

THE UTILITY OF A BROAD-BASED APPROACH IN ASSESSING ECOSYSTEM CHANGES IN THE LAURENTIAN GREAT LAKES

Paul Horvatin Monitoring Indicators and Reporting Branch Chief US EPA, Great Lakes National Program Office (GLNPO)

The Great Lakes

A Global Resource

- Largest system of fresh, surface water on earth; 20% of the world supply
- Over 10,000 miles of shoreline
- 5,000 cubic miles of water, or enough to cover the US 6 feet deep
- 25 million US residents and 8 million Canadian residents
- Over 100 species of globally rare plants and animals

GLNPO's Multi-media Monitoring Programs

- Integrated Atmospheric Deposition Network (IADN) Air Monitoring Program
- Fish Monitoring Program
- Limnology Program
- Organics Monitoring Program
- Biological Indicators (phytoplankton, zooplankton and benthic invertebrates) Program

GLNPO's Multi-media Monitoring Programs

- Integrated Atmospheric Deposition Network (IADN) Air Monitoring Program
- Fish Monitoring Program
- Limnology Program
- Organics Monitoring Program
- Biological Indicators (phytoplankton, zooplankton and benthic invertebrates) Program

Limnology Program

Design:

- 72 sampling stations throughout the Great Lakes
- Annual spring and summer monitoring
- Monitored analytes:
 - Silica
 - Phosphorus
 - Nitrogen
 - Alkalinity
 - Dissolved Oxygen
 - Chloride

UNITED STA

pH Secchi depth

Biological Indicators Program

Design:

- Organisms monitored
 - Phytoplankton
 - Zooplankton
 - Benthic Invertebrates
- High degree of taxonomic resolution

Limnology/Biology Program

Two Major Objectives:

- Detect and evaluate water quality trends over time
 - Assess recovery from nutrient enrichment (eutrophication)
- Identify impacts of invasive species

Eutrophication

- Inputs of nutrients to the Great Lakes increased dramatically in the 20th century
- Great Lakes Water Quality Agreement (1972):
 - Legislation to reduce P loading
 - Removal of P from detergents; advanced wastewater treatment
 - Required monitoring of P load reductions
- Great Lakes National Program Office

– Began monitoring lakes in 1983

Eutrophication

- In-Lake P has declined in Lakes Erie and Ontario
- Harder to discern change in Lake Michigan

 Concentrations much lower
 Interannual variability very high

Phosphorus Loads to Lake Michigan

Spring Total Phosphorus Concentration in Lake Michigan, 1983-2000

Can We Use an Alternate Signal?

- Main phytoplankton group in the lake is the diatoms
- Diatoms require silica for growth
- Concentrations of silica are orders of magnitude higher than phosphorus, so easier to measure
- Also less natural variability

Silica Depletion Sequence

On An Annual Basis:

Increased Phosphorus Loading Increased Diatom Production Increased Silica Sedimentation Increased Permanent Sedimentation Loss of Si

Long-Term Decrease in Si Reservoir in Lake

Schelske and Stoermer 1971

Silica Depletion Sequence

On A Seasonal Basis: Increased Phosphorus Loading -Increased Diatom Production — Increased Uptake of Silica in Spring — Decreased [Si] at Stratification — Development of Summer Silica Limitation

Decrease in Summer Diatom Populations

Schelske and Stoermer 1971

So With Increases in Phosphorus Loads

Silica Concentrations Decreased

And

Summer Diatom Populations Decreased

As P Levels Decline, We'd Expect

Silica Concentrations Should Increase

And

Summer Diatom Populations Should Increase

Trend In Spring Silica Concentration, 1983-2000

R.P. Barbiero, M.L. Tuchman, G.J. Warren and D.C. Rockwell. 2002. Evidence of Recovery From Phosphorus Enrichment in Lake Michigan. **Canadian Journal of Fisheries and Aquatic Sciences** 59(10):1639-1647.

Summer Diatom Community 1983-1999

Year

R.P. Barbiero, M.L. Tuchman, G.J. Warren and D.C. Rockwell. 2002. Evidence of Recovery From Phosphorus Enrichment in Lake Michigan. **Canadian Journal of Fisheries and Aquatic Sciences** 59(10):1639-1647.

- Both silica content and summer diatom populations have increased since the institution of P controls
- Silica and diatom populations have been more sensitive indicators of decreases in phosphorus loading than in in-lake phosphorus concentrations

- It is not always possible to know which variables will turn out to be useful indicators of what you're trying to track
- Where economically feasible, cast as broad a net as possible
- In-depth, scientific knowledge of the system you're monitoring is crucial

Invasive Species

- Over 160 species have been introduced into the Great Lakes basin since the 1800s.
- More than 1/3 of the species have been introduced into the Great Lakes in the last half of the 20th century

Non-indigenous Predatory Cladoceran

Distribution of *Bythotrephes in* 1999

Cladocerans

Daphnia retrocurva

Bosmina longirostris

UNITED STAD

PROTE

Cyclopoids

Mesocyclops edax

Calanoids

Diaptomus silicoides

Changes in Major Crustacean Groups

Changes in Species Richness

* p = < 0.05

R.P. Barbiero and M.L. Tuchman. 2004. Effects of Bythotrephes on the crustacean communities of Lakes Michigan, Huron and Erie. **Canadian Journal of Fisheries and Aquatic Sciences** (in press)

Changes in Main Daphnia Species

Changes in Smaller Cladoceran Species

DCA Ordination of Samples

DCA Ordination of Samples

DCA Ordination of Samples

Summary

- *Bythotrephes* has had a clear impact on crustacean communities
 - Several species dramatically reduced
- However, changes not apparent at level of major groups
- Necessary to incorporate a high level of taxonomic detail in monitoring program to discern impacts

Conclusions

- Long-Term Monitoring Essential
 - Provides information research cannot
 - Provides 'before' data for emerging issues
- Interpretation of Chemical and Biological Data Linked
- In-Depth Analysis of Monitoring Data Needed

 Trends not always apparent in 'obvious' variables
 Understanding of underlying mechanisms important

Additional Information

R.P. Barbiero, M.L. Tuchman, G.J. Warren and D.C. Rockwell. 2002. Evidence of Recovery From Phosphorus Enrichment in Lake Michigan.
Canadian Journal of Fisheries and Aquatic Sciences 59(10):1639-1647.

R.P. Barbiero and M.L. Tuchman. 2004. Effects of *Bythotrephes* on the crustacean communities of Lakes Michigan, Huron and Erie. Canadian Journal of Fisheries and Aquatic Sciences (in press)

Questions?

