
SUSTAIN Model Case Study

Middle Rio Grande

0

What is SUSTAIN?

- SUSTAIN System for Urban Stormwater Treatment, and Analysis INtegration
- An ArcGIS-based framework designed to support decision-making
- Developed by Tetra Tech for EPA Office of Research and Development
- Objective: Identify strategies to meet water quality goals at minimum cost

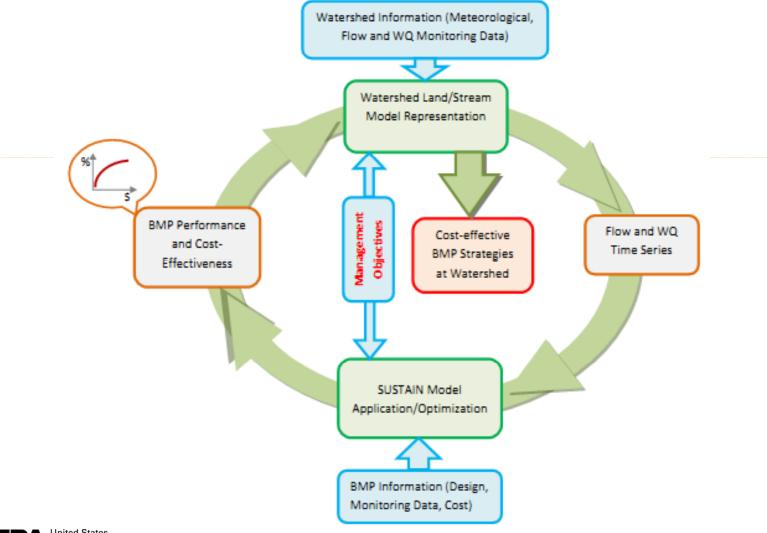
http://www.epa.gov/nrmrl/wswrd/wq/models/sustain/

SUSTAIN Basic Questions

- How effective are BMPs or green infrastructure (GI) in reducing runoff and pollutant loadings?
- What are the most cost-effective BMP solutions for meeting the water quantity and quality objectives?
 - Where should the BMPs be located?
 - What type of BMPs should be used?
 - How large should the BMPs be?

SUSTAIN Capabilities

- Watershed modeling
- BMP process simulation
- BMP cost-benefit optimization
- Green infrastructure placement, performance, and cost for meeting flow and/or water quality targets


SUSTAIN Modules

- Framework Manager: Manages the data exchanges (ArcGIS)
 - **BMP Siting Tool**: Supports users in selecting suitable locations for common structural BMPs
 - **Watershed/Land Module**: Computes runoff and pollutant loads from land (SWMM5/HSPF)
 - **BMP Module**: Provides simulation of flow and pollutant transport for structural BMPs
 - **Optimization Module**: Identifies cost-effective BMP placement and selection strategies
 - **Post-Processor**: Centralized location for analyzing and interpreting simulation outputs at multiple locations, and for scenarios and parameters of interest

SUSTAIN Process Diagram

SEPA United States Environmental Protection Agency

SUSTAIN Applications

- TMDL implementation plans
- *Management practices* to achieve pollutant reductions
- *Optimal green infrastructure strategies* for reducing volume and peak flows
- *Benefits of distributed green infrastructure* on water quantity and quality in urban streams
- *Phased BMP installation plan* using the cost effectiveness curve

SUSTAIN Case Studies

- Kansas City, MO and Louisville, KY
 - Investigated the use of green and/or gray infrastructure practices to mitigate CSOs in temperate climate regions
- Middle Rio Grande
 - Evaluate performance of small-scale structural and non-structural management practices for various storm sizes in an arid region
 - Estimate the regional response of wide-spread adoption of these practices


MRG Case Study Objectives

- Site-scale BMP optimization to derive cost-benefit relationships for a selection of potential BMPs
- Watershed-scale optimization in light of existing TMDL targets
- Integration into a regional watershed modeling framework
 - Inform basin-scale management decisions
 - Provide technical guidance for the pending watershed-based MS4 permit

Site-Scale: Criteria

- <1000 acres
- Representative land use and hydrologic release unit (HRU) distribution
- Pre and post BMP implementation monitoring data
- Available weather data (precipitation, evapotranspiration)
- Available GIS data (land use, soil, pipe network, existing BMPs, etc.)

Bernalillo County Sanchez Farm Facility

Site-Scale: Key Questions

- What are the rainfall-runoff and rainfallpollutant load responses by HRUs?
- How well will potential GI practices perform for various storm sizes?
- What is the impact of non-structural BMPs (e.g. street sweeping) on structural BMP treatment requirements and performance?
- How would different formulation of TMDL objectives affect the BMP solutions?

Site-Scale: Info Needed

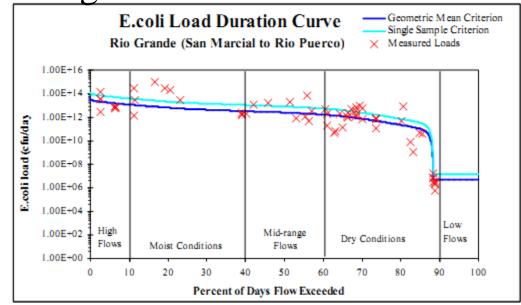
- Pollutant of concern: E. coli
 - Death or regrowth rates
- BMP information
 - Suggested local BMP types
 - Local BMP design standards
 - Local BMP cost data
 - Suitable non-structural BMPs and supporting performance metrics
- Representative simulation time period

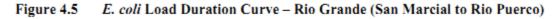
BMP Performance in Bernalillo County

- Comparison of two sites provides a basis for <u>quantifying</u> the performance of the implemented BMPs
- Must have a similar mix of land uses
 - Sanchez Farms (managed with existing BMPs)
 - Trash removal structures
 - Sedimentation structures
 - Flow-through wetland
 - Adobe Acres (control group without existing BMPs).

Watershed-Scale: Criteria

- Clearly defined management goal
 - TMDL allocation
 - Permit requirements
- Instream monitoring data
- Weather data
- GIS data (land use, digital elevation models, soil, pipe network, stream, existing BMPs, weather stations, etc.)
- Existing flow and water quality models


Watershed-Scale: Key Questions


- What are the downstream regional responses to upstream BMP implementation?
 - Structural and non-structural
 - Based on performance derived from site-scale
- How can SUSTAIN be integrated into a watershed management decision making process?
- What is the cumulative cost-benefit relationship of management at the watershed scale?

Watershed-Scale: Info Needed

- Stormwater management objectives (TMDL target, permit requirement)
 - E.g. Load duration curve analyses for pollutant loading

Practice Identification

Favorable Practice

- Harvesting parking lot runoff
- Extensive use of rain barrels
- Harvesting street runoff
- Detention facilities to capture *first flush flows*
- Increased urban tree cover

Unfavorable Practices

- Swales
- Flow-through structures
- Rain gardens
- Green roofs

LaBadie, K.T. 2010. Identifying Barriers to LID and GI in the Albuquerque Area.

BMPs Considered In MRG SUSTAIN Study

- Nonstructural BMPs
 - Street sweeping
 - Pet waste management

Structural BMPs

- Rainwater harvesting (harvest runoff from rooftop, parking lot, and street)
- Xeriscaping or xerogardening
- Detention basins designed to collect first flush flows

BMP Simulation Parameters

Parameter	Xeriscape	Rainwater collection	Detention basin
Substrate			
Ponding depth (ft)	0.042		4
Substrate layer depth (ft)	2		1
Substrate layer porosity	0.4		0.3
Vegetative parameter, A	1		1
Background soil saturated infiltration rate* (in/hr), fc	0.3		0.3
ET rate (in/day)	0.104		0.104
Water Quality			
TSS 1 st order decay rate (1/day), k	0.8	0.8	0.8
Fecal coliform 1 st order decay rate (1/day), k	0.5	0.5	0.5

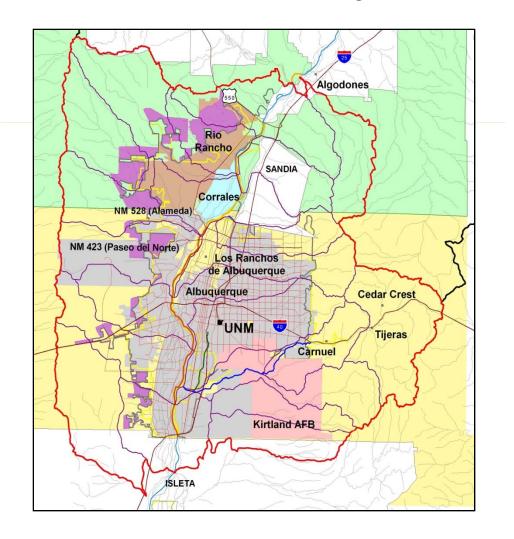
Next Steps

- A comprehensive *SUSTAIN* project is being developed to present all combinations of BMP opportunities in the 100-acre composite study area (Sanchez Farm)
 - Nonstructural BMP scenarios will not be optimized
 - Applied as background conditions for the structural BMP optimization runs
 - Effectiveness of BMPs combinations, including nonstructural and structural, will be evaluated and presented
- BMP performance evaluations are performed using three design storm time series.
 - Methodology to tie the storm-based BMP performance with the ultimate water quality control targets is being developed
 - The overall water quality targets will be used to further configure the optimization

SUSTAIN Contacts

- Ariamalar Selvakumar, EPA/ORD
 - <u>selvakumar.ariamalar@epa.gov</u>
 - Information on release and *SUSTAIN* related research
- Michelle Latham, EPA/ORD
 - latham.michelle@epa.gov
 - Information and communication material on SUSTAIN
- Nelly Smith, EPA Region 6
 - <u>smith.nelly@epa.gov</u>
 - EPA Region 6 MRG permit writer
- Taimur Shaikh, EPA Region 6
 - shaikh.taimur@epa.gov
 - EPA Region 6 modeling contact

United States Environmental Protection Agency


SUSTAIN Model Case Study

Middle Rio Grande

0

Questions and Discussion

