Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Cropping Systems for Enhanced Sustainability and Environmental Quality in the Upper Midwest

Location: Agroecosystems Management Research

Project Number: 5030-21610-002-00-D
Project Type: In-House Appropriated

Start Date: Aug 5, 2013
End Date: Aug 4, 2018

Objective:
Objective 1: Improve nutrient and water-use efficiency and decrease environmental impacts of corn-soybean systems in the Midwest. Sub-objectives: 1.1 Determine effects of cover crops, bio-char applications, and biomass removal for bio-energy feedstock production on soil nutrient dynamics and crop yield; 1.2 Determine winter cover crop and tillage effects on water quality and N balance in a corn-soybean rotation; 1.3 Determine winter cover crop effects on soil quality and plant health in a corn-soybean rotation; 1.4 Develop and populate a SQL structured database to link with crop simulation models to evaluate cropping system responses to changing climate and management practices. Objective 2: Evaluate nutrient cycling and environmental impacts of alternative cropping systems. Sub-objectives: 2.1 Determine effects of organic cropping systems on water quality and soil profile water storage; 2.2 Determine effects of organic cropping systems on soil C and N storage and soil quality; and 2.3 Develop and populate a SQL structured database to link with crop simulation models to evaluate alternative cropping system responses to changing climate and management practices. Objective 3: Intercompare crop and economic models and foster improvements in these models to increase their capability to utilize data from climate scenarios as part of AgMIP.

Approach:
A combination of controlled experiments in the field and laboratory, tile drainage monitoring, and a variety of modeling techniques and statistical analyses will quantify the effects of corn stover removal on nutrient cycling and the ability of winter cover crops to reduce nitrate losses and improve soil quality in a conventional corn-soybean production system. In an organic production system with extended rotations and manure application, we will examine system effects on nitrate losses and soil quality. To assess cultural practices that can improve nutrient- and water-use efficiency and decrease environmental impacts of corn-soybean systems in the Midwest, we will determine effects of cover crops, bio-char application, and biomass removal for bio-energy feedstock production on soil nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) dynamics and corn yield, determine winter cover crop effects on N balance and water quality, determine cover crop effects on soil quality and plant health, and develop and populate a Structured Query Language (SQL) database to link with crop simulation models to evaluate cropping system responses to changing climate and management practices. To evaluate nutrient cycling and environmental impacts of alternative cropping systems, we will determine effects of organic cropping systems on water quality, soil profile water storage, soil carbon (C) and N storage, and soil quality. With the data, we will develop and populate a database to link with crop simulation models in order to evaluate alternative cropping system responses to changing climate and management practices.

Last Modified: 2/23/2016
Footer Content Back to Top of Page