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The minimal depth of a maximal subtree is a dimensionless order statistic measuring the predictiveness of a variable in a survival tree. We
derive the distribution of the minimal depth and use it for high-dimensional variable selection using random survival forests. In big p and
small n problems (where p is the dimension and n is the sample size), the distribution of the minimal depth reveals a “ceiling effect” in
which a tree simply cannot be grown deep enough to properly identify predictive variables. Motivated by this limitation, we develop a new
regularized algorithm, termed RSF-Variable Hunting. This algorithm exploits maximal subtrees for effective variable selection under such
scenarios. Several applications are presented demonstrating the methodology, including the problem of gene selection using microarray
data. In this work we focus only on survival settings, although our methodology also applies to other random forests applications, including
regression and classification settings. All examples presented here use the R-software package randomSurvivalForest.
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1. INTRODUCTION

Motivated by challenging problems arising in modern biol-
ogy, high-dimensional variable selection has become one of the
hottest topics in statistics. High-dimensional survival analysis
in particular has attracted much interest due to the popularity
of microarray studies involving survival data. Traditionally, mi-
croarrays have been used to find gene expression values that
predict phenotype, but a new emphasis is on finding genes pre-
dictive of survival. This is statistically challenging because the
number of genes, p, is typically hundreds of times larger than
the number of microarray samples, n. At the same time one has
to contend with the nuances of survival data, such as dealing
with right-censoring and deciding what (if any) distributional
assumptions to make when modeling the data.

The most popular approaches by far are those based on
Cox regression. Proposed methods include partial least squares
(Nguyen and Rocke 2002; Li and Gui 2004), Cox regression
under lasso-type penalization (Park and Hastie 2007a; Zhang
and Lu 2007), and boosting using Cox-gradient descent (Li and
Luan 2006; Ma and Huang 2006) (see Ridgeway 1999 for the
first instance of boosting for Cox models). Some methods im-
plicitly use Cox regression by making use of Cox scores; for
example, “corrected” Cox scores were used by Bair and Tibshi-
rani (2004) for semisupervised prediction using principal com-
ponent regression and by Tibshirani et al. (2002) for semisuper-
vised classification using nearest-neighbor shrunken centroid
clustering.

Not all research has focused on Cox regression modeling,
however. For example, Ma, Kosorok, and Fine (2006) proposed
an additive risk model, Huang, Ma, and Xie (2006) considered
lasso and gradient-directed regularization for an accelerated
failure time model, Hothorn and Buhlmann (2006) described a
general L2-boosting procedure for right-censored survival data,
and Clarke and West (2008) used a Bayesian model-averaging
tree-based approach.
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In this article we consider the general question of how to
select variables in high-dimensional survival settings. Our ap-
proach is based on random survival forests (RSF), a new ex-
tension of Breiman’s random forests (RF) (Breiman 2001a) to
right-censored survival settings (Ishwaran et al. 2008). Similar
to RF, trees in a survival forest are grown randomly using a
two-step randomization process. First, each is grown using an
independent bootstrap sample. Then, during the tree-growing
process, a random subset of variables of size m ≤ p is selected
at each node, and the node is split using these candidate vari-
ables.

RSF enjoys all of the important properties of Breiman’s RF
and thus is well suited for high-dimensional variable selection.
It adaptively discovers nonlinear effects and interactions and
is fully nonparametric. Averaging over trees, and randomiz-
ing while growing a tree, enables RSF to approximate complex
survival functions while maintaining low prediction error. Re-
cently, Ishwaran and Kogalur (2008a) showed that RSF is uni-
formly consistent and that survival forests have a uniform ap-
proximating property in finite-sample settings—a property not
possessed by survival trees. Note that RSF differs from the RF
approach of Hothorn et al. (2006) and the conditional inference
method described by Hothorn, Hornik, and Zeileis (2006) (see
Ishwaran et al. 2008 for a discussion of differences among the
various methods).

1.1 Contributions and Outline of Article

Although RF maintains good prediction performance even
with a large number of variables, as dimension increases, some
form of regularization is needed to ensure good variable selec-
tion properties.

The need to regularize forests has been recognized in the
bioinformatics literature. For example, Diaz-Uriarte and Al-
vares (2006) described a stepwise procedure using RF for se-
lecting genes from microarray data. Genes are ordered on the
basis of variable importance (VIMP) (Sec. 2) and then removed
from least informative to most informative until prediction error
stabilizes. Using backward elimination, noise is systematically
removed, and prediction error for refitted forests improves—a
type of regularization.
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The variable selection method of Diaz-Uriarte and Alvares
(2006) is just one example from the growing list of RF methods
based on VIMP. But while VIMP is a useful idea, several lim-
itations hamper the ability to develop a general methodology
based on it: (1) VIMP is intimately tied to the type of predic-
tion error used; (2) it seems impenetrable to detailed theoretical
study (see Ishwaran 2007 for some attempts); and (3) regular-
ization is crucial to success in high dimensions, but developing
formal regularization methods based on VIMP seems impossi-
ble.

To address these issues, we take a different approach, using
concepts more germane to the structure of trees. A key concept
introduced in Section 2 is the maximal subtree. Related to this
is a type of order statistic for trees that we call the minimal
depth. We motivate the idea of a maximal subtree and discuss
the minimal depth statistic, indicating why it represents a key
quantity for assessing predictiveness of a variable. We derive
its exact distribution (Thm. 1 in Sec. 2) and show how to use
this distribution to select variables in settings where p is big,
but does not dominate n. Section 3 looks at one such example.
There we consider a large cohort of patients considered by their
physicians to be at risk for cardiovascular disease. The patients
were all referred for electrocardiography and exercise treadmill
testing, two of the most common noninvasive diagnostic tests
used to evaluate cardiovascular risk.

For the big p and small n problem (Sec. 6), careful analy-
sis reveals a subtle relationship involving p, the depth of a tree,
and the right tail of the distribution of the minimal depth. This
shows that when the underlying model is sparse, it is impos-
sible to grow a tree deep enough to properly select variables.
(In Secs. 2 and 6 we discuss the required size of p relative to
n for this to hold.) This motivates our new regularization algo-
rithm, RSF-Variable Hunting (RSF-VH). We test RSF-VH on a
collection of benchmark microarray data sets and compare its
performance with that of several well-known methods (Sec. 6).
Section 7 summarizes our main findings and discusses impli-
cations of our work to other settings, such as regression and
classification problems.

2. MAXIMAL SUBTREES

2.1 Variable Importance

VIMP equals the amount that prediction error increases (or
decreases) if a variable is noised up when predicting on test
data (Breiman 2001a). Combined with the extremely adaptive
nature of forests, VIMP has been found to be effective in many
applied settings for filtering variables (Breiman 2001b; Lunetta
et al. 2004; Bureau et al. 2005; Diaz-Uriarte and Alvares 2006;
Weichselbaum et al. 2008; Ishwaran et al. 2009).

In Breiman’s original definition, VIMP is calculated by per-
muting a variable (i.e., noising it up) and then calculating the
change in prediction error (Breiman 2001a). A more effective
method, which we use throughout this article, is to assign ter-
minal node membership by random node assignment (Ishwaran
2007; Ishwaran et al. 2008). Random node assignment for a
variable v works as follows. Cases (data) are dropped down a
tree, and each case as it travels down the tree is randomly as-
signed to a daughter node whenever its parent node splits on v.
The predictor for the noised-up data is calculated for each tree

and then averaged over the forest. The VIMP for v is the pre-
diction error for the original forest predictor subtracted from
the prediction error for the noised-up forest predictor. A pos-
itive VIMP occurs if prediction error increases under noising
up. Thus positive VIMP values, especially large ones, indicate
predictive variables. Typically, VIMP is calculated by grow-
ing trees on bagged data and using out-of-bag (OOB) data for
validation (Breiman 2001a); however, cross-validation methods
also can be used.

2.2 Peering Inside the Black Box

With forests, one often finds variables tending to split close to
the root node have a strong effect on prediction accuracy—and
thus a strong effect on VIMP. Test data classified by random
daughter assignments lead to poor prediction in such cases, be-
cause terminal node assignments will be distant from their orig-
inal values. In contrast, variables that split farther down the tree
have much less impact because terminal node assignments are
not as perturbed.

These ideas were formalized by Ishwaran (2007) using a new
tree concept called a maximal v-subtree. This structure allows
quantification of the importance of a variable through its posi-
tioning in a tree. We recall this definition (see Figure 1 for an
illustration).

Definition. For each variable v, call Tv a v-subtree of T if the
root node of Tv is split using v. Call Tv a maximal v-subtree if
Tv is not a subtree of a larger v-subtree.

Maximal subtrees provide a powerful way to explore forests.
Just like VIMP, they can be used to quantify a variable’s predic-
tiveness; the closer a variable’s maximal subtree is to the root
node, the greater the variable’s impact on prediction, and the
more informative it is. Although it is possible in rare instances
for a nonpredictive variable to split high in a tree and not im-
pact prediction, such occurrences are rare in a large forest of
trees, and their effects are minimized when averaging. Maximal
subtrees also can be used to identify variable interactions. Inter-
relationships can be explored using what we call second-order

Figure 1. Illustration of maximal v-subtrees. In the first tree, v splits
the root node, and the maximal v-subtree is the entire tree. In the sec-
ond tree, the maximal v-subtree is the v-subtree with terminal nodes 3,
4, and 5 (contained within this is a smaller v-subtree with terminal
nodes 4 and 5, but this subtree is not maximal). In the third tree, there
are two maximal v-subtrees. The maximal subtree on the left side is
the v-subtree with terminal nodes 2 and 3; that on the right side is the
v-subtree with terminal nodes 4, 5, and 6. All maximal subtrees are
highlighted in red. Letters in parent nodes (circles) identify the vari-
able used to split the node.



Ishwaran et al.: High-Dimensional Variable Selection for Survival Data 207

maximal subtrees. A second-order maximal (w, v)-subtree is a
maximal w-subtree within a maximal v-subtree for a variable v.
By considering those variables with closest maximal subtrees
to the root node of a maximal v-subtree, potential interactions
with v can be identified.

In essence, the maximal subtree is a core concept that allows
us to study forests and peer inside what is often thought of as
a black box. VIMP is a powerful tool for analyzing forests, but
there are compelling reasons suggesting that maximal subtrees
can be used in place of (or in addition to) VIMP:

1. Maximal subtrees and their statistics are dimensionless
and free of the specific measure of prediction error. Cur-
rently, there is much debate in the survival literature about
what constitutes an appropriate measure of prediction per-
formance. Removing the dependence on prediction error
focuses issues on more fundamental tree concepts, such
as splitting rules.

2. Although we focus on survival forests, maximal subtrees
naturally apply to all forests. It is a tree concept indepen-
dent of outcome. Thus our methodology automatically ap-
plies to popular applications like random forest regression
(RF-R) and random forest classification (RF-C).

3. Unlike VIMP, which is a randomization procedure, maxi-
mal subtrees can be studied in detail.

The last point is especially important. In the next section
we derive the exact distribution for the first-order statistic for
a maximal subtree, what we call the minimal depth. This will
lead to a new approach to high-dimensional variable selection.

2.3 Minimal Depth of a Maximal Subtree

Let Dv be the distance from the root node to the root of the
closest maximal v-subtree for a given v. Then Dv is a nonneg-
ative random variable taking values {0, . . . ,D(T)}, where D(T)

is the depth of T (the distance from the root to the farthest termi-
nal node). We call Dv the minimal depth of v. It measures how
far a case travels down T before encountering the first split on

v, and indicates the predictiveness of v. The smaller the mini-
mal depth, the greater the impact v has on prediction. If Dv = 0,
then v splits the root node, and the maximal v-subtree is T itself.
If Dv = 1, then the root node is split using a variable other than
v, but the right or left (or both) daughters of the root node are
split using v; thus one (or both) of these daughters is a maximal
v-subtree. In general, if Dv = d, then v splits for the first time at
depth d, and at least one of the �d nodes of depth d is a maximal
v-subtree. Figure 2 illustrates these ideas.

To derive the distribution for Dv, we introduce the following
notation. Recall that each tree in a random forest is grown by
randomly selecting m ≤ p candidate variables for splitting each
node. Let πv,j(t) be the probability that v is selected as a can-
didate variable for splitting a node t of depth j, assuming that
no maximal v-subtree exists at depth less than j. Let θv,j(t) be
the probability that v splits a node t of depth j given that v is a
candidate variable for splitting t and that no maximal v-subtree
exists at depth less than j. In the next result, we assume that
the depth of the tree, D(T) ≥ 1, is fixed beforehand and that
�d = 2d for each d (i.e., the tree is “balanced”).

Theorem 1. Assume that πv,j(t) and θv,j(t) depend only on
the depth of the node t and not on the node t itself. Then

P{Dv = d} =
[

d−1∏
j=0

(1 − πv,jθv,j)
�j

]
[1 − (1 − πv,dθv,d)

�d ],

0 ≤ d ≤ D(T) − 1, (1)

where πv,j := πv,j(t) and θv,j := θv,j(t).

A curious feature of Theorem 1 is that although the sum of
probabilities over d is bounded between 0 and 1, there is no
guarantee that this sum equals 1, because it is possible for no
maximal v-subtree to exist. In such settings, Dv is set to the
depth of the tree, D(T). By convention, we normalize the prob-
abilities by

P{Dv = D(T)} = 1 −
D(T)−1∑

d=0

P{Dv = d}. (2)

Figure 2. Illustration of minimal depth (based on PBC data described in Sec. 5). The yellow and green points are maximal subtrees for
variables “bili” and “chol,” respectively. Depth, d, of the tree is indicated by numbers 0,1, . . . ,9 inside of each node [here D(T) = 9]. The
minimal depth, Dv, for bili is 3 and chol is 2. Note that the tree is unbalanced, for example, �2 = 2 and �3 = 4 (where �d is the number of nodes
of depth d). Unbalanced trees are discussed in Section 3.



208 Journal of the American Statistical Association, March 2010

For example, if D(T) = 1, which corresponds to a tree having
only one split, then P{Dv = 0} = πv,0θv,0 and P{Dv = 1} = 1 −
πv,0θv,0.

The assumption of a balanced tree in Theorem 1 is not es-
sential to establishing a closed-form representation for the dis-
tribution of the minimal depth. An analog of (1) holds in gen-
eral for unbalanced trees; however, it requires modification of
the conditions for πv,j(t) and θv,j(t). Theorem 1 assumes that
these values are independent of t, but this fails to hold for un-
balanced trees. For an illustration, consider Figure 2. Let t be
the right daughter node for the root node (the node on the ex-
treme right with depth d = 1). Then, because t is a terminal
node, θv,1(t) = 0 for all v.

To accommodate terminal nodes appearing at different
depths, we must allow θv,j(t) to depend on t. We assume that if
t is a node of depth j, then θv,j(t) = 0 for all v if t is a terminal
node; otherwise θv,j(t) = θv,j is independent of t. Conditioning
on the number of nodes �j = �∗

j , for j = 0,1, . . . ,D(T) − 1, and
assuming that πv,j(t) = πv,j, we have the following extension to
Theorem 1 that holds for all unbalanced trees:

P
{
Dv = d

∣∣�∗
0, . . . , �

∗
D(T)−1

}
=

[
d−1∏
j=0

(1 − πv,jθv,j)
�∗

j

][
1 − (1 − πv,dθv,d)

�∗
d
]
. (3)

Unbalanced trees are discussed further in Section 3.

2.4 High-Dimensional Sparse Settings: Minimal Depth
for Weak Variables

In this section we show that for weak variables in high-
dimensional sparse settings, πv,j(t) and θv,j(t) have approxima-
tions that satisfy the conditions of Theorem 1. Using this, we
obtain a simple closed-form expression for the minimal depth
under the null that a variable is noninformative. We use this null
distribution to select variables in high dimensions.

First, consider πv,j(t). This equals 1 minus the probability
that v is not selected as a candidate variable for t, given v has
not been split on yet. If p is large, then it is clear that πv,j(t) can
be approximated by

πv,j = 1 −
m−1∏
k=0

(
1 − 1

p − k

)
≈ m

p
. (4)

This approximation is independent of the depth d and the node
t and holds if m/p = o(1). In our applications, m = √

p.
To estimate θv,j(t), let 0 < τ0 < 1 be the fraction of strongly

informative variables. We assume that the probability a strong
variable is used to split a node is proportional to W ≥ 1 relative
to a weak variable. The approximation (4) shows that the m
candidate variables used to split a node can be assumed to be
randomly selected from the p variables; therefore, each node
has approximately mτ0 strong variables and m(1 − τ0) weak
variables. Assuming a sparse setting in which τ0 � 1, then, if v
is a weak variable, θv,j(t) can be approximated by

θv,j ≈ 1

(1 − τ0)m + Wτ0m

= 1

m
(1 − τ0(W − 1) + o(Wτ0)) ≈ 1

m
. (5)

Figure 3. Mean ± standard deviation for minimal depth, Dv, under
the null hypothesis that a variable is weak (6) assuming a tree with
depth D(T) = 10. The thick line is the mean.

By (4) and (5),

πv,jθv,j ≈ m

p
× 1

m
= 1

p
.

Because all probabilities are independent of t, deduce by Theo-
rem 1 that

P{Dv = d|v is a weak variable}

≈
(

1 − 1

p

)Ld
[

1 −
(

1 − 1

p

)�d
]
, (6)

where Ld = 1 + 2 + · · · + 2d−1 = �d − 1.
Figure 3 shows how the mean and standard deviation for Dv

under (6) varies as a function of p for a tree of depth D(T) = 10.
The mean increases as a function of p, but the increase is slow.
When p is 500, the mean for Dv is roughly 7, and when p is as
large as 10,000, the mean is roughly 9. The mean for Dv signi-
fies a threshold value for identifying strong variables, and thus
presents a method for selecting variables in high dimensions.
This threshold should be robust given that it increases slowly
with p.

Note, importantly, that the asymptote on the right side of Fig-
ure 3 arises as p becomes larger than �D(T). If p � �D(T), then
(6) is of order[

1 − �d − 1

p
+ o(�d/p)

][
�d

p
+ o(�d/p)

]

= �d

p

(
1 − �d − 1

p

)
+ o(�d/p),

and all probabilities are near 0. Therefore, Dv becomes degen-
erate at D(T), because P{Dv = D(T)} ≈ 1 due to the normaliz-
ing constraint (2). This has important implications for big p and
small n problems. If p is too large relative to n, then it may not
be possible to grow a tree deep enough to properly use (6) to
threshold variables. We return to this issue in Section 6.

2.5 Accuracy of Approximations

Here we provide further justification for the approxima-
tions (4) and (5) used to establish (6). Although our previous
arguments specifically assumed a sparse high-dimensional set-
ting, we show that the approximations may still be valid other-
wise.

The accuracy of (4) depends on the number of variables avail-
able for splitting a node. If p variables are available, then the
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left side of (4) is exact, and the approximation is highly accu-
rate, even if p is very small. On the other hand, because vari-
ables can get “used up” during the tree-growing process, not all
variables will be available at each node. For example, if v′ is
a binary variable that splits the root node, then v′ cannot split
further nodes. When one or more variables get used up, πv,j
becomes

πv,j = 1 −
m−1∏
k=0

(
1 − 1

pj,t − k

)
,

where pj,t < p is the number of variables available for splitting
a node t. The accuracy of (4) suffers if pj,t/p � 1, but because it
is difficult for a tree to use up a sizeable fraction of its variables,
it is unlikely that pj,t will differ greatly from p. Furthermore,
any serious disparity between pj,t and p is likely to occur near
the bottom of the tree, and because the distribution of Dv has
little mass when the depth is large, the effect is minimized.

There is another way to motivate (6) without the assumption
of high-dimensional sparsity. Note that because (5) is indepen-
dent of the node and the depth of the node, (5) says that the
behavior of a weak variable mimics a random coin-tossing ex-
periment. When combined with (4), this implies that the num-
ber of splits, Sv, for v is a binomial random variable

(Sv|v is a weak variable) ∼ Binomial

(
ST ,

1

p

)
, (7)

where ST is the number of splits in a tree (if T is balanced, then
ST = LD(T)).

Thus if the splitting behavior for a weak variable is such that
splits are roughly independent and the number of splits within
a tree is approximately Poisson-distributed with mean ST/p,
then (6) should hold. Importantly, this does not presume high-
dimensional sparsity, nor is there any reason to believe that such
an assumption is required for the Poisson property to hold. In
fact, in Section 4 we show that our method performs excellently
even in low-dimensional problems.

The Poisson behavior can be seen in a real example. Consider
Figure 4, which shows the tree relative frequency of a variable
being split, Sv/ST , averaged over each tree T in a survival for-
est. The figure was derived from a RSF analysis used in Section
3. Note how most of the variables have relative frequencies near
1/p, the mean value of Sv under (7) (see the thick dashed line).
If the theory underlying (7) is correct, then these must be weak
variables; there is strong evidence to suggest this is the case.

Figure 4. Relative frequency (in percent) that a variable is split
(based on RSF analysis of electrocardiogram data; see Sec. 3). Gray
bars are standard deviations. The dashed line is 1/p (in percent), the
mean value under the null hypothesis that a variable is weak. A color
version of this figure is available in the electronic version of this arti-
cle.

Our analysis in Section 3 demonstrates that many of the vari-
ables in this data are weakly informative and that only a handful
have a strong signal.

Interestingly, two other types of variables appear in Figure 4.
One group has relative frequencies near 0; for example, there is
a cluster of such variables near 150 and 250 on the x-axis. These
are near-degenerate variables with near-zero variance that are
rarely split on; for example, some had >99% of their data con-
centrated at one value. They pose no problem because they have
large minimal depths—far larger than that predicted by (6)—
and are easily identified as being noninformative. The second
group are those with large relative frequencies; for example,
there are three variables on the extreme right side with espe-
cially large values. These are strong variables. We discuss these
kinds of variables next.

2.6 Minimal Depth for Strong Variables

Our variable selection procedure is based on the premise that
those variables with minimal depth less than the mean under the
null must be strong variables. To quantify how accurately strong
variables are identified by this method, we derive the distribu-
tion of the minimal depth under the alternative hypothesis that
a variable is strong.

In deriving this distribution, we make the following assump-
tions:

1. The tree is balanced.
2. If v is a strong variable, then πv,j = m/p.
3. The split for a node is always at the median of the value

being split. Thus if there are N cases in a node, then N/2
cases are assigned to the left daughter node, and N/2
cases are assigned to the right daughter node.

4. If v is a strong variable, then mθv,j = min(W
√

n2−j,m).
5. m = √

p.

Assumptions 1, 2, and 5 are the same as before. Assump-
tion 1 could be removed similar to what was done in the exten-
sion of Theorem 1 to (3). Assumption 3 is for convenience and
allows us to write out a closed-form expresssion for the distrib-
ution. This assumption is unrealistic in practice, but weakening
it will not change the message that we are trying to convey.
Assumption 4 says that if v is a strong variable and a candi-
date for splitting a node, then the probability that v splits the
node equals W/m times the square root of the sample size of
the node, N = n2−j. (The size of the node is due to assump-
tion 3.) This is realistic, because we would expect any good
splitting rule to have a

√
N-asymptotic property.

Under assumptions 1–5, and invoking Theorem 1, it follows
that

P{Dv = d|v is a strong variable}

=
(

1 − Wd

p

)Ld
[

1 −
(

1 − Wd

p

)�d
]
, (8)

where Wd = min(W
√

n2−d,
√

p).
Figure 5 compares the mean of Dv under (8) to that under (6)

for a tree of depth D(T) = 10, for n = 2D(T) and W = 1 (see
the black lines in the figure). It is apparent that the mean min-
imal depth for a strong variable is substantially smaller than a
weak variable as long as p is not too large; say p < 1000. In this
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Figure 5. The black lines show mean of the minimal depth for weak
and strong variables assuming a tree with depth D(T) = 10. For small
p, strong variables have smaller minimal depths, but as p increases, the
minimal depth converges to D(T) for both types of variables. The gray
lines are for a tree with depth D(T) = 15.

range, minimal depth thresholding is highly effective; however,
as p increases, the tree becomes overwhelmed with variables,
and eventually the distribution under both the null and alter-
native hypotheses degenerates to D(T), and variable selection
is no longer effective. This is the big p small n problem that
we discuss in Section 6. At the same time, note that if n in-
creases, then the depth of a tree increases, and the limit point in
p where the minimal depth converges under the two hypotheses
increases [see the gray lines in Figure 5 for D(T) = 15]. This
shows that if n is very large, then minimal depth thresholding
can be effective for very large p.

3. ELECTROCARDIOGRAPHIC ABNORMALITIES
AND LONG–TERM SURVIVAL

Cardiovascular disease is the leading cause of death in the
developed world. Many patients are asymptomatic or mini-
mally symptomatic for many years before presenting with a
life-threatening clinical event, such as a myocardial infarc-
tion or sudden cardiac death. Physicians often refer patients
deemed to be at increased risk for routine noninvasive diagnos-
tic tests, such as electrocardiography (ECG) and exercise tread-
mill testing, both of which involve collecting numerous vari-
ables. ECG is a vector-based recording of electrical currents
within the heart over the course of the cardiac cycle, which
involves depolarization and repolarization of the atria (upper
chambers) and ventricles (lower chambers). Using digital tech-
nology, more than 500 variables are typically recorded, includ-
ing the amplitudes, durations, and direction of different electri-
cal signals corresponding to atrial and ventricular depolariza-
tion and repolarization. In the exercise test, patients walk on a
treadmill with gradually increasing speed and grade until ex-
haustion, which typically takes about 8–12 minutes. One of the
strongest predictors of risk is exercise capacity (corresponding
to physical fitness). In addition, throughout the test and for sev-
eral minutes thereafter, detailed data on ECG changes, heart
rate, heart rhythm, and symptoms are obtained. Previous inves-
tigations have demonstrated that both ECG and exercise testing
are powerful predictors of risk in patients with suspected car-
diovascular disease.

Our cohort presented a unique opportunity and challenge in
that all patients had a qualitatively normal ECG; that is, there
were no gross abnormalities. We focused on this cohort be-
cause qualitatively normal ECGs are common in patients with
suspected cardiovascular disease and because previous investi-
gations have demonstrated that subtle quantitative differences

based on computerized measures may be prognostically im-
portant. Our cohort comprised 19,530 patients. For each pa-
tient, 346 variables comprising both clinical and ECG measure-
ments were recorded. Mean follow-up time was approximately
11 years. A total of 1742 patients died.

A survival forest of 1000 trees was fit to the data. Com-
putations were implemented using the randomSurvivalForest
R-package (Ishwaran and Kogalur 2007, 2008b). (All survival
forests grown in this work were calculated using this software
unless stated otherwise.) The number of candidate variables se-
lected for each node was m = √

p. For the splitting rule, we used
random log-rank splitting with an “nsplit” value of 10. Trees
were grown by choosing a maximum of nsplit split points ran-
domly for each candidate variable when splitting a node. (This
is in contrast to deterministic splitting, in which all possible
split points for each candidate variable are considered.) Log-
rank splitting was applied to these random split points, and the
node was split using the variable whose random split point max-
imized the log-rank statistic. Random splitting greatly reduces
computation (Ishwaran et al. 2008). Another advantage is that it
mitigates tree bias favoring splits for continuous variables and
factors with a large number of categorical labels. See Lo and
Shih, Lo and Vanichsetakul (1997, 1988) for other approaches
to unbiased splitting and for more background on unbiased tree
splitting.

Figure 6 shows, for each variable, the forest-averaged mini-
mal depth of the closest maximal subtree (i.e., minimal depth)
versus the forest-averaged minimal depth of the second-closest
maximal subtree (i.e., second-order depth). We focus on the
minimal and second-order depths because these contain the
most information; higher-order depths were nearly the same
for most variables. A circle’s diameter in the plot is propor-
tional to the forest-averaged number of maximal subtrees for a
variable. The three variables in the extreme bottom left of the
plot have the smallest minimal and second-order depths. These

Figure 6. Distance of the closest maximal subtree (minimal depth)
versus distance of the second-closest maximal subtree (second-order
depth) from RSF analysis of ECG data (n = 19,530, p = 346, OOB
error rate 18.6%). A circle’s diameter is proportional to the average
number of maximal subtrees for a given variable. The dashed line is
the mean value of D∗

v and represents a threshold value for filtering
variables. A color version of this figure is available in the electronic
version of this article.
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are by far the most predictive variables. In order, they are age,
low heart rate recovery (i.e., slow postexercise attenuation of
heart rate), and peak metabolic equivalents (i.e., the proportion
of age- and gender-adjusted exercise capacity achieved). All are
clinical variables, and all are known to be powerful predictors
of cardiovascular disease.

To use the null distribution (6) to determine a threshold value
for filtering variables, we had to make an adjustment to allow
for unbalanced trees. Recall that (6) assumed a balanced tree
(i.e., �d = 2d for each d), but survival trees in forests are un-
balanced, because they are grown to full size with little or no
constraint. In randomSurvivalForest, trees are grown only under
the constraint that a terminal node has a minimum of “nodesize”
unique deaths.

To make this adjustment, in place of Dv we used D∗
v , a ran-

dom variable with distribution (6), but with node counts �d re-
placed by forest-averaged estimates �∗

d . This can be thought of
as a conditioning argument similar to (3), but with the condi-
tioning here with respect to �∗

d . To normalize the distribution
for D∗

v , let D be the average tree depth of the forest. Then
D∗

v ∈ {0,1, . . . ,D}, and its distribution is normalized by

P{D∗
v = D} := 1 −

D−1∑
d=0

P{D∗
v = d}.

The mean value for D∗
v is indicated by the dashed line in Fig-

ure 6. In total, 11 variables (8 ECG variables in addition to the
top 3 variables) had a value below this mean. The presence of
the ECG variables is interesting because it confirms previous
studies suggesting that ECG measurements play a role in long-
term survival.

To investigate the effectiveness of our thresholding method,
we ordered variables by minimal depth. Using the sorted vari-
ables, we considered the nested sequence of models starting
with the top variable (smallest minimal depth), followed by the
top two variables, then the top three variables, and so on. In
each instance, a survival forest with 1000 trees was grown us-
ing random log-rank splitting with an nsplit value of 10.

Figure 7 compares the nested models using three different
performance measures (all calculated using OOB data). The
value C is 1 minus Harrell’s C-index (Harrell et al. 1982). This
estimates the probability of correctly ranking two individuals in
terms of survival. Ranking of individuals was based on the RSF
predicted value, defined as the sum of the forest cumulative haz-
ard function, summed over all unique event (death) time points.
(This is a predicted value for mortality; see Ishwaran et al. 2008
for further discussion.) CRPS is the continuous ranked proba-
bility score and is defined as the area under the prediction error

Table 1. OOB performance measures for ECG data using
models of various sizes

Variables Model size C CRPS R2

Top 3 variables 3 0.172 0.049 0.158
Top 10 variables 10 0.168 0.048 0.177
All 346 0.185 0.051 0.143

curves (with curves evaluated at each unique event time). R2 is
the explained residual variation, an overall measure of accuracy
adjusted relative to the Kaplan–Meier curve; here it is evaluated
and averaged over each unique event time. Both CRPS and R2

are based on the Brier score and were calculated using the pec
R-software package (Gerds 2006, 2008). For more details on
CRPS and R2, see Graf et al. (2008).

Figure 7 shows that all performance measures improve as
model size increases and that the pattern is near monotonic. Re-
call that models were ordered on the basis of minimal depth, but
minimal depth is a quantity independent of the measure of pre-
diction performance. Thus Figure 7 shows that minimal depth is
capturing key information regarding a variable’s predictiveness.

Figure 7 shows that our top three variables are highly infor-
mative. Performance continues to improve beyond these vari-
ables, eventually reaching a minimum (or maximum) when the
model size is between 5 and 10. As more variables are added,
performance eventually degrades. (Table 1 provides compar-
isons to the full model as an illustration.) The top model com-
prising 10 variables includes, in addition to the 3 clinical vari-
ables, 7 ECG measurements similar to those shown in Figure 6.
The overlap in the two analyses is evidence of the effectiveness
of minimal-depth thresholding.

4. SIMULATION STUDY OF PERFORMANCE IN
LOW–DIMENSIONAL SETTINGS WITH

AND WITHOUT CORRELATION

In this section we investigate the performance of our method
in low-dimensional settings under different types of correlation.
Variable selection was based on thresholding using the mean of
D∗

v as in Section 3.
We used simulations to study performance. We set n = 200

and p = 25 and simulated survival times by drawing indepen-
dent values from an exponential distribution with mean value
μ = exp(

∑p
k=1 βkxk). Censoring times were drawn indepen-

dently from an an exponential distribution with mean set to the
average of μ over all observations. The p-dimensional covari-
ates (x1, . . . , xp)

T were simulated by drawing independent val-
ues from a multivariate normal distribution with mean 0 and

Figure 7. OOB performance measures for ECG data under sequentially fit models. Left to right: C, CRPS, and R2.
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covariance corr(xj, xk) = ρ|j−k|. We considered two correlation
settings, (a) ρ = 0 and (b) ρ = 0.9. The regression parameter
β = (β1, . . . , βp) was set to 0 everywhere except the five mid-
dle coordinates, which were set to the value b0 > 0,

β = (0, . . . ,0︸ ︷︷ ︸
10

,b0, . . . ,b0︸ ︷︷ ︸
5

,0, . . . ,0︸ ︷︷ ︸
10

).

Five different values for b0 were used: 0.2, 0.4, 0.6, 0.8, and
1.0.

The simulations were repeated 100 times independently. For
each simulation, the false discovery rate (FDR), false nondis-
covery rate (FNR), total number of incorrectly classified vari-
ables (Miss), and model size (p̂) were recorded. The FDR
equaled the false discovery rate for those coefficients identi-
fied as nonzero by the procedure (i.e., the number of truly zero
coefficients identified as nonzero divided by the number of co-
efficients identified as nonzero). The FNR equaled the false
nondiscovery rate for those coefficients identified as zero (i.e.,
the number of truly nonzero coefficients identified as zero di-
vided by the number of coefficients identified as zero). Miss
was defined as the total number of misclassified variables, that
is, the total number of falsely identified nonzero coefficients
(the numerator of FDR) and falsely identified zero coefficients
(the numerator of FNR). Finally, p̂ was the number of coeffi-
cients selected by the procedure. All quantities were averaged
over the 100 simulations. Monte Carlo standard deviations were
calculated for each performance measure (Table 2).

Two different Cox regression procedures were used for com-
parison. Because the data were simulated from a proportional
hazards model, this put things on home turf for Cox modeling
and made for challenging competition. The first procedure used
Cox regression with the adaptive lasso, as described by Zhang
and Lu (2007). Five-fold validation was used to tune the reg-
ularization parameter (see “Adapt-lasso” in Table 2). The sec-
ond procedure used l1-regularized Cox regression with the al-
gorithm described by Park and Hastie (2007a) (see “Cox-path”
in Table 2). Computations were implemented using the glmpath
R-package (Park and Hastie 2007b). Five-fold validation was
used to determine the optimal regularization parameter. For
RSF, forests comprised 1000 trees grown under random log-
rank splitting with an nsplit value of 10.

The results are impressive. In the uncorrelated variable simu-
lations (ρ = 0), low FDR and FNR values are seen for RSF for
almost all b0. As b0 increases, Miss decreases nearly to zero
and p̂ converges closely to the true dimension, p0 = 5. Results
using regularized Cox regression are also good, but there are
noticeable differences. Cox-path overfits when the signal is low,
whereas the adaptive lasso tends to overfit regardless of signal.

The results are even better in the correlated simulations
(ρ = 0.9). RSF excels under all performance measures. Miss
decreases to zero and p̂ increases to p0 as b0 increases. More-
over, performance measures convergence faster than in the un-
correlated setting. For the Cox procedures, Cox-path tends to

Table 2. Low-dimensional simulations (n = 200, p = 25, and 5 nonzero coefficients). Performance measures are FDR, FNR, Miss (total
number of misclassified variables), and p̂ (number of coefficients selected by the procedure)

RSF-minimal depth Adapt-lasso Cox-path

b0 FDR FNR Miss p̂ FDR FNR Miss p̂ FDR FNR Miss p̂

Uncorrelated variables (ρ = 0)
Averaged values over 100 replications

0.2 0.18 0.19 4.67 0.53 0.38 0.11 4.63 4.99 0.68 0.05 12.14 16.2
0.4 0.00 0.14 3.23 1.77 0.23 0.01 2.07 6.73 0.19 0.03 2.34 6.28
0.6 0.00 0.08 1.87 3.13 0.18 0.00 1.34 6.32 0.02 0.04 0.94 4.28
0.8 0.00 0.05 1.21 3.79 0.16 0.00 1.18 6.18 0.00 0.05 1.09 3.91
1.0 0.00 0.04 0.83 4.17 0.13 0.00 1.01 6.01 0.00 0.05 1.16 3.84

Monte Carlo standard deviations
0.2 0.37 0.02 0.64 0.56 0.25 0.06 1.96 3.21 0.12 0.07 5.21 5.74
0.4 0.00 0.03 0.92 0.92 0.19 0.02 1.82 1.95 0.21 0.04 2.63 3.09
0.6 0.00 0.04 0.94 0.94 0.15 0.01 1.37 1.37 0.06 0.03 0.63 0.83
0.8 0.00 0.04 0.87 0.87 0.16 0.00 1.45 1.45 0.00 0.02 0.53 0.53
1.0 0.00 0.04 0.78 0.77 0.15 0.00 1.37 1.37 0.00 0.02 0.59 0.59

Correlated variables (ρ = 0.9)
Averaged values over 100 replications

0.2 0.01 0.14 3.33 1.71 0.48 0.14 5.47 4.27 0.39 0.09 4.43 5.81
0.4 0.01 0.05 1.11 3.95 0.42 0.11 4.56 5.20 0.09 0.05 1.66 4.42
0.6 0.00 0.02 0.50 4.52 0.35 0.07 3.86 6.02 0.03 0.05 1.32 4.04
0.8 0.00 0.01 0.29 4.73 0.30 0.05 3.00 6.24 0.01 0.06 1.33 3.77
1.0 0.00 0.01 0.16 4.84 0.27 0.03 2.49 6.53 0.01 0.06 1.32 3.78

Monte Carlo standard deviations
0.2 0.05 0.04 1.15 1.18 0.24 0.03 1.89 2.15 0.22 0.04 2.27 2.28
0.4 0.03 0.04 0.80 0.81 0.19 0.04 1.99 1.77 0.14 0.04 1.07 1.34
0.6 0.02 0.03 0.56 0.54 0.20 0.04 2.19 2.33 0.08 0.03 0.75 0.91
0.8 0.02 0.02 0.48 0.49 0.18 0.04 1.82 1.77 0.04 0.04 0.86 0.89
1.0 1.00 0.02 0.37 0.37 0.18 0.03 1.82 1.76 0.04 0.04 0.88 0.91
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underfit as the signal increases. Model sizes for the adaptive
lasso are better, but FDR is high.

RSF does so well in the correlated case because of the group-
ing property of trees. Trees are able to borrow strength from
correlation, such that if there is a cluster of correlated variables
with a true signal, then a split on a variable from a member
of the group will be followed closely by splits by other mem-
bers of the group. As a result, each member of the group has a
small minimal depth, so that the entire group becomes a can-
didate for selection in the final model. This grouping prop-
erty is very similar to that exhibited by the elastic net (Zou
and Hastie 2005) and is highly desirable when analyzing high-
dimensional microarray data. This is because groups of genes,
although highly correlated, often represent a biological path-
way or process. As one example, prognostic gene signatures
for breast cancer are highly correlated with genes involved in
cell proliferation (Wirapati et al. 2003); however, unless enough
genes directly linked to cell proliferation are selected in a final
gene signature, this important biological insight will be lost.

5. PERFORMANCE UNDER
HIGH–DIMENSIONAL NOISE

For our next illustration, we consider the well-known pri-
mary biliary cirrhosis (PBC) data set (Fleming and Harring-
ton 1991). These data are from a randomized clinical trial, in-
volving 312 individuals, of the effectiveness of the drug D-
penicillamine on PBC. The data set contains 17 variables in
addition to censoring information and survival times for each
individual.

Random noise variables were added to the data. A noise vari-
able was created by randomly selecting one of the original 17
variables and then randomly permuting its value. A total of 500
noise variables were simulated independently; 20% of the data
was set aside for testing, and the remainder was used for train-
ing. Over the training data, a survival forest of 1000 trees was
grown under random log-rank splitting with an nsplit value of
10. To ensure that trees were sufficiently rich, the minimum ter-
minal node size was set to two (i.e., a nodesize of two).

Because of the small sample size and high dimensionality, we
modified our previous approach to entertain regularized solu-
tion paths built from an initial model. We started with the model
comprising variables whose minimal depth was less than the
mean of D∗

v (calculated as in Section 3). Variables were ordered
by their minimal depth and added sequentially to the model
until joint VIMP no longer increased. Joint VIMP was cal-
culated using random node assignment; daughter assignments

were random for any parent node that split on any variable in
a given group of variables. The point at which joint VIMP no
longer increased signified the final model. A forest was refit us-
ing these variables. Two points should be emphasized: (a) Start-
ing with variables meeting a minimal-depth criterion ensured
that the algorithm started with a good candidate model and did
not terminate early with an overly sparse solution, and (b) com-
puting joint VIMP is computationally efficient because it does
not require refitting the forest (Ishwaran and Kogalur 2008b).

Performance measures, as in Table 1, were calculated over
the test data. The estimated model dimension and percent-
age of noise variables were also calculated. The experiment
was repeated 100 times and the values averaged (Table 3). Ta-
ble 3 shows that minimal depth thresholding is highly effec-
tive (row 1; RSF-minimal depth). All performance measures are
better than the full model (i.e., the RSF analysis using all vari-
ables; row 3 of Table 3). The average model size was 8.5, and
only a negligible fraction of the 500 noise variables were se-
lected (<0.1%). Furthermore, no noise variable appeared con-
sistently; and of the original 17 variables, six appeared fre-
quently (more than 90% of models). This shows minimal depth
thresholding yields not only small, but also stable variable lists.

Included in Table 3 for comparison are results from a VIMP-
based approach. The method applied was as follows. The data
was expanded to include 50 additional noise variables indepen-
dently simulated from a standard normal distribution. A RSF
analysis was applied to the expanded data and the 99th per-
centile of the distribution of VIMP for the new noise variables
was determined. Any variable exceeeding this threshold was se-
lected as being informative, otherwise it was rejected as noise.
A forest was refit using the selected variables only. A similar
idea was recently described in Docksum, Tang, and Tsui (2008)
under the name RFVS; however to avoid conflicting acronyms
we refer to the method as RSF-VIMP.

The results are mixed. While the C, CRPS, and R2 values for
RSF-VIMP compare more favorably to RSF-minimal depth, the
model size was substantially larger and the percentage of noise
variables was higher (1.6%). Also, variable lists were not as
stable; only 3 of the original 17 variables appeared more than
90% of the time. Additional experimentation revealed that RSF-
VIMP also was sensitive to the selected threshold value; for
example, using a 95th percentile threshold gave substantially
larger models. The interested reader should consult Docksum,
Tang, and Tsui (2008) for a detailed study of the method. It gen-
erally was successful, but its performance was enhanced when
used in combination with other procedures.

Table 3. Test set performance using PBC data with 500 noise variables. Row 1 is RSF using minimal depth thresholding, row 2 is RSF using
VIMP thresholding, row 3 is RSF using all variables, row 4 is cforest (unbiased conditional inference forests, Hothorn, Hornik, and Zeileis

2006) using all variables, and row 5 is gbm (generalized boosted regression models, Ridgeway 1999) using all variables. All values reported
are averaged over 100 independent experiments. Ranking of a procedure within a column is indicated using superscripts

Method Model size C CRPS R2 % Noise variables

RSF-minimal depth 8.5(1) 0.164(2) 0.129(1) 0.289(1) 0.08(1)

RSF-VIMP 16.4(2) 0.172(4) 0.135(2) 0.257(2) 1.6(2)

RSF 517.0(3) 0.165(3) 0.159(4) 0.140(4) 100.0(3)

cforest 517.0(3) 0.157(1) 0.164(5) 0.099(5) 100.0(3)

gbm 517.0(3) 0.176(5) 0.144(3) 0.236(3) 100.0(3)
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Also included in Table 3 is the unbiased conditional tree-
based approach of Hothorn, Hornik, and Zeileis (2006). In this
approach each tree was grown using unbiased splitting, a type
of regularization in which a node is split only when the null hy-
pothesis of no association between the response and each can-
didate variable is rejected. (We used an α-level of 0.10 for the
rejection criterion.) Tuning parameters were set as in the RSF
analysis. A total of 1000 trees were grown using bootstrap re-
sampling. For each tree, the number of candidate variables, m,
used to split a node equaled

√
p. Predicted values also were de-

fined as in the RSF analysis; that is, each tree yielded a Kaplan–
Meier survival curve for each individual, which was then av-
eraged over the forest to yield an ensemble survival function.
The resulting cumulative hazard function was summed over all
unique event times. This was the predicted value for each indi-
vidual. The results from the analysis are given in Table 3 under
the entry “cforest.” Computations were implemented using the
party R-package (Hothorn, Hornik, and Zeileis 2006).

Cox-gradient descent boosting (Ridgeway 1999) was used
for comparison. The analysis used a shrinkage (learning) pa-
rameter of 0.01, a tree depth of 5 (the base learner), and 10-fold
validation to determine the optimal number of boosting itera-
tions; a maximum of 1000 iterations were used. Using the pre-
dicted value (on the log-hazard scale), we computed the Bres-
low estimator of the baseline hazard function and from this
computed the predicted survival function. The results from the
analysis are given in Table 3 under the entry “gbm.” Computa-
tions were implemented using the gbm R-package (Ridgeway
2007).

Overall, RSF-minimal depth performed the best of all pro-
cedures. Second best was RSF-VIMP. The procedures that use
no thresholding (RSF, cforest, gbm) were clearly at a disadvan-
tage. Even though each uses sophisticated regularization, this
was not sufficient to compensate for the high dimensionality.

6. MICROARRAY DATA: DEALING WITH BIG p AND
SMALL n SETTINGS

We have already remarked that in high-dimensional settings,
there is an interplay between the dimension, p, and the depth
of a tree, D(T), that affects the use of (6) for thresholding vari-
ables. For proper implementation, p must not dominate �D(T);
otherwise, trees will be too shallow, and variables will be as-
signed a default minimal depth of D(T). Using the mean of D∗

v
to threshold variables (as we have done) becomes ineffective
when this occurs.

This becomes critical when trying to select genes from mi-
croarray data. In such settings p � n, and a tree simply cannot
be deep enough to allow proper assessment of a gene’s predic-
tiveness. To ensure proper inference, we must reduce the num-
ber of genes so that the distribution of Dv is nondegenerate.

To do this, we merely need to ensure that p is of order �D(T).
Because trees from forests are unbalanced, we approximate
D(T) by D. Thus we propose selecting a number of genes,
P < p, such that log2(P) = O(D), and then applying the reg-
ularization algorithm of Section 5. This process is repeated sev-
eral times independently. We call this the RSF-VH algorithm.
A detailed description of this algorithm is given in the display
that follows. Section 6.1 discusses some key points.

Algorithm 1 RSF-VH Algorithm
1: for b = 1 to B do
2: Split the data into test and training data sets.
3: Select P < p genes. Call this set of genes GP.
4: Fit a survival forest, F , to the training data using GP.
5: Calculate the mean for D∗

v using F . Let G be the subset
of genes from GP having minimal depth less than this
threshold.

6: Let V be the joint VIMP for G from F . Set 	 = V .
7: while 	 > 0 do
8: Augment G to include the next gene in GP with small-

est minimal depth (if there is no such gene, then G is
unchanged). Call this new set G+.

9: Let V+ be the joint VIMP for G+ from F . Set 	 =
V+ − V .

10: if 	 > 0 then
11: Set V = V+; G = G+.
12: end if
13: end while
14: Fit a survival forest F ∗ to the training data using G.
15: Calculate the prediction error of F ∗ over the test data.
16: end for

6.1 Some Key Points Concerning the RSF-VH Algorithm

1. The dimension-reduction step (line 3 in the algorithm) is
generic. In our examples, we randomly sampled P genes
without replacement, but other methods could be used.
For example, a preliminary analysis could be used to as-
sign weights to genes indicating their importance, with
genes then randomly selected according to these weights
(see Sec. 7 for an illustration).

2. When finished, the algorithm returns B independent esti-
mates of prediction error. Averaging these yields an esti-
mate of prediction error for the procedure.

3. Each iteration of the algorithm yields a list of significant
genes, G. The mean dimension is the average size of these
lists, and the final estimated model is the sorted values of
these genes, up to the size of the mean dimension. Genes
can be sorted in different ways, including by frequency of
occurrence (i.e., number of times a gene is selected over
the B iterations) and by mean minimal depth.

4. A key parameter is the number of randomly selected
genes, P; however, choosing P is relatively straightfor-
ward. A few preliminary trees can be grown, and log2(P)

can be selected to be roughly the same size as their aver-
age tree depth.

5. For P to be as large as possible, it is important that trees
be grown to full size. This may reduce the speed of the
algorithm; however, only the forest of line 4 (and not that
of line 14) needs to be fit in this way.

6. In line 8, the current set of genes, G, can be augmented
by including the next K > 1 genes with smallest mini-
mal depth. This enables more efficient model searching
and also may protect against early termination of the al-
gorithm (line 7).

7. The algorithm is reasonably fast. Joint VIMP is calculated
without the need to regrow F . Thus, lines 7–13, although
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iterative, take little computational time. The two most ex-
pensive computations are the forests grown in lines 4 and
14. Line 14 is usually much faster because the forest is
grown using a subset of GP; however, because n is usu-
ally relatively small, even line 4 is fast. This is especially
true if a random splitting rule is used.

6.2 Results

We tested RSF-VH on five different benchmark microarray
data sets: the diffuse large B-cell lymphoma (DLBCL) data set
of Rosenwald et al. (2002), the breast cancer data set of van’t
Veer et al. (2002), the lung cancer data set of Beer et al.
(2002), the acute myeloid leukemia (AML) data set of Bullinger
et al. (2004), and the mantle cell lymphoma (MCL) data set
of Rosenwald et al. (2003).

Each of these data sets was randomly split into an 80% train-
ing set and a 20% test set. Forests were grown over the training
data using a randomly selected subset of P = 500 genes. When
augmenting the gene list in line 8 of the algorithm, we used
K = 5 (see remark 6 in Sec. 6.1). All forests comprised 1000
survival trees grown under random log-rank splitting with an
nsplit value of 10. All trees were grown to full length (i.e., a
nodesize of 1). This process was repeated B = 100 times. Ta-
ble 4 gives the average test set prediction error and average
model size for each data set.

For comparison, we used the nearest shrunken centroid
method of Tibshirani et al. (2002), the supervised principal
components method of Bair and Tibshirani (2004), and the L2-
boosting procedure of Hothorn et al., Hothorn and Buhlmann
(2006, 2006). We chose these methods because they were
specifically designed for the gene selection problem. The proce-
dures were implemented using the R-software packages pamr

Table 4. Test set performance over benchmark microarray data.
Values averaged over 100 independent experiments. Procedures are

RSF-VH (P = 500, K = 5), mboost100 and mboost1000 (L2-boosting,
Hothorn et al. 2006; Hothorn and Buhlmann 2006 with 100 and 1000
boosting iterations, respectively) PAM (nearest shrunken centroids,

Tibshirani et al. 2002), and SuperPC (supervised principal
components, Bair and Tibshirani 2004)

Lung Breast
AML DLBCL cancer MCL cancer

Average prediction error (C)
RSF-VH 40.1 39.3 32.6 29.8 31.5
mboost100 38.4 37.3 47.4 31.9 35.5
mboost1000 41.2 37.8 43.2 33.3 37.7
PAM 42.5 39.9 31.7 27.6 30.9
SuperPC 39.8 45.2 34.5 29.9 30.1

Average model size
RSF-VH 26.4 27.9 37.4 29.6 43.5
mboost100 29.2 31.5 13.8 30.6 22.1
mboost1000 91.4 131.1 41.1 81.9 59.7
PAM 2945.2 2856.4 5382.4 492.5 2484.7
SuperPC 1069.2 2176.3 498.4 2023.9 855.6

Summary values
p 6283 7399 7129 8810 4751
n 116 240 86 92 78
No. of deaths 67 138 24 64 34

(Hastie et al. 2002), superpc (Bair and Tibshirani 2004), and
mboost (Hothorn et al. 2007), respectively. For pamr and su-
perpc, 10-fold validation was used for tuning; this value was
automatically adjusted if the sample size was too small. For
mboost, number of boosting iterations was set at 100 (the de-
fault) and 1000. We refer to these latter procedures as mboost100

and mboost1000, respectively.
Each comparison procedure was applied to the same train-

ing/test data as RSF-VH (but using all p genes). Note that for
prediction error, only the concordance error rate, C, is reported.
We do not report CRPS and R2, because these measures require
an estimated survival function. (Of the four methods, only RSF-
VH provides such an estimate.) Table 4 presents the average test
set prediction error and average model size over the 100 repli-
cates for each procedure.

The results show that RSF-VH performed well, consistently
yielding small gene lists and low prediction error. Boosting
also performed well, although model sizes were sensitive to
the number of boosting iterations; model sizes for mboost1000

were sometimes two or more times larger than for mboost100.
Also of concern was the finding that prediction error was tied
to the censoring rate. Prediction error was relatively poor over
the lung and breast cancer data sets, which had the highest cen-
soring rates. Finally, prediction error was generally good un-
der both PAM (nearest shrunken centroids) and SuperPC (su-
pervised principal components), but that number of selected
genes was hundreds of times larger than both RSF-VH and
mboost.

7. DISCUSSION

Selecting variables in high-dimensional survival settings is
challenging. In trying to overcome these challenges, simplifi-
cations and strong assumptions are often made. For example,
proportional hazards is assumed in many of the approaches ad-
vocated for microarray data. Some approaches are univariate,
with models fit to one gene at a time (thus potentially missing
important multivariable effects). Another tendency is to assume
linear relationships for variables. While linear combinations of
gene expression values work adequately for some problems,
this may not always be the case. For example, microarray stud-
ies can involve additional variables, such as clinical data, and
including these may require gene interactions or other higher-
order modeling. Outside of microarray data, nonlinear effects
and interactions are a real concern, and methods that rely on
simplistic modeling are at a serious disadvantage.

In contrast, using a nonparametric and data-adaptive method
such as RSF automatically addresses these issues. Furthermore,
because forests are known to be excellent predictors in high-
dimensional settings, they are excellent candidates for use in
high-dimensional variable selection.

The challenge in using RSF was the lack of rigorous theory
for thresholding variables and for guiding regularization. Cur-
rent strategies involve using VIMP, but, as we have outlined,
this entails difficulties. To circumvent these problems, we in-
troduced a new way to think about variable selection. This led
us to maximal subtrees, theory for thresholding noise variables,
and an approach to regularizing RSF in big p and small n prob-
lems.
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Table 5. Test set performance over the ECG data. Values
are averaged over 100 independent experiments

Method Model size C CRPS R2

RSF-VH50 9.0 0.314 0.057 0.034
RSF-VH


50 10.1 0.203 0.049 0.106

Although we have considered only survival analysis in this
article, our methods naturally apply to other RF applications
as well. Because minimal depth of a variable is independent of
outcome and choice of prediction error measure, it applies uni-
versally to all RF applications. Computationally, the method-
ology is easily implemented. In our applications, we simply
stored the survival forest in a compressed format and then used
recursive algorithms to mine the forest and extract the neces-
sary data. These algorithms are fast. Assuming balanced trees,
the number of calculations for each tree is O(2D+1), where D
is the average tree depth. Assuming that tree-splitting does not
terminate prematurely and that no one is censored, this can be
expressed as O(2n/M), where M is the average terminal node
size. These expressions are independent of the dimension, p.
The dimension p plays a role in the time taken to grow a tree,
but not in the parsing of maximal subtrees.

Finally, we remark that while we did not investigate the per-
formance of RSF-VH in Section 6 under more sophisticated
dimension-reduction steps (line 3 of the algorithm), we are con-
fident that its performance would have been enhanced by this.
As one demonstration of this, consider Table 5, which presents
the results from a reanalysis of the ECG data. Two different im-
plementations of RSF-VH were used. In the first implementa-
tion, P = 50 variables were selected randomly from the p = 346
variables. This is similar to how RSF-VH was implemented in
Section 6. In the second implementation, P = 50 variables were
selected, but with variables selected with probability propor-
tional to their VIMP from a preliminary forest fit to training
data (see remark 1 of Sec. 6.1). We refer to these two methods
as RSF-VH50 and RSF-VH


50, respectively. In both cases, 1000
trees were grown with a nodesize value of 2. In both cases, we
set K = 2 (see remark 6 of Sec. 6.1).

The values reported in Table 5 were averaged over 100 in-
dependent replicates using a modified test set validation proce-
dure. Because of the large sample size involved, each replicate
used only 5% of the data for training and only 5% for testing.
This was done to reduce the computational time.

RSF-VH

50 had substantially better prediction performance

than RSF-VH50. (The values were not as good as in those re-
ported in Sec. 3, because of the small sample sizes.) In terms of
model size, both were roughly the same, and both selected final
models with age, low heart rate recovery, and peak metabolic
equivalents followed by several of the same ECG variables re-
ported in Section 3; however, the variables found using RSF-
VH


50 had more overlap with those reported in Section 3.

APPENDIX: PROOF OF THEOREM 1

By the definition of πv,j and θv,j, if t is a node of depth j ≤ d, then

P{v does not split t|Dv ≥ j} = 1 − πv,jθv,j.

Furthermore, P{Dv = 0} = πv,0θv,0. Therefore, the probability that no
maximal v-subtree exists at depth less than d ≥ 1 is

P{Dv ≥ d} = P{Dv ≥ 1}
d−1∏
j=1

P{v is not split at depth j|Dv ≥ j}

= [1 − P{Dv = 0}]
d−1∏
j=1

P{v is not split at depth j|Dv ≥ j}

=
d−1∏
j=0

(1 − πv,jθv,j)
�j , (A.1)

where �j = 2j equals the total number of nodes of depth j. Given that
Dv ≥ d, the probability that v splits a node of depth d is 1 minus the
probability that each node of depth d is split on some other variable
than v. This probability is

1 − (1 − πv,dθv,d)�d . (A.2)

Using

P{Dv = d} = P{v is split at depth d|Dv ≥ d} × P{Dv ≥ d},
the result for d ≥ 1 follows on multiplying (A.1) and (A.2). The case
where d = 0 holds from P{Dv = 0} = πv,0θv,0.

[Received November 2008. Revised July 2009.]
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