2015 Annual Operating Plan

April 1 Runoff Forecast

US Army Corps of Englneers. Albuquerque District

Water Operations Contacts

Reclamation

- Carolyn Donnelly, Water
 Operations Supervisor
 cdonnelly@usbr.gov
- Ed Kandl, Hydrologist, ekandl@usbr.gov
- Raymond Abeyta, Hydrologic Technician, rabeyta@usbr.gov

<u>USACE</u>

- Ryan Gronewold, Reservoir Control Branch Chief,

ryan.p.gronewold@usace.army.mil

- Marc Sidlow, URGWOM modeler, Marc.S.Sidlow@usace.army.mil
- Jason Woodruff, Acting Rio Grande Basin Coordinator, Jason.R.Woodruff@usace.army.mil

Reclamation's Water Operations Web Page

Stay in touch with Reclamation: Facebook | Twitter | YouTube | Flickr | Tumbir | Pinterest | Instagram | RSS | Multimedia

Definitions

Native/Natural Rio Grande water: Water that comes directly from the Rio Grande Basin

San Juan-Chama water: Water that is imported into the Rio Grande Basin from the San Juan Basin through the San Juan-Chama Project

Rio Grande Compact: Agreement between the states of Colorado, New Mexico, and Texas that apportions Rio Grande water between the three states.

Article 7: Section of the Rio Grande Compact that dictates storage in reservoirs. If Rio Grande Project storage is less than 400,000 ac-ft at Elephant Butte and Caballo, no storage of Rio Grande water can take place at El Vado except to satisfy Native American needs or as part of the Emergency Drought Water Agreement.

Definitions (cont.)

cfs- cubic feet per second (roughly 7.5 gallons/second)

Acre foot = approximately 326,000 gallons or 43,560 cubic feet

Hydrograph – graph of flow rate per unit time

The District – Middle Rio Grande Conservancy District (MRGCD)

The City – City of Albuquerque now Albuquerque Bernalillo County Water Utility Authority (ABCWUA)

NRCS – Natural Resources Conservation Service

Supplemental water – Water leased by Reclamation to meet flow targets specified in the 2003 Biological Opinion

P&P – Prior & Paramount

What Drives the Process

Volume Forecast from the NRCS Based on snowpack, soil moisture, climate forecast

Choose similar year based on similar volume Actual hydrograph vs. average hydrograph Can tweak timing of hydrograph to best match forecasted conditions (warm Spring vs. cool Spring)

Inflows/Outflows based on nature and policies Article VII restrictions Flood control and channel capacity Timing of water deliveries Demand curves from water users Requirements of the 2003 Biological Opinion

Similar Year Hydrographs

<u>Operated By:</u> <u>Dams:</u>	Reclamation	Corps	Water Supply	Recreation	Flood Control	Sediment Control
HERON	•••					
EL VADO	<u>••</u>					
ABIQUIU		•••				
NAMBE FALLS						
GALISTEO		•••				
COCHITI		•••				
JEMEZ CANYON						
ELEPHANT BUTTE	•••					

2014: The Year in Review

Heron Reservoir

El Vado Reservoir

Abiquiu Reservoir

Cochiti Reservoir

Elephant Butte Reservoir

Current Snow Conditions

Rio Chama Snow Data

Rio Chama Snow Data

Rio Chama Snow Comparison

Rio Chama Basin

Similar Snowpack Years

2015 vs. Similar Years, and Average Rio Chama Snowpack Index 70 60 50 Average 40 ---2015 SWE (in) Runoff Volumes (ac-ft) -2007 2007: 196,060 -2011 2011: 173,096 -2004 2004: 145,170 2012 30 2012: 119,740 -1996 1996: 95,191 -2013 2013: 65,937 20 10 0 1 2 1 Al 51 61 11 8/ 011 101 2 3

Rio Grande Snow Data

Rio Grande Snow Data

Sangre de Cristo Snow Data

Sangre de Cristo Snow Data

Monsoon Season Temperature Outlook

Monsoon Season Precipitation Outlook

2015 Water Operations Modeling

March 2003 BiOp Flow Requirements – Dry Year

Major Assumptions

- April 1 50% most probable forecast
- Dry year target flow requirements
- Same monsoon conditions as forecast hydrograph year
- Storage occurs under the Emergency Drought Water Agreement for USBR
- Storage of water for Prior & Paramount lands
- Out of Article VII restrictions for several weeks

April Forecast Data

	Most Probable Percent of Average		April 1 50% Probability Volume, ac-ft	
	2014	2015	2015	
Rio Grande nr Del Norte	80%	58%	300,000	
El Vado Reservoir Inflow	28%	53%	119,000	
Rio Grande at Otowi	32%	55%	395,000	
Nambe Reservoir Inflow	40%	65%	4,200	
Jemez blw Jemez Dam	16%	50%	17,100	
Rio Blanco @ Diversion	67%	56%	30,000	
Navajo River @ Diversion	65%	55%	36,000	

Heron Reservoir

Proposed 2015 Heron Operations

2015 Heron Operations

Reservoir will drop 14 feet from beginning of year to end

El Vado Reservoir

Proposed 2015 El Vado Operations

2015 El Vado Operations

<u>El Vado Reservoir:</u> Lake Level: 77' of fluctuation between May and Dec

ABIQUIU LAKE

Proposed 2015 Abiquiu Operations

Estimated Hydrograph at Embudo

2015 Flow at Embudo

COCHITI LAKE

Proposed 2015 Cochiti Operations

Estimated Hydrograph at Central Ave.

Estimated Flow at San Acacia

2015 Flow at San Acacia Gage

Proposed Elephant Butte Operations

2015 Elephant Butte Operations

Maximum Elevation = 4333.90'. Minimum Elevation = 4271.47'