cookstoves

EPA: Launching a New Era of State, Tribal, Local and International Partnerships

Our work with state, tribal, local and international partners forms an “environmental enterprise” that is critical to advancing environmental and human health protection across the country and the globe.  As captured in our FY14-FY18 Strategic Plan, our New Era of State, Tribal, Local and International Partnerships is a vital pillar among our Cross-Agency Strategies. I thank everyone at EPA for working in collaboration with our partners – governors, tribal leaders, environmental and agricultural commissioners, city and county leaders, and so many others. This spring, I asked EPA employees to share their best practices, innovative solutions and successes in building partnerships. There are so many successes I learned about, ranging from the routine to multi-faceted and complicated matters.  Here are a handful of successes that I’d like to highlight.

State, Local and Other Partners Protecting School Indoor Air Quality group#– Nearly 56 million people spend their days inside elementary and secondary schools in the US. Since the mid-1990s, EPA’s Indoor Environments Division (IED) has supported states, schools and school districts in their work to improve indoor air quality in schools and protect the health of their students and staff.

In 2012, the IED schools team launched the School Health and Indoor Environments Leadership Development (SHIELD) Network, a dynamic collaboration of more than 80 leaders from school districts, state and local governments and other partners committed to improving IAQ in schools. SHIELD events have resulted in thousands of school district decision makers trained to make their school indoor environments healthier, cleaner and safer places.

More

Editor's Note: The views expressed here are intended to explain EPA policy. They do not change anyone's rights or obligations. You may share this post. However, please do not change the title or the content, or remove EPA’s identity as the author. If you do make substantive changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to specific content on a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Clean Cookstoves Research: An Opportunity to Benefit Billions

By Bryan Bloomer, Ph.D.

I have long appreciated the ability to cook and heat my home with minimum risk of exposure to toxic indoor air pollution. But I am also painfully aware that more than 3 billion people around the world rely on inefficient, unsustainable and dangerous cookstove technologies for their everyday cooking, heating and lighting needs.

Display of clean cookstoves.

EPA’s Bryan Bloomer examines clean-burning prototypes at the Cookstoves Future Summit in New York City.

That is why I am so pleased to join EPA Administrator Gina McCarthy and other prominent leaders this week at the first ever ministerial- and CEO-level Cookstoves Future Summit, “Fueling Markets, Catalyzing Action, Changing Lives,” in New York City.

Traditional cookstoves typically burn biomass fuels such as wood, dung, crop residues, charcoal or the fossil fuel, coal. This causes a wide range of negative health effects to the people, primarily women and children, exposed to the smoke they emit. And there’s more. The use of traditional cookstove technologies also depletes natural resources, contributes to deforestation, and releases harmful pollutants into the atmosphere that contribute to climate change at regional and global scales.

This is why clean cookstoves research is a top EPA priority. Our goal is to transform the sustainability and health impacts of the energy infrastructure in ways that will not only improve the health of billions, most of them disadvantaged women and children, but improve the global environment as well.

We conduct and support cooperative research to identify gaps and deliver practical solutions from a wide array of stakeholders. The Agency is leading an international clean cookstove research effort, helping to support the development of international cookstove standards, conducting trusted independent research on the energy efficiency and emissions of cookstoves, and improving our understanding of the negative health impacts from exposure to cookstove smoke.

In March 2012, EPA announced the funding of six universities to address residential burning and its effects on human health worldwide. This group of researchers is developing innovative technologies to quantify the impacts of cookstove emissions on climate and air quality.

Moving forward, we and our many partners in this global effort will focus on translating these results into the field, primarily bringing innovative, consumer-driven and life-saving technologies to individuals worldwide.

Turning research results into welcomed solutions is the topic of this week’s Cookstoves Future Summit. The summit presents a unique opportunity to further develop a thriving and sustainable clean cookstove market. Such a market will mean substantial progress toward preventing the more than 4 million estimated indoor air pollution related deaths due to traditional cookstoves and fuels.

The clean cookstoves challenge encompasses a number of health, social and environmental issues. Such a pressing and compelling problem presents us with a significant opportunity to improve livelihoods, empower women and protect the environment for generations to come.

About the Author: Dr. Bryan Bloomer is the director of the Applied Science Division at EPA’s National Center for Environmental Research. He works with grant managers that support scientists and engineers through the Science to Achieve Results (STAR) grants program, to improve EPA’s scientific basis for decision on air, climate, water and energy issues.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Working with Communities to Combat Climate Change: A Peace Corps Volunteer’s Story

By Courtney Columbus

Three times a day, my neighbor in the Dominican Republic (DR) balances pieces of locally found firewood on top of three stones in her backyard. She cooks breakfast, lunch, and dinner for her family on this slow-cooking fire. Although her pots of fire-cooked rice and beans nourish her and her family, the smoke that spirals up from this fire and into her lungs poses serious health risks.

My neighbor’s cooking technique is common practice in the DR, and in other developing nations. However, this isn’t the only practice that is harmful to health and the environment. In my region, near the Haitian border, many families also make their own charcoal, which requires cutting down trees. This region is hot and arid, making it difficult for deforested areas to ever fully recover. Peace Corps Volunteers (PCVs) in the DR often dedicate part of their service to finding ways to improve this situation.

To help address the environmental and health problems caused by cooking on firewood and charcoal, a group of dedicated doñas (this is a respectful reference to older women) and I decided to build improved cookstoves in my community. These stoves have an enclosed cooking chamber that burns firewood more efficiently than cooking out in the open. The fire inside the stove heats up two hot plates, so Dominican women can still cook their daily pots of rice and beans, but unlike an open fire, these stoves have chimneys that take smoke away from the cook. Also, the improved cookstoves reduce the use of charcoal by rural families, because the stoves work best when dry firewood is used. Less charcoal use means that more trees in my community can remain standing!

There are inconveniences being a PCV: a broken-down bus never shows up to take me to a meeting; a grant application gets delayed; I lose the finer meaning of a project partner’s speech in Spanish at a community meeting. But, on the opposite side are moments that make it all worth it. Those mornings when I stop by my neighbors’ wood-slat-and-rusty-tin-roof homes and see them contentedly boiling a pot of coffee on their improved cookstove gives me the motivation to keep working.

Although the 70 stoves that we built in my site are a microscopic drop in the bucket of global efforts to combat climate change, many PCVs throughout the DR have also been building stoves. Several PCVs in northern DR have built over 100 stoves each with their community members. We hope to see the project continue in the future. Improved cookstoves have changed the way that women in our sites cook, changed the air that they breathe, and changed the way they treat their environment.

About the author: Courtney Columbus is from Lower Burrell, Pennsylvania has been serving as a Community Economic Development Volunteer in the Dominican Republic since 2012. A graduate of Allegheny College, she is currently serving as a Peace Corps Volunteer Leader.

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

Supporting Innovation for Cleaner Burning Cookstoves and Cleaner Air

By Jim Johnson

The end of May is always one of my favorite times of year. It includes Memorial Day, the official holiday to honor the service of our dedicated military personnel and military veterans, and my birthday.

If your neighborhood is anything like mine, the end of May also coincides with the time of year when the evening air fills with the unmistakable scent of backyard grilling. Barbeque season. Here in this country, that distinctive odor of smoke is associated with tasty food, relaxing, and good times spent with friends and family.

But for most of the world’s population, the smell of an open fire is something completely different. It’s not nostalgic or a welcome diversion from the norm, but a necessity.

Nearly three billion people worldwide rely on burning fuels such as wood, plant matter, coal, and animal waste. And because most of that occurs indoors, it’s a health hazard, too.  The World Health Organization estimates that exposure to smoke from traditional cookstoves leads to 4.3 million premature deaths per year.

Cookstove researcher at work

EPA is a leader in conducting and supporting clean cookstove research.

What’s more, it’s not just a local problem. The smoke from traditional cookstoves is a major source of black carbon, an air pollutant linked to a range of impacts associated with our changing climate, including increased temperatures, accelerated ice and snow melt, and changes in the pattern and intensity of precipitation.

And that brings me to another reason why the end of May this particular year is even a bit more special for me than usual: Yesterday, EPA announced almost $9 million in research grants awarded to six universities to help usher in a new generation of clean, efficient cookstoves.

Funded through our Science to Achieve Results (STAR) program, the research will focus on measuring and communicating the benefits of adopting cleaner cooking, heating, and lighting practices. The impact of the work will improve air quality and protect the health of billions of people, as well as slow climate change—a benefit for everyone, and the global environment, too.

The universities and their research are:

  • Colorado State University researchers will provide new cookstoves to rural areas in China, India, Kenya, and Honduras to explore how their adoption will impact and improve emissions, chemistry, and movement of indoor smoke; they will also assess health and climate impacts.
  • University of Illinois at Urbana-Champaign researchers will investigate how local resources in rural communities in Alaska, Nepal, Mongolia, and China affect the acceptance of cleaner heating stoves, and take measurements to learn how their use impacts air quality and carbon emissions.
  • University of Minnesota, Minneapolis researchers will measure changes in air quality and health outcomes from cleaner cooking and heating technologies in China, and model regional weather, air quality, exposure and human health impacts.
  • University of California, Berkeley researchers will explore the relationship between household and village-scale pollution to understand the effectiveness of using cleaner-burning cookstoves.
  • Yale University researchers will use socioeconomic analyses, emissions and pollution measurements, and global climate modeling to investigate the impacts of using next-generation cookstoves in India.
  • University of Colorado, Boulder researchers will use small, inexpensive sensors to monitor indoor air pollution exposure in homes. They will also collect data through health assessments and outdoor air quality measurements in Ghana.

EPA Administrator Gina McCarthy announced the grants at a reception hosted by the Global Alliance for Clean Cookstoves. EPA is a founding member of this public-private partnership, which seeks to save lives, improve livelihoods, empower women, and protect the environment by creating a thriving global market for clean and efficient household cooking solutions. Our collective goal: 100 million homes adopting clean cooking solutions by 2020. Achieving that will really be something to celebrate!

About the Author: Dr. James H. Johnson Jr. is the Director of EPA’s National Center for Environmental Research, which runs the Agency’s STAR program as well as other grant, fellowship, and awards programs that support high quality research by many of our nation’s leading scientists and engineers.

 

 

 

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.