Please note that the below are excerpts from:

NOAA Technical Memorandum, NMFS-OPF-14

"Development of a Process for the Long-term Monitoring of MMPA Category I and II Commercial Fisheries".

For a complete copy of this document, please visit:

http://www.lib.noaa.gov/docs/ill.html

CONTACT INFORMATION:

Interlibrary Loan NOAA Central Library 1315 East-West Highway SSMC3, 2nd Floor, E/OC4 Silver Spring, MD 20910-3282 (301) 713-2600 x 113 Voice (301) 713-4599 Fax Interlibrary.Loan@noaa.gov

Development of a Process for the Long-term Monitoring of MMPA Category I and II Commercial Fisheries

Proceedings of a Workshop held in Silver Spring, Maryland, 15–16 June 1998

Edited by

Aloysius J. Didier, Jr. Pacific States Marine Fisheries Commission 45 SE 82nd Drive, Suite 100 Gladstone, OR 97027-2522

Victoria R. Cornish

Office of Protected Resources National Marine Fisheries Service 1315 East-West Highway Silver Spring, MD 20910-3282

In collaboration with the Workshop Participants

NOAA Technical Memorandum NMFS-OPR-14 September 1999

U.S. Department of Commerce William M. Daley, Secretary National Oceanic and Atmospheric Administration D. James Baker, Under Secretary for Oceans and Atmosphere National Marine Fisheries Service Penelope D. Dalton, Assistant Administrator for Fisheries Submitted in partial fulfillment of the requirements of NOAA contract 40AANF802291.

This technical memorandum series is used for documentation and timely communication of preliminary results, interim reports, or similar special-purpose information. Although the memoranda are not subject to complete formal review, editorial control, or detailed editing, they are expected to reflect sound professional work. The views and conclusions expressed by the authors do not necessarily represent the views nor the official positions or approval of the National Marine Fisheries Service.

This document should be cited as follows:

Didier, A. J., Jr., and V. R. Cornish (eds.). 1999. Development of a process for the long-term monitoring of MMPA Category I and II commercial fisheries. Proceedings of a workshop held in Silver Spring, Maryland, 15–16 June 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-14, 46 p.

TABLE OF CONTENTS

.

LIST OF TABLESv
LIST OF FIGURES vi
LIST OF APPENDICES vii
ACKNOWLEDGEMENTS viii
EXECUTIVE SUMMARY ix
INTRODUCTION1
PRESENTATIONS
Goals and Objectives of the Workshop
Management Issues in Developing a Rotational Schedule for MMPA Observer Programs2 Victoria Cornish, NMFS Office of Protected Resources
Funding Considerations
The Atlantic Coastal Cooperative Statistics Program
Planning the frequency of mortality observer programs to prevent false strategic designations.6 Paul Wade, NMFS Alaska Fisheries Science Center
Strategies for the Statistical Monitoring of Fishery Bycatch
presented by: Grant Cameron, NMFS Southwest Fisheries Science Center
A Five-Step Stratified Optimum Allocation Scheme
Correction Factors and Fishing Effort
Planning observer coverage by calculating the expected number of observed mortalities18 Paul Wade, NMFS Alaska Fisheries Science Center
Comments on using the Binomial distribution to model marine mammal encounter rates20 Stephen J. Smith, Department of Fisheries and Oceans, Bedford Institute of Oceanography
Qualitative or Reduced Monitoring Methods
The California Drift Gillnet Fishery
Development of the Turtle Observer Program in the Hawaiian Longline Fishery
Long Term Rotation Plan for Alaska Observer Programs/Beachcast Surveys
Endangered Species Act Requirements

DISCUSSION	
Classification of Fisheries and Priority for Observation	
Pilot Programs	
Logistical Barriers to Rotational Observer Programs	
Sampling Concerns at Low Coverage Levels	
Funding Alternatives	
RECOMMENDATIONS	
Fishery Monitoring Process	
Sampling Criteria	
Decision Criteria	40
General Recommendations	42
REFERENCES	43
APPENDICES	45

Planning observer coverage by calculating the expected number of observed mortalities

Paul Wade, NMFS Alaska Fisheries Science Center (paper submitted to workshop)

Planning the amount of observer coverage to allocate to observing a fishery should be based on achieving management goals. Simple "rules of thumb" such as targeting 5 or 10% observer coverage are not sufficient for planning. Five percent observer coverage may be sufficient for a very large fishery, but may be grossly inadequate for a smaller fishery. Targeting achieving a specified coefficient of variation of the mortality estimate, such as 0.3, is a better planning method.

However, another way to investigate whether an observer program has an adequate sample size is to examine the expected number of observed mortalities for a given true mortality rate. Particularly for fisheries being observed for the first time, it may be most appropriate to use a planning method that is more specifically aimed at documenting takes, if takes are occurring. In other words, a first-time observer program for a fishery should make the probability of observing zero takes very small if the true number of takes is great enough to be of concern (i.e., on the order of the PBR, or some other similar measure).

The are several reasons for taking this approach. First, with limited resources, it may not be possible to allocate enough observer coverage to a fishery to immediately produce a mortality estimate with a low CV. Second, observing no takes (when real takes are important) in a first-time observer program could be problematic, as it might lead to the false conclusion that takes are not a problem, when they are. A one-time observer program should be considered to have a flawed design if the probability of observing zero takes is too high, under the assumption that takes are truly great enough to be of concern.

One simple way of making such calculations is to use a binomial distribution, where the mortality rate is the binomial parameter (the mean), and the number of observations is the intended sample size, in some unit of fishing effort (such as sea-days, trips, or whatever unit of effort is the basis for planning observer coverage). I do not intend to take credit for inventing this approach (for example, such a method was used by DeMaster and others in planning the Alaska Category II observer program), I simply wanted to describe the approach in simple terms for those who are not familiar with it.

The steps needed to perform this calculation can be described this way:

- (1) Select an expected amount of effort (E) for the fishery. This would most logically be based on the amount of effort seen in the fishery in the most recent year for which this information is available. The effort should be in a unit, such as sea-days or trips, that is related to how effort will be allocated.
- (2) Select a level of mortality (M) that is considered to be of concern, in numbers of animals. This could logically be based on the PBR of a stock of concern, or on other information, such as a level of takes predicted from strandings data, for example.
- (3) Calculated the binomial parameter p=M/E, which is the expected mortality per unit of effort, if M animals are being killed per year.

- (4) Select a proposed amount of observer coverage (n), in the same unit of effort of E in 1. This is the proposed sample size.
- (5) Calculate the probability of observing x=1,2,3,4,...10 mortalities using the binomial distribution b(x; n, p).

Making calculations in this way carries an assumption that marine mammal mortalities have a binomial distribution, meaning the expected rate of bycatch is constant for unit of effort such as a seaday. This may not be strictly true, as bycatches may sometimes be clumped in distribution for a variety of reasons. However, this provides a reasonable starting point for designing an observer program.

I have written a simple computer program (SEADAYS) that can make these calculations. An example of its use is given here:

- Most recent number of sea-days of effort from a target fishery was E=5668. It is assumed that the fishery will have a similar number of sea-days of effort in the year it is observed.
- (2) Strandings data have led to an estimate of M=39 mortalities from fishery interactions, which cannot be definitively attributed to a specific fishery. An observer program is started for the fishery suspected of causing the mortalities.
- (3) If it is assumed that the true mortality is 39, then the expected mortality rate p = 39/5668 = 0.0069.
- (4) Proposed sample sizes for the number of observer sea-days are n=200, 300, 400, or 500 sea-days.
- (5) The expected probability of observing a given number of mortalities can be calculated from a b(x; 200, 0.0069), etc. The calculations in Table 5 are output from SEADAYS.

In this example, it can be seen that with only 100 observer sea-days, the most likely observation will be of zero takes, with only a 50% chance of

program SEA	DAYS, June 1, 1998.
	LITIES FOR SAMPLE SIZE
N=100 AND P=0.00690	
Pr of obs number	Cumulative Pr of obs that
	number or more
Pr(x= 0)=0.5004	$Pr(x \ge 0) = 1.0000$
Pr(x = 1) = 0.3477	$Pr(x \ge 1) = 0.4996$
Pr(x = 2) = 0.1196	$Pr(x \ge 2) = 0.1520$
Pr(x = 3) = 0.0271	$Pr(x \ge 3) = 0.0324$
	$Pr(x \ge 4) = 0.0053$
Pr(x = 5) = 0.0006	$Pr(x \ge 5) = 0.0007$
Pr(x = 6) = 0.0001	$Pr(x \ge 6) = 0.0001$
Probability of observing	1 or more takes: 0.500
Most likely # of observe	
	LITIES FOR SAMPLE SIZE
N=200 AND P=0.00690	
Pr of obs number	Cumulative Pr of obs that
	number or more
Pr(x= 0)=0.2504	$Pr(x \ge 0) = 1.0000$
Pr(x = 1) = 0.3479	$Pr(x \ge 1) = 0.7496$
Pr(x= 2)=0.2405	$Pr(x \ge 2) = 0.4017$
Pr(x=3)=0.1103	$Pr(x \ge 3) = 0.1612$
Pr(x = 4) = 0.0377	$Pr(x \ge 4) = 0.0509$
Pr(x = 5) = 0.0103	$Pr(x \ge 5) = 0.0131$
Pr(x= 6)=0.0023	$Pr(x \ge 6) = 0.0029$
	1 or more takes: 0.750
Most likely # of observe	ed mortalities: 1
	THE FOR CAMPLE CIZE
	LITIES FOR SAMPLE SIZE
N=300 AND P=0.00690	
Pr of obs number	Cumulative Pr of obs that
	number or more
Pr(x=0)=0.1253	$Pr(x \ge 0) = 1.0000$
Pr(x=1)=0.2611	$Pr(x \ge 1) = 0.8747$
Pr(x=2)=0.2712	$Pr(x \ge 2) = 0.6136$
Pr(x=3)=0.1872	$Pr(x \ge 3) = 0.3423$
Pr(x = 4) = 0.0966	$Pr(x \ge 4) = 0.1551$
Pr(x=5)=0.0397	$Pr(x \ge 5) = 0.0585$
Pr(x= 6)=0.0136	$Pr(x \ge 6) = 0.0188$
	g 1 or more takes: 0.875
Most likely # of observe	ed mortalities: 2
BINOMIAL PROBABI	LITIES FOR SAMPLE SIZE
N=400 AND P=0.0069	
Pr of obs number	Cumulative Pr of obs that
1. or oco number	number or more
Pr(x=0)=0.0627	$Pr(x \ge 0) = 1.0000$
Pr(x=0)=0.0027 Pr(x=1)=0.1742	$Pr(x \ge 1) = 0.9373$
Pr(x=1)=0.1742 Pr(x=2)=0.2415	$Pr(x \ge 1) = 0.7631$
Pr(x=2)=0.2415 Pr(x=3)=0.2226	$Pr(x \ge 3) = 0.5216$
Pr(x=3)=0.2220 Pr(x=4)=0.1535	$Pr(x \ge 4) = 0.2990$
	$Pr(x \ge 4) = 0.2990$ $Pr(x \ge 5) = 0.1455$
Pr(x=5)=0.0845 Pr(x=6)=0.0386	$Pr(x \ge 6) = 0.0610$
Pr(x= 6)=0.0386	g 1 or more takes: 0.937
Most likely # of observ	g 1 of more takes. 0.757
VIOSE LIKELY # OF ODSERV	cu montantico. 2

observing takes. A sample size of 200 increases the probability of observing takes to 75%. A

sample size of 400 sea-days increases this probability to 94%.