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Abstract. Whereas most previous studies of biomass growth and biological clogging
consider continuous biofilms, we investigate how the growth of biomass in the form of
aggregates affects the permeability and the transport properties of porous media. This
paper presents modeling of processes in a single pore, and a companion paper [Dupin et
al., this issue] describes modeling over a network of pores. Each pore (channel) is seeded
with initial biomass that consumes an electron donor and an electron acceptor according
to dual Monod kinetics. Biomass is modeled as a continuous uniform isotropic
hyperelastic material, whose expansion and deformation are governed by material
mechanics stress-strain relations, unlike traditional approaches that use ad hoc empirical
schemes. The Stokes flow, the advection-diffusion-reaction mass transport, and the
biomass deformation partial differential equations are solved using finite elements. The
solute transport problem is made more computationally efficient by controlling the time
step discretization. Results from a simulation illustrate the methodology.

1. Introduction

In situ bioremediation is a potentially cost-effective ap-
proach to clean up a polluted site. The essence of this ap-
proach is to use microorganisms to degrade pollutants in the
ground. In some cases these pollutants serve as primary sub-
strates, providing energy or carbon for the growth of the mi-
croorganisms. In other cases the pollutants are degraded by
cometabolism; that is, the microorganisms grow on other sub-
strates. In either case the microorganisms generally need some
additional substrates and/or nutrients to sustain growth and
degrade the pollutants. In natural attenuation, nutrients are
already present. In enhanced bioremediation a feed solution is
forced through the aquifer. These substrates and/or nutrients
are generally provided in soluble form, and a chemical delivery
and mixing scheme is usually critical for the success of en-
hanced in situ bioremediation. In general, the more substrate
the microorganisms use, the greater the microbial population
and the more the amount of the pollutant that can be de-
graded. However, as the mass of the microorganisms grows,
the permeability of the formation tends to decrease, which
restricts flow and the supply of substrates and/or nutrients
[McCarty et al., 1998; Rittmann, 1993; Taylor and Jaffe, 1991;
Vandevivere and Baveye, 1992b].

Biomass growth in porous media can occur in different mor-
phologies [Dupin and McCarty, 2000]. The most commonly
reported and modeled growth mode is through biofilms; that
is, microorganisms grow as a continuous layer, the biofilm, on
the surface of the soil grains [Chen et al., 1994; Clement et al.,
1996; Suchomel et al., 1998; Taylor and Jaffe, 1990a, 1990b;
Taylor et al., 1990]. Sometimes, however, the biomass does not
cover the entire surface of the soil grains, and microcolonies

(i.e., a patchy biofilm) develop [Molz et al., 1986]. In other
cases, biomass grows in pores in the form of aggregates
[Vandevivere and Baveye, 1992b] or a bioweb [Paulsen et al.,
1997]. When fungal growth occurs, mycelia can develop
throughout the entire pore volume and envelop several soil
grains [Dupin and McCarty, 1999]. These forms of biomass
growth can occur simultaneously [Dupin and McCarty, 2000].
For example, using the apparatus described by Dupin and
McCarty [1999], seeding of silicon pore imaging elements and
subsequent acetate feeding resulted in growth both of aggre-
gates and of a continuous thin biofilm (Figure 1).

To distinguish between a continuous and a patchy biofilm,
Rittmann [1993] proposed the use of the normalized surface
loading or flux, which is the ratio of the actual substrate flux
into the biomass to the minimum substrate flux that supports a
steady state deep biofilm. From a review of published data he
showed that at high values of this ratio a biofilm tends to be
continuous, whereas at low values only patchy growth appears
to be sustained. However, Rittmann recognized that this dis-
tinction is not crucial in modeling substrate consumption. Bav-
eye and Valocchi [1989] showed that when the substrate con-
centration is uniform within the biomass entities and mass
transfer is linear (i.e., proportional to the difference between
the concentration within the bulk fluid and the concentration
within biomass), both types of growth and substrate uptake
could be modeled using similar equations, notwithstanding
differences in the significance of the parameters.

Many models [Clement et al., 1996; Cunningham et al., 1991;
Suchomel et al., 1998; Taylor and Jaffe, 1990b; Taylor et al.,
1990] use porosity reduction as a critical parameter for assess-
ing permeability reduction. Assuming a uniform coverage of
the soil grains by biomass, porosity reduction is strongly cor-
related to permeability reduction as has been shown experi-
mentally [Cunningham et al., 1991; Taylor and Jaffe, 1990a;
Vandevivere and Baveye, 1992a, 1992b]. Rittmann [1993] noted
that the difference between biofilm, microcolonies, or aggre-
gate growth is crucial to model permeability reduction. It takes
less biomass to plug a pore if it forms aggregates than if it
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forms a continuous biofilm. Vandevivere et al. [1995] showed
that the assumption of a uniform coverage underestimates
clogging in fine sands, whereas distributing biomass as plugs
improved the predictions of the conductivity reduction.

Few authors have focused on modeling aggregate growth in
porous media. Chen et al. [1996a] evaluated growth of aggre-
gates in two-dimensional (2-D) channels. They validated their
model using in situ dissolved oxygen sensor probes and an
artificially constructed biofilm [Cunningham et al., 1995]. How-
ever, the numerical scheme of Chen et al. [1996a] did not allow
the aggregates to grow to a thickness larger than 10–20% of
the width of the channels. Thus they did not address perme-
ability reduction.

Aggregate growth needs to be first represented adequately
at the microscale before it can be upscaled. An appealing
method consists in using network models, which have been
used in percolation theory for �40 years [Berkowitz and Ewing,
1998; Fatt, 1956a, 1956b, 1956c]. Network models consist of an
assemblage of channels (pores) that connect at nodes to inter-
act with each other in a defined manner. Common applications
of network models relate to the study of one-, two-, and three-
phase flow. Suchomel et al. [1998] modeled biofilm growth and
clogging in square and cubic lattice networks. Dupin and Mc-
Carty [2000] observed different biological growth morpholo-
gies in square lattice networks with random width.

This paper details the two-dimensional modeling of aggre-

Figure 1. Growth of two aggregates observed in silicon pore imaging elements. In the micromodel, soil
grains appear black, and texture in the pores corresponds to a thin biofilm. The bottom image was acquired
2 days after the top one.
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gate growth and the effects of this growth on the permeability
and the transport properties of a single pore. It presents results
of a simulation as an illustration. A companion paper [Dupin et
al., this issue] details how those pores are linked to form a
network pore model idealizing a porous medium.

In our model, pores are seeded with initial biomass that
consumes substrate and grows, reducing the permeability of
the pores. Detachment is neglected in this work as aggregates
in our experimental system have been observed to attach
strongly to surfaces [Dupin and McCarty, 2000], and to simplify
simulations, attachment of new aggregates is also neglected.
The partial differential equations of flow and substrate trans-
port are solved in the bulk fluid and in biomass aggregates
using finite elements. Thus no empirical mass transfer bound-
ary layer thickness is assumed, unlike many other biofilm mod-
els [Chen et al., 1994; Williamson and McCarty, 1976].

A crucial contribution of this work is a material-mechanics
formulation to determine the aggregate expansion and defor-
mation from the computed biomass. The flexibility of finite
elements in representing complex and time-variant boundaries
allows us to simulate the growth of aggregates and their filling
of entire pore volumes, overcoming the difficulties encoun-
tered by Chen et al. [1996a], who used finite differences. Fur-
thermore, aggregates can deform under the action of flow.
However, in this paper the emphasis is on the effects of growth.
We neglect the forces exerted by the fluid on the aggregates for
the sake of computational efficiency, although we show how to
account for them.

All variables vary with time but with different timescales.
Flow transport has a typical relaxation time much less than a
second, which means that a steady state condition is estab-
lished almost instantaneously. Within a 600 �m long pore,
substrate advective transport occurs with timescales of a few
seconds, while substrate diffusion has a typical timescale of the
order of minutes. Biomass growth is a much slower process,
with a typical timescale of hours. Thus we can treat the flow,
the substrate transport, and the biomass growth sequentially,
as done in many other biofilm models [Rittmann and McCarty,
1981]. For example, when solving for advection, diffusion, and
consumption of substrate within a pore, we can consider the
flow to be instantaneously equilibrated, while biomass growth
appears almost frozen.

We will first detail the equations governing the behavior of
a single pore. Then, we will show how those equations were
implemented numerically. Finally, we will present preliminary
results of a simulation. Dupin et al. [this issue] show the influ-

ence of the parameters on the overall clogging potential of the
simulated porous media, idealized as a network model.

2. Description of the Pore Model
In this section we present the equations governing the mod-

eled phenomena thought to control aggregate growth: fluid
flow, substrate transport, substrate consumption in the aggre-
gates, and biomass deformation. For all purposes, biomass
aggregates are considered continuous, homogeneous, and iso-
tropic. The model is two-dimensional. The x axis is along the
axis of the pore, the origin being the initial center of the
aggregate; the y axis is across the pore, the origin being the
plane of attachment of the aggregate. Figure 2 shows the
geometry of one pore, the different domains, and the bound-
aries.

2.1. Fluid Movement

In each pore, fluid flows according to Stokes equations (i.e.,
creeping flow). The velocity u � (ux, uy) and the pressure
expressed as hydraulic head � are governed by the following
equations, where �Seff

is the effective kinematic viscosity and g
is the gravity:

�Seff

g � �2ux

� x2 �
�2ux

� y2 � �
��

� x � 0

(1)
�Seff

g � �2uy

� x2 �
�2uy

� y2� �
��

� y � 0

in � � �B � �F and

� � u � 0 (2)

in � � �B � �F. The boundary conditions are given on �in

by the prescribed parabolic profile for ux and

uy � 0 (3)

and on �out is given by

�u
� x � 0

(4)

�
�out

�dA � 0

Figure 2. Schematic drawing of a pore.
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and on �w � �B�w is given by

u � 0. (5)

In this subproblem we are interested in computing the head
loss, which is the difference between the head at the inflow and
the outflow boundaries. At the outlet the mean of � is set
arbitrarily to zero. The solution yields the head loss for the
prescribed pore inlet velocity so that the conductance can be
computed.

A pseudoviscosity for flow within the aggregate was set much
higher than the normal water viscosity to account for increased
resistance. Hence �Seff

� 	�water in the aggregate, where 	 �
2000. Such a high coefficient can induce pore and network
permeability reductions by a factor of 2000 if biomass com-
pletely fills the pores, consistent with the limit on permeability
reduction reported by Taylor and Jaffe [1990a].

Because � is set to zero, on average, on the outlet boundary,
the pressure drop across the pore is obtained by

�� �

�
�in

� d�

� in
. (6)

The (pore) hydraulic conductivity, which will be reported by
Dupin et al. [this issue], is defined as the ratio of the discharge
through the pore uave to the average gradient of head across
the pore, (uaveLpore)/�� , with units of [L T�1].

2.2. Advection and Diffusion

The substrates, electron acceptor (oxygen) and electron do-
nor (phenol), with respective concentrations CA and CD, un-
dergo advection and diffusion throughout the entire pore vol-
ume. They are consumed in the biomass �B according to dual
Monod kinetics: The electron acceptor is used for cell growth
and decay, while the electron donor is utilized only for cell
growth. We distinguish between active biomass, XA, and inert
remains, XI. In the bulk domain �F (fluid), there is no bio-
mass, XA � 0 and XI � 0, hence there is no substrate
consumption. The effective diffusion coefficient Deff, is lower
in the aggregate than in the bulk fluid. Williamson and McCarty
[1976] recommend using a value 80% of the diffusion coeffi-
cient in the aqueous phase.

The model can be expressed by the equations presented by
Semprini and McCarty [1991]. The parameters are explained in
Table 1. Because the concentrations of electron donor (phe-
nol) and electron acceptor (oxygen) get involved only through

Table 1. Parameters of the Model

Parameter Value Signification

Dimensions
Lpore 600 �m length of each pore
Wpore typically 100 �m width of each pore
Raggregate0

5 �m size of the initial seed
20�C temperature

Biological kinetics
KsA 1.0 mg L�1 saturation constant for oxygen
KsD 1.0 mg L�1 saturation constant for phenol
k 9.3 mg mg�1 d�1a maximum utilization rate
Y 0.61 mg mg�1a yield coefficient
b 0.12 day�1a decay coefficient
fd 0.8 mg mg�1b degradable biomass fraction
dc 1.42 mg mg�1b decay oxygen demand
COD 2.38 mg mg�1b chemical oxygen demand of phenol
F � COD � Ydc 1.52 mg mg�1b oxygen to phenol utilization ratio
Xm 30,000 mg L�1b maximum solids concentration in

aggregate
Xa Start Xm1 initial active biomass concentration

(fa � 1)
Hydrodynamics

Da 2.32 cm2 d�1c aqueous oxygen diffusion coefficient
Dfa 1.85 cm2 d�1c oxygen diffusion coefficient in aggregate
Dd 1.01 cm2 d�1c aqueous phenol diffusion coefficient
Dfd 0.81 cm2 d�1c phenol diffusion coefficient in aggregate
g 9.81 m s�2 gravity

 998 mg cm�3d density of water
�water 0.01003 cm2 s�1d kinematic viscosity of water
	 2.103 relative viscosity of water in aggregate

Mechanics
�L 0.01 MPa lame coefficient

16.7� minimum angle of contact
2 �m minimum distance before contact

Iterations
�t 12 min time step to update shape of biomass

aSource is Shurtliff et al. [1996].
bSource is Dupin [1999].
cValues are estimated using the method of Hayduk and Laudie [1974] as reported by Dupin [1999] and

Montgomery [1996].
dSource is Lide [1991, p. 6.8].
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the ratio C/KS, the saturation constants KS have been set to 1
mg L�1 to simplify the comparisons between concentrations of
electron donor and electron acceptor. This simplification is
practically equivalent to making each concentration dimen-
sionless by dividing by its saturation constant. A term for decay
under anaerobic conditions could eventually be added in (9)
and (10), but such decay would proceed at a much slower rate
than decay under aerobic conditions. Oxygen is assumed in our
simulations to be always present; thus the model as formulated
describes decay sufficiently well. We have in � for (7) and (8)

�CA

�t � DAeff�
2CA � u � �CA � �XA

CA

CA � KSA

� � kF
CD

CD � KSD

� dcfdb� � F1	XA, CA, CD
 , (7)

�CD

�t � DDeff�
2CD � u � �CD � �kXA

CA

CA � KSA

CD

CD � KSD

� F2	XA, CA, CD
 (8)

and in �B for (9) and (10)

�XA

�t � XA

CA

CA � KSA
� kY

CD

CD � KSD

� b� � F3	XA, CA, CD


(9)

�XI

�t � XA

CA

CA � KSA

b	1 � fd
 � F4	XA, CA
. (10)

We have F1 � 0 and F2 � 0 in �F as XA � 0 there. The
boundary conditions are a constant supply on �in

uaveCA � DA

�CA

� x � uaveCAsupply

(11)

uaveCD � DD

�CD

� x � uaveCDsupply,

no diffusion gradient on �out

�CA

� x � 0

(12)
�CD

� x � 0,

and no flux through �w � �B�w (wall).

�CA

� y � 0

(13)
�CD

� y � 0.

The essence of (12) is that mass flux in the channel is not
affected by the value of concentration at its downgradient end,
as will be explained by Dupin et al. [this issue]. This assumption
is valid for a sufficiently long channel. At t � 0, C � Csupply

for the electron donor and the electron acceptor throughout
the entire pore.

2.3. Biomass Deformation

2.3.1. Physical description. Several authors have mod-
eled biomass growth in terms of aggregates. In a recent ap-

proach using a discrete cellular automaton, Picioreanu et al.
[1998b] considered that following its growth within an aggre-
gate, a cell expands and randomly pushes its surrounding cells.
This is achieved numerically by discretizing the space occupied
by the biomass into boxes. Once the density in one of these
boxes becomes greater than a maximum value at the end of a
time step, half of the mass of that box stays in place and half
overflows into a randomly chosen adjacent box (empty if pos-
sible, already occupied otherwise). They iterate this process for
all the boxes that need to overflow during that time step. Thus
this process in time increases the size of the aggregate as
biomass eventually overflows into the empty boxes at the pe-
riphery of the aggregate. Picioreanu et al. did not take into
account the energy necessary to push those surrounding cells.
Although they claimed their deformation behavior is purely
dictated by local rules (interaction with the immediate sur-
rounding cells), they, in fact, neglected the sum of the individ-
ual contributions of each expanding cell mechanism to the
total potential energy. In this paper, we consider that an ag-
gregate expands and deforms by minimizing the energy re-
quired for that deformation. We base our assumption on the
resistance the whole extracellular polymer matrix surrounding
the cells might create during that deformation. Furthermore, if
external forces are applied on an aggregate, the additional
deformation is such that it minimizes the potential energy.

On the basis of our experiments (H. Dupin and P. L. Mc-
Carty, unpublished data, 1999), aggregates appear to behave as
“elastic” solids, bending with the flow and regaining their orig-
inal position when the flow is stopped. Thus we model the
biomass body as elastic. Because the deformation of an aggre-
gate can be extreme (growth can lead to an expansion by a
factor of up to 2000 after a period of a couple of days), the
stress-strain relation cannot be linear. The concept of hypere-
lasticity comprises two assumptions: The strain may be large,
and the mechanical stresses within the aggregate depend solely
on the aggregate initial and final positions and not the partic-
ular path in between. The latter assumption means that there
is a strain energy function, which is determined by the present
state of deformation only. In particular, this assumption ex-
cludes plasticity and viscoelasticity. The neo-Hookean hypere-
lasticity, which is a generalization of elasticity for large defor-
mations [Bonet and Wood, 1997], is one of the simplest
nonlinear stress-strain expressions and reduces under small
deformations to the commonly used linear stress-strain expres-
sions. Mathematical formulations will be detailed in section
2.3.2.

We also assume that the biomass body is incompressible in
a purely mechanical sense; that is, it does not shrink or expand
under pressure, maintaining a constant density. The biomass
growth or decay would result in an expansion or contraction of
aggregate volume, so that the biomass density is maintained
constant. This might be a simplification of reality. However, a
biofilm or aggregates are generally modeled as having an av-
erage constant density [Anderson, 1996; Rittmann and McCarty,
1980]. Because true incompressibility is difficult to enforce
with finite element methods without inducing artificial stiffen-
ing or locking [Bonet and Wood, 1997], pseudo-incompressibil-
ity in a purely mechanical sense is used: It is analogous to using
a finite but very large bulk modulus.

A typical hyperelastic isotropic incompressible neo-
Hookean material is rubber. Under isothermal conditions, rub-
ber is hyperelastic and incompressible. Nevertheless, it under-
goes thermal expansion [Nicholson and Lin, 1996].
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As the domain is 2-D, as depicted in Figure 2, the aggregates
undergo plane strain: Deformation in the third dimension
(depth) is prevented so that displacements are only allowed in
the plane x-y .

2.3.2. Mathematical formulation. Define X as the origi-
nal (material) coordinate of a point at t � 0, �(X, t) as the
position of the biomass body at time t , F � ��/�X as the
deformation gradient, C � FTF as the right Cauchy-Green
deformation tensor, and J � det (F) as the Jacobian of F. Thus
J2 � det (C). The total deformation can be expressed as the
combination of two artificial deformations. The first one de-
scribes the isochoric or distortional deformation during which
the material does not expand but is distorted. The second one
is an isotropic expansion. Mathematically, this is described as

C � J2/3Ĉ . (14)

Ĉ is called the deviatoric part of C (det Ĉ � 1), and J2/3

represents the isotropic expansion as the material is inherently
three-dimensional.

Hyperelastic materials can be described by a stored energy
function or elastic potential � per unit undeformed volume.
The condition that this hyperelastic potential � depends only
on the initial and the final configurations is expressed as

� � �	C
 . (15)

The potential of a neo-Hookean pseudoincompressible ma-
terial is sometimes expressed as the sum of two terms [Bonet
and Wood, 1997]. The first one depends on the deviatoric part
of the deformation; the second one depends on the expansion
and the deviation from the strict incompressibility. Thus

�	C
 � �̂	C
 � U	 J
 , (16)

where

�̂	C
 � �	Ĉ
 �
�L

2 	tr Ĉ � 3
 (17)

and �L is the Lame coefficient. In the context of thermohy-
perelasticity, Nicholson and Lin [1996] proposed

U	 J
 �
�

2 � J
�1 � 
	T � T0



3 � 1� 2

, (18)

where 
 is the volumetric thermal expansion coefficient, � is
the isothermal bulk modulus, and T is the temperature. For
pseudoincompressible materials, � takes high values and J
tends to [1 � 
(T � T0)]3. By analogy, we propose

U	 J
 �
�

2 � J
�

� 1� 2

, (19)

where � is the total expansion of a point in the aggregate since
t � 0. Here � represents the ratio of mass of all the daughter
cells of an ancestor cell to the mass of that ancestor cell.

The total potential energy of the biomass aggregate �L(�)
can be expressed as

�L	�
 � �
�B0

�	C
 dV ��
�B0

f0 � � dV ��
�B�F��B�w

t0 � � da ,

(20)

where �B0
is the initial biomass domain, f0 are the body forces,

and t0 are the traction forces on the actual boundary. Note that

the third term in the right-hand side is actually integrated only
where the displacement � is not prescribed. Body forces due to
densimetric differences (difference of weight and buoyancy)
are neglected as cells have a density close to that of water and
fluid forces would likely be much larger than such body forces.

To find the current state of deformation �, we need to
minimize �L(�). However, this formulation cannot be easily
implemented in a finite element scheme. We need, instead, to
introduce an additional variable P as a Lagrange multiplier
that can be recognized as the internal pressure (opposite of the
hydrostatic pressure). Thus (16) is replaced by

� � �	C , P
 � �̂	C
 � P	 J � � 
 . (21)

Such a modification is common in the finite element treatment
of isothermal pseudoincompressible materials [Bonet and
Wood, 1997]. The total potential energy of the biomass aggre-
gate can then be expressed as

�L	�
 � �
�B0

�̂	C
 dV � �
�B0

P	 J � � 
 dV

� �
�B�F��B�w

t0 � � da . (22)

The term

�
�B0

P	 J � � 
 dV

represents the Lagrange multiplier contribution necessary to
enforce both the expansion due to growth and the incompress-
ibility in a pure mechanical sense. The directional derivative of
�L with respect to P in the arbitrary direction �p is

D�L	� , P
��p
 � �
�B0

�p	 J � � 
 dV . (23)

At equilibrium, @ �p ,

D�L	� , P
��p
 � 0, (24)

thus enforcing J � � .
2.3.3. Boundary conditions. Because the emphasis in this

paper is on the effects of biological growth, we neglect for the
sake of simplicity the forces exerted by the fluid on the aggre-
gates compared to the internal forces arising from the defor-
mation due to growth. Nonetheless, it is possible to account for
the fluid forces as shown in section 2.3.2.

We require that each aggregate can move along each of its
surfaces of contact with a wall (�B�w) with no frictional re-
sistance and no detachment while the middle point on each of
these surfaces is kept fixed. This scheme preserves the general
shape of the aggregates until they become substrate limited
(when growth occurs mainly on their upgradient portion) or
they become squeezed by the opposite wall. This is consistent
with aggregate growth observed by H. Dupin and P. J. McCarty
(unpublished data, 1999) and shown in Figure 1.

We impose two additional auxiliary conditions to enhance
the numerical stability of the model, accelerate convergence,
and simplify meshing. The minimum tangent of contact is ar-
bitrarily set to 0.3 (minimum angle 17�). This is equivalent to
setting a maximum surface tension at the biofilm-wall inter-
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face. Additionally, if the aggregate is separated from an op-
posing wall by a layer of fluid thinner than 2 �m, then contact
of the aggregate to that wall is enforced (closing the pore).
These two boundary conditions (minimum angle and minimum
distance) appear reasonable.

If the fluid forces acting on aggregates were significant com-
pared to the internal forces arising from growth, fluid would
act on �B�F as a normal force (pressure) and a tangential
force (shear). These forces would be computed from the solu-
tion of the Stokes problem. However, accounting for them
would require iterations as a new shape of the aggregate would
lead to a new fluid velocity field and new forces acting on the
aggregate boundary. This is likely to result in lengthy compu-
tations, deemed unnecessary at this point.

If microorganisms are tightly bound to the surface, tangen-
tial forces appear along the surfaces of contact of the aggregate
with a wall, with the effect of preventing extension of the
aggregate along these surfaces. Such boundary conditions
would lead to highly distorted aggregate geometry. Similarly, if
fluid forces can deform the aggregates, the resulting geometry
might be very distorted. Finite element methods would not
perform well because of the successive remeshing needed to
keep a triangulation of an acceptable quality and the conse-
quent loss of information, whose cumulative effect could be
significant. One would need to use meshless methods, such as
the reproducing kernel particle method [Chen et al., 1996b],
but at a significantly higher computational cost.

3. Numerical Implementation
The Stokes flow, substrate transport, and biomass deforma-

tion problems are all solved using Galerkin finite element
formulations. We used a single mesh with linear triangular
elements for all the different variables. The numerical model
has been written using Matlab 5.1 for Sun WorkStation (see
The MathWorks Inc. at www.mathworks.com), and routines
for meshing and solving linear systems of equations come from
that software.

3.1. Space Discretization

Numerical experiments suggest that it is unnecessary to dis-
cretize pores over their full lengths. In particular, away from an
aggregate, flow is the same as between two parallel plates
(parabolic velocity profile and linear change in the hydraulic
head). Isoconcentration lines are perpendicular to the main
pore axis, and concentration gradients change exponentially
with distance from the inlet (as in a one-dimensional channel
subject to steady state advection and dispersion with no sink).
Such an advection-dispersion problem is described by

Deff

�2C
� x2 � uave

�C
� x , (25)

where D is the dispersion coefficient. With the boundary con-
dition given by (11), the solution of this differential equation
can be written as

C	 x
 � C supply� 1 � 
 exp � uavex
Deff

� � , (26)

where x is the abscissa along the pore (the origin being at the
center of the initial aggregate) and 
 is function of the sub-
strate consumption in the biomass.

Therefore it is advantageous to mesh only the central por-
tion of each pore (Figure 3). The boundary conditions that we
presented in section 2 for the inlet and outlet boundaries of
each pore are also valid at the edges of the meshed domain. In
particular, the inlet and outlet boundary conditions of the
advection-diffusion problem are preserved as they represent
continuity of substrate supply (mass flux).

If Wpore is the pore width and Raggregate is the aggregate
maximum thickness, numerical experiments showed that we
need to discretize the pore over its entire width and up to a
distance 5Raggregate or 1Wpore from the aggregate, whichever
was the smaller, both in the upstream and downstream direc-
tions. To allow for expansion of the aggregate without having
to extend the computational domain at each iteration, the
mesh is initially generated up to a distance from the aggregate

Figure 3. Illustration of boundary conditions for the meshed domain and the full pore.

2971DUPIN ET AL.: PORE-SCALE MODELING OF BIOLOGICAL CLOGGING



which is the smaller of 10Raggregate or 1.5Wpore, both in the
upstream and downstream directions. When, as a consequence
of growth, the aggregate comes closer to the upstream or
downstream edge of the meshed domain than 7Raggregate or
1.3Wpore, the meshed domain is extended to fit the meshing
criteria. The adjustments continue until the full pore domain is
entirely meshed.

3.2. Stokes Flow

Stokes flow is solved using a mixed formulation (velocity and
pressure), using an elementwise stabilization term added to the
mass conservation equation (2) [Cao, 1995; Hughes and
Franca, 1987]. Element stiffness matrices and right-hand side
vectors are given by Dupin [1999], following [Cao, 1995].

3.3. Advection and Diffusion

3.3.1. Principle of temporal discretization. We solve the
partial differential equations (7)–(10) as did Cao and Kitanidis
[1998], using a predictor-corrector modified Gear scheme.
Boundary conditions were incorporated into the Galerkin for-
mulation. Through this method the partial coupled differential
equations are both decoupled and linearized. Element stiffness
matrices and right-hand side vectors are given by Cao and
Kitanidis [1998] and Dupin [1999].

3.3.2. Optimization of the temporal discretization. The
above-mentioned scheme is a priori not stable for long time
steps. However, the only deviation from steady state results
from microorganism growth with a typical time scale of hours.
Thus we use the amplitude of the difference within the aggre-
gate between the concentration values of the prediction and
correction substeps to control the numerical scheme. This cri-
terion leads to initial time steps of a few minutes down to time
steps of the order of a second, while keeping the results accu-
rate to within 0.1%.

Because biomass expansion is carried out periodically and
not continuously, the concentration profiles need to be up-
dated to be consistent with the new biomass distribution after
each aggregate expansion. Toward this need, the time discreti-
zation scheme is started and iterated, computing the biomass
uptake F1 and F2 in (7) and (8) but by arbitrarily setting F3 �
F4 � 0 in (9) and (10) until the concentration profiles no
longer change, at which point these profiles are consistent with
the biomass distribution. The normal temporal discretization
scheme is then iterated.

3.4. Biomass Deformation

Cell growth temporarily results in an increase in biomass
density without expansion. Then, every �t � 12 min, the
aggregate is deformed to bring the density back to the required
density.

We use a mixed formulation problem, the displacements and
the internal pressure being linearly interpolated. The resulting
system of nonlinear equations was linearized and solved using
a Newton-Raphson scheme as detailed by Bonet and Wood
[1997]. To render the resulting linearized system matrix non-
singular and avoid artificial stiffening, an elementwise stabili-
zation term is added to (22), analogous to the one used for
solving the Stokes flow problem (T. J. R. Hughes, personal
communication, 1998), so that (22) becomes

�L	� , P
 � �
�B0

�̂	C
 dV � �
�B0

P	 J � � 
 dV

� �
�B�w��B�F

t0 � � da �
1
2 �

��TB

�
�

h�
2

12�L
	�	P
	2 dv , (27)

where h� is the diameter of the circumscribed circle to an
element � (T. J. R. Hughes, personal communication, 1998)
and TB is the triangulation of the aggregate. Whereas the
linear-linear element as a pure Galerkin method is not con-
vergent, the mixed formulation with the stabilizing term of (27)
is stable, convergent, and accurate; this property has been
demonstrated for small deformation elasticity of an incom-
pressible isotropic material [Hughes and Franca, 1987; Hughes
et al., 1986], in which case equations are the same as for Stokes
flow and for finite deformations [Klaas et al., 1999; Liu et al.,
2000; Maniatty et al., 2000]. Element stiffness matrices and
right-hand side vectors are given by Bonet and Wood [1997]
and Dupin [1999].

Here �� �, the average expansion needed for evaluation of
(23), is constant elementwise. Noting �dXALi

� and �dXILi
� as

the total increase of active and inert biomass, respectively,
during �t � 12 min at each node, �� � is computed from the
total biomass growth between two aggregate shape updates as

�� N�1�
� �� N�� dX�

Xm
� 1� , (28)

where

dX� � �
i��

� �dXALi
� � �dXILi

�

3 � . (29)

Note that there are three nodes i per element.
After expansion of the aggregate the individual biomass

concentrations at each node are projected backward from the
elementwise constant density as this elementwise density after
deformation is slightly different from the reference density.
Indicating with a prime a value after deformation, i a generic
node in the mesh (there are three nodes i per element) and
XALi the active biomass concentration at this node, the global
conservation of mass is written

�
�B

X�A dv � �
�B

XA dv (30)

or, after discretization,

�
��TB

� �
i��


� 

3 XALi� � �

���T�B
� �

i���


�� 

3 X�ALi� , (31)

and permuting the summation,

�
i��B

� �
��TB
i��


� 

3 XALi� � �

i��B

� �
���T�B
i���


�� 

3 X�ALi� . (32)

Thus we can express local conservation of mass as conser-
vation of the total mass in the support of each node (the
elements that contain that node), which can be written as

� i � �B, � �
��TB
i��


� 

3 �XALi

� � �
���T�B
i���


�� 

3 �X�ALi

, (33)

that is,
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� i � �B, X�ALi
�

� �
��TB
i��


� 

3 �XALi

�
���T�B
i���


�� 

3

. (34)

This scheme has been carried out for XI as well. It can be
interpreted as follows: The biomass expansion and deforma-
tion increase the size of the elements. However, because of the
pseudoincompressibility it shuffles biomass locally among all
the elements containing a specific node.

3.5. Mesh Deformation

Instead of remeshing the domain after each aggregate ex-
pansion, the mesh of the aggregate is kept deformed. We
impose that, by continuity, the mesh of the fluid portion �F

deforms in a manner consistent with the aggregate deforma-
tion and the pore geometry. The topology of the mesh (i.e., the
definition of the elements from the nodes of the mesh) is not
changed. Rather, only the individual locations of the nodes are
modified. To be consistent with the biomass deformation, the
nodes of �F at the aggregate-fluid interface �B�F move as
they do during the aggregate deformation. To be consistent
with the geometry of the pore, the nodes on each other surface
(wall �w, inlet �in, and outlet �out) slide along these surfaces
with no frictional resistance. Such method is called arbitrary
Lagrangian-Eulerian in modeling of fluid-structure interac-
tions [Hughes et al., 1981].

A modified Stokes flow formulation is used and consists in
adding to (2) a compression term proportional to the virtual
pressure P̃ (i.e., some pressure with no physical meaning), so
that (2) becomes

� � u � �P̃ � 0, (35)

where u represented the artificial displacement of the nodes.
Formulation for the element matrices and right-hand side vec-
tors is given by Dupin [1999], following [Cao, 1995]. The same
stabilization term used for the Stokes flow problem is added to
(35).

This method gradually degrades the mesh quality. Remesh-
ing is performed when the mesh quality has degraded too
much, that is, when the ratio

4 �3 
� 


�
i�1

3

hi
2

has become smaller than 0.6 for more than six triangles. When
remeshing is performed, we linearly project the values of the
variables within the old mesh into the new mesh. The values of
the variables at the new nodes (not necessarily coinciding with
old nodes) are linearly interpolated from the values within the
old triangulation. According to Jansen et al. [1992] this method
is an optimum trade-off between accuracy and computational
cost for unstructured meshes. To compute J� , the elementwise
constant Jacobian of the deformation, we store as an additional
variable the position that the nodes have within the original
mesh at t � 0. Those coordinates are linearly interpolated at
each remeshing.

4. Results
We present results at time t � 19.4 hours of the modeling

of an idealized 50 �m wide and 600 �m long pore, seeded with
an initial colony 5 �m in radius and subjected to a constant
head across of 10�3 cm. Electron donor and acceptor supply
concentrations are 10KS.

Figure 4 shows the initial mesh. The 110 �m long discretized
domain is significantly shorter than the full 600 �m long do-
main. Figure 5 shows the fluid velocity field solution u of the
Stokes problem. As desired, fluid flows around the aggregate
because the pseudoviscosity of water in the aggregate is 2000
times higher than normal water viscosity. When the aggregate
spans the entire pore and attaches to the opposite wall, flow is
forced through the aggregate: The hydraulic conductivity de-
creases sharply. After 19.4 hours the average velocity is 1.5 m
d�1, whereas it equals 2.9 m d�1 at t � 0.

Plate 1 shows the concentration profiles in the pore of the
electron donor (CD) and the electron acceptor (CA) as well as
the biomass density profiles XA and XI before the aggregate
expands, normalized to the maximum solids concentration in
the aggregate Xm. Maximum growth occurs on the upgradient
side of the aggregate, while minimum growth occurs on the
wall between the center and the downgradient side of the

Figure 4. Initial mesh. Dimensions are in micrometers.
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Plate 1. Substrate and biomass concentration profile in the pores. Superposed on the color plots are 20
equally spaced isoconcentration contour lines. Color scales are optimized for contrast and differ for each plot.
Distances are in micrometers.

Plate 2. Expansion of the aggregate and deformation of the mesh. Dimensions are in micrometers.
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aggregate, as expected. However, as long as the aggregate is
fully penetrated (C �� KS), the asymmetry is minor, and
errors created by assuming perfect symmetry are small, of the
order of a few percent, which is less than the error due to
discretization. When the aggregate expands across the entire
pore, the electron donor and the electron acceptor become
more limited, and thus growth is strongly asymmetric, most of
it occurring on the upgradient side of the aggregate. The elec-
tron donor concentration at the inlet of the meshed domain is
�7KS, which means that 60 �m away from the aggregate,
concentration is 70% of the influent concentration. This indi-
cates a “pull” by the aggregate, i.e., an enhancement of trans-
port through steepening of the concentration gradient. Such
enhancement of transport exemplifies the difficulty of setting
an a priori mass transport coefficient, as is commonly used in
biofilm models to represent mass transfer from a mobile phase
(bulk fluid) into biomass.

Because the doubling time is �3 hours and the decay rate is
0.12 day�1 (i.e., the decay halftime is �5.8 days), inert remains
XI represent a very small fraction of the aggregate mass
(�0.5% after 19.4 hours).

The effluent electron acceptor and electron donor concen-
trations equal 4.19KS and 6.13KS, respectively. Thus �60%
of the influent electron acceptor is consumed by the aggregate
at high flow velocities, �1.5 m day�1. However, if influent
concentration were higher, the amount of electron acceptor
and electron donor used would be about the same, because at
high concentration Monod kinetics simplifies to zero order
reaction, and a smaller percentage of the substrate fed to the
channel would be degraded.

For purposes of mass balance verification, biomass
Xm�B( t0 � � t) and its increase during � t , �MX �
Xm[�B(t0 � �t) � �B(t0)], are compared with the mass of
electron donor and electron acceptor consumed, �MC �

Uave(t0)[Csupply � Ceffluent(t0 � �t)]�t , through posttreat-
ment of the saved numerical results. Mass balance (quantified
by the correction needed on the effluent concentrations or on
the average discharge to satisfy mass balance) is generally
satisfied within a few percentage points, which was deemed
satisfactory considering numerical inaccuracies from time and
spatial discretization. At early times, when the aggregate is
small and the mass discharge is high, the decrease in substrate
concentration due to consumption (Csupply � Ceffluent) is com-
parable to the numerical error on the effluent concentration.
At later times, substrate consumption leads to a significant
decrease in the substrate concentration at the outlet, and mass
balance is much better verified. Furthermore, experimentation
with various grid sizes indicated that refining the mesh leads to
a better mass balance, even at early times. In the specific case
shown in this paper, increasing the model-computed effluent
concentration of electron donor and electron acceptor by 1.6%
throughout the whole numerical simulation improved perfor-
mance and was sufficient to yield to values of �MX/�MCA

,
�MX/�MCD

, and �MCA
/�MCD

within 1% of their expected
values, which are based on integration over the whole aggre-
gate of the sink and source terms F1-F4 of (7)–(10).

Plate 2 represents the expansion of the aggregate corre-
sponding to growth from t � 19.2 hours to t � 19.4 hours
and the deformation of the whole mesh. Arrows are about 5
times longer than the computed displacements. Also on Plate
2 is the expansion of the aggregate since t � 0, computed as
theta � J� t/J� t�0. One can again observe the slight asymmetry of
growth. The meshed domain extends over a length of 210 �m,
instead of 110 �m at the beginning.

Figure 6 shows the outline of the aggregate every 5 hours in
a 100 �m wide pore operated with a constant average velocity
of 2.9 m d�1. The aggregate is squeezed between the two pore

Figure 5. Solution of the Stokes flow in the pore. Dimensions are in micrometers.

Figure 6. Outline every 5 hours of an aggregate growing in a 100 �m wide pore with a constant average flow
velocity of 2.9 m d�1. Dimensions are in micrometers.
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walls as it grows. At later times, growth occurs only on the
upgradient portion of the aggregate.

5. Discussion
This paper has presented a microscale model of biological

growth in an idealized pore. Like other biological growth mod-
els, substrate consumption here results in biomass synthesis
and biomass expansion. We fully simulate mass transport by
solving the Stokes flow problem and the advection-dispersion-
reaction equations, without assuming a mass transfer coeffi-
cient. Indeed, because the mass transfer coefficient from a
fluid into a solid depends on the boundary conditions, espe-
cially the sink term in the solid, such mass transfer coefficient
cannot be estimated a priori.

A novel feature of this approach is that the expansion of
aggregates is proposed to obey material mechanics equations
rather than an empirical expansion scheme. Computing bio-
mass expansion from a given increase in the mass of biological
matter due to synthesis of new material is not a trivial task. In
biofilm models an increase in mass usually translates into a
corresponding increase in the thickness of the biological mat-
ter. That is, growth occurs in a direction normal to the surface
of attachment, and there is generally no movement along the
surface (colonization or similar patterns at later times) [Ander-
son and McCarty, 1994; Atkinson and How, 1974; Bouwer and
McCarty, 1985; Rittmann and McCarty, 1980, 1981; Suchomel et
al., 1998]. When representing biomass as microcolonies, that is,
patchy biofilms, several empirical options are used to represent
biomass increase: increasing the number of colonies whose
individual sizes and aspect ratio do not change [Molz et al.,
1986], increasing the size of a fixed number of microcolonies
maintaining their aspect ratio, or a combination of these two
approaches. Picioreanu et al. [1998a] used a discrete automaton
as a means to relate increase in biological mass and biomass
expansion. The approach used here, a deterministic approach
based on material mechanics, is computationally intensive. It
may not be necessary in cases where the biofilm approach or
other simple approaches have been shown to be sufficient,
especially when substrate consumption in fairly coarse porous
media is the only concern. It may, however, be a useful ap-
proach when modeling biological clogging in finely grained
porous media [Dupin et al., this issue].

The particular rheology we have chosen may be open to
argument, but it would be fairly straightforward to modify the
stress-strain relations as experimental data become available.
In particular, biomass material is unlikely to be perfectly hy-
perelastic, as assumed here, but it may be somehow plastic.
Here the description of biomass (as being similar to thermo-
hyperelastic rubber) leads to reversible deformations; that is,
there is a “back to the original” state deformation (i.e., for the
analogy to rubber, cooling of the rubber to restore its original
volume and stress relaxation to restore its original shape).
However, biomass growth is certainly not a reversible process.
First, new cells do not completely vanish when decaying but
remain as inert solids. Second, newly formed biomass material
may not completely inherit the deformed state of the “parent”
material: Some extracellular polymers already existing before
formation of daughter cells may keep their deformed states
during expansion of new cells, whereas newly formed extracel-
lular polymers are likely to be synthesized “stress free” or at
least with different initial stresses. A two-dimensional analog
that illustrates this concept is a piece of sheet metal being

continuously deformed (say, slowly bent into a broad curve).
Imagine that the bending motion is temporarily halted so that
one side of the sheet metal can be painted. If the bending
motion is then resumed, the paint layer will suffer only the
deformation incurred after it was applied and not the entire
deformation suffered by the adjacent metal. Nevertheless, in
the present context this inaccuracy is unlikely to substantially
affect the overall conclusions drawn from the model because of
the minor deformation stresses within the aggregates resulting
from the chosen boundary conditions.

The particular boundary conditions for the aggregate defor-
mation are also debatable. However, comparison of observed
aggregate growth (Figure 1) and simulated aggregate growth
(Plate 2) indicates that our assumptions result in reasonable
behavior. Additionally, because stresses within the aggregate
are computed, detachment by fracture of the aggregate along
the lines of maximum stress can be incorporated into the
model to allow for more realistic simulations. This stress-
computed detachment could provide a mechanistic link be-
tween fluid flow, growth, and detachment of pieces of an ag-
gregate. Similarly, attachment or sloughing off of a whole
aggregate could be determined by comparing the required
adhesion for an aggregate to remain on a surface (given the
stresses stemming from fluid flow and the particular displace-
ment boundary conditions of that aggregate along a surface)
and, for example, a given bonding strength that may incorpo-
rate “curing” or “aging” of the polymers that serve to attach
biological matter to solid surfaces or other materials.

This model does not take into account cell-cell signaling that
could also affect growth of the aggregate. Other neglected
factors are changes in growth rates in cells that are under high
stress or extreme low stress. These factors can be incorporated
into this model as data become available, because stress is
computed throughout the aggregate.

The deterministic approach detailed in this paper will lead
to biological masses with a “smooth” outer surface. This is
because the outer cells are not free to grow out in the bulk fluid
in a random manner but grow in such a manner that the
potential energy of the whole aggregate is kept to a minimum.
However, there is little ground for a new cell on the outer
surface to be constrained in the position it will occupy, except
because of viscous forces exerted by the bulk fluid passing by
(in the absence of cell-cell signaling). An hybrid model that
would incorporate material mechanics to constrain the defor-
mation of the aggregate due to the synthesis of material inside
the biological mass and some random model that would allow
freedom to the outer cells may better reproduce reality, that is,
introduce some roughness [Gibbs and Bishop, 1995; Her-
manowicz et al., 1995]. Such a model may require a discretiza-
tion of the material with elements whose size approaches that
of a cell. Then, the continuum medium approach may no
longer be valid, because cells and extracellular polymers have
different mechanical properties. Further, diffusion of solutes at
this submicronic scale within biological matter will not be ho-
mogeneous, that is, cannot be represented by a Fickian law.
Other hypotheses, experimental results, and mathematical de-
velopments would then be needed.

Finally, the impact of biological matter on flow is modeled
by artificially increasing the water viscosity within the aggre-
gate. Another approach could consist in modeling biological
mass as a poroelastic material, whereby the action of water on
the aggregate would translate into body forces, rather than
forces on the outer surface of the aggregates. Depending on
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the particular conditions (flow, boundary conditions, etc), this
may lead to differences in the result of the simulations. This
has not been evaluated in this paper as the action of fluid flow
on the shape of the aggregate has been neglected. The formu-
lation (in particular (20)) allows the incorporation of such body
forces.

In this paper, only one aggregate is supposed to grow in a
given pore and remain there. Future developments could in-
clude, besides the implementation of the intricate concepts
listed above, simpler modifications such as attachment of sev-
eral aggregates in a single pore, detachment of pieces (or
sloughing off of the whole) of such aggregates, and the simu-
lations of the migration of such aggregates in the porous me-
dia.

The method presented in this paper allows simulation of
aggregate growth throughout entire pore volumes. This model
for aggregate growth at the scale of a pore can then be incor-
porated into a network model to simulate biological growth
and clogging of porous media [Dupin et al., this issue]. Com-
parisons can then be made with biofilm-based models.

Notation
b decay coefficient.

C , CA, CD generic concentration, concentration of
electron acceptor (oxygen), and electron
donor (phenol), respectively.

C, Ĉ right Cauchy-Green deformation tensor,
deviatoric part of C.

COD chemical oxygen demand of phenol.
dc decay oxygen demand.

�dXALi
� , �dXILi

� total increase of active and inert
biomass, respectively, during �t � 12
min at each node.

Da, Dd aqueous diffusion coefficient of oxygen
and phenol, respectively.

Dfa, Dfd diffusion coefficient in an aggregate of
oxygen and phenol, respectively.

Deff, DAeff
, DDeff

effective diffusion coefficient (of electron
acceptor and electron donor,
respectively).

f0 body forces.
F oxygen to phenol utilization ratio.
F deformation gradient.

F1, F2, F3, F4 production rates for electron acceptor,
electron donor, active biomass, and inert
remains, respectively.

fd degradable biomass fraction.
g gravity.

J , J� Jacobian of F, elementwise Jacobian.
k maximum utilization rate.

KS, KsA, KsD saturation constant (of electron acceptor
and electron donor, respectively).

l unit length.
Lpore pore length.

P Lagrange multiplier that can be
identified to the aggregate internal
pressure.

P̃ mesh virtual pressure.
Pex Peclet number.

t time.
t0 traction forces on the actual boundary.

TB temperature aggregate triangulation.

Raggregate aggregate thickness.
u � (ux, uy) velocity field.

U compression energy for the aggregate.
Wpore pore width.

X original (material) coordinate of a point.
XA, XALi

active biomass concentration at a generic
point and at a node, respectively.

XI inert remains concentration.
Y yield coefficient.

 volumetric thermal expansion coefficient.
� mesh compressibility.

� in, �out, �B�F,
�B�w inlet, outlet, interface aggregate fluid,

aggregate wall, respectively.
�p arbitrary change in P (for linearization).
�t time step for aggregate expansion.

� , �� � total expansion since t � 0 of a point in
the aggregate and an element,
respectively.

� isothermal bulk modulus.
	 ratio of pseudoviscosity of water in an

aggregate to the normal viscosity of
water.

�L lame coefficient.
�Seff

, �water effective kinematic viscosity and
kinematic viscosity of water.

�L(�) total potential energy of the biomass
aggregate.

� element.
� hydraulic head.

�(X, t) position of the biomass body at time t .
� hyperelastic potential.

� , �B, �B0
, �F full domain, aggregate domain, initial

aggregate domain, and fluid domain,
respectively.
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