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EXECUTIVE SUMMARY

This report identifies the two main components of mass balance models of chemical fate in the
environment as the equations describing the processes, and the parameters describing the chemical,
the environment, and the emission. Uncertainty, variability, difference and error are defined within
the context of determining model reliability. Studies of chemical, environmental, and emission data
quality are discussed. There is a need for care in determining the relative importance of these data
to a model outcome. 
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INTRODUCTION

It is useful, prior to embarking on any discussion of model reliability, to identify the model
components, to consider some commonly used terms: their meaning in the context of the study, and
their application in previous work.

MODEL COMPONENTS

Mathematical models of chemical fate in the environment are composed of equations and
parameters. The equations describe quantitatively the natural processes being modelled, usually as
equilibrium or rate expressions. The parameters describe relevant properties of the specific system
under investigation. In the case of environmental fate models these parameters can be classified as
chemical properties, discharge or emission data, and landscape parameters. Together the equations
and parameters produce the model results to be used by those who interpret the results, including
decision-makers. It is assumed that the equations and the parameters are correct in structure and
approximate magnitude. However, models are necessarily a simplification of a complex system with
an associated uncertainty due to the mathematical approximations and the uncertainty and variance
in the parameters. As regulators and others in the chemical industry rely increasingly on models as
decision-making tools, it is vital that the variance of the model outcome and its sources be
thoroughly understood.

VALIDATION AND EVALUATION OF MATHEMATICAL DESCRIPTIONS OF
ENVIRONMENTAL SYSTEMS

In the context of risk assessment and regulation, model validation becomes important, however
environmental models can not be validated in the same sense as models of highly reproducible
closed systems (Oreskes et al 1994; Oreskes 1998). Credibility, however, can be improved by
documenting examples in which observed and predicted concentrations are compared, as single
values or ranges with identification of dominant sources, fate processes, or partitioning
characteristics. Such comparison studies have been performed on mass balance models of chemical
fate with generally positive results (Devillers et al 1995; Mackay et al 1996c; Bintein and Devillers
1996a,b; Koprivnjak and Poissant 1997; MacLeod and Mackay 1999). These studies assume that the
model equations are generally correct. The equations in different environmental fate models tend to
be very similar (Cowan et al, 1995) indicating a high level of communication and confidence within
the research community and making this not an unreasonable assumption. Unfortunately, it can be
difficult to ascertain where differences occur due to the “black box” structure of many models.

In their comparison of model results, Cowan et al (1995) found that differences were largely
attributable to differing landscape parameters and not to model structure. The chemical properties
and discharge rates are typically provided by the user or decision-maker but environmental
parameters may be either partially or wholly embedded in the program. For example, EQC has
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properties typical of northeastern USA / southern Ontario partially embedded (Mackay et al 1996b)
while EUSES, has properties typical of the Netherlands wholly embedded (Vermeire et al 1997, TSC
Group Delft bv 1997).

Environmental, or landscape, properties are often selected by model developers. These models are
designed to focus on chemical-to-chemical differences in environmental fate and facilitate regulatory
assessments. The intent of the developers of the EQC model and other “evaluative” models was that
they should provide the tool for one stage in a multi-stage analysis and their use is to be followed
by a regional assessment (Mackay et al 1996a).

UNCERTAINTY, VARIABILITY, DIFFERENCE, AND ERROR IN MODEL
PARAMETERS

The need for uncertainty and sensitivity analyses of model outcome has been long recognised (Slob
1994; Jager and Slob, 1995; Cowan et al 1995; Mackay et al 1996a; Vermeire et al 1997; Barnthouse
et al 1998; Bennett et al, 1999). There is a general acceptance that every model outcome should be
expressed as a distribution rather than a single value. Similar terminology has been used in a variety
of contexts with different meanings to assign cause to the distribution in model outcome (Jager and
Slob 1995; Bennett et al 1999; Huijbregts et al 2000). Here the following definitions are used to
describe the quality of parameters.

Uncertainty is a measure of the knowledge of the magnitude of a parameter. Uncertainty
can be reduced by research, i.e., the parameter value can be refined. Uncertainty is
quantified as a distribution. For example the volume of a lake may be estimated from its
surface area and an average depth. This estimate can be refined by measurement.

Variance is a measure of the heterogeneity of a landscape parameter or the inherent
variability in a chemical property. Variance can not be reduced by further research. It is
quantified as a distribution. For example, the organic carbon content of the soil in a
region may vary, even over short distances. The soil is not homogenous and thus the
organic carbon content can be described with a distribution of values.

Difference is a measure of the uniqueness of the substance or region described. It is not
described by a distribution. It is not the result of a lack of knowledge, inherent variation,
nor an incorrect assignment. For example, the surface area of Lake Ontario is different
from the surface area of Lake Superior. 

Error is an invalid or incorrect parameter assignment. It is not described by a
distribution. Research is required, not to refine the value but to correct it.
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UNCERTAINTY AND SENSITIVITY IN MODEL OUTCOME

Model outcome is uncertain due to parameter uncertainty and variability as defined above. This is
often determined using Monte Carlo techniques. While alternate methods have been proposed (Slob,
1994; MacLeod et al 2002), Monte Carlo analysis remains the standard for this type of study. 

Model outcome is sensitive to each parameter. This sensitivity has been quantified as the relative
change in outcome divided by a small relative change in parameter, i.e., the partial derivative (Mackay
et al 1996c).

The role of uncertainty and sensitivity analyses differs with model applications. When models are
being used to rank chemicals, products, processes, or systems, it is necessary to determine whether
differences in model outcome are significant and whether such differences are real or artifacts of
uncertainty and variance in parameters. By contrast, in single chemical, product, or system evaluation
uncertainty analysis provides the distribution of the model outcome while sensitivity analysis shows
the relative contribution of each parameters uncertainty and variance to the outcome variance thus
facilitating outcome variance reduction.

CHEMICAL PARAMETER QUALITY

Chemical-to-chemical differences in the environmental fate of substances are controlled by the
physical-chemical properties. When measuring physical-chemical properties, an identified chemical
is tested and properties are determined with a precision defined by the experiment. This is often given
as a mean value with a normal or lognormal distribution. For some properties such as individual
media degradation half-lives, there is also variation unrelated to experimental precision. Factors such
as the intensity and duration of sunlight, and the concentration of hydroxyl radicals make it
impossible to assign the substance a single, discrete value for the degradation half-life in air, for
example. For the half-lives in water, soil, or sediment, the nature of the microbial community is a
major confounding factor. (Mackay et al 2000) These variations are also generally characterised by
lognormal distributions. Mackay et al (2000) suggest assigning half-life classes on a logarithmic scale
with variation of one or two classes to each degradation rate.

When assessing the variance, or uncertainty, in model outcome Monte Carlo analysis has become the
standard for environmental fate and effects models (Calabrese, 1996). These analyses are often
preformed for a number of chemicals in a single environment, with either realistic discharges or
hypothetical emissions depending on the focus of the study (Kühne et al 1997; Bennett et al 1999;
Hertwich et al 1999; Huijbregts et al 2000; Maddalena et al 2001; MacLeod et al 2002). Half-lives
are typically the least well-defined chemical property, i.e., have the highest standard deviation, and
thus are often the critical properties in determining the variance in model outcome. 



-4-

It must be recognized that such an assessment of variance presupposes that the chemical has been
correctly identified, that is, that the physical-chemical properties are correct. If even one of the
property values is incorrect, the model outcome is, effectively, that of a different chemical.

Certain parallels can be drawn between this case of “chemically-specific physical-chemical
properties” when considering the importance of regionally-specific landscape parameters.

ENVIRONMENTAL PARAMETER QUALITY

Region-to-region differences in the environmental fate of a substance are controlled by the landscape
properties. When measuring a landscape parameter for an identified region a value can be assigned
with a precision defined by the method. Whether that method involves traditional surveying
techniques or the analysis of satellite images there is an associated uncertainty. There is an additional
uncertainty caused by such decisions as, whether ponds, streams, and wetlands are considered in the
same category as other surface waters, i.e., a water-body size cut-off must be selected. These sources
of variance have also been characterised by normal and lognormal distributions and the resulting
model outcome variances determined using Monte Carlo analysis (Hertwich et al, 1999; Huijbregts
et al 2000; Maddelena et al 2001, MacLeod et al 2002).

In the Sacramento air basin study by Maddelena et al (2001), total potential dose was selected as the
model outcome of interest and for the emission scenarios selected. For benzene, wind speed
controlled the variance, for fluoranthene, the depth of the surface soil was key to the variance, and
for hexachlorobenzene, the variance was more sensitive to rain rate than any other landscape
parameter. Hertwich et al (1999), evaluated the variance in potential dose for 236 chemicals in the
California region. They found that the contribution of landscape parameters to the overall variance
in potential dose was typically less than 10% while, not surprisingly, individual media reaction half-
lives often contributed most to the variance. MacLeod et al (2002) found, that for benzo[a]pyrene
emitted into the air at a fixed rate in southern Ontario, the aerosol deposition velocity contributed
most the variance in their chosen endpoint of total mass of chemical present in the environment,
assuming the emission rate is known absolutely. 

Model sensitivity to landscape parameters appears less consistent than for chemical properties.
However, this may be due to the approach used by those conducting the study. For examinations of
model sensitivity to chemical properties, a single landscape is chosen; for examinations of model
sensitivity to landscape properties, many chemicals may be used. By analogy with the first
examination which uses a single “generic” landscape, the second should be conducted using a single
“generic” chemical. Of course, this introduces a severe difficulty. It is impossible to define a single
“generic” chemical. Sensitivity of the model outcome depends on both the region selected and the
chemical chosen. It is expected that such a study would show that degradation half-lives continue to
contribute most to variance in model outcome due to the extremely high variation and uncertainty in
these parameters.
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EMISSION PARAMETER QUALITY

Uncertainty in emission or discharge data can be very high and is often difficult to estimate
(Maddelena et al 2001). In cases where this uncertainty was included in the analysis of outcome
variance, it played a significant role (Bennett et al 1999; Huijbregts et al 2000). Exposure (Bennett
et al 1999) and LCA (Hertwich et al, 1999; Huijbregts et al 2000) studies with estimated emissions
have been performed.  It was found that uncertainty in chemical properties contributed more to
outcome variance than either emission or landscape variance. Other researchers have chosen to use
generic emissions and assumed that these were known absolutely or otherwise removed from
consideration so that the analysis could highlight other sources of outcome variance (Kühne et al
1997; Maddelena et al 2001; MacLeod et al, 2002).

CONCLUSION

There are three sources of uncertainty and variance contributing to uncertainty in the outcome from
models of chemical fate in the environment; chemical properties, landscape properties, and emission
data. There is an incentive to minimize error and uncertainty in all three. In focussing data research
efforts, sensitivity analyses are helpful but care must be exercised to avoid misleading evidence. The
cost of the effort to define or refine a parameter should be balanced against the expected reduction
in outcome uncertainty.
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