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We consider alternative econometric strategies for addressing serial nonparticipation, that is, repeated
choice of the same alternative or same type of alternative across a series of choice occasions, in data
typically analyzed within the repeated discrete choice framework. Single and double hurdle vari-
ants of the repeated discrete choice model are developed and applied to choice experiment and
multisite seasonal recreation demand data. Our results suggest that hurdle models can generate sig-
nificant improvements in statistical fit and qualitatively different policy implications, particularly in
choice experiment applications where the proper treatment of serial nonparticipation is relatively more
ambiguous.
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Serial nonparticipation, or repeated choice
of the same alternative or same type of al-
ternative across a series of choice occasions,
is a common phenomenon in stated and re-
vealed preference data that are typically an-
alyzed within the repeated discrete choice
framework. With stated preference choice
experiment data, for example, one form of
serial nonparticipation arises when the indi-
vidual always chooses the status quo option,
and another arises when the individual always
chooses the alternative with the highest (or
lowest) level of a particular attribute. With re-
vealed preference seasonal recreation demand
data, serial nonparticipation arises when the
individual chooses the “no-trip” alternative on
every choice occasion.1 All of these types of se-
rial nonparticipation can arise from the same
behavioral process that gives rise to partici-
pation. In fact, probabilistic repeated discrete
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1 Note that we are making a distinction between serial
nonparticipation and choice occasion nonparticipation. The for-
mer refers to situations where the individual chooses the status
quo or “no-trip” alternative on all choice occasions whereas the
latter refers to situations where the individual chooses such alter-
natives on a single choice occasion.

choice models predict some degree of serial
nonparticipation. However, the prevalence of
serial nonparticipation in many data sets sug-
gests that a fundamentally different behavioral
process may explain such behavior.

In choice experiment contexts, individuals
who always choose the status quo option or
the alternative with the highest level of a par-
ticular attribute may be engaging in a form of
protest against the notion that they must trade-
off various attributes. Alternatively, these indi-
viduals may have lexicographical preferences
or be employing simplifying heuristics to make
complex choices less difficult (Dhar 1997a,
1997b). In the context of seasonal recreation
demand, serial nonparticipation may arise
when a segment of the population has pref-
erences or faces constraints such that they
would never recreate at any site under any
circumstance. All of these types of responses
suggest that serial nonparticipants behave
fundamentally differently than participants.
Stated succinctly, serial nonparticipants may
not be “playing the game” that participants
play.

In this article, we develop repeated discrete
choice econometric models that, in contrast to
existing approaches for addressing serial non-
participation, explicitly allow for the behav-
ioral phenomena to arise from a fundamentally
different process than participation. Single
and double hurdle random coefficient and re-
peated discrete choice models are applied to
data from a stated preference survey focused
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on woodland caribou enhancement programs
and a recreation survey of Mid-Atlantic sea-
sonal ocean beach use. Both data sources have
a significant proportion of serial nonpartici-
pants and thus are well suited to illustrate the
proposed models. In addition, our use of both
data sets allows us to investigate how the wel-
fare implications of the serial nonparticipation
hurdles differ across choice experiment and
recreation demand contexts.

Our estimation results suggest that substan-
tial improvements in statistical fit can result
when a different behavioral process is intro-
duced to explain serial nonparticipation, al-
though the gains in fit are less pronounced
with the introduction of random coefficients
that are equal across choice occasions for an
individual. Based on alternative information
criteria and nested and nonnested hypothesis
tests, we also find that statistical fits with the
single and double hurdle models are similar in
both data sets. The choice experiment results
consistently suggest that younger and more ed-
ucated individuals are less likely to be serial
nonparticipants while the recreation demand
results suggest that younger individuals, vaca-
tion property owners, and in some cases par-
ents of young children are less likely to be serial
nonparticipants. Results from choice experi-
ment and recreation demand data sets suggest
that significant preferences for the status quo
and the “no-trip” alternatives, respectively, re-
main in the hurdle models after accounting for
serial nonparticipation.

We also explore the implications of our sin-
gle and double hurdle models for welfare mea-
surement in both applications. We argue that
the inclusion of serial nonparticipation hurdles
gives the analyst additional discretion when
constructing welfare measures. How this dis-
cretion should be used in the choice exper-
iment context is, however, far from certain
due to competing hypotheses about why in-
dividuals always choose the status quo. Con-
sequently, we assess the sensitivity of welfare
measures to alternative arbitrary but plausi-
ble strategies for treating serial nonparticipa-
tion hurdles in the choice experiment context.
Our assessment also considers alternative
treatments of status quo preference among
participants, an unresolved issue in the choice
experiment context. Our results suggest that
alternative judgments in these regards can
generate qualitatively different policy impli-
cations. For example, we find that although
sample median welfare measures from tradi-
tional repeated discrete choice models can be

positive or negative depending on the treat-
ment of participant preferences for the status
quo, sample median welfare measures from
the hurdle models are consistently positive
across alternative treatments of status quo
preference and serial nonparticipant hurdles.
By contrast, in the seasonal recreation de-
mand context, we argue that the behavioral
interpretation of serial nonparticipation hur-
dles is clear—assuming weak complementarity
(Mäler) holds, the hurdles account for individ-
uals who would not benefit from site-quality
improvements under any circumstance. As a
result, welfare measurement with serial non-
participation hurdles is conceptually straight-
forward in the recreation demand context. In
our application, we find that differences in wel-
fare estimates across traditional, single hurdle,
and double hurdle repeated discrete choice
models are small for our quasi-nested logit
specifications but larger in our panel random
coefficient specifications.

The remainder of the paper is structured as
follows. The next section develops the generic
single and double hurdle repeated discrete
choice structures and highlights their statisti-
cal and behavioral properties. We then discuss
the data sets, parameter estimates, information
criteria, and hypothesis test results from our
choice experiment and seasonal recreation de-
mand applications. The issues arising with wel-
fare measurement as well as a menu of welfare
estimates for each application are also pre-
sented. We conclude with a discussion of
the advantages from using repeated discrete
choice models that explicitly account for indi-
viduals who do not “play the game” as well as
issues for further research.

Econometric Model

In both the choice experiment and seasonal
recreation demand contexts, the repeated dis-
crete choice-modeling framework is widely
used. Given that individuals are confronted
with a series of hypothetical choices consisting
of attribute-varying choice alternatives as well
as a status quo alternative, the repeated dis-
crete choice framework is the natural modeling
structure for choice experiment data. In sea-
sonal recreation demand applications where
an individual’s total trip counts to a poten-
tially large number of heterogeneous sites is
observed, the framework is often used because
of the difficulties in estimating flexible demand
systems models (von Haefen and Phaneuf).
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In both cases, however, the generic setup is
similar. Preferences on each choice occasion
(i.e., a hypothetical choice in the choice exper-
iment context, a week or day in the seasonal
recreation demand context) are separable
from those on other choice occasions. Each
choice occasion involves the individual making
a discrete choice from a finite set of alternatives
(hypothetical bundles of attributes and a status
quo alternative in choice experiments, quality
differentiated sites and a “no-trip” option in
seasonal recreation demand). This choice is
generated from a random utility maximizing
(RUM) behavioral process (McFadden) that
assumes that both observable and unobserv-
able factors (from the analyst’s perspective)
enter consumer preferences and determine
choice. The unobserved factors are known by
the individual but treated as random draws
from some probability distribution by the ana-
lyst. In combination with the RUM behavioral
structure that governs choice, these probabil-
ity distributions imply likelihoods of observing
various choice combinations conditional on a
set of underlying model parameters. Observ-
able choices and these conditional probabili-
ties can be used to recover estimates of the
underlying parameters within the maximum
likelihood framework.

More concretely, consumer preferences for
the jth alternative ( j ∈ Jt) on choice occasion
t (t ∈ T) can be represented by the following
conditional indirect utility function:

Vj (yt − pjt, qjt, �) + εjt

where yt is normalized income, pjt and qjt
are the observable choice occasion specific
normalized price and attributes of the jth
alternative,2 � are estimable parameters, and
the additive εjt represents all other determi-
nants of choice relevant to the choice alter-
native and occasion that are unobservable and
random from the analyst’s perspective. The ra-
tional individual is assumed to choose the alter-
native that generates the highest level of utility,
that is:

Alternative i chosen if

Max
j

{
Vj (yt − pjt, qjt, �) + εjt, ∀ j ∈ Jt

}
= Vi (yi − pit, qit, �) + εit.

2 In seasonal recreation demand applications, data limitations
often require that the analyst assumes each site’s price and quality
attributes are treated as time invariant. Moreover, these same lim-
itations also require that the elements of each individual’s choice
set are treated as invariant across choice occasions.

If the analyst assumes that each εjt can be
treated as an independent and identically dis-
tributed draw from the normalized type I ex-
treme value distribution,3 the likelihood of
observing the individual choosing the ith al-
ternative on choice occasion t, Lit, takes the
standard multinomial logit form:

L it = eVi (yt −pit,qit,�)∑Jt
j eVj (yt −pjt,qjt,�)

.

If one assumes that the same modeling struc-
ture underlies individual choice on each choice
occasion, the likelihood of observing a series
of discrete choices, LRDC, is the product of the
relevant logit probabilities:

LRDC =
T∏
t

Jt∏
j

(L jt)1jt

where 1jt is an indicator function equal to one
if the jth alternative is chosen on the tth choice
occasion and zero otherwise.4

The traditional repeated discrete choice
model places a strictly positive probability
mass on every series of choices. Consequently,
the model predicts that repeated choice of the
same alternative or same type of alternative,
that is, serial nonparticipation, will arise over
a sufficiently large sample. For example,
if alternative 1 is the status quo or “no-trip”
alternative and serial nonparticipation is de-
fined as repeated choice of this alternative, the
probability mass associated with serial non-
participation is

∏T
t (L1t ). Where the traditional

model fails in many applied situations, how-
ever, is in predicting the frequency of these
outcomes. Analysts have addressed this limi-
tation in one of three ways. One involves sim-
ply purging from the estimation sample all
serial nonparticipants. In the choice experi-
ment context, this frequently involves drop-
ping all individuals who repeatedly choose
the status quo or “choose neither” alterna-
tive or the alternative with the highest level
of a particular attribute (e.g., Adamowicz et
al.). In the recreation context, all nonrecre-
ators are sometimes purged from the estima-
tion sample (von Haefen 2003; Moeltner and

3 Extensions to the generalized extreme value variant of the type
I extreme value distribution (Morey) are possible but do not sub-
stantively change the discussion below.

4 See Morey for an alternative derivation of LRDC that exploits
the multinomial distribution and can be used when the individual’s
choice set, prices, and quality attributes are invariant across choice
occasions.
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Englin), but many researchers employ on-site
or targeted sampling procedures that remove a
priori serial nonparticipants from the sampling
frame. Although sometimes convenient, drop-
ping or ignoring serial nonparticipants pre-
vents the analyst from drawing any inference
about the factors that give rise to this form
of behavior. Moreover, it introduces a trun-
cation problem that can lead to inconsistent
parameter and welfare estimates if not prop-
erly addressed. Another common strategy for
addressing serial nonparticipation is to add an
alternative specific constant (i.e., a status quo
constant term in the choice experiment context
and a “no-trip” constant term in the recreation
context) for the alternative that is repeatedly
chosen across choice occasions. This approach
has the potential of increasing the probability
mass associated with serial nonparticipation,
but it restrictively assumes that serial nonpar-
ticipants’ marginal rates of substitution are the
same as participants’.5

A third approach for addressing serial non-
participation introduces correlations across
choice occasions through random coefficients.
These “panel” random coefficient models
(Train 1998) assume a subset of the parameters
entering the utility function (�) vary randomly
across individuals but are fixed across choice
occasions for a given individual. As such, they
have the potential to introduce correlations in
the unobserved determinants of choice across
choice occasions and thus increase the prob-
ability mass associated with serial nonpartic-
ipation. In the process, they also allow for a
more substantial degree of preference hetero-
geneity relative to fixed coefficient specifica-
tions. As McFadden and Train have argued,
any structure of substitution underlying an ob-
served set of choices can be approximated by
appropriate choice of the random coefficients’
mixing distribution. Although attractive in
many ways, random parameter approaches do
not explicitly differentiate preference hetero-
geneity from serial nonparticipation, and as
such prevent the analyst from treating serial

5 In the recreation demand context, it is common to combine a
no-trip alternative dummy variable with a nested logit choice struc-
ture that places the no-trip alternative in a separate nest from all
sites (e.g., Parsons; Morey, Rowe, and Watson). Although nested
logit models introduce correlations in the unobserved determi-
nants of choice on a given choice occasion, they do not intro-
duce correlations in the unobserved determinants of choice across
choice occasions or substantially add probability mass to the no-
trip alternative. As a result, introducing a nested logit structure into
a repeated discrete choice framework represents at best a relatively
blunt instrument for addressing serial nonparticipation. For an ex-
ample of treatment of a similar phenomenon in the transportation
literature, see Swait and Ben-Akiva.

nonparticipants differently from participants
in welfare analysis.

In this paper, we consider “hurdle” ap-
proaches to addressing serial nonparticipation.
Although widely used in microeconometric
demand models to account for the so-
called “excess zero” problem (e.g., Haab and
McConnell; von Haefen and Phaneuf; von
Haefen), these mixture models have not been
considered in the repeated discrete choice con-
text to our knowledge (see Swait and Ben-
Akiva for an application in transportation).
Since hurdle models introduce a separate data
generating process to explain serial nonpartic-
ipation, they differ from previous approaches
that deal with the issue more indirectly.

As discussed in detail by Shonkwiler and
Shaw, hurdle models can be grouped into two
broad categories. Both introduce a separate
probability model or hurdle, �, to explain se-
rial nonparticipation. In general, � is bounded
between zero and one may depend on exoge-
nous demographic, socioeconomic, cognitive,
or health status variables that are likely corre-
lated with serial nonparticipation. In the single
hurdle framework, � replaces the probability
of serial nonparticipation implied by the tra-
ditional repeated discrete choice framework
(i.e.,

∏T
t (L1t )). Thus for a given individual, the

probability of serial nonparticipation equals
�. By contrast, the double hurdle framework
assumes that the separate probability model
� augments the probability of serial nonpar-
ticipation implied by the traditional repeated
discrete choice model. For a given individ-
ual, the likelihood of serial nonparticipation is
� + ∏T

t (L1t ), and thus one of two hurdles, � or∏T
t (L1t ) may explain serial nonparticipation.

In essence, what differentiates the frameworks
is that � is assumed to explain all serial non-
participation in the single hurdle framework
but only a fraction of serial nonparticipation in
the double hurdle framework. Relative to tra-
ditional repeated discrete choice models, both
single and double hurdle models assume that
a different data generating process (i.e., the
� hurdle) explains serial nonparticipation at
least in part. The full structures of their fixed
coefficient likelihoods, LSH and LDH, respec-
tively, relative to the traditional repeated dis-
crete choice likelihood LRDC, take the general
form:

LSH = �1̃(1 − �)1−1̃

×

LRDC

(
1 −

T∏
t

L1t

)−1



1−1̃
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LDH = �1̃ + (1 − �)LRDC

where the indicator function 1̃ equals one when
the individual is a serial nonparticipant (i.e.,
she always chooses the first alternative) and
zero otherwise.

It is worth emphasizing that the structure of
LSH suggests that the maximum likelihood es-
timates of � from the single hurdle model have
a close relationship to those derived from re-
peated discrete choice models applied to just
the subsample of participants. Note that LSH

can be decomposed into multiplicatively sepa-
rable components that depend on just � (i.e.,
�1̃(1 − �)1−1̃) or �((LRDC(1 − ∏T

t L1t )−1)1−1̃).
This decomposition suggests that if the analyst
were to recover maximum likelihood estimates
of � from a repeated discrete choice model
that is applied to just the subsample of partici-
pants and consistently account for the induced
truncation (i.e., the impossibility of serial non-
participation), she would generate the same
estimates for � as she would from maximizing
ln (LSH). The main difference between the two
strategies is that the single hurdle model em-
ploys a separate probability model to explain
the behavior of serial nonparticipants while the
repeated discrete choice model applied to just
participants does not. In this way, the single
hurdle model can be thought of as a general-
ized version of the common empirical strat-
egy of estimating a repeated discrete choice
model on just the subsample of participants
while consistently accounting for the induced
truncation.

The above discussion raises a point we feel
is worth emphasizing—the single and double
hurdle frameworks should not necessarily be
thought of as substitute strategies for address-
ing serial nonparticipation relative to those
that past researchers have exploited. In princi-
ple, single and double hurdle models can be
used in conjunction with alternative specific
constants for the status quo or “no-trip” al-
ternatives to better address serial nonpartici-
pation. Moreover, random coefficient variants
of the single and double hurdle models can
be estimated that may generate additional im-
provements in statistical fit relative to fixed
parameter variants. In our view, the single and
double hurdle frameworks should be thought
of as additional instruments the analyst can use
to address serial nonparticipation in a given ap-
plication. Whether the frameworks generate
significant improvements in statistical fit and
qualitatively different policy implications is an
empirical question. In the next sections, we

address this question in the context of choice
experiment and seasonal recreation demand
applications.

Data

Choice Experiment Application

Our choice experiment data come from a 1995
forestry management mail survey described in
Adamowicz et al. The choice experiment re-
peatedly asks each respondent to choose from
three alternatives: two hypothetical “futures”
and the status quo. Each choice alternative is
described in terms of five attributes: (a) wood-
land caribou populations; (b) wilderness area
size; (c) restrictions on recreation activities;
(d) the number of jobs in the forestry indus-
try; and (e) the change in income tax paid by
the respondents. Each attribute has four lev-
els with one level corresponding to the status
quo. For each hypothetical future, the five at-
tributes were chosen using a main effects, frac-
tional factorial design.6

A total of 900 individuals were initially con-
tacted about their willingness to participate in
the survey. Of these 900, 519 returned surveys
with at least one choice task completed, and
429 answered all eight choice tasks. Our em-
pirical analysis focuses on the choices made by
these 429 individuals. Included in this sample
are 88 individuals (roughly 20% of our sample)
who always chose the status quo alternative.
We define this group as the serial nonpartic-
ipants in our study. For the remaining 341
individuals, a significant preference for the sta-
tus quo alternative remained. On roughly 49%
of the subsample’s 2,728 choice occasions, the
status quo alternative was chosen. Several ex-
planations for this lingering strong preference
for the status quo can be advanced—cognitive
difficulties associated with the choice task,
rejection of the choice alternatives as implau-
sible, or simply a strong preference for the sta-
tus quo—but we cannot identify which of these
factors is relevant for participants in our sam-
ple without additional data.

Recreation Application

Our recreation data come from a 1997 Mid-
Atlantic beach recreation mail survey. The

6 The design selected the minimum number of combinations of
attributes required to identify main effects of the attributes and
generated choice set with uncorrelated attributes. See Louviere,
Hensher, and Swait for a discussion of experimental design in
choice experiments.
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survey collected information on the visitation
patterns of Delaware residents to 62 Mid-
Atlantic ocean beaches. These beaches run
along the coast from the northernmost beach
in New Jersey, Sandy Hook, to the south-
ernmost beach on the Delmarva Peninsula,
Assateague Island. Respondents were asked
how many day, short overnight, and long
overnight trips they took to each ocean beach
in the region during 1997. Of the 1086 sur-
veys that were mailed and delivered to a strat-
ified random sample of Delaware residents,
565 were completed and returned. Massey and
Parsons and Massey contain detailed discus-
sions of the survey instrument, data collection
efforts, and data cleaning procedures.

Our analysis focuses on the day trip choices
of 540 respondents.7 These individuals took an
average of 9.8 day trips to the ocean beaches in
the region. Because the most day trips taken by
any respondent was seventy-three, we choose
to set the number of choice occasions in our
repeated discrete choice model to seventy-
five.8 In total, the respondents collectively took
5,279 trips out of 40,500 potential recreation
opportunities, implying that on average they
took day trips on roughly 13% of their as-
sumed choice occasions. A total of 165 of the
540 respondents, or roughly 31% of the sam-
ple, did not visit a single beach over the course
of the year. We define this group as serial
nonparticipants.

Results

Choice Experiment Parameter Estimates

We estimated numerous variations of the tra-
ditional, single hurdle, and double hurdle re-
peated discrete choice models with the choice
experiment data and report a representative
set of our findings in table 1. All estimated
models assume each choice alternative’s con-
ditional indirect utility function has a simple

7 Following von Haefen, Phaneuf, and Parsons, 25 of 565 com-
pleted surveys were excluded from the analysis because the respon-
dents in our judgment reported taking implausibly large numbers
of day trips.

8 We investigated the sensitivity of welfare estimates to alterna-
tive choice occasion specifications in the context of fixed parame-
ter models. Our results suggested that welfare estimates were quite
robust across specifications with 75, 100, 150, and 200 choice oc-
casions. The only systematic pattern we found as we varied the
number of choice occasions was a very slight upward drift in the
absolute value of welfare estimates, but this drift was quite simi-
lar across traditional, single hurdle, and double hurdle models. We
conclude from this investigation that the qualitative results we re-
port in this article are not substantively affected by our arbitrary
choice of 75 choice occasions.

linear-in-parameters form. Included in the
conditional indirect utility functions are the
hypothetical choice experiment attributes and
a status quo dummy variable interacted with
individual specific characteristics (i.e., the re-
spondent’s age, sex, a high school diploma indi-
cator, and a four-year college degree dummy
variable). To allow for nonlinear income ef-
fects, the difference between the individual’s
income and marginal tax burden (i.e., her after-
tax consumption of the Hicksian composite
good) is specified in quadratic form. Finally, for
the hurdle models, � was specified in logit form
and assumed to be a linear function of the same
demographic variables interacted with the sta-
tus quo constant.9

We consider fixed and random coefficient
variants of the traditional, single hurdle, and
double hurdle models. For the random coef-
ficient models, we assumed a selected set of
parameters varied randomly across individu-
als in the target population. Specifically, these
panel random coefficient models assume that
a subset of parameters entering each individ-
ual’s conditional indirect utility functions can
be treated as independent and identically dis-
tributed draws from the multivariate normal
distribution, N(�,�) where we restrict the off-
diagonal elements of � to equal zero. For
computational tractability and economic co-
herence, we restrict the parameters entering
the quadratic specification for the Hicksian
composite good to be equal across individuals.
Although we experimented with allowing the
parameters in � to vary randomly across indi-
viduals, we found no improvement in fit arising
from this additional heterogeneity, and there-
fore assumed these parameters were fixed
across individuals. Estimation of the random
coefficient model exploited maximum simu-
lated likelihood techniques (Train 2003) and
analytical gradient-based search routines.10

The fixed and random coefficient estimates
reported in table 1 show that the parameter
estimates are generally statistically significant,
plausibly signed, and stable across all six mod-
els. On average individuals value increases in
caribou population and wilderness area, and
generally favor less recreation restrictions to

9 To evaluate the sensitivity of our results to our use of logit hur-
dles, we also estimated probit hurdle models for all specifications
reported in this article. In all cases we found relatively small differ-
ences in log-likelihood values between the logit and probit hurdle
models, and virtually no differences at all in most cases.

10 The GAUSS 5.0 estimation code for all specifications and wel-
fare estimates reported in this article are available from the authors
upon request.
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more. The jobs coefficients suggest that indi-
viduals are not significantly affected by the
loss of forestry jobs, and the quadratic spec-
ification for the Hicksian composite good has
the proper increasing and concave shape over
the relevant range. The status quo constant—
demographic interaction terms generally sug-
gest that preferences for the status quo are
independent of sex, but significantly negative
for younger and more educated individuals.
Turning to the hurdle parameters, we also find
that younger, more educated individuals are
less likely to be serial nonparticipants. Across
the four hurdle specifications, we found that
the hurdles, or the probabilities of not play-
ing the game, had sample mean values ranging
between 0.146 and 0.205.

To compare the relative statistical fits of
the six alternative specifications, we use their
log-likelihoods (LL) and two information
criteria—the Bayesian information criteria
(BIC) as well as the consistent Akaike infor-
mation criteria (CAIC):

BIC = −2LL + ln(N)P

CAIC = −2LL + (1 + ln(N))P

where N is the number of observations used
in estimation (429 in our study) and P is the
number of estimated parameters. We also em-
ploy a series of likelihood ratio and Vuong
nonnested hypothesis tests (Vuong). These re-
sults are summarized in table 2. They suggest
that for the fixed coefficient specifications, the
single and double hurdle models consistently
and significantly outperform the traditional re-
peated discrete choice models. Moreover, lit-
tle difference in statistical fit is found between
the single and double hurdle models. For the
panel random coefficient models, the relative
statistical performance of the traditional and
hurdle models is ambiguous—in general the
BIC, CAIC, and the Vuong tests suggest that
the models are indistinguishable. This finding is
similar to Greene and Haab and McConnell’s
empirical findings in the context of count data
models that the marginal gains in terms of im-
proved statistical fit diminish substantially af-
ter the analyst has accounted for unobserved
heterogeneity (in their context, moving from a
Poisson to a negative binomial model). In our
context, the result probably arises because the
random coefficient on the status quo constant
can predict a significant amount of serial non-
participation. Finally, comparing the fixed co-
efficient and panel random coefficient models,

we find that panel random coefficient models
fit the data significantly better.

Choice Experiment Welfare Estimates

In addition to comparing statistical perfor-
mance, we also examine welfare measures
derived from the traditional and hurdle mod-
els associated with a hypothetical change in
quality attributes. The scenario examined is
the same one explored by Adamowicz et al.
and involves a change in caribou population
from 400 to 600, wilderness area from 150,000
to 300,000 hectares, and recreation restrictions
from level 2 (hunting, fishing, off-road vehicles,
helicopters, horses, and overnight camping in
designated areas) to level 3 (no hunting, fish-
ing, off-road vehicles, or helicopters allowed;
horses and overnight camping in designated
areas).

Following Hanemann, choice experiment
researchers frequently employ the following
implicit definition of the Hicksian consumer
surplus, CSH, associated with a quality change
from q0 to q1 as:

V (y, q0, �, ε0) = V (y − CSH, q1, �, ε1)

where V(·) has the same structure as the con-
ditional indirect utility functions specified in
the choice experiment model. Because our em-
pirical specification employs a quadratic spec-
ification in the Hicksian composite good, no
closed form solution for CSH exist, and thus
iterative techniques must be used to numeri-
cally solve for CSH conditional on (�, ε0, ε1).11

Moreover, because (�, ε0, ε1) are random vari-
ables from the analyst’s perspective, simula-
tion techniques are necessary to estimate the
expected Hicksian consumer surplus, E(CSH).

Two additional issues arise with the calcula-
tion of E(CSH) in our application—the treat-
ment of serial nonparticipation and status quo
preference by participants. With the hurdle
models, the analyst must decide how to treat
individuals who do not play the game. In our
view, the appropriate treatment will depend
on each individual’s reason for not participat-
ing. If, for example, an individual’s serial non-
participation arises from cognitive difficulties
associated with comprehending the survey in-
strument, the most defensible treatment might
be to simply ignore the hurdle altogether.

11 Note that we are assuming that the change in quality introduces
a new state with a new random error ε1 attached to it, but the same
random coefficients.
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Table 3. Choice Experiment Sample Median Welfare Estimates (1995 Canadian Dollars)

Including Status Ignoring Status
Repeated Discrete Choice Model Quo Constant (SQ) Quo Constant (SQ)

Traditional
Fixed coefficient −$32.60 (13.61) $104.99 (24.56)
Random coefficient −$28.88 (16.79) $105.15 (22.02)

Including SQ and Including SQ Ignoring SQ Ignoring SQ and
Ignoring Hurdle and Hurdle and Hurdle Including Hurdle

Single hurdle
Fixed coefficient $43.37 (16.00) $33.24 (12.14) $115.73 (28.02) $88.81 (21.56)
Random coefficient $45.11 (16.25) $34.76 (12.24) $106.33 (27.21) $81.86 (20.71)

Double hurdle
Fixed coefficient $43.40 (15.99) $33.43 (12.18) $115.92 (28.05) $89.38 (21.69)
Random coefficient $30.05 (15.03) $24.71 (11.87) $104.29 (26.80) $86.13 (21.93)

Note: Two-thousand simulations used to construct all point estimates. Parametric bootstrap standard errors based on 200 replications in parentheses.
When including the status quo constant, we set the status quo constant equal to one for the baseline state but equal to zero for the proposed
policy state. Alternatively, when excluding the status quo constant, we set the status quo constant equal to zero for the baseline and proposed pol-
icy states. Similarly when including the hurdle, we scale the welfare measure implied by the application of the Hanemann formula by the probability
of participation, 1 − �. Conversely when ignoring the hurdle, we do not scale the welfare measure implied by the application of the Hanemann formula by 1 − �.

Alternatively, if the individual’s serial nonpar-
ticipation reflects opposition to any form of
government intervention, then imputing a zero
(or possibly negative) welfare measure may be
appropriate. Since we cannot empirically dif-
ferentiate between these alternative hypothe-
ses for serial nonparticipation, we present two
sets of welfare estimates—those that ignore
the hurdle (and thus serial nonparticipation)
entirely and those that scale the Hicksian con-
sumer surplus estimate by the probability of
participation (i.e., 1 − �). These latter esti-
mates implicitly assume that nonparticipants’
value for the policy change is zero.

The second issue arises in both the tra-
ditional and hurdle repeated discrete choice
models where strong status quo preferences
among participants were found. In general, in-
cluding status quo preference in welfare calcu-
lations will produce lower estimates than those
that exclude it. Moreover, it is possible that
including the status quo constant will imply
negative sample welfare estimates from policy
changes that improve environmental quality.12

Again, our sense is that the appropriate treat-
ment will depend on the reasons for individuals
exhibiting this preference. Because our data
set does not contain information that would
allow us to empirically test these competing

12 We recognize that with a heterogeneous population, it is en-
tirely possible that some individuals will experience a decrease
in utility from policies that improve environmental quality. Our
point here is that including the status quo constant can imply av-
erage welfare effects that are negative, even though individuals in
the population, on average, benefit from marginal changes in each
of the changing attributes.

hypotheses, we have chosen to calculate wel-
fare measures with and without the status quo
constants for all models. Since for each of the
hurdle models we also present estimates that
ignore or incorporate the hurdle, we present
a total of four sets of estimates for the hur-
dle models, but only two for the traditional
models.13

Table 3 presents the sample welfare esti-
mates for the fixed and random coefficient
models. Following standard practice in the
stated preference literature, we report sample
medians for each model and welfare estima-
tion approach as well as their standard errors.
The estimates suggest that the largest differ-
ences in welfare measures arise from the treat-
ment of the status quo preference, although
the differences arising within the hurdle mod-
els are smaller than those associated with the
traditional repeated discrete choice models. As
expected, including the status quo preference
significantly reduces the magnitude of the wel-
fare measures. Moreover, the traditional re-
peated discrete choice model estimates that
incorporate the status quo preferences are con-
sistently negative, while the hurdle models are
consistently positive. These empirical findings
reflect the fact that the hurdle is in some sense
disentangling status quo preference found in
the traditional models into components asso-
ciated with those who are and are not playing

13 By presenting a range of estimates based on alternative plausi-
ble yet arbitrary assumptions, our approach is conceptually similar
to Beenstock, Goldin, and Haitovsky and Hartman, Doane, and
Woo.
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the game. By distinguishing these groups of
individuals, the analyst can make separate
judgments as to how to treat their welfare mea-
sures. In our view, the fact that the hurdle
models give the analyst this additional flexibil-
ity represents a significant advantage over tra-
ditional repeated discrete choice models and
may result in more credible welfare measures.

A few additional insights emerge from the
welfare results. Comparing welfare estimates
across the traditional and hurdle models, we
find that the estimates are quite similar if the
analyst ignores the status quo preference and
hurdles. Within the hurdle models, we also find
that scaling the welfare estimates by the prob-
ability of participation generally reduces their
absolute value by roughly 20% (i.e., the ap-
proximate sample mean values of the hurdles).
A comparison of welfare estimates across fixed
and panel random coefficient models suggests
that there is no systematic difference, except
that estimates ignoring the status quo tend to
be lower in the random parameter case.

Recreation Parameter Estimates

In our seasonal recreation demand applica-
tion, we assume the choice occasion condi-
tional indirect utility functions are linear and
additive in price (i.e., a constant marginal util-
ity of income) and beach attributes (beach
length, boardwalks, facilities, parking, etc.).
A no-trip dummy variable interacted with
individual specific characteristics (age, pres-
ence of children under ten and between ten
and sixteen in the household, ownership of a
Delaware vacation property, and retired and
student dummies) is also included, and the
hurdle parameter � is assumed to take the
logit form14 and be a function of a linear in-
dex of the same individual specific characteris-
tics. Quasi-nested (Herriges and Phaneuf) and
panel random coefficient parameter estimates
are reported in table 4, respectively.15 For the
quasi-nested logit estimates, the coefficients on
the no-trip dummy variable, the New Jersey
beach dummy variable, and the Delmarva
dummy variable (equal to one for all beaches
outside New Jersey, or conversely, all beaches
along the Delaware, Maryland, and Virginia
Peninsula, zero otherwise) were treated as
normally distributed random variables with

14 Similar to the choice experiment application, probit hurdle
models produce virtually identical parameter estimates to the logit
hurdle estimates reported here.

15 Fixed parameter traditional, single hurdle, and double hurdle
estimates are available from the authors upon request.

zero covariance that varied across individu-
als and choice occasions. For identification, we
restricted the mean of the Delmarva dummy
variable coefficient to zero. As Herriges and
Phaneuf have argued, this structure mimics the
structure of a three-level nested logit model
where the no-trip alternative and the 62 sites
enter separate top-level nests, and within the
62-site nest, New Jersey and Delmarva beaches
are separated into distinct bottom-level nests.
Because the only difference between this spec-
ification and the standard nested logit model is
the distribution of the unobserved heterogene-
ity that introduces correlations within nests, we
refer to it here as the quasi-nested logit spec-
ification.16 For the panel random coefficient
models, experimentation led us to treat only a
subset of parameters entering the conditional
indirect utility functions as random (i.e., inde-
pendent and identically distributed draws from
the multivariate normal distribution, N(�, �)
with all off-diagonal elements of � restricted
to zero). For both the quasi-nested logit and
panel random coefficient specifications, an-
alytical gradient-based search routines were
used to recover maximum simulated likeli-
hood estimates.

Across the six specifications, the coefficient
estimates were found to be plausibly signed,
statistically significant, and generally quite ro-
bust. The results suggest that Delaware resi-
dents prefer to visit beaches that have access
to amusement parks and convenient parking
as well as those that are located at least par-
tially within a park and have long beachfronts.
Ceteris paribus, these individuals also prefer
beaches that involve lower travel costs to visit,
have beach widths that are not too narrow
or wide, and are located along the Delmarva
Peninsula. For the hurdle models, the hurdle
parameter � was found to range in value be-
tween 0.158 and 0.306, and to be consistently
positively correlated with age and negatively
correlated with the presence of young chil-
dren and the ownership of a Delaware vaca-
tion property.

Similar to table 2 above, table 5 contains the
LL, BIC, and CAIC results as well as Vuong
test statistics that shed some light on the rel-
ative statistical fits of the alternative models.
For the quasi-nested logit models, the hurdle

16 Although quasi-nested logit models require simulation in esti-
mation, a significant advantage they have over-nested logit models
is that the coherency difficulties arising when the nested logit’s in-
clusive value parameters fall outside the theoretically acceptable
range (Herriges and Kling) are avoided.
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Table 6. Sample Mean Recreation Welfare Estimates (1997 U.S. Dollars)

Traditional Single Hurdle Double Hurdle
Repeated Discrete Repeated Discrete Repeated Discrete

Choice Model Choice Model Choice Model

Closing of northern Delaware beaches
Quasi-nested logit −$79.07 (8.97) −$86.69 (8.86) −$80.53 (8.46)
Random coefficienta −$112.78 (9.46) −$131.57 (10.17) −$107.35 (16.79)

Lost beach width at all Delmarva beaches
Quasi-nested logit −$24.47 (14.12) −$26.03 (13.60) −$24.13 (12.77)
Random coefficienta −$55.76 (12.61) −$40.02 (7.89) −$35.79 (13.19)

Note: Parametric bootstrap standard errors based on 200 replications in parentheses. All estimates employ the sampling weights implied by the county-stratified
sampling design.
aFor the quasi-nested and random coefficient point estimates, a total of 11,000 simulations were generated. The first 1,000 simulations were discarded as
burn-in and every tenth simulation thereafter was used to construct the estimates.

models dominate the traditional models, but
the single hurdle and double hurdle models are
not distinguishable. For the panel random co-
efficient models, table 5 also suggests that the
addition of hurdles to the panel random coeffi-
cient repeated discrete choice model generates
relatively modest improvements in fit, with the
gains more pronounced with the double hurdle
specification. Finally, the panel models consis-
tently dominate the fixed coefficient models as
expected.

Recreation Welfare Estimates

We consider two policy scenarios in our beach
recreation application: (a) the closure of all
northern Delaware beaches (seven in total)
and (b) the loss of beach width to less than
75 feet at all Delmarva beaches. These scenar-
ios are generically representative of the kinds
of scenarios recreation demand modelers of-
ten consider, and the interested reader can
consult Massey and von Haefen, Phaneuf, and
Parsons for a detailed discussion of their policy
relevance.

For the traditional repeated discrete choice
models, we follow Hanemann and Train (1998)
and use the well-known “log-sum” formula to
simulate the expected Hicksian consumer sur-
plus, E(CSH), associated with the two scenar-
ios above. For the double hurdle models, we
also use the log-sum formula, but need to ad-
just for welfare implications of the hurdle. In
our view, serial nonparticipation in the recre-
ation context has a relatively unambiguous
interpretation compared to the choice exper-
iment context. Serial nonparticipants are in-
dividuals who would not recreate under any
circumstance, and assuming weak complemen-
tarity holds (Mäler), these individuals experi-
ence no welfare loss or gain from changes in

site access or quality. Therefore, serial non-
participants should be given a zero Hicksian
consumer surplus for both scenarios. When
constructing welfare measures for the dou-
ble hurdle model, the estimates implied by
the product of the log-sum formula and the
number of choice occasions should be rescaled
by (1 − �). For the single hurdle framework,
an additional complexity arises relative to the
double hurdle framework because the struc-
ture of the model implies that all participants
take at least one trip. Thus the analyst must
develop seasonal welfare measures that in-
corporate this restriction. To do this, we de-
velop a Markov Chain Monte Carlo algorithm
that, similar to von Haefen (2003), em-
ploys an adaptive Metropolis–Hastings sub-
routine. The details of the algorithm are in
an appendix available from the authors upon
request.

Point and standard error estimates for the
two policy scenarios are presented in table 6.
The results suggest that the quasi-nested logit
welfare estimates are only marginally affected
by the addition of hurdles, but the panel ran-
dom coefficient estimates, particularly for the
loss of beach width scenario, suggest that quali-
tatively different policy inference can arise be-
tween the traditional, and single and double
hurdle models. This latter conclusion should
be interpreted cautiously, however, because
of the relatively large standard errors asso-
ciated with the point estimates. We also find
larger absolute welfare effects in the panel ran-
dom coefficient models relative to the quasi-
nested logit models. Since the panel random
coefficient models fit the recreation data bet-
ter than the quasi-nested logit models, we be-
lieve the larger (in absolute terms) estimates
are more defensible for policy purposes in this
application.
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Conclusions

This study has investigated alternative strate-
gies for accounting for serial nonparticipation,
or repeated choice of the same alternative
or same type of alternative across a series
of choice occasions. We introduce single and
double hurdle repeated discrete choice mod-
els that, in contrast to past approaches to ad-
dressing serial nonparticipation, allow for a
fundamentally different process to generate
this common empirical phenomena. We apply
these models to choice experiment and sea-
sonal recreation demand data, where a signifi-
cant proportion of the sample always chooses
the status quo or no-trip alternative. Our esti-
mation results suggest that, in general, substan-
tial improvements in statistical fit can result
from using our hurdle models compared to the
traditional repeated discrete choice models, al-
though these gains are somewhat diminished
when we incorporate random coefficients that
are equal across an individual’s choice occa-
sions. We also find evidence that policy infer-
ence can be affected by the introduction of
hurdles to account for serial nonparticipation,
particularly in the context of choice experi-
ment data, where the proper treatment of se-
rial nonparticipants is less clear. In sum, we
believe the single and double hurdle models
that we develop in this paper significantly ex-
pand the menu of approaches that analysts can
use to address serial nonparticipation, and in
the process, improve the quality of policy in-
ference drawn from data analyzed within the
repeated discrete choice framework.

Several extensions to the research presented
in this paper are possible, and we discuss what
we feel are the most promising in closing. In
our choice experiment application, we did not
have access to any information that would
help us to identify why individuals do not play
the game or strongly prefer the status quo
alternative, and therefore presented a range
of welfare estimates that were generated un-
der different plausible yet arbitrary assump-
tions. In future work, it would be instructive
to explore the specific nature of these deter-
minants in an applied setting. In particular, as-
certaining whether serial nonparticipation and
status quo preference arise as responses to
choice complexity and processing limitations
(Dhar 1997a, 1997b; Swait and Adamowicz),
protests against any form of government ac-
tion, genuine satisfaction with the status quo,
or other factors will help researchers formulate
more precise and defensible welfare estimates.

Moreover, this information could help re-
searchers design future choice experiment in-
struments in ways that mitigate these effects
if they are determined to be undesirable. Our
sense is that carefully crafted exit questions,
follow-up questionnaires, and verbal protocols
might be fruitful approaches for acquiring this
information.

Similarly, it would be instructive to learn
about the factors that explain serial nonpar-
ticipation in the seasonal recreation demand
context. Data limitations with our beach study
forced us to model serial nonparticipation as
a function of individual demographics, but our
sense is that unobserved features of individual
preferences and constraints better explain why
some individuals do not recreate. Also, our
hurdle models restrictively assumed that indi-
viduals who do not play the game will continue
to not play the game under any circumstance,
but introspection suggests that this restriction
may be too strong. In our view, it may be more
plausible in some cases to recognize that serial
nonparticipation has a behavioral dimension
that is influenced by preferences and con-
straints, and as preferences and constraints
evolve over time, serial nonrecreators might
become recreators. For example, if individuals
seek variety in their recreational experience,
accumulation of nonparticipation “capital”
over time will generate an increased probabil-
ity of future participation (e.g., Adamowicz).
Incorporating this dimension to human behav-
ior within the hurdle framework represents
an important and challenging area for future
research.

[Received July 2003;
accepted March 2005.]
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