               (mg/L)
 Nitrogen, Total (TN)                                         (mg/L)
 Nitrogen, Total Kjeldahl (TKN)                                (mg/L)
 Organic, Phosphorus                                         (ug/L)
 Phosphorus, Orthophosphate, Total as P                         (ug/L)
 Phosphorus, Total (TP)                                       (ug/L)
 Turbidity                                                    (FTU)
 Turbidity                                                    (JCU)
 Turbidity                                                    (NTU)

 Level IH ecoregions:

 51,52,53,56,60,61,83

 5.2.5   Aggregate Nutrient Ecoregion 9

 Data sources:

 Auburn University
 Legacy STORET
NASQAN
NAWQA
 EPA Region 3
 EPA Region 5
 EPA Region 7

Parameters:

 Chlorophyll A, Fluorometric, Corrected                         (ug/L)
 Chlorophyll A, Phytoplankton, chromotographic- fluorometric     (ug/L)
 Chlorophyll A, Phytoplankton, Spectrophotometric Acid          (ug/L)
 Chlorophyll A, Phytoplankton, Spectrophotometric, Uncorrected   (ug/L)
August 8. 2000
                                          17

-------
IS Nutneiu Ecoregion/Watertiody Type Summary Chapters, Contract # 68-C-99-226. TO# 04

Chlorophyll A, Trichromatic, Uncorrected                      (ug/L)
Chlorophyll B, Phytoplankton, chromotographic- fluorometric     (ug/L)
Chlorophyll B, Phytoplankton, Spectrophotometric              (ug/L)
Phosphorous, Dissolved Inorganic (DIP)                        (ug/L)
Dissolved Oxygen (DO)                                      (mg/L)
Organic, Phosphorus                                         (ug/L)
Phosphorus, Orthophosphate, Total as P                        (ug/L)
Nitrite and Nitrate, (NO2+NO3)                               (mg/L)
Nitrogen, Total (TN)                                         (mg/L)
Nitrogen, Total Kjeldahl (TKN)                               (mg/L)
Phosphorus, Total (TP)                                       (ug/L)
Turbidity           .                                 '       (FTU)
Turbidity                                                   (JCU)
Turbidity                                                   (NTU)

Level IH ecoregions:

29,33,35,37,40,45, 64, 65, 71, 72, 74

5.2.6  Aggregate Nutrient Ecoregion 11

Data sources: "

Auburn University
Legacy STORET
NASQAN
NAWQA
EPA Region 3
EPA Region 5
EPA Region 7

Parameters:

Chlorophyll A, Fluorometric, Corrected                        (ug/L)
Chlorophyll A, Phytoplankton, chromotographic- fluorometric     (ug/L)
Chlorophyll A, Phytoplankton, Spectrophotometric Acid         (ug/L)
Chlorophyll A, Phytoplankton, Spectrophotometric, Uncorrected  (ug/L)
Chlorophyll A, Trichromatic, Uncorrected                      (ug/L)
Chlorophyll B, Phytoplankton, chromotographic- fluorometric     (ug/L)
Phosphorous, Dissolved Inorganic (DIP)                       (ug/L)
Dissolved Oxygen (DO)                                      (mg/L)
Organic, Phosphorus                                         (ug/L)
August 8.2000
                                          18

-------
 15 Numem Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226, TO# 04

 Phosphorus, Orthophosphate, Total as P                       (ug/L)
 Nitrite and Nitrate, (NO2+NO3)                              (mg/L)
 Nitrogen, Total (TN)                                        (mg/L)
 Nitrogen, Total Kjeldahl (TKN)                              (mg/L)
 Phosphorus, Total (TP)                                      (ug/L)
 Turbidity                      .                            (FTU)
 Turbidity                                                  (JCU)
 Turbidity                                                  (NTU)

 Level HI ecoregions:

 36,38,39,66,67,68,69,70

 5.2.7  Aggregate Nutrient Ecoregion 12

 Data sources:

 Legacy STORET
 NASQAN
 NAWQA

 Parameters:

 Chlorophyll A, Phytoplankton, Spectrophotometric Acid         (ug/L)
 Chlorophyll A, Phytoplankton, Spectrophotometric, Uncorrected   (ug/L)
 Chlorophyll A, Trichromatic, Uncorrected                      (ug/L)
 Chlorophyll B, Phytoplankton, Spectrophotometric              (ug/L)
Phosphorous. Dissolved Inorganic (DEP)                       (ug/L)
 Dissolved Oxygen (DO)                                      (mg/L)
 Nitrite and Nitrate, (NO2+NO3)                               (mg/L)
 Nitrogen, Total (TN)                                         (mg/L)
 Nitrogen, Total Kjeldahl (TKN)                               (mg/L)
 Phosphorus, Orthophosphate, Total as P                        (ug/L)
 Phosphorus, Total (TP)                                      (ug/L)
 Turbidity                                                  (FTU)
 Turbidity                                   '               (NTU)

 Level III ecoregions:
August 8,2000
75
                                          19

-------
 15 Nutrient Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226, TC# 04

 5.2.8  Aggregate Nutrient Ecoregion 14

 Data sources:

 Legacy STORET
 NASQAN
 NAWQA
NYCDEP
EPA Region 1
EPA Region 3

Parameters:

 Chlorophyll A, Fluorometric, Corrected
 Chlorophyll A, Phytoplankton, Spectrophotometric Acid
 Chlorophyll A, Phytoplankton, Spectrophotometric, Uncorrected
 Chlorophyll A, Trichromatic, Uncorrected
Phosphorous, Dissolved Inorganic (DIP)
Dissolved Oxygen (DO)
Nitrite and Nitrate, (NO2+NO3)
Phosphorus, Orthophosphate, Total as P
Nitrogen, Total Kjeldahl (TKN)
Nitrogen, Total (TN)
Phosphorus, Total (TP)
Turbidity
Turbidity
Turbidity

Level III ecoregions:

59, 63, 84
                 August 8, 2000
(ug/L)
(ug/L)
(ug/L)
(ug/L)
(ug/L)
(mg/L)
(mg/L)
(ug/L)
(mg/L)
(mg/L)
(ug/L)
(FTU)
(JCU)
(MTU)
                                         20

-------
15 Nutrient Ecorcgion/Waterbody Type Summary Chaptere, Contract # 68-C-99-226. TO# 04
August 8, 2000
                                      APPENDIX A
               Process Used to QA/QA the Legacy STORE! Nutrient Data Set

-------

-------
15 Nutrient Ecoregion/Waterhody Type Summary Chapters. Contract sf 68-C-99-226. TO# 04                      August 8,2000

I.      STORET water quality parameters and Station and Sample data items were retrieved
       from USEPA's mainframe computer. Table 1 lists all retrieved parameters and data
       items.
TABLE 1 : PARAMETERS AND DATA ITEMS RETRIEVED FROM STORET
Parameters Retrieved
(STORET Parameter Code)

TN - mg/1 (600)
TKN-mg/l(625)
Total Ammonia (NH3+NH4) - mg/I (6 1 0)
Total NO2+NO3 - mg/I (630)
Total Nitrite -mg/I (6 1 5)
Total Nitrate - mg/1 (620)
Organic N - mg/L (605)
TP - mg/1 (665)
Chlor a - ug/'L (spectrophotometric method,
32211)
Chlor a - ug/L (fluorometric method corrected.
32209)
Chlor a - ug/L (trichromatic method corrected.
32210)
Secchi Transp. - inches (77)
Secchi Transp. - meters (78)
+TurbidityJCUs(70)
-Turbidity FTUs (76)
-^Turbidity NTUs field (82078)
-Turbidity NTUs lab (82079)
-DO - mg/L (300)
-i- Water Temperature (degrees C, 10/degrees F,'
11)
Station Data Items Included
(STORET Item Name)

Station Type (TYPE)
Agency Code (AGENCY)
Station No. (STATION)
Latitude - std. decimal degrees
(LATSTD)
Longitude - std. decimal degrees
(LONGSTD)
Station Location (LOCNAME)
County Name (CONAME)
State Name (STNAME)
Ecoregion Name - Level HI
(ECONAME)
Ecoregion Code -Level III
(ECOREG)
Station Elevation (ELEV)
Hydrologic Unit Code
(CATUNIT)
RF1 Segment and Mile
(RCHMIL)
RF1 ON/OFF tag (ONOFF)


fc
Sample Data Items
Included
(STORET Item Name)
Sample Date (DATE)
Sample Tame (TIME)
Sample Depth (DEPTH)
Composite Sample Code
(SAMPMETH)


















- If data record available at a station included data only for this or other such marked parameters, data record was
deleted from data set.
      The following set of retrieval rules were applied to the retrieval process:

       •  Data were retrieved for waterbodies specified only as 'lake', 'stream', 'reservoir',
          or 'estuary' under "Station Type" parameter.  Any stations specified as 'well,'
          'spring,' or 'outfall' were eliminated from the retrieved data set.

          Data were retrieved for station types described as 'ambient' (e.g., no pipe or facility
          discharge data) under the "Station Type" parameter.

       •  Data were retrieved that were designated as 'water' samples only. This includes
          'bottom' and 'vertically integrated' water samples.
                                          A-l

-------
15 Nurnent Ecoregion/Waterbody Type Summary Chapters, Contract * 68-C-99-226. TO# 04                      August 8.2000

       •   Data were retrieved that were designated as either 'grab' samples and 'composite'
           samples (mean result only).

       •   No limits were specified for sample depths.

       •   Data were retrieved for all fifty states, Puerto Rico, and the District of Columbia.

       •   The time period specified for data retrieval was January 1990 to September 1998.

       •   No data marked as "Retired Data" (i.e., data from a generally unknown source) were
           retrieved.

       •   Data marked as "National Urban Runoff data" (i.e., data associated with sampling
           conducted after storm events to assess nonpoint source pollutants) were included in
           the retrieval. Such data are part of STORET's 'Archived' data.

       •   Intensive survey data (i.e., data collected as part of specific studies) were retrieved.

      Any values falling below the 1st percentile and any values falling above the 99th
      percentile were transformed into 'missing' values (i.e., values were effectively removed
      from the data set, but were not permanently eliminated).

      Based on the STORE! 'Remark Code' associated with each retrieved data point,, the
      following rules were applied (Table 2):
2.
3.
TABLE 2: STORET REMARK CODE RULES
STORET Remark Code
blank - Data not remarked.
A - Value reported is the mean of two or more determinations.
B - Results based upon colony counts outside the acceptable ranges.
C • Calculated. Value stored was not measured directly, but was
calculated from other data available.
D - Field measurement.
E - Extra sample taken in compositing.process. .
F - In the case of species. F indicates female sex.
G - Value reported is the maximum of two or more determinations.
Keep or Delete Data Point
Keep
Keep
• Delete
Keep
Keep
Delete
Delete
Delete
                                           A-2

-------
15 Nutnent Ecorcgion/Waterfaody Type Summary Chapters. Contract # 68-C-99-226, TO# 04
                                                                                                        August 8,2000
TABLE 2: STOREY REMARK CODE RULES
H - Value based on field kit determination; results may not be accurate.
I - The value reported is less than the practical quantification limit and
greater than or equal to the method detection limit.
J- Estimated. Value shown is not a result of analytical measurement.
K - Off-scale low. Actual value not known, but known to be less than
value shown.
L - Off-scale high. Actual value not known, but known to be greater
than value shown.
M - Presence of material verified, but not quantified. Indicates a
positive detection, at a level too low to permit accurate
quantification.
N - Presumptive evidence of presence of material.
O - Sample for, but analysis lost. Accompanying value is not
meaningful for analysis.
P - Too numerous to count.
Q - Sample held beyond normal holding time.
R - Significant rain in the past 48 hours.
S - Laboratory test.
T - Value reported is less than the criteria of detection.
U - Material was analyzed for, but not detected. Value stored is the
limit of detection for the process 'in use.
V - Indicates the analyte was detected in both the sample and associated
method blank.
W - Value observed is less than the lowest value reportable under
remark "T."
X - Value is quasi vertically-integrated sample.
Y - Laboratory analysis from unpreserved sample. Data may not be
accurate.
Z - Too many colonies were present to count.
Delete
Keep, but used one-half the
reported value as the new value.
Delete
Keep, but used one-half the reported
value as the new value.
Keep
Keep, but used one half the reported
value as the new value.
Delete
Delete
Delete
Delete
Delete
Keep
Keep, but replaced reported value with
0.
Keep, but replaced reported value with
0.
Delete
Keep, but replaced reported value with
.0.
No data point with this remark code in
data set.
Delete
Delete
                                                      A-3

-------
r
                  15 Nutnent Ecoregion/Waierbody Type Summary Chapters. Contract # 68-C-99-226. TO# 04
August 8,2000
                                            TABLE 2: STORET REMARK CODE RULES
                    If a parameter (excluding water temperature) value %vas less than or equal to zero and no remark code was present,
                    the value was transformed into a missing value.
                    Rationale - Parameter concentrations should never be zero without a proper explanation. A method detection limit
                    should at least be listed.
                  4.  Station records were eliminated from the. data set if any of the following descriptors were
                     present within the "Station Type" parameter:

                           >    MONITR - Source monitoring site, which monitors a known problem or to detect
                                a specific problem.
                           »    HAZARD-Site of hazardous or toxic wastes or substances.
                           *•    ANPOOL - Anchialine pool, underground pools with subsurface connections to
                                watertable and ocean.
                           >•    DOWN - Downstream (i.e., within a potentially polluted area) frv 01 a facility
                                which has a potential to pollute.
                           >    IMPDMT - Impoundment. Includes waste pits, treatment lagoons, and settling
                                and evaporation ponds.
                           >    STMSWR - Storm water sewer.
                           »    LNDFL - Landfill.
                           >•    CMBMI - Combined municipal and industrial facilities.
                           *•    CMBSRC - Combined source (intake and outfall).

                        Rationale - these descriptors potentially indicate a station location that at which an
                        ambient water sample would not be obtained (i.e., such sampling locations are potentially
                        biased)  or the sample location is not located within one of the designated water body types
                        (i.e, ANPOOL).

                  5.     Station records were eliminated from data set if the station location did not fall within any
                        established cataloging unit boundaries based on their latitude and longitude.

                  6.     Using nutrient ecoregion GIS coverage provided by USEPA. all station locations with
                        latitude and longitude coordinates were tagged with a nutrient ecoregion identifier
                        (nutrient region identifiers are values 1  -14) and the associated nutrient ecoregion name.
                        Because no nutrient ecoregions exist for Alaska, Hawaii, and Puerto Rico, stations  located
                        in these states were tagged with "dummy" nutrient ecoregion numbers (20 = Alaska, 21 =
                        Hawaii, 22 = Puerto Rico).
                                                              A-4

-------
8.
15 Nutrient Ecoregion/Waterfaody Type Summary Chapters. Contract # 68-C-99-226. TO* 04                      Aueust g 2000

7.    Using information provided by TVA, 59 station locations that were marked as 'stream'
      locations under the "Station Type" parameter were changed to 'reservoir' locations.

      The nutrient data retrieved from STORET were assessed for the presence of duplicate data
      records. The duplicate data identification process consisted of three steps: 1) identification
      of records that matched exactly in terms of each variable retrieved; 2) identification of
      records that matched exactly in terms of each variable retrieved except for their station
      identification numbers; and 3) identification of records that matched exactly in terms of
      each variable retrieved except for their collecting agency codes. The data duplication
      assessment procedures were conducted using SAS programs.
      Prior to initiating the data duplication assessment process, the STORET nutrient data set
      contained:

          41,210 station records
          924,420 sample records

      *    Identification of exactly matching records
          All data records were sorted to identify those records that matched exactly. For two
          records to match exactly, all variables retrieved had to be the same. For example,
          they had to have the same water quality parameters, parameter results and associated
          remark codes, and have the same station data item and sample data item information.
          Exactly matching records were considered to be exact duplicates, and one duplicate
          record of each identified matching set were eliminated from the nutrient data set. A
          total of 924 sample records identified as duplicates by this process were eliminated
          from the data set.

     *    Identification of matching records with the exception of station identification number
          All data records were sorted to identify those records that matched exactly except for
          their station identification number (i.e., they had the same water quality parameters,
          parameter results and associated remark codes, and the same station and sample data
          item information with the exception of station identification number). Although the
          station identification numbers were different, the latitude and longitude for the
          stations were the same indicating a duplication of station data due to the existence of
          two station identification numbers for the same station. For each set of matching
          records, one of the station identification numbers was randomly selected and its
          associated data were eliminated from the data set. A total of 686 sample records
          were eliminated from the data set through this process.

     •    Identification of matching records with the exception of collecting agency codes
          All data records were sorted to identify those records that matched exactly except for
          their collecting agency codes (i.e., they had the same water quality parameters,
          parameter results and associated remark codes, and the same station and sample data
          item information with the exception of agency code). The presence of two matching

                                         A-5

-------
15 Nutrient Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226. TO# 04
August 8,2000
           data records each with a different agency code attached to it suggested that one
           agency had utilized data collected by the other agency and had entered the data
           into STORET without realizing that it already had been placed in STORE! by the
           other agency. No matching records with greater than two different agency codes
           were identified.  For determining which record to delete from the data set, the
           following rules were developed:

              »•   If one of the matching records had a USGS agency code, the USGS record
                  was retained and the other record was deleted.
              »•   Higher level agency monitoring program data were retained. For example,
                  federal program data (indicated by a "1" at the beginning of the STORET
                  agency code) were retained against state (indicated by a "2") and local
                  (indicated by values higher than 2) program data.
              >•   If two matching records had the same level agency code, the record from the
                  agency with the greater number of overall observations (potentially indicating
                  the data set as the source data set) was, retained.

           A total of 2,915 sample records were eliminated through this process.

      As a result of the duplicate data identification process, a total of 4,525 sample records and
      36 individual station records were removed from the STORET nutrient data set. The
      resulting nutrient data set contains the following:

      41,174 station records
      919,895 sample records
                                           A-6

-------
15 Nutrient Ecoregion/Waterbody Type Summary Chapters, Contract # 68-C-99-226, TO# 04
                                                                                     August 8,2000
                                        APPENDIX B
          Process for Adding Aggregate Nutrient Ecoregions and Level El Ecoregions

-------

-------
r
           15 Nutrient Ecoregion/ Waterbody Type Summary Chapters. Contract af 68-C-99-226. TO# 04                      August 8.2000
           Steps for assigning Level m ecoregions and aggregate nutrient ecoregion codes and names to the
           Nutrient Criteria Database (performed using ESRI's ARC View v 3.2 and its GeoProcessing
           Wizard). This process is performed twice; once for the Level ffl ecoregions and once for the
           aggregate nutrient ecoregions:

                 Add the station .dbf data table, with latitude and longitude data, to project by 'Add Event
                 Theme1
                 Convert to the shapefile format
                 Create 'stcojoin' field, populate the 'stcojoin' field with the following formula:
                 'County.LCase+State.LCase'
                 Add field 'stco_flag' to the station shapefile
                 Spatially join the station data with the county shapefile (cntys_jned.shp)
                 Select 'stcojoin' (station shapefile) field = 'stco Join2' (county shapefile) field
                 Calculate'stco_flag = 0 for selected features
                 Step through all blank stco_flag records, assign the appropriate stco_flags, see list on the
                 following page
                 Select all stco_flags = 4 or 7, switch selection
                 Calculate ctyfips (station) to cntyfips (county)
                 Stop editing and save edits,  remove all joins
                 Add in 2 new fields 'x-coordl' and 'y-coordl' into station table
                 Select all stco_flags = 1,2, and 6
                 Link county coverage with station coverage
                 Populate 'x-coordl' and 'y-coordl1 with 'x-coord' and 'y-coord' from county coverage
                 Select all stco_flags =1,2, and 6, export to new .dbf file
                 Add new  .dbf file as event theme
                 Convert to shapefile format
             .    Add the following fields to both tables (original station and station 126 shapefiles):
                 'eco_omer', 'name^mer1, 'dis_aggr>, 'code_aggrl, Iname_aggrI
                 Spatially join station!26  and eco-omer coverage
                 Populate the'eco^mer1 field with the'eco'value
                 Repeat the previous step  using the nearest method (line coverage) to determine ecoregion
                 assignment for the line coverage, if some  records are blank
                        Spatially join the ecoregion line coverage to station coverage, link the
                        LPbly# (from the spatially joined table) to Poly# (of the ecoregion polygon
         coverage)
                        Populate the Eco  fields with the appropriate information.
                        Follow the same steps to the Rpoly#
                 Remove all table joins
                 Link the useco-om table with station 126 table and populate 'name-omer1 field
                 Spatially join station aggr coverage and populate the rest of the fields. Follow  the same
                 procedures as outlined above
                 Remove all joins
                                                    B-l

-------
15 Nutrient Ecorcgion/Waterbody Type Summary Chapters. Contract # 68-C-99-226, TO# 04                      August 8,2000

       Make sure the new Eco field added into the station 126 shapefile are different than the
       ones in the original station shapefile
       Join station!26 and station coverage by station-id
       Populate all the Eco fields in the original station coverage
       Remove all joins
       Save table
       Make sure that all ctyfips records are populated; the county shapefile may have to be
       joined to populate the records, if the stco_flag = 4
       Create 2 new fields, TSTewCounty1 and 'NewState'
       Populate these new fields with a spatial join to the county coverage
       Select by feature (ecoregion shapefile) all of the records in the station shapefile
              Switch selection (to get records outside of the ecoregion shapefile)
              If any of the selected records have stco_flag = 0 (they are outside the ecoregion
              shapefile boundary), calculate them to stco_flag = 3

stco_flags (state/county flags in order of importance)
       0 '     The state and county values from the data set matched the state and county values
              from the spatial join.
              (Ecoregions were assigned based on the latitude/longitude coordinates.)
       1      The state and county values from the data set did not match the state and county
              values from the spatial join, but the point was inside the county coverage
              boundary.
              (Ecoregions were assigned based on the county centroid.)
       2      The state and county values from the data set did not match the state and county
              values from the spatial join because the point was outside the county coverage
              boundary; therefore, there was.nothing to compare to the point (i.e., the point
              falls in the ocean/Canada/Mexico). This occurred for some coastal samples.
              (Ecoregions were assigned based on the county centroid.)
       3      The state and county values from the data set matched the state and county from
              the spatial join, but the point was outside the ecoregion boundary.
              (Ecoregions were assigned to  the closest ecoregion to the point.)
              (No ecoregions were assigned to AK, HI, PR, BC, and GU.)
       4      Latitude/longitude coordinates were provided,  but there was  no "county
              information.
              (Ecoregions were assigned based on the latitude/longitude coordinates.)
       5      The state and county values from the data set did not match the state and county
              values from the spatial join due to spelling or naming convention errors.
              The matches were performed manually.
              (Ecoregions were assigned based on the latitude/longitude coordinates.)
                                            B-2

-------
r
            15 Nutnent Ecorcgion/Waterbody Type Summary Chapters, Contract # 68-C-99-226, TO* 04

                   6
                                                                     August 8, 2000
No latitude/longitude coordinates were provided, only state and county
information was available.
(Ecoregions were assigned based on the county centroid.)
No latitude/longitude coordinates were provided, only state information was
available; therefore, no matches were possible.
(Ecoregions were not assigned. Data is not included in the analysis.)
                                                         B-3

-------

-------
15 Nutrient Ecoregion/Waterbody Type Summary Chapters. Contract # 68-C-99-226. TO# 04
                                                                                          August 8. 2000
                                          APPENDIX C




                                              Glossary

-------

-------
15 Nutrient Ecoregion/Waterbody Type Summary Chapters, Contract # 68-C-99-226. TO# 04                      August 8, 2000

Coefficient of Variation—Equal to the standard deviation divided by the mean multiplied by 100.

Maximum—The highest value.

Mean—The arithmetic average.

Median—The 50th percentile or middle value. Half of the values are above the median, and half
of the values are below the median.

Minimum—The lowest value.

Standard Deviation—Equal to the square root of the variance with the variance defined as the
sum of the squared deviations divided by the sample size minus one.

Standard Error— Standard error of the mean is equal to the standard deviation divided by the
square root of the sample size.
                                           C-l

-------

-------