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Abstract-Emphasis in rangeland revegetation has been placed 
on the selection of suitable species and on the development of 
techniques to increase establishment success. While the ecologi­
cal consequences of deliberate revegetation have been examined 
extensively, relatively little attention has been paid to the genetic 
consequences of revegetation. Current interest among revegeta­
tion researchers has concentrated primarily on species composi­
tion within communities and not on genetic constitution of popu­
lations of individual species. Proper formulation of revegetation 
populations involves consideration of existing variation and accu­
rate sampling of that variation. Improper sampling can Jead to 
inbreeding, reduced genetic variation, poor adaptability, and a 
decrease in the overall stability of the revegetated ecosystem. Ef­
ficient plant breeding systems developed for use with crop plants 
can be adapted to produce more genetically appropriate popula­
tions for use in rangeland revegetation. Modification of one of 
these systems, Convergent-Divergent Improvement, may be espe­
cially effective for constructing genetically variable populations 
for use in revegetation of the highly diverse environments of arid 
rangelands. 

There have been numerous, largely unsuccessful at ­
tempts to revegetate degraded desert rangelands in the 
southwestern U .8. (reviewed by Cox and others 1982; 
Cox and Jordan 1983; Roundy and Call 1988). A variety 
of reasons have been given to explain failures; however, 
genetic factors associated with the plants used in reveg­
etation have not been implicated. There has been very 
little formal genetic improvement of plants for use in the 
revegetation of hot desert ecosystems (Wright 1975; 
Shiflet and McLauchlan 1986; Voigt and others 1987). 
Propagules (almost always seed) actually used in reveg­
etation in these environments have been from a variety of 
sources including local populations of native species, non­
local populations of native species) and introduced species 
(Cox and others 1982; Bainbridge and Virginia 1990; 
Jackson and others 1991). 

Researchers have expended tremendous energy evalu­
ating different plant species for use in rangeland reveg­
etation (Cox and others 1982; Call and Roundy 1991; 
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James 1992). In a few cases, individual populations 
within preferred species have been evaluated for their 
revegetation potential (Hull and others 1978; McArthur 
and others 1983; Petersen and others 1987; Cox and oth­
ers 1990). This evaluation and selection process necessar­
ily involves at least indirect consideration of genetic fac­
tors since the differences between species and populations 
are largely genetically based. However, after species and 
place of origin, relatively little attention has been paid to 
the genetic composition of individual accessions of species 
selected for use in rangeland revegetation. Current inter­
est among revegetation researchers in "biodiversity" 
(BLM 1990) also concentrates primarily on species compo­
sition within communities and not on genetic constitution 
of populations of individual species. 

The methods in which propagules are initially collected 
and increased for use in revegetation may have significant 
effects on both success in establishment and long-term 
persistence of revegetated rangelands. 1.,here is some evi­
dence that basic genetic considerations have been ignored 
during collection and increase of plant materials for 
revegetation (Millar and Libby 1989). Many of the species 
used in rangeland revegetation in the United States are 
developed within public programs, such as the USDA-SCS 
Plant Materials Program (Shiflet and McLauchlan 1986). 
The Plant Materials Program has been evaluating plant 
materials and plant establishment techniques for range­
land or cropland revegetation and critical area stabiliza~ 
tion since 1933 (USDA-SCS 1990), In these programs, 
selected plant materials are produced in adequate quanti ­
ties to allow for their use in revegetation trials, simulat~ 
ing actual use conditions. Concentrating on the improve~ 
ment of SCS plant selection and propagation procedures 
may therefore have a significant direct effect on the ge­
netic health of revegetated rangelands. 

We have two main goals in this paper. First we will de­
scribe. the fundamental genetic principles that should un­
derlie the basic assembly of plant populations for use in 
revegetation. The possible negative consequences of not 
observing these principles will be briefly described. We 
will then present simple plant improvement strategies 
that may yield broadly adapted, genetically robust popu­
lations of self or cross-pollinated plants for use in range­
land revegetation. Throughout, our emphasis is on the 
use of native plants where genotypes in existing stands 
C'reference populations" from Aronson and others 1993) 
can be sampled. 
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Genetic Foundations 
Evolutionary adaptation to a harsh and variable envi~ 

ronment requires populations of organisms with sufficient 
supplies of genetic variation. This genetic variation rep~ 
resents the building blocks that permit organisms to 
evolve unique adaptations to the environment. We be­
lieve that understanding how genetic variation is orga­
nized within natural plant populations will help in devel­
oping populations for revegetation use. This should 
increase revegetation success and the population's long­
term ecological vitality. 

Geneti.c variation within plant species is organized hier­
archically: among members of a family, among families 
within a population, among populations within a region, 
and among regions. The distribution of particular forms 
of genes (alleles) or genotypes describes the "genetic struc­
ture" of a species or population within a particular range 
of its distribution. Genetic structure of plant populations 
is largely determined by their mating system-the degree 
to which plants are self or cross-pollinated (Brown 1990). 
Effective collection and use of plants in revegetation de­
mands some knowledge of their genetic structure in natu­
ral stands. Variation from complete cross-pollination to 
complete self-pollination (or apomixis) may occur within 
individual species. However, it is generally possible 
to roughly place most species within the cross to self­
pollinated spectrum using floral, life history, or ecological 
factors (Loveless and Hamrick 1984). Sp8cies that are 
self-pollinated (or apomictic) tend to grow as disjunct pop­
ulations. Generally there is very little variation within 
these populations since most individuals descend from 
self-pollination of a single individual. Most genetic varia­
tion in these species exists between populations. Alterna­
tively, plants that are cross-pollinated tend to exhibit sig­
nificant genetic variation both among individuals within 
individual populations as well as between populations 
(Millar and Libby 1989). 

Most self-pollinated species do not exhibit reduced fit­
ness when related individuals are mated ("inbreeding de­
pression") while cross-pollinated species are likely to dis­
play inbreeding depression. Because of their sensitivity 
to inbreeding, much more care must be taken in collecting 
and propagating populations of cross-pollinated species 
for use in revegetation. Sampling at least 50 to 100 geno­
types that are widely dispersed in the reference popula­
tion is crucial to avoid inbreeding in succeeding genera­
tions (Frankel and Soule 1981). Similar attention to plant 

population size is crucial during seed multiplication in 
cross-pollinated species. 

In addition to concerns about inbreeding, adequate 
sampling strategies are important in both cross and self­
pollinated species in order to capture and maintain sig­
nificant amounts of the genetic variation present in refer­
ence populations. Sampling too few individuals causes 
the population to experience a "bottleneck" and to lose ge­
netic variation simply as a result of sampling error. In 
cross-pollinated species, loss of genetic variation is pro­
portional to the number of plants sampled (Table 1). 
When population sizes are routinely low, bottlenecks are 
faced every generation and the effects are cumulative. 
This loss of genetic variation reduces long-term evolution­
ary potential (Frankel and Soule 1981). With plants used 
in revegetation, drastic changes in genetic structure will 
be most deleterious when they occur during initial seed 
collection. Nothing done during subsequent seed produc­
tion, short of introduction of additional genetic variation, 
will overcome initial sampling errors. These changes, re­
ferred to as genetic drift, would be associated with unPre­
dictable performance and inability to adapt to changing 
environmental conditions. Sampling as many plants as 
possible (>100 individuals) is critical in constructing 
populations for use ill native ecosystem revegetation re­
gardless of mating system, growth habit, or site condi­
tions. This practice minimizes problems associated with 
inbreeding, loss of genetic variation, or genetic drift. 

Maintaining Genetic Variation 
It is unclear how frequently genetic structure factors 

have been considered when plant populations have been 
constructed for use in revegetation. In the SCS Plant Ma­
terials Program, which represents the most organized of 
such efforts, plant materials are initially collected from a 
wide range of environments and grown at a common loca­
tion. Accessions (individual collections) are evaluated for 
establishment and production characteristics at a single 
location. The accessions that exhibit superior qualities are 
placed in advanced tests where adequate amounts of 
propagules are produced for use in revegetation trials 
(Shiflet and MacLauchlan 1986). Since 1935 this program 
has released over 360 accessions for conservation use and 
greater than 53% of these have been native to the United 
States (Peterson and Sharp 1992). Traditionally, the SCS 
Plant Materials Program has compared and selected 

Table 1-Retention of genetic variation in small populations (Frankel and Soule 1981). 

Percentage genetic variation remaining 
Population 5 10 100 

Size Generatiol') Generations Generations Generations 

2 75 24 6 <1 
6 91.7 65 42 <1 

10 95 77 60 <1 
20 97.5 88 78 8 
50 99 95 90 36 

100 99.5 97.5 95 60 
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single source populations that exhibited a desired or supe­
rior trait. But, it is unclear what portion of SCS releases 
are from single source populations. For example, 'Vaughn' 
sideoats grama (Bouteloua curtipendula), a widely used 
native grass, was originally collected from native stands 
nearVaughn, New Mexico in 1935 and then bulk-increased 
for commercial use (Hanson 1972). However, records do 
not state the number of individuals or sample size that 
comprised this release. 

Underlying much of the plant selection in revegetation 
with native species is the assumption that adaptation to a 
revegetation site will be greatest in populations native to 
or adjoining the site (Vallentine 1989; Guinon 1993). Un­
fortunately, little solid research supports this assumption 
for highly disturbed desert sites. Limited research indi­
cates that it may not always be true (McArthur and oth­
ers 1983). While it is not possible to draw firm conclu­
sions, there is some doubt whether single-source or local 
populations are necessarily optimum for use in rangeland 
revegetation. Moreover, the range of environments for 
potential use and the cost of collection and increase of 
propagules are both likely to be great for populations of 
plants for use in large-scale (>0.25 ha) rangeland reveg­
etation. Together, these observations may suggest that 
such populations should have as wide a range of adapt­
ability as possible. Ideally, these populations should con­
tain genotypes adapted to essentially all of the typical na­
tive environments of the species. In self-pollinated or 
apomictic species, such genetically broad-based popula­
tions can becreated by bulking equal numbers ofpropagules 
from representative populations from throughout the 
range (or a selected portion of the range) of the species. 
Because intermating between populations would be very 
infrequent, increase and; maintenance of such bulk popu­
lations (or their components) would be relatively straight­
forward. However, because genetic recombination be­
tween different populations would be limited, the range 
of adaptation of the bulk pOpulation :inay be confined to 
environments very similar to those originally sampled. 
Genotypes able to successfully exploit intermediate envi­
ronments may be infrequent. Nevertheless, because the 
total genetic variation that bulk populations contain will 
be greater than individual component populations, bulk 
populations of self-pollinated species should offer increased 
chances for successful establishment and persistence than · 
populations derived from a single site (Marshall and 
Brown 1973). 

The bulk population concept can be extended to cross­
pollinated species with the potential that genotypes with 
adaptation to intermediate environments can be pro­
duced. We propose that this could be achieved by using 
a plant breeding strategy originally developed for corn 
(Convergent-Divergent Improvement, hereafter "CDI") 
(Lonnquist and others 1979). In its simplest form, this 
procedure is initiated with collection of propagules from 
populations of the desired species located throughout the 
targeted range (Fig. 1). This is followed by equal bulking 
of these propagules and planting at a single location (Con­
vergence) where plants are allowed to randomly inter­
pollinate. Equal amounts of seed (produced from inter­
pollination) from each individual plant is then bulked. 
This bulk seed is then used at selected locations within 

Figure 1-Fiow.diagram describing the four 
basic steps In Convergent-Divergent Improve­
ment with populations from three environ­
ments. Step 1: Propagules are collected from 
separate locations within the natural range of 
the species. Step 2: Propagules are bulked 
with equal representation of locations, planted 
at a single location, and allowed to randomly 
intermate (Convergence). The resulting seed 
may be released directly for use in revegeta­
tion. Step 3: Samples of seed produced in 
Step 2 are sown/transplanted at locations rep­
resentative of the environments the improved 
population would be used in (Divergence). 
Step 4: Propagules of plants persisting at field 
locations are collected, bulked, planted at a 
single location, and allowed to randomly 
intermate (Convergence). Seed may be re­
leased for use in revegetation or subjected to 
another cycle of divergence. 

the targeted area (Divergence). The "selected locations" 
are locations that best simulate where the plant is to be 
used. Equal amounts of propagules (plants or seed) of 
surviving plants at these selected locations are then colM 
lected, brought back to a single location, and planted in 
a crossing block to simulate and facilitate random cross­
pollination (Convergence-cycle 2), 

CDI should result in cross-pollinated populations that 
have: 

• A wide range of genetic variation, including novel 
genotypes not present in any of the originally 
sampled populations · 

• 	 Proven ability to establish at variable locations and 
environments 
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• 	 The capability to be no more time consuming or ex­
pensive than the traditional SCS-Plant Materials 
Program methods of selection and increase of single­
source populations. 

Conclusions 
In the SCS Plant Materials Program it may take 12 to 

15 years to test, select, and release for commercial produc­
tion a superior plant materiaL CDI could reduce this to 
less than 10 years. Furthermore, the use of bulk popula­
tions ofself-pollinated species or CDI with cross-pollinated 
species has the potential to produce a product that has a 
better chance for successful establishment and persis­
tence, potentially reducing the cost ofrevegetation projects. 

Currently, the Tucson Plant Materials Center is 
implementing CDI and the production of bulk populations 
for three species: Spike dropseed (Sporobolus contractus); 
Mesa dropseed (Sporobolus fiexuosus); and Slim tridens 
(Tridens muticus). By fall of 1995 we will have our initial 
bulk populations (Convergence) for the above species and 
will begin planting into their targeted areas (Divergence) 
by summer of 1996. 
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