
 

 

 

 

 

 

 

Are there Gains from Pooling Real-
Time Oil Price Forecasts? 

Christiane Baumeister, Bank of Canada 
Lutz Kilian, University of Michigan 
Thomas K. Lee, U.S. Energy Information Administration 
 
February 12, 2014 

Independent Statistics & Analysis 

www.eia.gov 

U.S. Energy Information Administration 
Washington, DC 20585 

This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here 
are those of the authors and not necessarily those of the U.S. Energy Information Administration. 

 

WORKING PAPER SERIES 



February 2014 

Thomas K. Lee   |   U.S. Energy Information Administration   |   This paper is released to encourage discussion and critical comment. The analysis 
and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration.  

 1 

Abstract 
The answer depends on the objective. The approach of combining five of the leading forecasting 
models with equal weights dominates the strategy of selecting one model and using it for all 
horizons up to two years. Even more accurate forecasts, however, are obtained when allowing the 
forecast combinations to vary across forecast horizons. While the latter approach is not always more 
accurate than selecting the single most accurate forecasting model by horizon, its accuracy can be 
shown to be much more stable over time. The MSPE of real-time pooled forecasts is between 3% 
and 29% lower than that of the no-change forecast and its directional accuracy as high as 73%. Our 
results are robust to alternative oil price measures and apply to monthly as well as quarterly 
forecasts. We illustrate how forecast pooling may be used to produce real-time forecasts of the real 
and the nominal price of oil in a format consistent with that employed by the U.S. Energy 
Information Administration in releasing its short-term oil price forecasts and we compare these 
forecasts during key historical episodes. 
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1. Introduction 
Accurate forecasts of the price of oil are important to firms and consumers as well as state and national 
governments. There are many alternative approaches to forecasting oil prices ranging from the use of oil 
futures prices and survey forecasts to atheoretical time series models and econometric models.1  Our 
approach in this paper is to focus on short-term oil price forecasting models that can be motivated 
based on economic grounds. Among these models we restrict attention to models that have been 
shown in the literature to produce more accurate real-time forecasts than the random walk benchmark 
model at least for some forecast horizons. Our objective is to examine the forecast accuracy of weighted 
averages of these models, as measured by the mean-squared prediction error (MSPE) at monthly and 
quarterly horizons up to two years. We also report results for the directional accuracy of these 
combined forecasts. 

Forecast combinations (also known as pooled forecasts) have a long tradition in macroeconomic 
forecasting (see, e.g., Timmermann 2006). With regard to short-term oil price forecasts, Baumeister and 
Kilian (2013a) established that an equal-weighted combination of four recently proposed oil price 
forecasting models is systematically more accurate than the no-change forecast as well as forecast 
combinations based on recursive or rolling inverse MSPE weights. The forecasting models considered in 
that study are included a vector autoregressive (VAR) forecast, forecasts based on the spread between 
oil futures prices and the spot price of oil, forecasts based on non-oil industrial commodity prices, and 
forecasts based on a time-varying parameter (TVP) model of the spreads between the U.S. spot prices of 
gasoline and heating oil and the spot price of crude oil. More recent work by Baumeister, Guérin and 
Kilian (2014), which explored the predictive content of high-frequency data from financial and energy 
markets, uncovered evidence that an important additional source of real-time information about future 
oil prices is the cumulative change in U.S. crude oil inventories. In the current paper, we extend the set 
of models to be combined to include the latter forecast, which performs particularly well at horizons 
between one and two years. 

Baumeister and Kilian (2013a) compared equal-weighted forecast combinations to individual forecasting 
models and showed that only pooled forecasts are systematically more accurate than the no-change 
forecast at all horizons up to 18 months or 6 quarters. This approach satisfies the requirement that 
there should be no discontinuities across horizons in the forecast path of the type that would arise if we 
switched forecasting models or forecast combinations from one horizon to the next. Using the same 
approach as in Baumeister and Kilian (2013a), in this paper we show that including in addition forecasts 
based on U.S. crude oil inventories in the forecast combination substantially improves the accuracy of 
the pooled forecast at horizons between one and two years. 

 

  

                                                           
1 For a comprehensive review the reader is referred to Alquist, Kilian and Vigfusson (2013). Subsequent 
contributions include Baumeister and Kilian (2013a,b, 2014), Baumeister, Kilian and Zhou (2013), Chen (2013), 
Baumeister, Guérin and Kilian (2014), and Bernard, Khalaf, Kichian and Yelou (2014), among  others. 



February 2014 

Thomas K. Lee   |   U.S. Energy Information Administration   |   This paper is released to encourage discussion and critical comment. The analysis 
and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration.  

 3 

Insisting on a continuous forecast path comes at the price of higher MSPEs, however. If a low MSPE is all 
we care about in forecasting, one clearly can improve on equal-weighted combinations of all oil price 
forecasting models. In this paper, we extend the analysis of pooled forecasts by allowing for different 
forecast combinations to be chosen at each horizon. This strategy takes advantage of the fact that some 
oil price forecasting models perform well at short horizons, but were never intended for longer horizons, 
whereas other models perform best at longer horizons. We show that relaxing the continuity constraint 
substantially reduces the MSPE of the pooled forecast at all horizons, but especially at horizons beyond 
one year. 

This fact raises the question of how forecast pooling by horizon compares with simply selecting for each 
horizon the individual forecasting model with the lowest MSPE. The latter comparison is the relevant 
benchmark when evaluating the benefits of pooling in the absence of the continuity constraint. We find 
that pooled forecasts often, but not always have lower MSPE than the best individual forecast. The 
superior accuracy of the forecast combination at some horizons is not surprising in that pooled forecasts 
provide insurance against failures of individual models. Our results show that this insurance has a price 
in the form of lower forecast accuracy in some dimensions, however. For example, at horizons beyond 
18 months, the individual forecasts are clearly more accurate. This drawback is offset by the fact that 
the accuracy of the pooled forecasts is more stable over time, as revealed by plots of the recursive MSPE 
ratios over time.  

The MSPE of the real-time pooled forecasts is up to 29% lower than that of the no-change forecast even 
at horizons as high as two years. The pooled forecasts also predict the direction of change in the real 
price of oil correctly with probabilities as high as 73%. Our qualitative results are robust to alternative oil 
price measures and apply to monthly as well as quarterly forecasts. In addition to presenting these 
summary statistics, we use graphical methods to examine how the pooled real-time forecasts performed 
in recent years when the real price of oil fluctuated substantially. We compare these model-based 
pooled forecasts to the U.S. Energy Information Administration’s (EIA) short-term oil price forecasts, as 
released in the Short-Term Energy Outlook. Finally, we discuss how real-time pooled forecasts of the 
nominal oil price may be derived from the forecasts of the real price, and we illustrate that both real and 
nominal oil price forecasts may be presented in a format already used by the EIA.  

The remainder of the paper is organized as follows. In section 2 we review the forecasting models 
considered. Section 3 evaluates our monthly forecasts of the real U.S. refiners’ acquisition cost for oil 
imports and of the West Texas Intermediate (WTI) price of crude oil.  In section 4 we extend the analysis 
to quarterly forecasts. Section 5 examines how stable the accuracy of these oil price forecasts is over 
time. In section 6 we visually compare the accuracy of our pooled oil price forecasts to that of the EIA oil 
price forecasts during key episodes. In section 7 we illustrate how these forecasting tools may be used 
to produce real-time forecasts of the real and the nominal price of oil in a format consistent with that 
employed by the EIA in releasing its short-term oil price forecasts. The concluding remarks are in section 
8. 
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2. The forecasting environment 
All forecasting models are estimated at monthly frequency. We consider monthly forecast horizons up 
to two years. Forecasts at the corresponding quarterly horizons are obtained by averaging the monthly 
forecasts at quarterly frequency, as recommended in Baumeister and Kilian (2013b). The forecasting 
models are estimated recursively and subject to real-time data constraints. All data are obtained from 
the real-time database developed in Baumeister and Kilian (2012, 2013a) and extended in Baumeister, 
Kilian and Zhou (2013). The reader is referred to the latter references for a detailed description of the 
data sources and definitions. The evaluation period is January 1992 through September 2012 (or 
equivalently the first quarter of 1992 through the third quarter of 2012).  Our objective is to forecast the 
ex-post revised real price of oil, as measured by the observations in the March 2013 vintage of the real-
time database. 

The real-time forecasts are evaluated based on their recursive MSPE and their directional accuracy, as 
measured by the success ratio. The success ratio is the fraction of times that a method correctly predicts 
the direction of change in the real price of oil. Success ratios above 0.5 indicate an improvement relative 
to the no-change forecast.  The MSPE results are normalized relative to the no-change forecast, with a 
ratio below 1 indicating a gain in accuracy. There is no valid test for judging the statistical significance of 
the MSPE reductions in our context, but we examine the stability of our results across horizons, across 
specifications and over time. The statistical significance of the success ratios is assessed based on the 
test proposed in Pesaran and Timmermann (2009). 

Building on the comprehensive analysis of forecast combination methods in Baumeister and Kilian 
(2013a), we consider five forecasting models with proven credentials. 

2.1. Forecasts based on a VAR model of the global oil market 
The first model is a reduced-form VAR model of the form: 

 ( ) t tB L y uν= +  

where , , ,oil
t t t t ty prod rea r inv ′ = ∆ ∆   refers to a vector including the percent change in global crude oil 

production, a measure of global real economic activity, the log of the U.S. refiners’ acquisition cost for 
crude oil imports deflated by the log of the U.S. CPI, and the change in global crude oil inventories, ν  
denotes the intercept, 4 1( ) ... p

pB L I B L B L= − − −  denotes the autoregressive lag order polynomial, p  is 

the autoregressive lag order, L  is the lag operator, and tu  is a white noise innovation.2 This VAR model 
may be viewed as the reduced-form representation of the structural global oil market model developed 
in Kilian and Murphy (2013).  

We estimate the unrestricted VAR model with 12 autoregressive lags by the method of least squares. 
Forecasts |ˆoil

t h tr + of the log of the real price of oil are constructed iteratively from the estimated VAR model 

conditional on the most recent data and converted to levels, resulting in the forecast: 

                                                           
2 The inventory data are constructed by multiplying U.S. crude oil inventories by the ratio of OECD petroleum inventories to 
U.S. petroleum inventories. Petroleum inventories are defined to include both stocks of crude oil and stocks of refined 
products. The global real activity index is constructed from data on global dry cargo ocean shipping freight rates as described in 
Kilian (2009).  
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                                                      ,
| |

ˆ ˆexp( )oil oil VAR
t h t t h tR r+ +=                                                                              (1) 

Forecasts for the real WTI price are constructed from the same VAR model by assuming that the most 
recent spread between the log WTI price and the log of the U.S. refiner’s acquisition cost remains 
unchanged in the future. By rescaling the forecasts of the U.S. refiners’ acquisition cost in this manner, 
we allow the relationship between the two oil price measures to evolve as a random walk (see 
Baumeister and Kilian 2013b). 

2.2. Forecasts based on the price of non-oil industrial raw materials 
An alternative forecasting method – based on the intuition that there are broad-based predictable shifts 
in the demand for globally traded commodities – exploits real-time information from recent cumulative 
changes in non-oil industrial commodity price indices. As discussed in Baumeister and Kilian (2012), such 
a forecast of the real price of oil may be constructed as follows: 

 ( ),
|

ˆ 1 ( )oil oil h industrial raw materials h
t h t t t t t hR R Eπ π+ += + −  (2) 

where oil
tR  denotes the current level of the real price of oil and ,h industrial raw materials

tπ  stands for the percent 
change of the Commodity Research Bureau (CRB) index of the spot price of industrial raw materials 
(other than oil) over the preceding h  months. The term ( )h

t t hE π +  is the expected U.S. inflation rate over 
the next h periods. In practice, this expectation is proxied by recursively constructed averages of past 
U.S. CPI inflation data, starting in July 1986.3 

2.3. Forecasts based on oil futures prices 
Yet another approach is to exploit information from oil futures markets. Many practitioners rely on the 
price of oil futures contracts in generating forecasts of the nominal price of oil or, equivalently, on the 
futures spread for forecasting the change in the nominal price of oil. This forecast can then be converted 
to a forecast for the real price of oil by subtracting expected inflation. This approach is embodied in the 
forecasting model 

                        ( )|
ˆ 1 ( ) ,oil oil h h

t h t t t t t t hR R f s E π+ += + − −                                                                                 (3) 

where
h

tf  is the log of the current WTI oil futures price for maturity ,h ts  is the log of the corresponding 

WTI spot price, and ( )h
t t hE π +  is again the expected inflation rate over the next h periods. Monthly WTI 

oil futures price data for our evaluation period are available only up to a horizon of 18 months. This 
means that for horizons beyond 18 months the futures-based forecast receives zero weight in the 
forecast combinations. 

 

                                                           
3 Undoubtedly, the inflation forecast could be refined further, but there is little loss in generality in our approach, as shown in 
Baumeister and Kilian (2012). 
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2.4. Time-varying parameter model of the gasoline and heating oil spreads 
Many market practitioners believe that rising spreads between the price of refined products (such as 
gasoline or heating oil) and the price of crude oil signal upward pressures on the price of crude oil. For 
example, Goldman Sachs in April 2013 cut its oil price forecast, citing significant pressure on product 
spreads, which it interpreted as an indication of reduced demand for products (see Strumpf 2013). 
There are many reasons to expect forecasts based on product spreads to be unstable over time. One 
concern is that the price of crude oil is likely to be determined by the refined product in highest demand 
and that product has changed over time. Another concern is that crude oil supply shocks, local capacity 
constraints in refining, changes in environmental regulations, or other market turmoil may all 
temporarily undermine the predictive power of product spreads. We therefore follow Baumeister et al. 
(2013) in first recursively estimating the time-varying regression model  

                        | 1 2
gas heat

t h t t t t t t t t hs s s s sβ β ε+ +   ∆ = − + − +     

where the gas
ts  is the log of the nominal U.S. spot price of gasoline and heat

ts  is the log of the nominal U.S. 
spot price of heating oil.4 Given the TVP estimates, we then construct the TVP model forecast: 

                      { }| 1 2
ˆ ˆˆ exp ( )oil oil gas heat h

t h t t t t t t t t t t hR R s s s s Eβ β π+ +   = − + − −                                     (4) 

by Monte Carlo integration as the mean of the forecasts simulated based on 1,000 Gibbs iterations 
conditional on the most recent data.5 

2.5. Forecasts based on U.S. crude oil inventories 
The final forecasting model can be motivated by the theoretical analysis in Alquist and Kilian (2010), 
which shows that changes in crude oil inventories capture shifts in expectations about the future real 
price of oil. As shown in Baumeister, Guérin and Kilian (2014), forecasts of the real price of oil may be 
constructed from U.S. crude oil inventory data as follows: 

   ( )|
ˆˆ 1oil oil h

t h t t tR R invβ+ = + ∆ ,                                                                       (5) 

  

                                                           
4In estimating the model, we postulate that ),,0(~ 2σε NIDht+ while the time-varying coefficients '][ 21 ttt ββθ =  evolve 

according to a random walk as ,1 ttt ξθθ += −  and tξ is independent Gaussian white noise with variance Q. The intercept has 
been restricted to zero, following Baumeister et al. (2013) who show that this restriction greatly improves the out-of-sample 

accuracy. This state-space model is estimated using a Gibbs sampling algorithm. The conditional posterior of tθ  is normal, and 
its mean and variance can be derived via standard Kalman filter recursions (see Kim and Nelson 1999). Conditional on an 

estimate of tθ , the conditional posterior distribution of 
2σ is inverse Gamma and that of Q is inverse Wishart. 

5Our forecasts take into account that the model parameters continue to drift over the forecast horizon according to their law of 
motion. The first 30 observations of the initial estimation period are used as a training sample to calibrate the priors and to 
initialize the Kalman filter. 
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where h
tinv∆  denotes the percent change in U.S. crude oil inventories over the preceding h  months and 

β̂ is obtained by regressing cumulative percent changes in the real price of oil on the lagged cumulative 
percent change in U.S. inventories without intercept. The latter restriction improves the accuracy.   

3. Monthly forecasts of the real price of oil 
It is useful to focus on the monthly forecasts of the real price of oil first, before considering the quarterly 
forecasts. 

3.1. U.S. refiners’ acquisition cost for crude oil imports 
The U.S. refiners’ acquisition cost for crude oil imports is a commonly used proxy for the global price of 
crude oil and as such is of central interest for oil price forecasters. Table 1 shows that an equal-weighted 
combination of all five oil price forecasting models unambiguously reduces the MSPE of the forecast at 
all horizons relative to the no-change forecast much like the simpler forecast combination considered in 
Baumeister and Kilian (2013a). The difference is that the larger forecast combination including the 
additional forecasting model based on U.S. crude oil inventories generates further improvements at 
horizons beyond 18 months. Not only are there MSPE reductions at these long horizons, but there also is 
statistically significant directional accuracy. 

The MSPE reductions in Table 1 for this forecast combination occur at all horizons and are reasonably 
large by the standards of the literature on oil price forecasting. The largest MSPE reduction is 11%. The 
largest success ratio is 68%. Table 2 reveals which models contribute to the improved accuracy at which 
horizon. Its shows how the MSPE ratio of the combination forecast changes as we drop one model at a 
time from the pooled forecast. Increases in the ratio mean that the model left out would have improved 
forecast accuracy if included, whereas decreases mean that it would have worsened forecast accuracy. 
For example, the VAR improves forecast accuracy at horizons 1 through 7 and industrial raw materials 
prices at horizons 1 through 5. Oil futures prices worsen accuracy at short horizons, but improve 
accuracy at horizons 5 through 18, while the TVP product spread model improves forecast accuracy at 
horizons 5 through 24. Finally, the inventory model improves accuracy only at horizons 14 through 24. 

Table 2 shows that clearly not every forecasting model is suitable for every horizon. A natural proposal is 
to select an improved forecast combination for each horizon by dropping all models that lower forecast 
accuracy in Table 2 and by retaining the others. The second set of results in Table 1 confirms that 
choosing equal-weighted subsets by horizon further improves forecast accuracy. In that case, the largest 
MSPE reduction increases from 11% to 29% and the largest success ratio from 68% to 73%.  These 
statistics are very large by the standards of the oil price forecasting literature. The most stunning 
improvement in accuracy occurs beyond the 18-month horizon. It is related to the fact that we dropped 
the VAR forecast and the forecast based on industrial commodity prices which were never intended to 
be accurate at such long horizons (see Baumeister and Kilian 2012). 

The difference between the first and the second set of results in Table 1 is that we have relaxed the 
implicit constraint that forecasts across horizons should be generated by the same forecasting model or 
the same forecast combination. Relaxing this constraint by construction must reduce the MSPE of the 
pooled forecast. This raises the question of what the benefits are of forecast pooling in the absence of 
that continuity restriction. If we are not concerned with continuity the relevant benchmark is the 
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forecast accuracy obtained by generating the most accurate individual oil price forecasting model for 
each horizon. The third set of results in Table 1 shows that by selecting the best individual forecasting 
model, we can reduce the MSPE even further. In that case, the MSPE reductions in Table 1 reach 36% in 
some cases and the success ratios an astonishing 75%. This means that we predict the direction of 
change in the real price of oil three times out of four. These impressive gains in accuracy are not uniform 
across forecast horizons, however. In fact, for many horizons the forecast combination chosen by 
horizon has slightly lower MSPE than the best individual model. Only at horizons beyond 18 months, the 
individual forecasting models are clearly more accurate. Thus, these results seem ambiguous and either 
approach seems reasonable in practice. In section 5 we will present additional evidence, however, that 
in fact the accuracy of the pooled forecasts is much more stable over time, making them the preferred 
approach in practice. Before addressing this point, it is useful to examine how robust these findings are 
to the use of other oil price measures. 

3.2. WTI spot price of crude oil 
Table 3 shows the corresponding results for the real spot price of WTI crude oil, which is a commonly 
used reference price in oil markets. Unlike the U.S. refiners’ acquisition cost, the nominal WTI price is 
available without delays and not subject to revisions. It has been subject to regulation until the 1980s, 
however, and has recently become unrepresentative of the global price of crude oil. 

Table 3 documents that the equal-weighted combination of all five models is about as accurate for the 
real WTI price as for the real refiners’ acquisition cost. The largest MSPE reduction is 12% and the largest 
success ratio 67%. Many of the gains in directional accuracy are statistically significant, even at horizons 
as high as 24 months. Some are not, especially between horizons of 5 and 10 months. The pooled 
forecast generates MSPE reductions at every horizon between 1 month and 24 months.  

To conserve space, we do not present a table showing the contributions of each forecasting model to 
the pooled forecast analogous to Table 2, but note that the pattern is very similar except that the VAR 
model contributes to the accuracy of the forecast combination at all horizons but horizons 16, 17, and 
18.  Allowing the forecast combination to vary by horizon increases the MSPE reductions at all horizons, 
as in Table 1. At some horizons the MSPE reductions reach 19% relative to the no-change forecast. The 
largest success ratio is 70%. Compared with the results in Table 1, these gains in accuracy are still 
substantial, but more modest.  

Finally, when choosing the best individual forecasting model by horizon, the MSPE reductions reach 30% 
in some cases and the success ratios 82%. These large gains are all obtained at horizons beyond 18 
months. At shorter horizons, the relative performance of this last method compared with the forecast 
combination chosen by horizon is ambiguous and the differences are modest. We conclude that our 
findings are robust with respect to the choice of oil price measure. 
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4. Quarterly forecasts of the real price of oil 
For many purposes, users of oil price forecasts are interested in quarterly rather than monthly forecasts. 
It is straightforward to construct forecasts at quarterly horizons by averaging the monthly forecasts. This 
approach is more accurate than constructing quarterly forecasts from models estimated at quarterly 
frequency (see Baumeister and Kilian 2013b). It is important to note that the accuracy of quarterly 
forecasts may not be inferred from that of monthly forecasts  because of the unknown covariance of the 
monthly forecasts across horizons and because averaging lowers the variance of the forecasts.  

The upper panel of Table 4, nevertheless, suggests that quarterly forecasts are about as accurate as 
monthly forecasts. The success ratios are systematically above 0.5 and all statistically significant except 
for the longest horizons. All MSPE ratios are below 1. The maximum MSPE reductions of the pooled 
forecast range from 12% for the equal-weighted combination of all models to 26% for the combination 
chosen by horizon. The corresponding success ratios may be as high as 70% and 71%. Similar results 
hold for the real WTI price in the lower panel. For the best individual model forecasts chosen by horizon, 
in the upper panel of Table 3, the MSPE reductions may be as large as 35% and the success ratio as high 
as 74% at the quarterly frequency. The corresponding results for the real WTI price are 29% and 71%. 
We conclude that our results are not affected by the choice between monthly and quarterly forecast 
horizons. 

5. How stable is the accuracy of pooled forecasts compared to other forecasts? 
One of the perceived benefits of pooling oil price forecasts is that the forecast accuracy tends to become 
more stable over time than forecasts from individual models. Tables 1 and 3 illustrate that substantial 
further reductions in the MSPE ratio are feasible when selecting the preferred forecast combination or 
the preferred forecasting model by horizon. These accuracy gains, however, may come at the expense of 
instability over time.  Figure 1 examines this concern by plotting the recursive real-time MSPE ratios 
over time. We focus on the real U.S. refiners’ acquisition cost for oil imports, but note that similar 
results hold for the real WTI price. In recognition of the fact that MSPE ratios are uninformative when 
based on too short of an evaluation period, we discard the first five years of the evaluation period. The 
last observation shown in Figure 1 corresponds to the MSPE ratios shown in Table 1. To conserve space, 
we focus on horizons of 1, 3, 6, 9, 12, 15, 18, 21 and 24 months. 

Figure 1 illustrates that the equal-weighted combination of all five forecasting models virtually always 
has been more accurate than the no-change forecast at every horizon shown, especially since 2000.  To 
a lesser extent this has also been true for the subset of models chosen for each horizon. Figure 1 shows 
that the reductions in the overall MSPE associated with that second method come at the expense of a 
somewhat more erratic forecast performance. Overall, however, the accuracy of this method still 
remains quite robust. Only occasionally the recursive MSPE ratios become positive. Such episodes are 
short-lived and the losses in accuracy are comparatively small. 

In sharp contrast, the accuracy of the third method we considered, which involves selecting the single 
most accurate forecasting model by horizon, is highly erratic. Especially at horizons 6, 9, 12, and 15, this 
method may generate recursive MSPE ratios as high as 1.7 in some cases, making this approach unfit for 
applied work, despite its strong performance on average over the evaluation sample. We conclude that 
there are clear gains from pooling forecasts not captured by the MSPE ratios in Tables 1 and 3. Very 
similar results also hold for quarterly forecasts, as shown in Figure 2.   
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6. Pooled forecasts and EIA forecasts in historical perspective  
A different perspective on the accuracy of pooled real-time forecasts may be obtained by comparing 
them to the short-term oil price forecasts published by the EIA. The data source for the latter forecasts 
is the EIA’s Short-Term Energy Outlook.  Most importantly for our purposes, this publication provides 
quarterly forecasts of the U.S. refiners’ acquisition cost for imports for horizons up to 6 quarters. For the 
purpose of comparing the EIA forecasts with the pooled forecasts, the nominal EIA oil price forecasts 
have been deflated by the same measure of expected inflation used in constructing the pooled forecasts 
of the real price of oil. Figure 3 compares the forecasts produced by the EIA against the realizations of 
the real price of oil. For each quarter, for which a forecast is available, we show the entire forecast path. 
The EIA nowcast for the current quarter is marked as a circle. In Figure 4 we conduct a similar 
comparison for the pooled real-time forecast selected by horizon.  

Figures 3 and 4 illustrate the differences between the pooled forecast and the EIA’s forecast. For 
example, the plots show that the quarterly nowcasts produced by the EIA tend to differ from the 
realizations much more than the nowcasts constructed in the Baumeister and Kilian (2012) real-time 
database.  There is little systematic difference between the EIA forecasts and the pooled forecasts 
during 1992-2002, except that the EIA forecasts often are based on misleading nowcasts, causing them 
to overstate or understate the level of the real price of oil. With the surge in the real price of oil starting 
in 2003, however, strong qualitative differences emerge. Whereas the EIA’s forecast paths for the next 
five years always point downward, the pooled forecasts almost always predict increases at least in the 
short run. This is particularly evident in the first quarter of 2008, when the pooled forecast anticipates a 
sharp increase in the real price of oil, while the EIA predicted a strong decline. Similarly, the pooled 
forecast is better at predicting the downturn of the real price of oil in late 2008 and the recovery in 
2009.  While neither the pooled forecast nor the EIA forecast is good at predicting turning points, the 
pooled forecast quickly adapts, once a turning point has occurred. A case in point is the third quarter of 
2008, one quarter after the peak of mid-2008. Whereas the EIA predicted continued oil price increases 
following a small decline, the pooled forecast correctly anticipated a sharp decline in the real price of oil 
in the fourth quarter, although not as steep as the actual drop. 

7. Real versus nominal oil price forecasts 
It can be shown that much of the variation in the nominal price of crude oil reflects variation in the real 
price of oil. Only at longer horizons, the inflation component matters (see Alquist et al. 2013). Whereas 
we have focused on the real price of oil, which is the price that ultimately matters for users of oil price 
forecasts, the EIA publishes nominal oil price forecasts. In this section we illustrate how both the real 
and the nominal pooled oil price forecasts may be presented in the same format in which the EIA 
presents its own oil price forecasts. We again focus on the U.S. refiners’ acquisition cost for oil imports. 

Table 5 shows three examples. It displays forecast paths generated as of the last quarter of 2000, the 
third quarter of 2008 and the second quarter of 2009.  When the forecasts are generated, many prior 
values of the real price of oil are still unknown and have to be inferred by the forecaster. These 
nowcasts differ from the actual values of the price of oil revealed later. The forecast path and the 
corresponding realizations of the ex-post revised price of oil are shown for five quarters, reflecting the 
limited availability of the EIA forecasts. All forecasts are normalized such that the nominal and the real 
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price of oil coincide in the last nowcast period. The difference in the forecast paths of the real and the 
nominal price is expected U.S. inflation. Inflation adjustments for the nowcasts are based on the real-
time U.S. inflation data in Baumeister and Kilian (2012). We convert pooled forecasts of the real price of 
oil to nominal price forecasts by adjusting the predicted changes in the real price of oil by the same 
expected rate of inflation used in constructing Figure 3.   

The first example in Table 5 shows that in the last quarter of 2000 both the EIA forecast and the pooled 
forecast predicted a decline in the price of oil. One difference is that the EIA relied on a nowcast that 
was much too high, whereas our nowcast was close to the realized value of the price of oil. The other 
difference is that the pooled forecast predicted a steeper decline, more in line with the actual evolution 
of the price of oil. 

The other two examples in Table 5 involve situations in which both the EIA nowcasts and our nowcasts 
are reasonably accurate, allowing us to abstract from the role of the nowcast. The second example 
shows that in the third quarter of 2008, amidst the financial crisis, the EIA predicted that the price of oil 
would quickly recover and rise to 122 dollars by mid-2009. The pooled forecast, in contrast, predicted a 
sharp decline, although not nearly as steep as the actual decline. The third example is the second 
quarter of 2009, after the recovery of the price of oil had started. The EIA forecast path shows a modest 
increase, whereas the path predicted by the pooled forecast shows a much steeper increase, closer to 
the actual evolution of the price of oil.  

These three examples make the point that the choice of forecasting methods matter. Clearly, there are 
other examples in which the EIA forecast and the pooled forecasts are more similar, and there even are 
rare examples in which the EIA forecast is more accurate than the pooled forecast. Nevertheless, 
overall, the benefits of relying on model-based real-time forecasts compared with the EIA forecasts are 
readily apparent.6  We conclude that it is straightforward to construct real-time pooled forecasts of both 
the nominal and the real price of oil in a format the EIA relies on. Table 5 also illustrates that the 
distinction between real and nominal oil price forecasts matters. While that difference is negligible at 
short horizons, at the 5-quarter horizon, for example, it accounts for somewhere between four and five 
dollars in our examples.  This difference is small compared with the overall level of the price of oil, but 
large enough to matter for economic decisions. 

8. Concluding remarks 
We compared three approaches to generating short-term real-time oil price forecasts. One is a pooled 
forecast obtained by assigning equal weight to all forecasting models under consideration. Another 
allows the subset of models selected for the forecast combination to vary by horizons according to its 
ability to reduce the MSPE. A third approach involves selecting for each horizon the model with lowest 
recursive MSPE. Of these approaches only the first two can be recommended.  While tailoring the 
forecast combination to each horizon improves the forecast accuracy especially at longer horizons 

                                                           
6 We do not formally compare the MSPEs and directional accuracy of the EIA forecast and the pooled forecast. The reader is 
referred to the related analysis in Baumeister and Kilian (2013a) which shows that the EIA forecasts have much higher MSPE 
than the no-change forecast and lack directional accuracy. This result overturns the substantive conclusion of Sanders, 
Manfredo and Boris (2009) based on a much shorter evaluation period and a different econometric approach. Moreover, 
including the EIA forecast in the forecast combination would systematically lower the accuracy of the pooled forecast. 
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without seriously impairing the reliability of the pooled forecast, the accuracy of forecasts based on 
selecting the best individual model at each horizon tends to be unstable over time. 

Pooled forecasts were shown to be at least as accurate as the no-change forecast of the real price of oil 
at all horizons up to two years and often substantially more accurate. We illustrated that pooled oil price 
forecasts not only are more accurate than the no-change forecast, but also perform better than the 
EIA’s own short-term forecasts during key historical episodes. Our analysis suggests that recently 
developed model-based forecasts have become a promising alternative to forecasts of the type 
traditionally employed by the EIA. We illustrated how these forecasting tools may be used to produce 
real-time forecasts of the real and the nominal price of oil in a format consistent with that employed by 
the EIA in releasing its short-term oil price forecasts. 
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Figure 1. Real-time recursive MSPE ratio relative to no-change forecast real U.S. refiner’s acquisition cost for oil 
imports 
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Figure 2. Real-time recursive MSPE ratio relative to no-change forecast real U.S. refiner’s acquisition cost for oil 
imports 
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Figure 3. Real-time recursive forecasts and realizations for the real U.S. refiner’s acquisition cost for oil imports 
quarterly EIA forecasts 
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Figure 4. Real-time recursive forecasts and realizations for the real U.S. refiner’s acquisition cost for oil imports 
quarterly pooled real-time forecasts chosen by horizon 
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Table 1. Real-time forecast accuracy of alternative forecast combinations evaluation period: 1992.1-
2012.9 

  

 Real U.S. Refiners’ Acquisition Cost for Crude Oil Imports 

 Equal-weighted combination of 

all 5 forecasting models  

Equal-weighted subset of models 

chosen by horizon 

Best individual forecasting model  

by horizon    

Monthly 

horizon 

MSPE 

ratio Success ratio 

MSPE 

ratio Success ratio 

MSPE 

ratio (model) Success ratio 

1 0.912  0.578* 0.872  0.550* 0.934 (2)   0.546** 

2 0.887  0.573* 0.824  0.577* 0.848 (2)   0.552** 

3 0.894  0.559* 0.849  0.599* 0.864 (2)  0.628* 

4 0.914 0.561 0.881  0.585* 0.938 (2)  0.598* 

5 0.945 0.527 0.926 0.514 0.979 (3) 0.498 

6 0.960 0.557 0.944 0.545 0.971 (4) 0.541 

7 0.962 0.535 0.946 0.531 0.935 (4) 0.527 

8 0.956 0.533 0.905 0.574 0.914 (4) 0.579 

9 0.944 0.573 0.884    0.598** 0.892 (4) 0.560 

10 0.927    0.584** 0.869   0.613* 0.879 (4) 0.588 

11 0.906  0.603* 0.845   0.636* 0.856 (4) 0.623 

12 0.894  0.626* 0.837   0.639* 0.865 (4) 0.613 

13 0.890  0.637* 0.834   0.654* 0.869 (3)  0.629* 

14 0.885  0.636* 0.846   0.661* 0.861 (3)  0.640* 

15 0.885  0.677* 0.836   0.694* 0.860 (3)  0.634* 

16 0.893  0.680* 0.832   0.727* 0.862 (5)  0.632* 

17 0.907  0.682* 0.836   0.717* 0.849 (5)  0.644* 

18 0.917  0.655* 0.835   0.720* 0.835 (5)   0.629** 

19 0.961 0.593 0.843   0.680* 0.802 (5) 0.623 

20 0.955   0.635* 0.812   0.696* 0.742 (5)  0.709* 

21 0.939    0.625** 0.772  0.664 0.680 (5)  0.716* 

22 0.919   0.645* 0.731   0.671* 0.642 (5)  0.746* 

23 0.910   0.665* 0.710  0.648 0.654 (5)  0.740* 

24 0.919 0.611 0.716  0.637 0.695 (5)  0.708* 

 

NOTES: We consider five forecasting models based on monthly data: (1) a VAR forecast, (2) a forecast based on non-oil 
industrial commodity prices, (3) a forecast based on oil futures prices, (4) a forecast based on the spread of product prices 
relative to the price of crude oil, and (5) a forecast based on U.S. crude oil inventories. All forecasts are generated recursively 
from data subject to real-time data constraints. Boldface indicates improvements relative to the no-change forecast. * denotes 
significance at the 5% level and ** at the 10% level based on the Pesaran and Timmermann (2009) test for the null hypothesis of 
no directional accuracy. The statistical significance of the MSPE reductions cannot be assessed because none of the currently 
available tests of equal predictive accuracy applies in this setting. 
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Table 2. Changes in real-time recursive MSPE ratios of “leave-one-out” forecast combinations with 
equal weights evaluation period: 1992.1-2012.9 

  Real U.S. Refiners’ Acquisition Cost for Crude Oil Imports   

Monthly  

Horizon 

VAR Oil Futures 

Spread 

Industrial 

Commodity Prices 

TVP Product 

Price Spread 

U.S. Crude Oil 

Inventories 

1 +0.046 -0.015 +0.013 -0.008 -0.016 

2 +0.039 -0.013 +0.032 -0.016 -0.023 

3 +0.032 -0.009 +0.030 -0.011 -0.020 

4 +0.033 -0.005 +0.023 -0.005 -0.020 

5 +0.028 +0.003 +0.009 +0.005 -0.019 

6 +0.015 +0.009 -0.001 +0.015 -0.011 

7 +0.001 +0.012 -0.005 +0.023 -0.008 

8 -0.005 +0.016 -0.007 +0.027 -0.006 

9 -0.009 +0.018 -0.007 +0.030 -0.004 

10 -0.010 +0.019 -0.008 +0.028 0 

11 -0.011 +0.020 -0.006 +0.029 -0.002 

12 -0.011 +0.024 -0.003 +0.023 -0.001 

13 -0.011 +0.029 -0.002 +0.018 -0.001 

14 -0.015 +0.031 -0.004 +0.019 +0.001 

15 -0.020 +0.033 -0.007 +0.018 +0.008 

16 -0.023 +0.035 -0.012 +0.016 +0.021 

17 -0.027 +0.036 -0.016 +0.014 +0.029 

18 -0.033 +0.036 -0.019 +0.016 +0.038 

19 -0.028 NA -0.032 +0.030 +0.082 

20 -0.024 NA -0.055 +0.030 +0.104 

21 -0.022 NA -0.078 +0.034 +0.124 

22 -0.027 NA -0.091 +0.045 +0.133 

23 -0.031 NA -0.097 +0.064 +0.123 

24 -0.033 NA -0.098 +0.081 +0.108 
NOTES: The models are described in the text. Boldface indicates increases relative to the MSPE ratio in column (1) of Table 1. 
Increases mean that the model left out would have improved forecast accuracy if included, whereas decreases mean that it 
would have worsened forecast accuracy. The statistical significance of the MSPE changes cannot be assessed because none of 
the currently available tests of equal predictive accuracy applies in this setting. 
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Table 3. Real-time forecast accuracy of alternative forecast combinations evaluation period: 1992.1-
2012.9 

   Real WTI Price of Crude Oil   

 

Equal-weighted combination of 

all 5 forecasting models  

Equal-weighted subset of models 

chosen by horizon 

Best individual forecasting model  

by horizon    

Monthly 

horizon MSPE ratio Success ratio MSPE ratio Success ratio 

MSPE ratio 

(model) Success ratio 

1 0.898 0.518 0.846 0.494 0.866 (2) 0.530 

2 0.884  0.565* 0.814   0.565* 0.813 (2)  0.565* 

3 0.894  0.587* 0.841   0.591* 0.862 (2)  0.595* 

4 0.919   0.578** 0.877   0.589* 0.959 (2)  0.602* 

5 0.949 0.543 0.928  0.535 0.986 (4) 0.584 

6 0.968 0.533 0.939  0.541 0.973 (4) 0.553 

7 0.969 0.547 0.940  0.539 0.943 (4) 0.547 

8 0.959 0.537 0.927  0.550 0.907 (4) 0.558 

9 0.949 0.552 0.919  0.564 0.896 (4) 0.564 

10 0.930 0.538 0.903  0.554 0.876 (4) 0.571 

11 0.911  0.603* 0.884   0.582* 0.859 (4) 0.611 

12 0.905  0.605* 0.883    0.576** 0.892 (4) 0.597 

13 0.899  0.616* 0.876   0.599* 0.893 (3)  0.603* 

14 0.894  0.610* 0.868   0.614* 0.885 (3)  0.606* 

15 0.898  0.634* 0.873   0.647* 0.884 (3)  0.626* 

16 0.906  0.667* 0.851   0.697* 0.884 (5)  0.662* 

17 0.916  0.674* 0.856   0.678* 0.880 (5)  0.635* 

18 0.926  0.638* 0.859   0.668* 0.873 (5)  0.651* 

19 0.963    0.593** 0.916   0.641* 0.845 (5)  0.745* 

20 0.965  0.639* 0.899   0.683* 0.795 (5)  0.739* 

21 0.953    0.625** 0.867   0.703* 0.743 (5)  0.773* 

22 0.924  0.645* 0.824   0.680* 0.703 (5)  0.816* 

23 0.916  0.648* 0.812   0.678* 0.704 (5)  0.819* 

24 0.916    0.628** 0.809     0.646** 0.731 (5)  0.792* 

 

NOTES: We consider five forecasting models based on monthly data: (1) a VAR forecast, (2) a forecast based on non-oil 
industrial commodity prices, (3) a forecast based on oil futures prices, (4) a forecast based on the spread of product prices 
relative to the price of crude oil, and (5) a forecast based on U.S. crude oil inventories. All forecasts are generated recursively 
from data subject to real-time data constraints. Boldface indicates improvements relative to the no-change forecast. * denotes 
significance at the 5% level and ** at the 10% level based on the Pesaran and Timmermann (2009) test for the null hypothesis of 
no directional accuracy. The statistical significance of the MSPE reductions cannot be assessed because none of the currently 
available tests of equal predictive accuracy applies in this setting. 
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Table 4. Real-time forecast accuracy of alternative forecast combinations evaluation period: 1992.1-
2012.9 

 

Equal-weighted combination of 

all 5 forecasting models  

Equal-weighted subset of models 

chosen by horizon 

Best individual forecasting model  

by horizon    

Quarterly 

horizon MSPE ratio Success ratio MSPE ratio Success ratio MSPE ratio Success ratio 

 Real U.S. Refiners’ Acquisition Cost for Crude Oil Imports 

1 0.921  0.687* 0.894  0.711* 0.903  0.735* 

2 0.945  0.646* 0.920  0.610* 0.945  0.646* 

3 0.938  0.654* 0.901   0.593** 0.907 0.543 

4 0.898  0.700* 0.848  0.663* 0.858  0.625* 

5 0.880  0.620* 0.837  0.633* 0.866  0.620* 

6 0.897  0.628* 0.831  0.641* 0.835 0.603 

7 0.947 0.558 0.814  0.649* 0.728  0.623* 

8 0.927 0.540 0.741 0.618 0.649 0.592 

  

 Real WTI Price of Crude Oil 

1 0.901  0.699* 0.845  0.687* 0.856 0.711* 

2 0.949  0.646* 0.914  0.622* 0.971 0.659* 

3 0.945  0.654* 0.910  0.593* 0.909  0.593** 

4 0.902  0.663* 0.873  0.650* 0.856  0.638** 

5 0.893  0.608* 0.869 0.570 0.890 0.608* 

6 0.908  0.628* 0.847  0.628* 0.864  0.603** 

7 0.961 0.584 0.895 0.546 0.780 0.623* 

8 0.933 0.566 0.833 0.618 0.706 0.632* 

 

NOTES: We consider five forecasting models based on monthly data: (1) a VAR forecast, (2) a forecast based on non-oil 
industrial commodity prices, (3) a forecast based on oil futures prices, (4) a forecast based on the spread of product prices 
relative to the price of crude oil, and (5) a forecast based on U.S. crude oil inventories. All forecasts are generated recursively 
from data subject to real-time data constraints. Boldface indicates improvements relative to the no-change forecast. * denotes 
significance at the 5% level and ** at the 10% level based on the Pesaran and Timmermann (2009) test for the null hypothesis of 
no directional accuracy. The statistical significance of the MSPE reductions cannot be assessed because none of the currently 
available tests of equal predictive accuracy applies in this setting. 
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Table 5: Selected real-time forecast paths for the U.S. refiners’ acquisition cost for crude oil imports 

 

Example 1: 2000.IV 1999 2000 2001 2002 

  3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 

Real  Pooled 20.58 23.84 27.44 26.91 29.33 28.82 23.69 23.21 22.61 22.47 23.46 

EIA 20.54 23.85 27.41 26.94 29.33 31.06 30.69 29.56 27.61 24.94 N.A. 

Actual 20.57 23.83 27.44 26.94 29.32 28.30 23.93 23.46 22.57 16.61 18.77 

Nominal Pooled 19.75 23.04 26.79 26.52 29.12 28.82 23.90 23.61 23.18 23.23 24.45 

EIA 19.70 23.01 26.84 26.55 29.11 31.06 30.94 30.04 28.29 25.76 N.A. 

Actual 19.75 23.04 26.79 26.52 29.12 28.30 24.16 23.86 23.01 16.92 19.19 

Example 2: 2008.III 2007 2008 2009 

  2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 

Real  Pooled 66.24 74.26 85.84 92.46 117.92 112.24 88.63 91.96 98.87 100.14 99.50 

EIA 66.05 74.16 85.57 92.43 116.93 114.01 111.25 117.16 119.16 116.31 112.52 

Actual 66.10 74.16 85.73 92.30 117.58 111.78 52.90 41.67 59.01 67.48 73.67 

Nominal  Pooled 62.41 70.45 82.45 89.75 115.90 112.24 89.26 93.37 101.16 103.28 103.42 

EIA 62.30 70.38 82.44 89.73 115.70 114.01 112.13 119.02 122.00 120.02 117.01 

Actual 62.41 70.45 82.45 89.73 115.83 111.78 51.84 40.45 57.57 66.40 73.04 

Example 3: 2009.II 2008 2009 2010 

  1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 

Real  Pooled 89.79 114.66 108.98 51.51 40.55 59.76 73.79 69.60 72.88 76.03 76.92 

EIA 89.74 114.13 110.26 52.82 40.64 55.77 63.57 62.09 61.64 61.85 62.36 

Actual 90.06 114.73 109.08 51.63 40.67 57.57 65.85 71.89 73.87 73.10 71.83 

Nominal  Pooled 89.75 115.90 111.79 51.84 40.45 59.76 74.34 70.63 74.50 78.29 79.79 

EIA 89.74 115.93 112.85 52.31 40.46 55.77 64.03 63.00 63.00 63.67 64.66 

Actual 89.73 115.83 111.78 51.84 40.45 57.57 66.40 73.04 75.19 74.36 73.31 
  NOTES:  Nowcasts are shown in bold; forecasts in italics. By construction the nominal and the real price coincide in the last nowcast period. 
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