Table 9. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | structural fea | tures. | | | | | | | | | |----------------|---------------|---|--|-------------------------------------|---|---|---|--------------------------------------|--| | | | | Data description | Inputs Static (S) or
Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different regions but | units | Origin, source, or
method for
derivation of value | Variance
incorporated (Y or
N) | Timeframe for
derivation of value | | Model Class | Misc
Model | AAC
Required
Inputs | | | N | | | | N/A; for NEUS
derived from
data in 1973-
2004 | | | | DC _{ii} r _i N (or B) Required Parameters | Percentage of each prey as proportion of a predator's diet composition Growth rate Abundance or biomass | s
s
s | | Unitless
(proportion)
Unitless
biomass (metric
tons) or # | food habits data
Survey data, age
data
Survey data | N
N
N | | | | | $\mathrm{E_{i}}$ | Assimilation Efficiency; Proportion of what predator eats that is used for growth. Clearance rate; maximum ingestion rate by a predator, more commonly | S | | Unitless
(proportion) | Literature | N | | | | | C _i | understood as
handling time
Consumption
rate; derived
from mean | S | | biomass per day
biomass per day
(per unit | food habits data | N | | | | | S_i | stomach
contents | S | | predator
biomass) | food habits data | N | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | major structu | ral features. | • | | | | | | | | |--------------------|---------------|---|------------------|----------------------------------|---|----------|---|--------------------------------|--| | | | | Data description | Inputs Static (S) or Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different regions, but directly in the model] | units | Origin, source, or method for derivation of value | Variance incorporated (Y or N) | Timeframe for derivation of value | | Model Class | Misc | | | | | | | | | | | Model | Donut
Selectivity
Model
Required
Inputs | | | N | | | | N/A, for NEUS
based on data
from 1973-1999 | | | | | relative prey | | | | Survey data, process | | | | | | P_{ij} | abundance | S | | unitless | studies | N | | | | | O_{ij} | Overlap | S | | unitless | Survey data | N | | | | | Required
Parameters | | | | | | | | | | | Rd_{ij} | Detection rank | S | | rankings | 1st principles, food habits data | N | | | | | Rr_{ij} | Reaction rank | S | | rankings | 1st principles, food habits data | N | | | | | Rc_{ij} | Capture rank | S | | rankings | 1st principles, food habits data | N | | | | | Ri_{ij} | Ingestion rank | S | | rankings | 1st principles, food habits data | N | | | | | $R1_{ij}$ | "Icing" rank | S | | rankings | 1st principles, food habits data | N | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | major structu | ral features. | | | | | | | | | |--------------------|---------------|-------------------------------------|--|----------------------------------|---|----------|--|---|--| | | | | Data description | Inputs Static (S) or Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different regions, but directly in the model] | units | Origin, source, or method for
derivation of value | Variance incorporated (Y or N) | Timeframe for derivation of value | | Model Class | Misc | | | | | | | | | | | Model | PSA | | | | | | Can be in | | | | | Required
Inputs-
Productivity | | | N | | | form of rank certainties, but usually not | N/A; for NEUS
derived from
data in 1973-
2006 | | | | | r, intrinsic rate | | | | Survey data, age | | | | | | | of growth | S | | rankings | data | N | | | | | | Maximum Age | S | | rankings | Survey data, age data | N | | | | | | _ | | | | Survey data, age | | | | | | | Maximum Size | S | | rankings | data | N | | | | | | von Bertalanffy
Growth
Coefficient (k) | S | | rankings | Survey data, age data | N | | | | | | Estimated
Natural
Mortality | S | | rankings | food habits data | N | | | | | | Measured
Fecundity
Breeding | S | | rankings | Age data | N | | | | | | Strategy | S | | rankings | Age data | N | | | | | | Recruitment | | | - | Survey data, age | | | | | | | Pattern | S | | rankings | data | N | | | | | | Age at Maturity | S | | rankings | Age data | N | | | | | | Mean Trophic
Level | S | | rankings | food habits data | N | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | major structu | rai features. | | Data description | Inputs Static (S) or
Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different regions, but directly in the model] | | Origin, source, or
method for derivation
of value | Variance incorporated (Y or N) | Timeframe for
derivation of value | |---------------|----------------------|--|--|-------------------------------------|---|----------|---|--------------------------------|--------------------------------------| | | | | Data | Inpu
Dyn | Spat
N) [onot cont cont cont cont cont cont cont | units | Origin, s
method of
of value | Vari
(Y o | Timo | | Model Class | Misc
Model | PSA
Required
Inputs-
Susceptibility | | | | | | | | | | | | Management Strategy | y S | | rankings | Mgt Plans,
Socioeconomic data | N | | | | | | Areal Overlap | S | | rankings | Survey data,
Landings data | N | | | | | | Geographic
Concentration | S | | rankings | Survey data,
Landings data | N | | | | | | Vertical Overlap | S | | rankings | Survey data,
Landings data | N | | | | | | Fishing rate relative t M | s S | | rankings | derived | N | | | | | | Biomass of Spawners
(SSB) or other proxie | es S | | rankings | Survey data | N | | | | | | Seasonal Migrations | S | | rankings | Survey data | N | | | | | | Schooling/Aggregation and Other Behavioral Responses | | | rankings | Survey data | N | | | | | | Morphology Affectin
Capture | ng
S | | rankings | Survey data | N | | | | | | Survival After Captuand Release | S | | rankings | process studies,
Literature | N | | | | | | Desirability/Value of the Fishery | S | | rankings | Economic data | N | | | | | | Fishery Impact to EF
or Habitat in General
for Non-targets | | | rankings | process studies,
Literature | N | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | Model Class Misc LeMans Model Model LeMans Model | major struct | urai teatu | res. | | | Ψ. | | | | | |--|--------------------|------------|---------------------------|--|-------------------------------------|--|---------------------|---|--------------------------------|---------------------------------------| | Model LeMans Model LeMans | | | | Data description | Inputs Static (S) or
Dynamic (D) | Spatially resolved (Y on Spatially resolved (Y on Spatial Spat | the modell
units | Origin, source, or
method for derivation
of value | Variance incorporated (Y or N) | Timeframe for
derivation of value | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Model Class | | | | | | | | | | | Required Inputs | | Model | LeMans | | | | | | | simulator, but set up for GB based on | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | N | | | | 2000; ran for 25 | | Spawning stock biomass D biomass Survey data, age data N R ₁ recruits D # Survey data, age data N N _{i,i} Abundance at size D # Survey data, age data N DC _{ii} Diet composition S unitless food habits data N Required Parameters The intercept parameter of the length—weight relationship for species a _i i S unitless derived N The slope parameter of the length—relationship for species b _i i S unitless derived N Asymptotic length parameter of the von Bertalanffy growth equation S cm derived N Growth parameter of the von Bertalanffy | | | $L_{i,t}$ | length | S | | cm | Survey data, age data | N | | | Si biomass D biomass Survey data, age data N Ri recruits D # Survey data, age data N Ni,i Abundance at size D # Survey data, age data N DCi Diet composition S unitless food habits data N Required Parameters The intercept parameter of the length—weight relationship for species ai i S unitless derived N The slope parameter of the length—weight relationship for species bi i S unitless derived N Asymptotic length parameter of the von Bertalanffy growth L.x.i equation S cm derived N Growth parameter of the von Bertalanffy | | | k_{i} | growth rate | S | | rate | Survey data, age data | N | | | $R_{i,i} \qquad \text{recruits} \qquad D \qquad \qquad \# \qquad \text{Survey data, age data} \qquad N$ $N_{i,i} \qquad \text{Abundance at size} \qquad D \qquad \qquad \# \qquad \text{Survey data, age data} \qquad N$ $DC_{ij} \qquad \text{Diet composition} \qquad S \qquad \qquad \text{unitless} \qquad \text{food habits data} \qquad N$ $Required \\ Parameters \qquad \qquad$ | | | | Spawning stock | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | biomass | | | biomass | Survey data, age data | N | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | R_i | recruits | D | | # | Survey data, age data | N | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | $N_{i,i}$ | Abundance at size | D | | # | Survey data, age data | N | | | $ \begin{array}{c} \textbf{Required} \\ \textbf{Parameters} \\ \\ \textbf{Parameters} \\ \\ \textbf{The intercept parameter} \\ \textbf{of the length-weight} \\ \textbf{relationship for species} \\ \textbf{a}_i & i & S & unitless & derived & N \\ \\ \textbf{The slope parameter of the length-weight} \\ \textbf{relationship for species} \\ \textbf{b}_i & i & S & unitless & derived & N \\ \\ \textbf{Asymptotic length} \\ \textbf{parameter of the von} \\ \textbf{Bertalanffy growth} \\ \textbf{L}_{\infty,i} & equation & S & cm & derived & N \\ \\ \textbf{Growth parameter of the von Bertalanffy} \\ \end{array} $ | | | | Diet composition | S | | unitless | · · · | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | Required | • | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | of the length-weight | | | | | | | | $the \ length-weight \\ relationship \ for \ species \\ b_i \qquad i \qquad S \qquad unitless \qquad derived \qquad N \\ Asymptotic \ length \\ parameter \ of \ the \ von \\ Bertalanffy \ growth \\ L_{\infty,i} \qquad equation \qquad S \qquad cm \qquad derived \qquad N \\ Growth \ parameter \ of \\ the \ von \ Bertalanffy \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | | | a_i | i | S | | unitless | derived | N | | | $Asymptotic length \\ parameter of the von \\ Bertalanffy growth \\ L_{\infty,i} \qquad equation \qquad S \qquad cm \qquad derived \qquad N \\ Growth parameter of \\ the von Bertalanffy$ | | | | the length-weight relationship for species | | | | | | | | parameter of the von Bertalanffy growth $L_{\infty,i} \qquad \text{equation} \qquad S \qquad \text{cm} \qquad \text{derived} \qquad N$ Growth parameter of the von Bertalanffy | | | b _i | • | S | | unitless | derived | N | | | the von Bertalanffy | | | $L_{\infty,i}$ | parameter of the von
Bertalanffy growth
equation | S | | cm | derived | N | | | | | | $\mathbf{k}_{\mathbf{i}}$ | the von Bertalanffy | S | | rate | derived | N | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | | | | Data description | Inputs Static (S) or
Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different regions, but directly in the modell units | Origin, source, or
method for derivation
of value | Variance incorporated
(Y or N) | Timeframe for
derivation of value | |--------------------|----------------------|------------------------|--|-------------------------------------|---|---|-----------------------------------|--------------------------------------| | Model Class | Misc
Model | LeMans | | | | | | | | | Model | Required
Parameters | | | | | | | | | | $\Phi_{i,j}$ | The proportion of species i in size class j that move to the next size class in a single time step | S | unitless | Survey data, age data | N | | | | | $lpha_{ m i}$ | Productivity parameter
of the Ricker stock—
recruitment equation for
species i | S | unitless | derived | N | | | | | eta_{i} | Density dependence
parameter of the Ricker
stock-recruitment
equation for species i | S | biomass | derived | N | | | | | $S_{\text{max},i}$ | The maximum observed spawning stock biomass of species i | S | biomass | Survey data, age data | N | | | | | κ_i | Curvature parameter for
the maturity ogive of
species i | S | unitless | derived | N | | | | | L_{M50} | The length at which 0.5 of species i are mature | S | cm | Survey data, age data | N | | | | | $\omega_{i,j}$ | The proportion of species i in size class j that are mature Instantaneous rate of | S | unitless | Survey data, age data | N | | | | | $F_{i,j}$ | fishing mortality on species i in size classj | S | rate | derived | N | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | major struct | arai reate | | Data description | Inputs Static (S) or
Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different regions, but directly in the model] units | Origin, source, or
method for derivation
of value | Variance incorporated (Y or N) | Timeframe for
derivation of value | |--------------|---------------|--------------------|--|-------------------------------------|---|---|--------------------------------|--------------------------------------| | Model Class | Misc
Model | LeMans | | | | | | | | | | $\phi_{\rm i}$ | A binary variable indicating whether species i is fished | S | unitless | Landings data | N | | | | | F_{max} | The maximum annual fishing mortality rate for a fully recruited fish | S | unitless | derived | N | | | | | η | Steepness parameter for
the fishing selectivity
ogive | S | unitless | Survey data, age data,
Landings data | N | | | | | L_{F50} | The length at which 0.5 selection by the fishery occurs | S | cm | Survey data, age data,
Landings data | N | | | | | $M1_{i,j}$ | Natural (nonmodelled)
mortality for species i in
size classj | S | rate | derived | N | | | | | Ψ,υ | Parameters of the beta distribution for M1 | S | unitless | derived | N | | | | | $M2_{i,j}$ | Predation mortality for species i in size classj | S | rate | derived | N | | | | | $ au_{m,i}$ | The preference for prey species m by predator species i | S | unitless | food habits data | N | | | | | $\zeta_{n,j}$ | Size preference for prey
of size n by predator of
size j | S | unitless | food habits data | N | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | | | | Data description | Inputs Static (S) or
Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different regions, but directly in the modell units | Origin, source, or
method for derivation
of value | Variance incorporated (Y or N) | Timeframe for
derivation of value | |-------------|---------------|-----------------|---|-------------------------------------|---|---|--------------------------------|--------------------------------------| | Model Class | Misc
Model | LeMans | | | | | | | | | | $\nu_{i,j,m,n}$ | The relative preference
(suitability) for predator
i of size j of prey m of
size n | S | unitless | food habits data | N | | | | | ${ m I}_{i,j}$ | The ration (ingestion rate) that must be consumed by species i in size class j to account for modeled growth in a given time step | S | biomass | food habits data | N | | | | | Ge _j | The growth efficiency
(proportion of food
consumed that is
converted to body
mass) of fish in size
class j | S | unitless | Literature | N | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | | | | Data description Inputs Static (S) or Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different | units | Origin,
source, or
method for
derivation of
value | Variance
incorporated
(Y or N) | Timeframe
for derivation
of value | |--------------------|-------|------------------------------|---|---|--|---|--------------------------------------|---| | Model Class | Misc | | | | | | | Variable, in NEUS | | | Model | Size Spectra Required Inputs | | N | | | | usually 40+ yrs
(1963-present) | | | | B per size unit | biomass (or sometimes abundance) | can be both | mass or mass
per unit area
length, often
cm or
derivatives | Survey data, Age data,
Landings data, food
habits data | N | | | | | log of size | size bins | both | thereof | Survey data | N | | | | | Required
Parameters | | | | , | | | | | | β | slope | S | unitless | derived | Y | | | | | α | intercept | S | unitless | derived | Y | | | Model Class | Misc | | | | | | | Variable, in NEUS, | | | Model | CCA/CanCorr/RDA | 1 | Can be, usually not | | | | usually 40+ yrs
(1963-present) | | | | Required Inputs | Matrix of times series of various response usually biotic (e.g. fish abunances) variables | D | various | Survey data, Age data,
Landings data, food
habits data,
Oceanographic Data,
Climatological Data,
Economic Data | Y | | | | | X | Matrix of times series of
various explanatory-
usually human (e.g.
landings), and
environmental (e.g.
SST) variables | D | various | Survey data, Age data,
Landings data, food
habits data,
Oceanographic Data,
Climatological Data,
Economic Data | Y | | | | | Required
Parameters | | | | | | | | | | U | Eigenvectors to establish canonical "regression" | S | unitless | derived | Y | | | | | Y^U | fitted canonical response | S | unitless | derived | Y | | | | | | | | | | | | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the | |---| | major structural features. | | major structu | ral features. | • | • | | | | | | | |--------------------|---------------|--------------------------------|--|----------------------------------|---|----------|--|--------------------------------|---| | | | | Data description | Inputs Static (S) or Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different regions, but directly in the model] | units | Origin, source, or method for derivation of value | Variance incorporated (Y or N) | Timeframe for derivation of value | | Model Class | Misc | | | | | | | | | | | Model | DFA/MAFA
Required
Inputs | | | Can be,
usually not | | | | Variable, in
NEUS, usually
40+ yrs (1963-
present) | | | | Y | Matrix of times
series of various
response
usually biotic
(e.g. fish
abunances)
variables | D | | various | Survey data, Age
data, Landings data,
food habits data,
Oceanographic
Data, Climatological
Data, Economic
Data | Y | | | | | X | Matrix of times
series of various
explanatory-
usually human
(e.g. landings),
and
environmental
(e.g. SST)
variables | D | | various | Survey data, Age
data, Landings data,
food habits data,
Oceanographic
Data, Climatological
Data, Economic
Data | Y | | | | | Required
Parameters | | | | | | | | | | | \mathbf{Z}_{t} | trend/s relating
across MV time
series canonical
relationships | S | | unitless | derived | Y | | Table 9, continued. The major parameters and input required to initialize and execute the miscellaneous models, with notations of the major structural features. | | | | Data description | Inputs Static (S) or Dynamic (D) | Spatially resolved (Y or N) [does not mean it is not done for different regions, but directly in the model] | units | Origin, source, or method for derivation of value | Variance incorporated (Y or N) | Timeframe for derivation of value | |-------------|---------------|-------------------------------|---|----------------------------------|---|----------|--|--------------------------------|---| | Model Class | Misc
Model | PCA/MDS
Required
Inputs | | | Can be,
usually not | | | | Variable, in
NEUS, usually
40+ yrs (1963-
present) | | | | ${f A_i}$ | Matrix of times
series of various
biotic (e.g. fish
abunances),
human (e.g.
landings), and
environmental
(e.g. SST)
variables | D | | various | Survey data, Age
data, Landings data,
food habits data,
Oceanographic
Data, Climatological
Data, Economic
Data | Y | | | | | Required
Parameters | | | | | | | | | | | λ | Eigenvalues to derive component scores & weighting | S | | unitless | derived | Y | | | | | μ | Eigenvectors to derive principal canonical axes | S | | unitless | derived | Y | |