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[1] Reactive transport modeling is often used in support of bioremediation and chemical
treatment planning and design. There remains a pressing need for practical and
efficient models that do not require (or assume attainable) the high level of
characterization needed by complex numerical models. We focus on a linear systems or
transfer function approach to the problem of reactive tracer transport in a heterogeneous
saprolite aquifer. Transfer functions are obtained through the Bayesian geostatistical
inverse method applied to tracer injection histories and breakthrough curves. We employ
nonparametric transfer functions, which require minimal assumptions about shape and
structure. The resulting flexibility empowers the data to determine the nature of the
transfer function with minimal prior assumptions. Nonnegativity is enforced through a
reflected Brownian motion stochastic model. The inverse method enables us to quantify
uncertainty and to generate conditional realizations of the transfer function. Complex
information about a hydrogeologic system is distilled into a relatively simple but
rigorously obtained function that describes the transport behavior of the system between
two wells. The resulting transfer functions are valuable in reactive transport models based
on traveltime and streamline methods. The information contained in the data,
particularly in the case of strong heterogeneity, is not overextended but is fully used. This
is the first application of Bayesian geostatistical inversion to transfer functions in
hydrogeology but the methodology can be extended to any linear system.
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1. Introduction

[2] In situ bioremediation depends on the ability to
stimulate biomass in the subsurface through the delivery
and mixing of nutrients and the controlled flow of contam-
inated groundwater. Modeling the movement of water and
solutes through the aquifer provides the information vital
for manipulation of subsurface conditions. The traditional
approach to modeling groundwater flow and transport
requires finding appropriate boundary and initial conditions
and parameters, and applying them to mathematical models
of groundwater flow and transport. This is the most com-
prehensive approach to effective management and has been
the topic of many advances in hydrogeology in recent
decades. However, the development and parameterization
of a finely resolved 3-D model of a specific site remains
expensive and time consuming.
[3] There is a pressing need for practical and efficient

methods that allow for accurately simulating specific prob-
lems without the massive effort required for a highly
resolved 3-D model. Such methods provide valuable
management information within a reasonable budget and
time horizon. At the simplest, one may assume a homoge-

neous domain governed by a 1-D analytical solution using a
representative single set of parameters. However this simple
model can conceal features important to accurate represen-
tation of the subsurface. A more general method is the
transfer function (linear systems) approach [e.g., Jury and
Roth, 1990]. Transfer functions represent the response of a
system to an infinitesimally short duration input with unit
magnitude (a Dirac pulse). The transfer function is equiv-
alent to a breakthrough curve resulting from such a Dirac
input. Chemical and biological reactions can be modeled
based on interpreting breakthrough curves as traveltime
probability density functions (pdfs) that provide contact
and residence time information [e.g., Simmons et al.,
1995; Kaluarachchi et al., 2000]. Efficient traveltime for-
mulations [e.g., Cvetkovic and Dagan, 1994; Crane and
Blunt, 1999; Vasco and Datta-Gupta, 1999; Cirpka and
Kitanidis, 2000, 2001] enable the use of transfer functions
as pdfs for use in modeling transport. Typically, transfer
functions are found by assuming a predetermined shape
[e.g., Luo et al., 2006a]. This constraint can lead to
oversimplification of the traveltime distribution in highly
heterogeneous aquifers.
[4] Within the context of transfer function and traveltime

research, our work provides a method that is less restrictive
regarding assumptions of transfer function shape. Further-
more, it is stochastic, enabling the consideration of uncer-
tainty. The development was motivated by a multiple-well
recirculation tracer test conducted in a heterogeneous frac-
tured saprolite aquifer. Data available include the injection
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history of tracers and the observed breakthrough curves at
monitoring and extraction wells. The breakthrough curves
can be interpreted as the convolution of the input signal and
a transfer function corresponding. The transfer function can
be used as a pdf for reaction modeling. From the known
injection and observation data we can calculate the transfer
function through deconvolution, cast as an inverse problem.
[5] A parametric approach using gamma distributions

was initially applied to these data [Luo et al., 2006a]. The
key advantages to the parametric approach are computa-
tional efficiency and simplicity. Gamma distributions are
unimodal functions of simple shape. There are cases,
however, where multiple peaks in the transfer function
may be encountered. The nonparametric approach allows
the data to define the nature of modes and the complexity
and roughness in the transfer function rather than prior
assumptions made by the investigator. We will show that the
method presented in this paper can recover a bimodal
transfer function without any prior knowledge of multiple
modes. Naturally, the advantages of generality afforded by
nonparametric methods come at a computational cost.
[6] We constrain the transfer function to be nonnegative

to obtain realistic confidence intervals and a best estimate
that does not include physically impossible negative values.
Furthermore, conditional realizations may be generated that
honor the constraint; each of which can be used as the basis
of a reactive model for Monte Carlo applications. This
constraint is implemented using the Gibbs sampler with a
reflected Brownian motion variogram characterizing the
prior covariance [Michalak and Kitanidis, 2004].

2. Background

[7] The transfer function method has a long history in
many areas, particularly signal and image processing [e.g.,
Liu and Liu, 1975; Box et al., 1994]. Hydrologic applica-
tions include the unit graph (later called ‘‘unit hydrograph’’)
runoff response of a watershed to rainfall [e.g., Sherman,
1932], the recharge response to infiltration [Besbes and de
Marsily, 1984], and the discharge of Karst systems due to
recharge [e.g., Long and Derickson, 1999; Dreiss, 1982].
[8] In these examples, as in the heterogeneous fractured

aquifer motivating this work, it is difficult to obtain the
parameters necessary to directlymodel a response to stimulus.
Monitoring the actual response to a known stimulus, however,
is relatively easy. The interpretation of such an experiment can
provide significant information about the underlying system.
[9] In linear systems the response due to an arbitrary

input can be modeled by superposition of multiple occur-
rences of the response to an input of infinitesimal duration
with unit magnitude (a Dirac pulse). The functional rela-
tionship between the unit input and its response is the
transfer function. The power of this approach is the ability
to predict the response of a complex system characterized
through a small amount of data. For the approach to be
valid, the system must behave as linear and time invariant.
These assumptions are discussed later.
[10] Most hydrologic linear systems applications employ

a parametric transfer function in which a shape is assumed
(e.g., lognormal, gamma, etc.) that can be described by a
few parameters. These parameters are commonly deter-
mined by minimizing a measure of the difference between
observations and simulated results calculated by convolu-

tion of the input and a transfer function. Fitting parameters
to an analytical solution of the ADE is similar to a
parametric transfer function deconvolution. Our method
uses deconvolution to calculate nonparametric transfer
functions in which fewer assumptions are made about the
shape of the transfer function. For example, the number of
modes and the nature of the tails may vary due to hetero-
geneity in an aquifer. Previous approaches have depended
on accounting for multiple modes by constraining the
solution to allow only one or two peaks in the transfer
function [e.g., Provencher, 1982; Neuman and de Marsily,
1976] and require the specification of their locations. The
ability to predict the locations of modes in the transfer
function implies a level of understanding of the hydro-
geology that may not be available in the early stages of an
investigation. An inappropriate conceptual model may
smooth out structure and inhibit the power of the data to
provide the maximal amount of information.
[11] Skaggs et al. [1998] presented a nonparametric

transfer function approach for vadose zone leaching. They
used linear basis functions, a second derivative smoothness
regularization term, and constrained the zeroth temporal
moment to be unity. Their initial deconvolution did not
impose a constrained number of modes in the transfer
function, but if initial results indicated multiple modes, a
statistical F test was used to determine whether constraining
the number of modes resulted in a more significant result.
[12] Deconvolution to find the transfer function is an ill-

conditioned inverse problem meaning small errors in mea-
surement can result in large oscillations of the transfer
function [e.g., Blank et al., 1971; Delleur and Rao,
1971a]. These oscillations are often suppressed through
regularization achieved either by enforcing smoothness or
by filtering. Regularization can be applied to the transfer
function, the input signal [e.g., Neuman and de Marsily,
1976], or both [e.g., Daboczi, 1998; Long and Derickson,
1999]. As explained in the next section, regularization is
employed in this work in the form of prior covariance.
[13] The key assumptions necessary to apply the transfer

function method are that the physics of the system are
described as linear and time-invariant. In essence, any
partial differential equation (PDE) with boundary and initial
conditions that allow for a Green’s functions solution meets
the linearity requirement.
[14] The governing equation for breakthrough curves of a

tracer in an aquifer is the general advection-dispersion
equation (ADE)

@C

@t
¼ �u � rC þr � DrCð Þ ð1Þ

where C is concentration, t is time, u is the vector of
velocities, and D is the dispersion tensor. Analytical
solutions for various boundary conditions including 1-D
step input [Ogata and Banks, 1961], 1-D Dirac instanta-
neous input [Sauty, 1980], and 2-D instantaneous input [De
Josselin De Jong, 1958] are linear in the initial injected
concentration or mass. Leij et al. [2000] presented Green’s
functions solutions for the ADE under various boundary
and initial conditions. All of these solutions assume an
initial concentration of zero. Since equation (1) is linear in
the parameters, all solutions in which the solution starts at
rest (i.e., concentration is zero) are themselves linear in the
parameters [Liu and Liu 1975, pp. 59–62].
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[15] The time invariance assumption requires that the
system response must not change over time. For an aquifer,
this means the properties such as hydraulic conductivity
must be constant and also that all boundary conditions
(including pumping rates of wells) must not change. These
assumptions presuppose a steady state system with regard to
flow. While this is restrictive, many remediation schemes
are operated at steady state for long periods of time. The
transfer function method is appropriate for such systems.

3. Problem Formulation

[16] The convolution integral simulates the response of a
linear and time-invariant system to a particular stimulus

y tð Þ ¼
Z t

0

x tð Þs t � tð Þdt ð2Þ

where y(t) is the response at time t, x(t) is the input
(stimulus) at time t, and s(t � t ) is the transfer function for
lag time t � t. In the example of a tracer test, y(t) is the
concentration breakthrough curve (BTC) at a monitoring
well and x(t) is the concentration history at an injection
well. We reiterate here that the transfer function is
calculated from data for a given set of boundary and initial
conditions. For example, a well field in which the pumping
rates are held constant, and regional flow and recharge do
not change. The transfer function calculated using the BTC
at an observation well and the input function of an injection
well characterizes the flow and transport between those two
wells. To characterize the behavior throughout a well field,
a transfer function must be calculated for each such pair.
[17] For numerical implementation the convolution inte-

gral must be expressed as a linear system of equations

y ¼ Hs ð3Þ

where y is the known n � 1 vector of measurements, H is
the sensitivity matrix (n � m) expressing the quadrature of
the convolution integral and incorporating the known x(t)
input function and s is a vector (m � 1) of unknowns (the
transfer function s(t) in this case). The vectors y and s and
the discretized input function x are mapped in time to the
same discretization Dt. To simplify the formulation, we use
the commutative property of the convolution integral to
restate equation (2) as

y tð Þ ¼
Z t

0

s tð Þx t � tð Þdt: ð4Þ

[18] We express the quadrature using the trapezoidal rule,

H n�mð Þ ¼

1
2
x t1ð ÞDt 0 � � � 0 0

1
2
x t2ð ÞDt 1

2
x t1ð ÞDt � � � 0 0

..

. ..
. . .

. ..
. ..

.

1
2
x tm�1ð ÞDt x tm�2ð ÞDt � � � 1

2
x t1ð ÞDt 0

1
2
x tmð ÞDt x tm�1ð ÞDt � � � x t2ð ÞDt 1

2
x t1ð ÞDt

0 1
2
x tmð ÞDt � � � x t3ð ÞDt 1

2
x t2ð ÞDt

..

. ..
. . .

. ..
. ..

.

0 0 � � � 1
2
x tmð ÞDt 1

2
x tm�1ð ÞDt

0 0 � � � 0 1
2
x tmð ÞDt

2
666666666666666664

3
777777777777777775

where Dt is the same discretization step used for all vectors
in the problem. The measurements (y(t)) and the unknown
transfer function (s(t)) are discretized as vectors

y ¼ y t1ð Þ � � � y tnð Þ½ 
T ð6Þ

s ¼ s t1ð Þ � � � s tmð Þ½ 
T ð7Þ

where the superscript [ ]T indicates matrix or vector
transpose.
[19] In a specific application, there is no guarantee that

measured functions will have a constant discretization so all
observations are linearly interpolated to the same discreti-
zation. Each value of y corresponding to an actual obser-
vation is mapped to the nearest interpolated point on the
grid. All other interpolated values of y are disregarded. Thus
the dimension of y is the same as the number of actual
observations (n). The matrix H from equation (5) must also
be trimmed by removing each row for which an observation
of y is not available. The interpolated values of x remain
as part of the quadrature for the convolution integral
implementation.
[20] The length of the vectors x and y is dictated by the

availability of measurements. The length of s, called mem-
ory, must be specified. Commonly the lengths of all three
vectors are set to be the same. In many cases, however, s
will tend to zero much sooner than x or y. Extending s
artificially increases the computational expense and the
degrees of freedom which can introduce undesirable noise.
In this work, the memory was specified based on observa-
tions of the length of the nonzero part of s in the uncon-
strained case.
[21] In a perfectly linear system without any errors

associated with model selection or measurement, the
solution would simply require the inverse (or pseudoinverse
if m 6¼ n) of the H matrix in equation (3). In physically
realistic systems, however, there are two sources of uncer-
tainty: intrinsic variability inherent to the physical frame-
work; and epistemic uncertainty due to the inability of our
models to perfectly simulate nature, measurement sparsity
and measurement errors [Rubin, 2003, p. 4]. Intrinsic
variability is irreducible without infinitesimal discretization
and is accounted for by the prior covariance. Epistemic
uncertainty can be reduced by collecting more accurate,
appropriate, or numerous measurements. Epistemic errors
are often called measurement errors, but that terminology
implies that they are only a function of inaccurate measure-
ments when, in fact, they also result from imperfect con-
ceptual models. In the measurement equation (equation (3))
we therefore add an epistemic error term to account for this

y ¼ Hsþ v ð8Þ

where v is a vector of epistemic errors, modeled as a
random process. Next we discuss the solution to obtain a
best estimate and confidence intervals for s.

4. Solution Method

[22] The Bayesian geostatistical inverse method has sev-
eral advantages. Primarily, the method is much better than

ð5Þ
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other methods in allowing the data to speak for themselves.
The only features imposed upon the shape of the break-
through curve are the nonnegativity constraint, some degree
of continuity due to selection of the prior covariance and a
limit to the duration of the transfer function. The few
‘‘structural’’ parameters required by the method are opti-
mized using recursive cross-validation techniques so that
they too are determined by the behavior of the data. These
impositions are much less restrictive than choosing the
exact shape of the function as is done in parametric
approaches.

4.1. Bayesian Inversion Method

[23] Bayes’ rule states

p00 sð Þ / p yjsð Þp0 sð Þ ð9Þ

where p00 (s) is the posterior probability density function
(pdf), p0 (s) is the prior pdf, and p(y|s) is the likelihood
function. We start by assuming the epistemic errors v in the
measurement equation (equation (8)) are normally distrib-
uted. Without imposing a nonnegativity constraint, p00(s) can
be solved for in closed form using cokriging equations
[Kitanidis and Vomvoris, 1983; Kitanidis, 1995]. However,
in the case of transport in porous media, the transfer
function must be constrained to be nonnegative in all places
because its units are concentrations per unit input
concentration and negative concentrations are physically
impossible.
[24] In the Bayesian approach, the role of the prior pdf

(p0(s)) is to enforce constraints on the shape of s including
smoothness, continuity and nonnegativity. The role of the
likelihood function is to characterize the misfit of the model
to the data for each estimate of s. Therefore nonnegativity is
enforced through the prior pdf. Methods to enforce non-
negativity include the power transformation [Kitanidis,
1997] and the method of Lagrange multipliers [Gill et al.,
1981]. These methods may provide reasonable best esti-
mates, but render the equations nonlinear and may produce
unreasonable confidence intervals.
[25] In the prior pdf, assume a linear generalized covari-

ance function (Q)

Q ti; tjjq
� 	

¼ �q ti � tj


 

 ð10Þ

where q is the nonnegative slope and jti � tjj is the distance
(in time) between the ith and jth measurements. The linear
generalized covariance function is chosen because of its
maxentropic properties and versatility, enforcing continuity
but not smoothness; this choice enforces very little prior
assumption of shape.
[26] With a linear semivariogram we constrain the pdf of

s to be nonnegative by reflecting about zero using the
method of images. This method is summarized here; for
the full derivation, see [Michalak, 2003; Michalak and
Kitanidis, 2003, 2004]. The result is a reflected Gaussian
distribution analogous to Brownian motion which is a
Markov process, continuous in time and space with a
stationary and memoryless transition probability. This
means the pdf of s at time t is based only on the value of
s at the precedent time. Employing the reflected Brownian
motion model for the prior pdf renders the posterior pdf

non-Gaussian. Markov chain Monte Carlo (MCMC) meth-
ods allow for the sampling of any multidimensional pdf.
The MCMC method selected for this case is the Gibbs
sampling algorithm. Prior applications of the MCMC
method in Earth science inverse modeling using both
the Gibbs sampler [Geman and Geman, 1984] and the
Metropolis-Hastings algorithm [Metropolis et al., 1953;
Hastings, 1970] include those of Mosegaard and Tarantola
[1995], Oliver et al. [1997], Eidsvik et al. [2002], and Omre
and Lodoen [2004].
[27] The prior pdf can be expressed as the product of a

Markov chain

p0 sð Þ ¼
Ym
i¼2

p sijsi�1ð Þ ð11Þ

where m is the total number of unknown parameters (i.e.,
the discretized values of s) and

p sijsi�1ð Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pq ti � ti�1ð Þ

p exp � 1
2

si�si�1ð Þ2
2q ti�ti�1ð Þ

� �
þ exp � 1

2

siþsi�1ð Þ2
2q ti�ti�1ð Þ

� �
2
4

3
5 for si � 0

ð12aÞ

p sijsi�1ð Þ ¼ 0 for si < 0: ð12bÞ

[28] Assuming the epistemic errors are independent and
uncorrelated, their covariance is

R ¼ s2RI ð13Þ

where sR
2 is the epistemic error variance and I is an n� n

identity matrix. Further assuming the errors are normally
distributed with zero mean, the likelihood function is

p yjsð Þ / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Rð Þ

p exp � 1

2
y�Hsð ÞTR�1 y�Hsð Þ

� �
: ð14Þ

[29] The posterior pdf is then constructed by multiplying
the new prior pdf (equation (11)) with the likelihood
function (equation (14))

p00 sjyð Þ /
Ym
i¼2

p sijsi�1ð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Rð Þ

p

� exp � 1

2
y�Hsð ÞTR�1 y�Hsð Þ

� �
: ð15Þ

4.2. Summary of Gibbs Sampler Algorithm for
Conditional Realizations and Confidence Intervals

[30] The Gibbs sampling algorithm is a form of substitu-
tion sampling based on the definition of conditional prob-
ability using marginal distributions. In the two dimensional
case, the Gibbs sampling algorithm is strictly substitution
sampling, but in higher dimensions the two methods diverge
somewhat. An excellent discussion of the Gibbs sampler
algorithm was presented by Casella and George [1992].
Generally, a marginal posterior pdf is derived such that the
probability of one element of s, referred to as si, can be
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calculated conditional on the other elements. This is done as
a Markov Chain, removing each element in turn to calculate
its marginal conditional on the other elements. Optimal
structural parameters for the epistemic uncertainty (sR

2)
and the variogram parameter (q) are found using the
recursive cross validation technique in the expectation-
maximization (EM) algorithm [Dempster et al., 1977].
More detail of the Gibbs sampler for this application is
presented in the auxiliary material.1

[31] In several parts of the algorithm described thus far,
numerical instability can arise from the disparity of scales in
the independent and dependent parameter units. Particularly
when m becomes large, the product of m values of the order
of the dependent variable units may result in very large or
very small numbers. As a result, it is desirable to transform
the entire problem to a normalized space where all values
are in the region of unity.

5. Verification Examples

[32] Several synthetic examples were chosen to verify the
forward convolution process and to test the deconvolution
method under controlled conditions with known outcomes.

5.1. Deconvolution Without Errors

[33] A Gaussian and a chapeau (hat) example were
chosen to verify deconvolution using the inverse method.
Both examples are generally smooth with continuous first
(and higher for the Gaussian) derivatives. The Brownian

motion variogram is not able to take advantage of such
information and is quite rough at the small scale. Addition-
ally, the chapeau function contains a sharp discontinuity
which should be challenging to reproduce. In both cases, the
convolution of the prespecified x(t) and s(t) functions was
calculated using the MATLAB function conv. The resulting
convolution y(t) was used in conjunction with x(t) as data
simulating the input and response functions of a physical
process (in a tracer test, x(t) is the injection history, and y(t)
is the breakthrough curve observed in a monitoring or
pumping well).
[34] The results for the Gaussian example are shown for

Dt = 0.1 and Dt = 0.25 in Figures 1a and 1b, respectively.
For these simulations, 50,000 realizations were used. Ex-
cellent agreement is seen between the true transfer function
and the best estimate. The posterior variability indicated by
the confidence intervals is reasonable considering that the
linear variogram enforces continuity but not local smooth-
ness. Therefore any individual realization is expected to
have high-frequency variability about the mean.
[35] The results for two chapeau examples are shown for

Dt = 0.1 and Dt = 0.2 in Figures 2a and 2b, respectively. As
above, 50,000 realizations were employed. As in the Gauss-
ian case, the best estimate makes a reasonable reproduction
of the actual function. The corners are smoothed somewhat
and the confidence intervals are wider than in the Gaussian
case. The wider confidence intervals are expected due to the
behavior of the linear variogram which has a difficult time
reproducing a smooth curve with only a single break in
slope. We reiterate that the linear variogram was chosen for
its flexibility and tractability and this example was chosen
to push it to its practical limit.

Figure 1. Deconvolution for the Gaussian example.
(a) Dt = 0.1 and (b) Dt = 0.25. The dashed line is the
actual transfer function (s(t)), the solid line is the best
estimate (Hs) using 50,000 realizations, and the dotted lines
are the 95% confidence interval.

1Auxiliary material is available at ftp://ftp.agu.org/apend/wr/
2005wr004576.

Figure 2. Deconvolution for the chapeau example.
(a) Dt = 0.1 and (b) Dt = 0.2. The dashed line is the actual
transfer function (s(t)), the solid line is the best estimate
(Hs) using 50,000 realizations, and the dotted lines are the
95% confidence interval.
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5.2. Analysis of Confidence Intervals

[36] Finding reasonable posterior confidence intervals is,
in part, a function of the number of conditional realizations
used in the deconvolution. Too few realizations yield

artificially narrow confidence intervals indicating that the
algorithm has not adequately sampled parameter space.
There should be a critical number of realizations after which
parameter space is adequately traversed and the statistics of
the posterior estimates should be stable. For both the
Gaussian and chapeau cases, the behavior of the confidence
intervals was evaluated as a function of number of condi-
tional realizations. The metric (k) to evaluate the character-
istics of the confidence intervals was based on the L2 norm
of the 95% confidence interval relative to the L2 norm of the
best estimate

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝUCL � ŝLCLð ÞT ŝUCL � ŝLCLð Þ

q
ffiffiffiffiffiffiffi
ŝT ŝ

p ð16Þ

where ŝ is the best estimate, ŝUCL is the 95% upper
confidence limit on the best estimate, and ŝLCL is the lower
95% confidence limit on the best estimate. Figure 3 shows
the evolution of k over the number of realizations used in
the inverse problem. On the basis of these results, for the
synthetic examples, k becomes stable around 5000 itera-
tions. To be conservative, 10,000 iterations is considered a
reasonable value for most problems. The magnitude of k
stabilizes to a lower level when given more degrees of
freedom, albeit at a slower rate. Furthermore, k is lower in
the case where the model is more appropriate for a linear
variogram in the prior (i.e., k is lower for the Gaussian case
than for the chapeau case).

Figure 3. Plot of the behavior of the normalized 95%
confidence interval (k) as a function of the number of
conditional realizations for several synthetic cases.

Figure 4. Synthetic functions with imposed errors for the Neuman and de Marsily [1976] synthetic
example. Dt in all cases is 0.1. (a) Input function (x(t)) without error (solid line) and with errors (dots).
The dashed line is the true impulse response function (s(t)). Note that (s(t)) is at a much smaller scale,
read on the right y axis. (b) Output function (solid line): y(t) = x(t) * s(t), where * indicates convolution
and the true x(t) was used. The dots indicate y(t) with errors introduced. Details of the nature of the errors
are in the text.
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5.3. Neuman and de Marsily [1976] Example

[37] Neuman and de Marsily [1976] presented a paramet-
ric programming example in which good results were
obtained for deconvolution by constraining the location
and number of modes and by enforcing nonnegativity.
The example they focused on was adapted from Delleur
and Rao [1971b]. Oscillatory noise was introduced through
errors particularly in the output function. They smoothed the
transfer function to suppress noise. We reexamine this
function both because analytical solutions are available for
x(t), y(t) and s(t), and to evaluate the Bayesian geostatistical
inverse method’s ability to suppress the noise without
assuming a known number or location of modes.
5.3.1. Error-Free Neuman and de Marsily Case
[38] The input function was given as

x tð Þ ¼ t 1� tð Þe 1�tð Þ e8 � 41
� 	

for 0 < t < 1 ð17Þ

and the transfer function was given as

s tð Þ ¼ t e 8�tð Þ � 1
� �

= e8 � 41
� 	

for 0 < t < 8: ð18Þ

[39] The output function y(t) = x(t) * s(t) was given
explicitly as

y tð Þ ¼ e 9�tð Þt3 2� tð Þ
12

þ e 1�tð Þ t2 þ 3t þ 4
� 	

� e 4�tð Þ for 0 � t < 1

ð19aÞ

y tð Þ ¼ e 9�tð Þ 2t � 1ð Þ
12

þ 11� 3tð Þ � e 4�tð Þ for 1 � t < 8 ð19bÞ

y tð Þ ¼ e 9�tð Þ

12

12t2 � 130t þ 335�
t � 8ð Þ2 152� 14t � t2ð Þ

� �
þ 11� 3tð Þ for 8 � t � 9:

ð19cÞ

The functions are shown as the solid and dashed lines in
Figures 4a and 4b.
[40] The deconvolution results with 10,000 realizations

are presented in Figure 5a in which the solid line is the
best estimate of s(t), the dotted lines show the upper and
lower 95% confidence limits, and the dashed line is the
true value for s(t). The function was estimated in the
range 0 � t � 8 with Dt = 0.1. The estimate of s(t)
exactly overlaps the true value with tight confidence
intervals showing that, in the absence of epistemic error,
the method is able to reproduce s(t) exactly in this
example.
5.3.2. Neuman and de Marsily Case With Errors
[41] Following Neuman and de Marsily [1976], random

noise was added to x(t) and a systematic low-frequency
noise was added to y(t). The equations for the signal
corruption were not reported in their paper, so an estimate
was made based on visual inspection of their Figure 3 and
the description in the paper.

Figure 5. Transfer function calculated for the Neuman and de Marsily [1976] example. (a) Error free
case and (b) case with introduced errors.
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[42] The equations for the corrupted signals follow:

xe tð Þ ¼ x tð Þ þ vx tð Þ 8t ð20Þ

ye tð Þ ¼ y tð Þ þ uy tð Þ sin 2ptð Þ8t ð21Þ

where xe(t) and ye(t) are the values of x(t) and y(t)
(calculated from equations (17) and (19) with errors
introduced, vx(t)

�N(0,123), where N(m,s2) is a Gaussian
distribution with mean m and variance s2, and uy(t) is a
uniformly distributed random value between 0 and 7. The
values for the period of the oscillatory errors in ye(t) and
the amplitude in both functions were determined such that
the errors would be close (by visual inspection) to those
measured on Figure 3 of Neuman and de Marsily [1976].
The original paper specified that the error in y(t) was only
added to the descending limb, but we also applied errors to
the ascending limb. Negative values in xe(t) and ye(t) were
set to zero.
[43] Figure 5b shows the results of the deconvolution

with 10,000 realizations; the solid line is the best estimate of
s(t), the dotted lines show the upper and lower 95%
confidence limits, and the dashed line is the true value for
s(t). The best estimate shows some oscillations of similar
character to the best results obtained by Neuman and de
Marsily [1976]. However, we did not specify the number or
location of modes (whereas the previous work specified the
location at t = 1). In the optimization for the structural
parameters, the epistemic error value (sR

2) was two orders of
magnitude higher than in the error-free case.
[44] This example shows the robustness of the present

method to handle errors in the input and output functions,
and its ability to correctly identify the location and magni-

tude of the mode. Furthermore, the optimal values of the
structural parameters reproduced the smoothness and gen-
eral shape of s(t) with a minimum of prior assumptions.

5.4. Bimodal Example

[45] The final synthetic example employed a bimodal
transfer function to stretch the method and verify that both
modes could be accurately calculated. Using a Gaussian
input function, it is difficult to conclude from visual
inspection of the output function that a bimodal transfer
function is even appropriate. The deconvolution was per-
formed in the error-free case and in a case with extreme
error imposed on both the input and output functions.
5.4.1. Error-Free Bimodal Case
[46] The input function (x(t)) is a Gaussian function

x tð Þ ¼ N 1:5; 0:5ð Þ � 1; 000 for 0 < t < 3: ð22Þ

[47] The transfer function (s(t)) is the superposition of
two Gaussian functions

s tð Þ ¼ N 1; 0:2ð Þ þ N 2; 0:2ð Þ
2

for 0 < t < 3: ð23Þ

[48] The output function (y(t)) is calculated by the
numerical convolution of x(t) and s(t)

y tð Þ ¼ x tð Þ * s tð Þ for 0 < t < 6: ð24Þ

The functions are shown as the solid and dashed lines in
Figures 6a and 6b.
[49] Figure 7a shows the results of the deconvolution

with 10,000 realizations in which the solid line is the best
estimate of s(t), the dotted lines show the upper and lower

Figure 6. Synthetic functions with imposed errors for the bimodal synthetic example. Dt in all cases is
0.1. (a) Input function (x(t)) without error (solid line) and with errors (dots). The dashed line is the
true impulse response function (s(t)). Note that (s(t)) is at a much smaller scale, read on the right y axis.
(b) shows the output function (solid line): y(t) = x(t) * h(t) where * indicates convolution, and the true x(t)
was used. The dots indicate (y(t)) with errors introduced. Details of the nature of the errors are in the text.
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95% confidence limits, and the dashed line is the true value
for s(t). The fit is remarkable, with both modes estimated at
the correct locations and magnitudes. The confidence inter-
vals are also reasonable allowing for some variability in the
conditional realizations, but all conditional realizations
would retain the bimodal character with the second mode
smaller than the first.
5.4.2. Bimodal Case With Errors
[50] Building on the success of the error-free results, we

stretched the method by imposing error on both the input
and output functions. In many cases, the input function is
considered known without error while epistemic error is
assumed in the acquisition of the output function. In
practice, however, the same measurement technique is
likely used to measure x(t) and y(t), so errors can be
introduced in either case. The main consequence of this
assumption is that the forward model (expressed as the H
matrix) is formulated using x(t), so errors are introduced
even in the problem formulation.
[51] The error-free version of x(t) was used to make an

error-free version of y(t) using equation (24), and then error
was introduced on x(t) and y(t).
[52] The errors were normally distributed random values

with mean zero and standard deviation scaled to the value of
the function and added point by point

xe tð Þ ¼ x tð Þ þ vx tð Þ 8t ð25aÞ

ye tð Þ ¼ y tð Þ þ vy tð Þ 8t ð25bÞ

where xe(t) and ye(t) are the values of x(t) and y(t) with errors

i n t r o d u c e d , vx tð Þ�N 0; ðx tð Þ=15ð Þ2Þ, a n d
vy tð Þ�N 0; ðy tð Þ=10ð Þ2Þ. Negative values in xe(t) and ye(t)

were set to zero.

[53] The results of the deconvolution with 10,000 real-
izations are presented in Figure 7b. As in the error-free case,
remarkable agreement with the actual transfer function is
seen. The errors at the peaks of xe(t) and ye(t) shifted the
peaks of the transfer function. Nonetheless, the first peak is
consistently higher than the second and their locations are
quite close to the actual values. As expected, the confidence
intervals are wider due to a higher value for the epistemic
error as calculated using the EM method. The optimal value
for the variogram slope (q) is similar to the error-free case,
but the epistemic error (sR

2) is nearly two orders of magni-
tude higher.
[54] The bimodal case presented was arbitrary, but such a

transfer function could arise in geologically realistic envi-
ronments, particularly a case with two high-conductivity
channels meandering through lower-conductivity floodplain
deposits.
5.4.3. Bimodal Case Compared With
Gamma Approach
[55] To illustrate the flexibility of the nonparametric

method relative to a popular parametric method we perform
the deconvolution of the bimodal transfer function without
errors constraining the estimated transfer function to be a
three-parameter gamma distribution of the form

s tð Þ ¼ b
qaG að Þ t

a�1 exp � t

q

� �
ð26Þ

where a is the shape parameter, b is the mass recovery
parameter, q is the scale parameter, and G (a) is the single-
parameter gamma function defined as

G að Þ ¼
Z 1

0

xa�1 exp �xð Þdx: ð27Þ

[56] The actual input, transfer, and output functions were
created using Equations (22)–(24)). Deconvolution was
performed by minimizing the objective function

J ¼ y�Hsð ÞT y�Hsð Þ ð28Þ

which is the least squares criterion on misfit of the model
(Hs) relative to the measurements (y). The three parameters
a, b and q were fit in the least squares minimization.
Figure 8a shows the optimal transfer function when
constrained to be a gamma distribution in the bimodal
case. The area under the curve of the gamma transfer
function is similar to the bimodal, and Figure 8b shows that
the output function y(t) is reproduced very well. This
highlights the danger in making conclusions based simply
on least squares fitting of an arbitrary function. It would be
tempting to conclude that, based on reproduction of y(t), the
gamma transfer function is a good fit to the actual transfer
function. This, however, could mask an important finding,
such as a channel or a mobile-immobile flow condition that
the multimodal transfer function indicates.

6. Application to Field Tracer Test Data

[57] This work was motivated by an ongoing bioremedi-
ation experiment at the Field Research Center of the U.S.
Department of Energy Natural and Accelerated Bioremedi-

Figure 7. Transfer function calculated for bimodal
example. (a) Error-free case and (b) case with introduced
errors.
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ation Research (NABIR) Program at the Y-12 National
Security Complex in Oak Ridge, Tennessee. A nested
recirculation system consisting of four pumping wells is
in use to stimulate in situ microbial reduction of uranium
from a mobile to a less mobile form (Figure 9) [Wu et al.,
2006]. The nested cell was implemented to create a recir-
culation zone (the inner loop) that is relatively isolated from

the flow and geochemical conditions outside the outer loop
[Luo et al., 2006b]. Two injection wells, FW104 and FW24,
were injecting at 0.4 and 0.8 L/min, respectively, and two
extraction wells, FW103 and FW26, were each extracting
at 0.4 L/min The outer loop injection rate (in FW24) was
intentionally higher than the extraction rate to ensure that
any leakage from the outer loop into the inner loop was

Figure 8. (a) Results of deconvolution for bimodal example without errors constraining s(t) to be a
gamma function. (b) Reproduction of y(t) using the estimated transfer function constrained to be a gamma
in the bimodal example case.

Figure 9. Schematic plan view of the nested dipole recirculation well field at the NABIR FRC in Oak
Ridge, Tennessee. FW024 and FW104 are injection wells, and FW026, FW103, and FW105 are
extraction wells. Tracer was injected in FW104 and observed in the multilevel sampler (MLS) wells,
FW100, FW101, and FW102, and in the two main extraction wells, FW026 and FW103. Extraction from
FW105 is for operational reasons related to the aboveground treatment system but is shown here only
because it impacts the flow field. Lines with arrows indicate streamlines, and thick solid lines indicate
separation streamlines delineating areas of recirculation, capture, and release.
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injected water rather than native formation water. Flow
occurs in a narrow band of highly fractured saprolite that
dips at approximately 30
 [Solomon et al., 1992; Fienen,
2005].

6.1. Joint Tracer Test

[58] We conducted a joint tracer test injecting bromide
and ethanol to investigate the transport of bromide and the
first-order degradation (consumption) rate of ethanol. Both
tracers were injected into FW104 for 360 min. The injection
histories are presented in Figure 10. The tracers were fully
mixed along the screened interval with a recirculation pump
and the rest of the well was isolated using a packer. Samples
were collected in the injection well to record the input
function (x(t) ) and in eight observation and pumping wells
to provide breakthrough curves (y(t)). Measurements were
collected for 10,700 min for bromide and 1300 min for
ethanol. The tracer response was most pronounced in
multilevel sampling wells FW101-2 and FW102-3 and
much weaker in FW101-3 and FW102-2. Several other
multilevel sampling locations are available but were mea-
sured very infrequently due to negligible response. These
results are consistent with a previous tracer test, and the
breakthrough curves for the four monitoring wells and

extractions well FW26 are shown in Figure 10 for bromide
and ethanol.
[59] Water extracted from the inner loop (FW26) was

reinjected in FW104 after passing through the aboveground
treatment system. The treatment system was expected to
remove ethanol through stripping but not bromide, so the
tail of the bromide injection history of FW104 is fatter. This
is accounted for in the deconvolution, as would a more
extreme case in which multiple peaks could be observed as
recirculating pulses were reinjected. Water extracted from

Figure 10. Injection history and breakthrough curves for bromide (conservative) and ethanol (reactive)
during the NABIR FRC tracer test in October 2004.

Table 1. Reaction Rates and Discretization Parametersa

Well k
Dt
Br

Dt
EtOH

Maximum t
Br

Maximum t
EtOH

FW 101-2 0.12 hr�1 20 20 1,000 800
FW 101-3 0.13 hr�1 20 20 1,100 600
FW 102-2 N/A 40 N/A 3,000 N/A
FW 102-3 0.10 hr�1 20 20 1,100 700
FW 26 0.19 hr�1 80 40 8,000 1,000
FW 103 N/A 100 N/A 10,000 N/A

aAll times are in minutes except for the reaction rate, which is reported as
1/hr. N/A indicates ethanol data were incomplete, so only bromide analysis
was conducted.
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the outer loop (FW103) was also reinjected into the outer
loop at FW24. Prior to reinjection, this water was mixed in a
large tank that diluted any remaining bromide, so bromide
was not injected in FW24.
[60] The discretization, memory and first-order reaction

rates of ethanol are presented in Table 1. The transfer
functions are presented in Figures 11 and 12 for bromide
and ethanol, respectively. Discretization was selected to be
close to the highest sampling frequency. For each well pair,
the unconstrained transfer function was calculated with
memory equal to the maximal time for which x or y
measurements were available. Memory for the constrained
case was selected as a point beyond which the uncon-
strained transfer function was flat and near zero. In either
case, the transfer functions do not reach a concentration of
zero. The laboratory analytical methods never truly report a
value of zero, and the washout from the injection well
results in an initially steep, then asymptotic decline in
concentration on the trailing limb of the injection history.
Matrix diffusion and bromide recirculation may also con-
tribute to continued nonzero concentrations even after the
main pulse of tracers has passed.
[61] The strength of the transfer functions is highest

in monitoring wells FW101-2 and FW102-3, lower in
FW101-3 and FW102-2, and lowest in the extraction wells.
This is to be expected since the extraction wells pull tracer-
free water that dilutes the signal. Furthermore, FW26 (the
inner loop extraction well) captures more tracer than FW103
(the outer loop extraction well) indicating that the tracer is
largely contained within the inner loop, although there is
some leakage to the outer loop. The signal in the extraction
wells is also smeared more than the other wells due to
distance and greater number of flow paths traversed. Both
FW26 and FW103 show potential modes far out in their
tails. While it is possible that these are the result of noise (as
suggested by the wider confidence intervals in these

regions), it is also likely that delayed flow paths are
encountered by the extracted water as it is sampling a
greater diversity of flow paths.

6.2. First-Order Reaction Rate

[62] A two-tracer test can be conducted in which a
nonreactive tracer (CT) and a reactive tracer (CR) are
injected under the same flow conditions and their break-
through curves are analyzed. For example, in our applica-
tion to a field tracer study, first-order consumption of
ethanol was assumed while bromide was a conservative
tracer. Assuming 1-D flow along a streamline, equation (4)
can be restated in terms of input concentration (CT

in) and
breakthrough curve (CT)

CT tð Þ ¼
Z t

0

s tð ÞCin
T t � tð Þdt ð29Þ

[63] For the reactive tracer, if a first-order reaction rate
coefficient k is assumed, CR is calculated as

CR tð Þ ¼ exp �ktð ÞCT tð Þ ð30Þ

and the reaction rate is found as

k ¼ � d

dt
ln

CR

CT

� �
: ð31Þ

[64] The concentration histories of CR and CT are repre-
sented by the corresponding transfer functions obtained by
deconvolution. The results, shown in Table 1, are compa-
rable to results determined using a parametric transfer
function approach [Luo et al., 2006a]. These rates indicate
an estimation of the consumption of substrate only. To
model a more complicated nonlinear biotransformation

Figure 11. Transfer functions s(t) for bromide as a function of time. Note different scales for s(t) and
time in Figures 11a–11c versus Figures 11d–11f. The solid line is the best estimate of the transfer
function, and the dashed lines indicate the upper and lower 95% confidence intervals.
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processes, the transfer function for the conservative tracer
can be used with a stochastic-convective model.

7. Conclusions

[65] We show the robustness and utility of the Bayesian
geostatistical inverse method for the deconvolution of tracer
injection and breakthrough curves. The method presented
can be applied to any linear time-invariant system where an
input signal and output signal are both measured. The
transfer function can be interpreted as a pdf and used in
geochemical reactions to provide a more accurate solution
than, for example, assuming a 1-D solution with bulk
parameters. The shape of transfer functions can reveal
characteristics of the hydrogeology of the site such as
multiple major flow paths or channels expressed as multiple
modes, or mass transfer limitations expressed in the tails. A
comparison of transfer functions obtained with the same
boundary conditions at different times may indicate changes
in hydraulic conductivity due to biomass accumulation in
bioremediation experiments.
[66] We showed through synthetic examples that the

oscillatory errors plaguing previous transfer function
approaches to hydrologic problems are handled well
through the regularization provided by the prior covariance
model in the Bayesian inverse method when the structural
parameters are obtained optimally through the EM algo-
rithm. Furthermore, the bimodal example illustrated the
flexibility of the method. It is often difficult to guess the
location or even the number of the modes based on
inspection of data. A parametric transfer function approach
may therefore provide an inappropriate solution whereas the
nonparametric method presented here captures the multiple
modes accurately. A hydrogeologic example in which
multiple modes could be encountered is a braided channel
environment in which anastomosing of streams may occur
at different elevations such that even a 2-D numerical model
would likely fail to predict travel paths correctly. The need

for a highly resolved 3-D model to directly model the flow
and transport accurately can, however, be mitigated using
the transfer function method presented herein. Our method
is also not tied to a single conceptual model of the hydro-
geologic setting. This allows for flexibility and a more
faithful representation of the actual flow and transport
conditions than would likely be obtained through a numer-
ical modeling effort with limited data. The data are pushed
to extract as much information as possible without over-
extending their validity.
[67] Using the MCMC Gibbs sampler with reflected

Brownian motion requires some computational effort
(CPU time up to several days on a typical desktop computer)
but this ismuch less significant than the amount of human and
computer resources required to parameterize a 3-D numerical
flow and transport model, and pales in comparison to the time
and expense associated with conducting a tracer test. There
are always trade-offs between using a transfer function
approach and a more complicated model. Epistemic uncer-
tainty arises due to violations of the assumptions of
steadiness and linearity, both of which are handled better
by a more complicated model. The greater number of
parameters in a numerical model, however, the greater
the cost of obtaining sufficient measurements for calibra-
tion. We emphasize here, again, that the method in this
work is not universally applicable, but is most useful in
cases where the underlying physics are difficult to model,
boundary conditions are steady state, and where measure-
ments are expensive to obtain. In the field case presented in
this work, the greatest expense is installing wells. While
many measurements can be obtained over time at the
existing wells, the spatial coverage afforded by each well
is limited and cannot be enhanced without great expense.
Therefore the method was developed to provide the best
solutions consistent with available data and to suppress
errors introduced through measurement error and sparsity,
and the minor violations of time invariance and linearity.

Figure 12. Transfer functions s(t) for ethanol as a function of time. Note different timescales in
Figures 12a and 12b versus Figures 12c and 12d. The solid line is the best estimate of the transfer
function, and the dashed lines indicate the upper and lower 95% confidence intervals.
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[68] Using a reactive tracer in combination with the
conservative tracer, the first-order reaction rate was also
estimated. This is only possible when a linear reaction is
assumed. In the more complicated nonlinear reactions
characterizing other parts of the bioremediation project, a
stochastic-convective model can be applied using the trans-
fer functions of the conservative tracer to characterize
convection.
[69] In the particular application presented (the tracer test

at the NABIR FRC in Oak Ridge, Tennessee), conservative
tracer was injected into a recirculating well field such that
effectively multiple pulses were injected. The deconvolu-
tion resulted in a transfer function that distinguished late
arrivals due to the initial injection from early arrivals of
reinjection. The nature of the transfer functions enabled a
direct comparison of the response for multiple sampling
points which confirmed assumptions made based on the
lithology and structural geology of the site. The stochastic
nature of the method allows for uncertainty to be evaluated.
Conditional realizations can be applied to Monte Carlo
modeling of the geochemical or biological reactions.
[70] An implementation in MATLAB is provided at

http://www.stanford.edu/group/peterk/software/lstran.html.
The only requirements are files with the input and output
function in the same time units, and the editing of a
parameter file choosing a few options such as discretization
and memory. The Bayesian inverse approach to the transfer
function method is not limited to ground water applica-
tions, and could be extended to surface water hydrology,
infiltration/recharge, or other linear systems.

[71] Acknowledgments. The authors wish to thank Craig Criddle,
who, as Principal Investigator, has supported and motivated this work and
more; Anna Michalak for sharing her code to base the nonnegativity
approach upon; Philip Jardine and David Watson for FRC support; Jack
Carley and Tonia Mehlhorn for field support and experiment planning at the
FRC; and Jennifer Nyman, Margaret Gentile, and Carlos Diaz at Stanford
and Kenneth Lowe at ORNL for analyzing bromide and ethanol data.
Wei-min Wu has also provided guidance and input in all aspects of the
project. This manuscript was improved by the reviews of three anonymous
reviewers. This work was funded by the United States Department of
Energy Natural and Accelerated Bioremediation Research Biological and
Environmental Research grant DE-F603-00ER63046.

References
Besbes, M., and G. de Marsily (1984), From infiltration to recharge: Use of
a parametric transfer function, J. Hydrol., 74, 271–293.

Blank, D., J. Delleur, and A. Giorgini (1971), Oscillatory kernel functions
in linear hydrologic models, Water Resour. Res., 7, 1102–1117.

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel (1994), Time Series
Analysis: Forecasting and Control, 3rd ed., Prentice-Hall, Upper Saddle
River, N. J.

Casella, G., and E. George (1992), Explaining the Gibbs sampler, Am. Stat.,
46, 167–174.

Cirpka, O., and P. Kitanidis (2000), An advective-dispersive stream tube
approach for the transfer of conservative-tracer data to reactive transport,
Water Resour. Res., 36, 1209–1220.

Cirpka, O., and P. Kitanidis (2001), Travel-time based model of bioreme-
diation using circulation wells, Ground Water, 39, 422–432.

Crane, M., and M. Blunt (1999), Streamline-based simulation of solute
transport, Water Resour. Res., 35, 3061–3078.

Cvetkovic, V., and G. Dagan (1994), Transport of kinetically sorbing solute
by steady random velocity in heterogeneous porous formations, J. Fluid
Mech., 265, 189–215.

Daboczi, T. (1998), Nonparametric identification assuming two noise
sources: A deconvolution approach, IEEE Trans. Instrum. Measure.,
47, 828–832.

De Josselin De Jong, G. (1958), Longitudinal and transverse diffusion in
granular deposits, Eos Trans. AGU, 39, 67.

Delleur, J., and R. Rao (1971a), Noise in analysis of linear hydrologic
systems, Eos Trans. AGU, 52, 198.

Delleur, J. W., and R. A. Rao (1971b), Linear systems analysis in hydrol-
ogy—The transform approach, the kernel oscillations and the effect of
noise, in Systems Approach to Hydrology: Proceedings of the First
Bilateral U.S.-Japan Seminar in Hydrology, edited by V. M. Yevjevich,
pp. 116–142, Water Resour. Publ., Highlands Ranch, Colo.

Dempster, A., N. Laird, and D. Rubin (1977), Maximum likelihood from
incomplete data via EM algorithm, J.R. Stat. Soc., Ser. B, 39, 1–38.

Dreiss, S. J. (1982), Linear kernels for karst aquifers, Water Resour. Res.,
18, 865–876.

Eidsvik, J., H. Omre, T. Mukerji, G. Mavko, and P. Avseth (2002), Seismic
reservoir prediction using Bayesian integration of rock physics and
Markov random fields: A North Sea example, Leading Edge, 21,
290–294.

Fienen, M. N. (2005), The three-point problem, vector analysis and exten-
sion to the n-point problem, J. Geosci. Educ., 53, 357–362.

Geman, S., and D. Geman (1984), Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal.
Mach. Intell., 6, 721–741.

Gill, P. E., W. Murray, and M. H. Wright (1981), Practical Optimization,
Elsevier, New York.

Hastings, W. (1970), Monte-Carlo sampling methods using Markov chains
and their applications, Biometrika, 57, 97–109.

Jury, W. A., and K. Roth (1990), Transfer Functions and Solute Movement
Through Soil: Theory and Applications, Springer, New York.

Kaluarachchi, J., V. Cvetkovic, and S. Berglund (2000), Stochastic analysis
of oxygen- and nitrate-based biodegradation of hydrocarbons in aquifers,
J. Contam. Hydrol., 41, 335–365.

Kitanidis, P. K. (1995), Quasi-linear geostatistical theory for inversing,
Water Resour. Res., 31, 2411–2419.

Kitanidis, P. K. (1997), Introduction to Geostatistics: Applications in
Hydrogeology, Cambridge Univ. Press, New York.

Kitanidis, P. K., and E. G. Vomvoris (1983), A geostatistical approach to the
inverse problem in groundwater modeling (steady state) and one-
dimensional simulations, Water Resour. Res., 19, 677–690.

Leij, F. J., E. Priesack, and M. G. Schaap (2000), Solute transport modeled
with Green’s functions with application to persistent solute sources,
J. Contam. Hydrol., 41, 155–173.

Liu, C. L., and J. W. S. Liu (1975), Linear Systems Analysis, McGraw-Hill,
New York.

Long, A. J., and R. G. Derickson (1999), Linear systems analysis in a karst
aquifer, J. Hydrol., 219, 206–217.

Luo, J., O. A. Cirpka, M. N. Fienen, W. Wu, T. L. Mehlhorn, J. Carley, P. M.
Jardine, C. S. Criddle, and P. K. Kitanidis (2006a), A parametric transfer
function concept for analyzing reactive transport in nonuniform flow,
J. Contam. Hydrol., 83, 27–41.

Luo, J., W.-M. Wu, M. Fienen, P. M. Jardine, T. L. Mehlhorn, D. B.
Watson, O. Cirpka, C. S. Criddle, and P. Kitanidis (2006b), A nested-
cell approach for in situ remediation, Ground Water, 44(2), 266–274.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller
(1953), Equation of state calculations by fast computing machines,
J. Chem. Phys., 21, 1087–1092.

Michalak, A. (2003), Application of Bayesian inference methods to inverse
modeling for contaminant source identification, Ph.D. dissertation,
Stanford Univ., Stanford, Calif.

Michalak, A., and P. Kitanidis (2003), A method for enforcing parameter
nonnegativity in Bayesian inverse problems with an application to
contaminant source identification, Water Resour. Res., 39(2), 1033,
doi:10.1029/2002WR001480.

Michalak, A., and P. Kitanidis (2004), A method for the interpolation of
nonnegative functions with an application to contaminant load estima-
tion, Stochastic Environ. Res. Risk Assess., 19, 8–23.

Mosegaard, K., and A. Tarantola (1995), Monte Carlo sampling of solutions
to inverse problems, J. Geophys. Res., 100, 12,431–12,447.

Neuman, S., and G. de Marsily (1976), Identification of linear
systems response by parametric programming, Water Resour Res, 12,
253–262.

Ogata, A., and R. B. Banks (1961), A solution of the differential equation
of longitudinal dispersion in porous media, U.S. Geol. Surv. Prof. Pap.,
411-A.

Oliver, D., L. Cunha, and A. Reynolds (1997), Markov chain Monte Carlo
methods for conditioning a permeability field to pressure data, Math.
Geol., 29, 61–91.

Omre, H., and O. Lodoen (2004), Improved production forecasts and
history matching using approximate fluid-flow simulators, SPE J., 9,
339–351.

14 of 15

W07426 FIENEN ET AL.: GEOSTATISTICAL TRANSFER FUNCTION W07426



Provencher, S. (1982), A constrained regularization method for inverting
data represented by linear algebraic or integral equations, Comput. Phys.
Commun., 27, 213-27.

Rubin, Y. (2003), Applied Stochastic Hydrogeology, Oxford Univ. Press,
New York.

Sauty, J.-P. (1980), An anlalysis of hydrodispersive transfer in aquifers,
Water Resour. Res., 16, 145–158.

Sherman, L. K. (1932), Streamflow from rainfall by the unit-graph method,
Eng. News Rec., 108, 501–505.

Simmons, C., T. Ginn, and B. Wood (1995), Stochastic-convective trans-
port with nonlinear reaction: Mathematical framework, Water Resour.
Res., 31, 2675–2688.

Skaggs, T., Z. Kabala, andW. Jury (1998), Deconvolution of a nonparametric
transfer function for solute transport in soils, J. Hydrol., 207, 170–178.

Solomon, D. K., G. K. Moore, L. E. Toran, R. B. Dreier, and W. M.
McMaster (1992), A hydrologic framework for the Oak Ridge Reserva-

tion, Status Rep. ORNL/TM-12026, Environ. Sci. Div., Oak Ridge Natl.
Lab., Oak Ridge, Tenn.

Vasco, D., and A. Datta-Gupta (1999), Asymptotic solutions for solute
transport: A formalism for tracer tomography, Water Resour. Res., 35,
1–16.

Wu, W. M., et al. (2006), Pilot-scale bioremedation of uranium in a highly
contaminated aquifer. I: Conditioning of a treatment zone, Environ. Sci.
Technol, in press.

����������������������������
M. N. Fienen and P. K. Kitanidis, Department of Civil and

Environmental Engineering, Stanford University, Stanford, CA 94305-
4020, USA. (fienen@stanford.edu)

J. Luo, School of Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, GA 30332, USA.

W07426 FIENEN ET AL.: GEOSTATISTICAL TRANSFER FUNCTION

15 of 15

W07426


