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THE APPLICATION OF HYDROACOUSTIC METHODS 
FOR AQUATIC BIOMASS MEASUREMENTS 

A NOTE ON ECHO ENVELOPE SAMPLING AND INTEGRATION 

ABSTRACT 

A detailed analysis of basic fish abundance estimation techniques and their 

respective errors is presented. (No attempt is made to include hardware 

implementation in this note.) Echo sampling and integration schemes approach 

unbiased population estimates if the following details are known: a) the average 

target strength of the aggregation, b) the approximate II shape II or geometry of 

the fish aggregation, and c) the transducer directivity function. source level. 

voltage response, etc, It is shown that unbiased estimates of dense populations 

demand a priori knowledge of the geometry and distribution of the randomly 

assembled targets with respect to the transducer's effective volume coverage. 

Two typical geometries are examined~ they may be loosely described as 

1) thick layer of infinite expanse. and 2) thin layer of infinite expanse, The 

effect of the random phase components on the variance of the population estimate 

is demonstrated and the autocorrelation of the echo intensity is given. 

By Jeffrey B. Lozow 

John B. Suomala 

August 1971 





PREFACE 

This note is directed to persons engaged in or contemplating aquatic 

biomass measurements employing hydroacoustical techniques. 

We have limited the scope of this note to the minimum level of com­

plexity required to describe the behavior of a single hydroacoustical pulse 

propagated vertically from a projector, its return from fish targets as an 

echo, and the information contained in the echo signal. 

This has been done because the pulsed echo sounder is a fundamental 

device and is the most common component in hydroacoustical intrumentation 

currently available for fisheries research. 

We have started with the fundamental engineering principals of hydro­

acoustics. Furthermore, we have diligently avoided simplifying assumptions 

or procedures which can lead to erroneous conclusions concerning the appli­

cability of hydroacoustics for aquatic biomass measurements. 

We have combined a discussion of the physical concepts with the 

pertinent mathematics involved, however, since the subject is somewhat 

complicated it would be unrealistic to suggest that a detailed understanding 

of the technical content of this note does not require a certain degree of 

mental effort. 

We would also suggest that any attempt to apply pulsed hydroacoustical 

signals for aquatic biomass or resource assessment measurements which does 

not, at the very least. properly account for all the factors set forth in this note 

can hardly be expected to yield useful results. Indeed, it is not clear at this 

time that the explicit hydroacoustical signal processing methods which we have 

developed in this note can be practically applied to aquatic resource assessment 

without precise experimental verification. 

This note is the result of the efforts of the authors, but it must be noted 

that a number of individuals contributed their thoughtful comments which have 

helped greatly to bring us to this point in time. 

We would particularly like to mention R. Edwards, M. Greenwood. M. 

Grosslein, R. Hennemuth. J. Posgay, J. Slavin, K. Smith, A. Stevenson. W. 

Stevenson, and P. Twohig of the National Marine Fisheries Service; L. Midttun 
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and O. Nakken at the Institute of Marine Research, Bergen, Norway; L. 

Boerema. D. Raitt. and S. Olsen at the Food and Agricultural Organization, 

Department of Fisheries, Rome, Italy; H. Lampe and S. Saila at the Univer­

sity of Rhode Island; V. Suskan of AtlantNIRO, Kaliningrad. U.S.S.R.; and A. 

Borud at Simrad AS., Horten, Norway. 

Here at M.1. T. we must mention our colleagues, J. Scholten, R. 

Scholten, and R. Werner who reviewed our work, Miss Martha Ploetz who 

prepared the manuscript, and W. Eng and D. Farrar who provided the 

illustrations. To these people we express our gratitude for their help. 

Nevertheless, we take full responsibility for the contents of this note. 

J. B. L. and J. B. S .• Jr. 
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1. 0 INTRODUCTION 

The subject of this paper is a detailed analytical investigation of the informa­

tion content inherent in a single acoustical pulse scattered by an assembly of 

independent random scattererB. Since current echo-sounding systems produce 

simple monochromatic pulses for transmission. this analysis will be restricted 

to such. 

Information in the recieved echo from a pulsed transmission may be 

contained (assuming high signal-ta-noise ratio) in variations of phase, amplitude, 

pulse duration, and time delay between transmission and reception. Physical 

considerations regarding the propagation of sound in the sea. as well as our 

limited knowledge of the mechanism of scattering from fish targets rule out. on 

any practical basis. any kind of phase processing. Thus. we are left with the 

envelope of the received echo. its total duration. its frequency content. and its 

travel time to and from the target(s). We must somehow interpret these quantities 

in a manner that is consistent with some physical model of the entire acoustical 

link. 

First. and foremost. it is necessary to construct the geometry of a stationary 

echo-sounder positioned over a region containing fish targets. In Fig. 1 we have 

depicted a closed volume VT (which may be infinite) of arbitrary shape. said to 

contain all targets of interest. The transducer emits a pressure pulse (possibly 

a train of pulses) which in time envelops each of the targets contained in V T' 

Obviously. the positions of the various targets within VT greatly affects the 

characteristics of the net echo produced by all the scattering members. For 

example. if the targets were all clustered about a particular point within VT • we 

would expect the echo envelope to exhibit a large amplitude for a duration on the 

order of a pulselength. However. if the targets were uniformly distributed 

throughout VT' we would expect a long drawn out echo envelope of many pulse­

lengths in duration. since all targets would be contributing to the echo at 

different times. A reasonable approach to mathematically modeling this type of 

occupancy problem (if the packing density is not too great) is to assume that the 

individual positions of the scatterers within VT are a random phenomena obeying 

a three-dimensional Poisson probability law. This has the advantage of rendering 

the mathematics involved tractable. Certainly. however. experimental verifica­

tion is needed to truly verify the Poisson law assumption. We state below some 

conditions under which we would expect the target positions to obey a three­

dimensional Poisson probability law. Suppose we arbitrarily select a small 

subvolume "VI! of V T' Let there exist a positive quantity I! p II such that the 
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following conditions are approximately true: 

A) the probability that exactly one target will OCCur in V is approximately equal 

to the product p V. 

B) the probability that exactly no targets occur in V is approximately equal to 

1 - p v. 
C) if V is arb~rarily subdivided into smaller portions: 6. V I' 6. V 2' ..• 6. Vi' .• 6. V M' 

such that V = L 6. V" the occupancy of any 6. V, by one or more targets is inde-
i= I 1 1 

pendent of that of any other portion 6. V. (j ~ 0. 
J 

In other words, if the targets are uniformly and independently dispersed 

throughtout a volume such that a quantity p may be interpreted as the mean rate 

at which the targets occur per unit volume, we assume that these occurrences are 

a kind of random phenomena described by the three-dimensional Poisson 

probability law (with parameter p). More precisely, the probability that exactly 

n targets occupy a volume. V, is equal to 

~ {exactly n targets in V } 
e- pV (p V)n 

n! 
(I) 

The assumption of independent behavior on the part of the targets (fish) at higher 

densities is doubtful. Most certainly, the validity of the model of fish as isolated 

geometric points becomes questionable if the mean distance between fish decreases 

to a level of the order of a fish length. On the other hand, if the mean distance 

between fish is great enough, the assumption of mutual independence seems 

reasonable. It can be demonstrated (see Appendix A) that the relationship 

between the denSity parameter p of a three-dimensional Poisson process and the 

mean dist-ance,D,between a point and its nearest neighbor is given by 

D= 
(I/3)! .55 

1/3 
p 

(2) 

However,for the non-probabalistic case of densely packed spheres of diameter,D, 

occupying a volume with denSity p, 

D~ 
1.2 

1/3 
p 

( 3) 

where D is also the distance between sphere centers. Relationship (3) may apply in 

the highly dense case, where (2) may apply in low to moderate densities if the 

random phenomena obeys the Poisson law. 
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In any case. if we accept the concept of average target density as meaningful 
and applicable to most situations which arise in abundance estimation. then the 

question of actual target distribution. be it Poisson or any other. would not influence 

an unbiased estimate based on average effects. However, the error models 

associated with the estimates are. in fact. dependent on the ~xact distribution 

assumed. 

" 



2.0 BASIC CONCEPTS 

2.1 ECHO SIGNAL- SINGLE TARGET 

In this section some basic concepts and equations are presented from which 

simple estimation schemes are derived based on the average density model. To 

begin with. we start with the basic echo sounding equation for a single target 

(see Reference 3). 

y 
rms 

Z 

K 

I 
o 

a 

R 

rms voltage produced at transducer terminals 

specific acoustic impedance of fluid (g/cm2sec) 

transducer voltage response (volt, cm2 /dyne) 

source level (dyne/em. sec) 

tx:ansducer directivity function 

directional spherical coordinates relative to 

reference coordinates fixed at transducer 

ratio of power scattered in direction of 

transducer per unit solid angle to the incident 

intensity at target 

path attenuation loss due to combined effects 

of scattering and absorption 

range to target (meters) 

It is generally more convenient to define two auxiliary variables IR and TS such 

that 

and thus expression (4) becomes 

y2 
rms 

-2aR 
e 

TS _ (5A) 

4. 

(5B) 

The quantities IR and TS are designated as the equivalent received intensity level 

and the equivalent (plane wave) target strength. In general IR is not really an 

intensity as its units (watts/meter2) seem to imply. The true intensity incident 
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at the transducer aperture is actually given by the ratio IR/G( e, rp), although in 

analysis one usually deals directly with the term IR rather than the ratio IR/G. 

The target strength parameter, TS, refers to the echo produced by an object in 

the path of a plane acoustic wave. Mathematically it is the ratio of the intensity 

* of the local echo (at one meter from the object) to the incident intensity. In 

general, target strength is a function of the target orientation with respect to the 

transducer. Except for isotropic reflectors such as rigid spheres, irregular 

bodies have target strengths which are complicated functions of their orientation 

to the sound source/receiver. 

-2aR 4. The term e /R IS a consequence of the two way spreading and absorption 

losses characteristic of wave propagation in a lossy medium. For frequencies in 

the 100 kilo-hertz region "a" is about 6.3 x 10-
3 

or the equivalent of 0.055 

decibels per meter. 

The function G( e, tp) specifies me directional characteristics of the trans­

ducer on a three dimensional basis. If we imagine a coordinate system fixed to the 

effective center of the transducer as in Fig. 2, the angles (e ,'~ ) are the reference 

polar coordinates. The direction (0,0) is ordinArily taken to be the direction of 

maximum response /projection. The directivity function G( 0, cp) is normalized to 

the maximum so that G( e, 1') :S G(O.O) = 1 for any combination of 0 and rp • 
Typical directivity functions include those of the circular and rectangular plate 

transducers. For the circular aperture transducer 

2J 1 (!!J!- sin1» 

~d . '" 
TSln't' 

2 

where J 1 () - 1st order Bessel function 

d - diameter of aperture 

A - wavelength 

and for the rectangular plate 

G( e,4'):: [Sin <¥- sinrpcos e) 

.1lf sin cpcosB 

• Sin(~Sin(bSin()] 2 

~ sincpsinfJ 

where a. b - dimension of rectangular aperture 

). - wavelength 

(6A) 

(6B) 

The associated geometry is shown in Figs. 3A and 3B. Note that the directivity 

function of the circular plate transducer is not a function of the rotational angle 0 

*Some authors define target strength in decibel form, i. e. 10 LOG (TS). Also. 
target strength is sometimes referenced to one yard rather than one meter. 

S 
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which may be caned a condition of "circular symmetry." In practice. analytical 

expressions for the G( e. tp) of a particular transducer might not be available and 

laboratory measurements would be necessary for its determination. 

2.2 ECHO SIGNAL-MULTIPLE TARGETS 

Equations (4) and (5) are expressions of rms voltage and intensity respectively. 

They express the time averaged effects of the physics of the transducer-target­

transducer link. For multiple targets. the time dependent form of the received 

signal need be examined. Let the pulse returns from N distinct targets be incident 

simultaneously at the aperture of the transducer at some arbitrary time t = t 1 

seconds. * From (5) let the intensity level of the ith echo be given as 

( 7) 

The rms voltage. (V rms)i. associated with the ith target. if the echo were 

isolated from the other n -1 returns is given by 

J 
1/2 

(V rms>; ~ K [ Z,(IR)i • (8) 

where K - voltage response of transducer. 

The instantaneous voltage v.(t) that (8) represents may be expressed as a cosine 
1 

function of duration equal to one pulselength liT". It is given by 

v.(t) ~.fi'(V ).cos(w t + fi.> ; t 1<t«t1+r) (9) 
1 rms 1 c 1 

where t 1 - arrival time 

Wc - carrier frequency 

"i - signal phase 

T - pulse length. 

The net transducer terminal voltage at t l 
< t < (t l + r) is given by the sum 

n 

v (t) ~ 
n 

L 
i= 1 

v.(t) 
1 

,~ Assumes identical ranges to all n targets. 

8 
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The instantaneous squared voltage thus may be expressed as 

2 
v (t) = 

n 

n n n 

2 .J. (t) + 22v.(t)v.(t); t
1
<t«t1 +r) 

i=l 1 i=lj=1 1 J 
i ~j 

• (11) 

Generally it is the square of the net voltage that is the quantity of interest since on 

the average it will be shown to be directly proportional to the number of targets 

contributing to the echo at any particular time. Substitution of equation (9) into (11) 

yields for t 1 < t < (t 1 + r) 

n n n (12) 

v!(t) = E (t) + 2 
i= 1 

(V;ms\ + i~~l (V rms)i(V rms)jCOS(. i- .j)' 

i+j 

It is easily shown that the term £(t) in (l2) behaves as "cos (2 w t)" or varies with 

time at twice the carrier frequency. The mean squared value o~ v~(t). S. is given 

by averaging v2(t) over a cycle of oscillation. If all other terms in expression (l2) 
n 

vary slowly in time relative to £(t) then 

n n n 

S. (v2
(t) = "(V

2 
). + 22 (V ).(V ).e08( •. - • .). (13) 

n f=1 rmSl i=lj=l rmSl rmsJ 1 J 
i+j 

since 

where the "( ) II indicates time averaging over a cycle period 
We 

Expression (13) reflects the significance of the phase relationships (tP'i- 4-
j
) 

between the n signals. As a trivial example consider the net mean squared 

voltage produced by two identical scatterers at nearly identical positions with 

respect to the transducer. In this case n = 2 and (13) becomes 

A plot of (14) (see Fig. 4) illustrates the possible variation of S(2) as a function of 

phase difference <CPl-4- 2). Note that the net mean squared voltage fluctuates 

between 0 and twice the mean squared voltage available from one echo. i. e. , V 2 • 
rms 

The two extremes are total reinforcement when 4-1- 4-2 integer x 211'. 

and total cancellation when .C.2 = 1r + integer x 211'. Obviously. the respective 

phases fll and .2 playa dominant role in the effective voltage produced at the 

transducer terminals. 
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It is generally assumed that the ocean perturbs the phase of an acoustical 

wave in a random fashion~ especially at longer ranges. In addition, even a slight 

range difference between one target and any other changes their echo phase 

relationship when this difference is comparable to a wavelength. These considera­

tions among others, lead to the postulation of random, uniformly distributed phases 

for each of the signal components. This assumption is common to most analyses 

dealing with echoes from assemblies of scatterers whether the scattering be of 

acoustical or electromagnetic nature (e. g., radar e,choes from rain drops. chaff. 

etc. ) 

Suppose equation (12) is rewritten in a random variable sense regarding the 

individual voltage or signal as an independent random variable: 

S = I (V;ms); + fi (Vrms);(Vrms)jCOS( i;- i j ) (15) 

i=1 f=1 J=1 
; +j 

where the"" symbol over a quantity designates it as a random variable. (r. v.). 

It is a direct consequence of the central limit theorem in probability that the first - . order statistics of 8 are described by a Rayleigh probability distribution of power -(if n is sufficiently large). More specifically the probability that 8 lies between 8 

and S + dS is given by 

n 

where S - I 
i=1 

The mean or expected value of S is given by the integral 

The variance of S. 

I (lIS) Se-S/S dS = S 

o 
2 

O"~ is given by 

2 
a_ 

S 

(for large n) (16) 

(17) 

( 18) 

The usual meaSure of fluctuation is the value of the standard deviation as' 
Taking the square root of (18) yields a 0"8 which is equal to S. Note that the 

fluctuation is large as its value is 100% of the mean. This fact is true as long 

as the number of components is sufficiently large (say N2: 5). The fact that the 

average value of the net mean squared voltage S is equal to the sum of the 

~<AIso called the exponentIal distribution. (See Reference 4) 
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averaged component mean square voltages is somewhat intuitive. However. the 

fact that such a large fluctuation is inherent to the mean squared voltage 

(neglecting noise or any other spurious inputs) is surprising. It should be noted 

that the Rayleigh power distribution holds regardless of the distributions of 

(v)., the individual component amplitudes. That is, there is no requirement 
rms 1 - 2 

that the second moments (V rms)i be equal or have the same distribution flUlctions. 

The probability density function as given by (16) describes the statistical behavior 

of fluctuation (at any arbitrary point in time) of the echo signal produced by lin" 

Bcatterers located at roughly the same range from the transducer. Generally. 

however, the real situation will be that depicted in Fig. 1 where targets will be 

somehow distributed over a volume such that it is not very likely that all, if any. 

targets are located at identical ranges. 

Suppose a number of targets are uniformly dispersed over a large volume 

with density II P fl. Also, assume a transducer is situated over this volume and 

sends out one pulse of length T seconds. The shape and duration of the echo (mean 

squared voltage) as a flUlction of time, will depend on the transducer directivity 

pattern, and the depth and extent of the target volume. More specifically, assume 

a hypothetical scattering layer of infinite expanse located at a depth Ro (see Fig. 5). 

The pulse is viewed as a blUldle of energy contained in a hemispherical shell of 

thickness c T and radius ct (where c is the speed of sOlUld in the sea and t is 

the time starting when the leading edge of the pulse left the transducer). Any 

objects in the path of the pulse shell at range fiR" will scatter energy. a fraction 

of which will be incident on the transducer aperture at time t = 2R/c. The 

echo signal should start to build at time equal to 2Ro/c and not die out Wltil the 

pulse shell has passed the lower boundary of the layer. After this point in 

time. the hemisphere shell intersects the layer only at large angles from the 

direction of maximum transducer response. In Fig. 6 a sketch of mean echo level 

VS. time is presented. The distinct levels (A). (B), (e). (D) and (E) correspond 

to the spatial positions of the propagating pulse as shown in Fig. 5. 

At point (A) the pulse shell has not yet come in contact with the scattering 

layer and thus the echo level is zero. Point (B) corresponds to the initial echoes 

as the pulse shell begins to merge with the layer. The level stays relatively 

constant, point (e). Wltil portions of the pulse shell emerge from the lower 

boundary, point (D). As the pulse shell propagates through the layer further 

the echo level diminishes, point (E). Figs. (5) and (6) represent a graphical 

interpretation of the echo level received from a simple assemblage of scatterers. 

i. e .• thick uniform scattering layer. 

12 
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2.3 CORRELATION 

Figure 6 depicts a representation of the mean received echo (voltage envelope) 

level vs. time. As has been shown in equations (15) through (18). the fluctuation 

about the mean level is likely to be large at any point on the echo level vs. time 

curve. Thus, the curve will exhibit irregular fluctuation in level as the pulse shell 

propagates through the scattering layer. If a curve possesses coherency it means 

that if at any instant the level is high, it is likely that the level will remain high 

for a while whereas if it is low. it is not likely to become large in a short time. 

The degree of coherence between two distinct points on a curve is described in 

terms of the correlation coefficient r(t 1, t 2). If S<\) is the value of the mean 

square voltage (echo level) at time tt and S(t2) is the corresponding value at time 

t2 then r(t l , t 2) is defined 

(9) 

It can be shown that the following inequality holds: 

(20) 

If, on the same echo level curve, r(t 1, t
2

) ~ 1. a high value of 8(t
1

) is likely to 

be associated with a high value of S(t2 ); if r(t 1, t 2) ~ 0, a given value of Sh1) 

gives no information about the level of Sh2h and if dt
l

, t 2) == -1 a high value of 

'§'(t 1) is likely to be associated with a low value of S(t2). It will be shown in 

Appendix B that for the Hthick" scattering layer, the correlation coefficient is 

given by 

( (21 ) 

o OTHERWISE 

From (21) it is seen that r(t
l
, t 2) depends only on the value I tl - t21 • 

2.4 TIME AVERAGING 

In the regions where the expected value of S(t) (written E {SIt)} or Siii) 
is constant, the process S(t) is said to be "stationary in the wide sense. 11 For 

15 



thick scattering layers a large portion of the echo pulse might be stationary. 

e. g •• the region between points (e) and (D) in Fig. 6. If we know that a 

significant portion of 8(t), the echo level vs. time curve, is stationary. time 

averaging may be employed to smooth out the fluctuations caused by the random 

phase components. Time averaging along §'(t) , the echo level VB. time curve, 

will smooth the data without bias error if 8(t) is stationary. In the sketch of 

Fig. 7. we depict a typical echo VB. time curve for a thick scattering layer. The 

symbol 8(t) represents a possible echo. whereas the symbol 8(t) depicts the 

lIaverage" of S(t). Note that after an initial rise time t r • the average is almost 

constant until Borne time t f when the echo begins to die out. The time interval 

t
f
- t naturally depends on the thickness of the scattering layer. For example. 

r _ > 
we could represent 8(t) between tr and t f by a running average (8 e 

< >_ 1 t 

S t- t>t f 
t-llt 

S(t')dt' • (22) 

Note that <SA is itself a function of time t. It is assumed that the goal is to reduce t _ 

the fluctuation inherent in S(t) in order to get a better estimate of the statistical 

mean or expected value of S(t). More precisely, if ~t is sufficiently small so that 

the expected value of S(t) changes slowly over the interval (t - Dot, t) then 

1 

At 

t 

f E1S(t')) dt'::: S(t). 

Thus, (S>t is practically an unbiased estimate of the statistical mean, S(t), 

(23) 

It can be shown, (Ref. I), by implementing equation (21) that the variance of 

the estimate 1s given by 

g2(t) [1 _ .!.. At + 1 (~t )2] .1.t ~ T 
2 3 T "6 

IT = (24) 
(S)t g2(t) ( ~ ) 2 At >; 

2 At 

This result should be compared with expression (18) where 

2 
O"g = 

2 
S ( 18) 

If, for example D.t were set equal to T, the variance of the fluctuation would be 

reduced by 1/2 (i, e, O"~ = ~ /2), It is desirable to make 6.t, the averaging 
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2 
interval~ as large as possible since expression (24) indicates that ~t diminishes 

rapidly with increasing ~t. On the other hand, too large a.a. t would result in a 

large bias error since E t <S)t~ would not be close to Set). 

From the results above it is reasonable to conclude that in the thick 

scattering layer case, where the echo level approximates a stationary random 

process, smoothing or time averaging reduces the fluctuations caused by the 

random phases of the component echoes. 
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3.0 ABUNDANCE ESTIMATION 

This section will be concerned with some methods of target counting or 

abundance estimation along with their associated errors. The analyses will be 

carried out on a single ping basis. That is. the echo signal will be assumed to 

be the result of a single acoustical pulse projected from a stationary transducer. 

The extension of these techniques to a moving transducer projecting a bUrst of 

pulses will be discussed in a later paper. 

3.1 THICK SCATTERING LAYER 

The geometric characteristics which a target volume must possess in order 

to fall into this category are 1) target volume has a lateral expanse greater than 

the effective range of the transducer. and 2) a vertical thickness greater than one 

half a pulse length or C T /2. A cross section of a thick scattering layer is shown 

in Fig. 8. The term Ro is the depth to the layer from the working face of the 

transducer. The term 6 refers to the average thickness. Figure 8 is an idealized 

model in that the target volume or layer is depicted as an infinite region bounded 

by parallel planes. The fish are assumed to be dispersed throughout the scattering 

layer. We restrict the analysis to layers through which the targets are homogeneous-

* ly distributed. We fix a coordinate system at the transducer to which the spherical 

coordinates (R, (). ¢') will be referred. If the transducer projects a pulse at time t = D. 

the sound backscattered from the layer should not be received until to = 2Rol c. From 

this time onward. backscattered energy should be significant until the pulse shell has 

passed through the lower boundary directly below the transducer at time t:: 2(R + 6)1 c. ** _ 0 
It may be shown that the average value. S. of the net mean squared voltage (from 

"nil scatterers) at the receiving terminals is equal to the sum of the averaged compo­

nent mean squared voltage. or 

s = 2 s. • i:: 1 1 (25) 

where S = V 2 
rms 

S. = 
1 

(V2 ). 
rms 1 

As it is more convenient to work in intensity levels at this point we use relation­

ship (8) to transform (25) to 

* We assume in this discussion that the effects of mUltiple scattering are negligible. 

** By taking the expected value of both sides of (15) and noting that E {cos (ii - i j ) ~.,. O. 
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I " R 
(26 ) 

where 

Taking any arbitrary time during reception. say t, the intensity level will be made 

up of the contribution from the pulse shell whose range boundaries fall within 

c (t - r) / 2 and c r/2. As a first approximation we will consider the scatterers within 

this shell to be located at some intermediate range R. where 

R = - -+ -t-T "c(t-1:)/2 -_ I[ct c( )~ 
2 2 2 2 

(27) 

Suppose we determine the average incremental intensity aIR produced by a portion 

of the pulse shell 6. V (Fig. 9). If there are on the average p scatterers per unit 

volume. then the average number of scatterers. £ii, in 6 V is given by 

an = ptl,V (28) 

If the scatterers in I:l. V have roughly the same average target strengths. then by 

equations (7) and (26) 

(29) 

The quantity 6. V can be written in terms of the differential angles dq, and de as 

.:;v " ~R2 Sinlldllde • 
2 

(30) 

Thus, in terms of the calculus, the differential of the average intensity, cUR' can 

be written as 

P .£..!.. TS I 
2 0 
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The average intensity of the pulse shell at the transducer may be expressed as the 

integral 

-2oR 
(32) 

cr e 
2w Cos -l(R

o
iR) 

f f G2(e,~)Sin¢d¢dO. 2 
o 0 

Relationship (32) holds for all ranges l RI falling within the lil'Rits 

IR can be written as an explicit function of time if the sUbstitution 

R = c (t -r) i 2 is made in (32). 

3.2 ENVELOPE SAMPLING 

Suppose we define a sequence of discrete times {tN } such that 

Corresponding to this time sequence we define a range sequence I RN J 

= 

R + C r/4 
o 

3/4cT 

(33 ) 

(34) 

(35 ) 

From the sketch in Fig. 10 we see that the scattering layer can be divided up into 

non-overlapping shells. Accordingly. the time "t
N 

II represents the time at which 

a pulse shell at a range "RN" causes an average intensity level IN = IR(tJ to be 

23 
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present at the transducer. Substituting (35) into (32) generates a sequence of mean 

intensity levels IINlwhere 

(36) 

-20(R + (N-1/2)cr) 
e 0 

2 2 

{Ro+ (N - 1/2)cr/2) 

2. COS-1(Ro/Ro+ (N-1/2)c r/2) 

J J G2(e,ii\)Sin~d<I>dB. 
o 0 

For ease in handling we define a quantity II ~" such that 

Thus, the Nth member of the sequence (36) can be written more compactly as 

T = N 
~ . N 

where RN = Ro + (N-l/2) cr/2 

It should be remembered that expression (38) represents only the statistical -

(37) 

(38) 

average or expected value of the random variable IN. Moreover, the members of 

the sequence lIN} are uncorrelated since the associated times are at least a 

pulselength apart by construction (see expressions (34) and (21». If we plot the 

expected value of the intensity levelIR vs. time. the shape should be identical to 

the mean echo level presented in Fig. 7. The only difference is the scale factor 

"ZK
2

" relating echo level S to intensity levelI
R

• 

In Fig. 11 we have illustrated the variation between the mean intensity. I, 
and the intensity level of a single typical signal, I, at pulselength intervals. 

Suppose we now solve equation (38) for the density p in terms of the quantities 

iN. Then 

p = (39) 
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Expression (39) implies that if any member of the sequence {IN~iS weighted by 

suitable parameters, the quantity P will be obtained. Unfortunately in real situations 

we do not have access to the sequence {IN}' but rather the random sequence fIN}' 
Thus. the best estimate we can get for p on the Nth data point IN is given by 

2R2 +2aRN 
1\ N e 
P

N 
=--~~--~'I'---

Io'TSCT ~N 
(40) 

where the circumflex 'A'! over the quantity p indicates its estimated value. Taking 

the expected value of both sides of (40) of course. yields (39). A simple way of 

combining the discrete data {I } is to mUltiply each member of this sequence over 
N 

the calculated volume of the corresponding pulse shell and Bum the results. That 

is. we let V
N 

represent the volume of the Nth pulse shell responsible for the Nth 
- 1\ intensity level IN' Define a quantity ~ where 

(41) 

1\ 
Then the expected value of Q becomes 

(42) 

Since the sum I VN is actually the summation of the volumes of the non-over-

lapping pulse shells, it is therefore equal to the total volume insonified. Thus, 
1\ 

with p equal to the number of targets or fish per unit volume, the quantity Q is 

seen to be an unbiased estimate of the total number of fish in the insonified volume. 

The quantity VN can be calculated from expression (30) by substituting RN 

for R and integrating to the appropriate limits. Thus, 

2 2'11" COS-~Ro/RN) 
V N = (cT/2)RN f f Sinjldjlde 

o 0 

= .CTRN[RN - Rol (43) 

Substituting expressions (40) and (43) into (41) yields an explicit expression for 
. 1\ 

the quantity Q : 
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1\ 
Q = 'eT "5J<N - 1/2)~ 

all\ </J 
N N 

(44) 

Equation (44) can be written in terms of the time sequence{tJbY a direct substitution 

of ct
N 

/2 for RN in expression (44). 

3.3 ENVELOPE INTEGRATION 

It has been shown that sampling. and properly weighting the intensity level 
1\ 

at every pulse length in time leads to an unbiased estimate Q (expression (44» of 

the abundance in an insonified volume. The first .sample time. tt' occurred at 

tl = T • the second at t2 = 2 T and 80 on. It has also been shown that the resulting 

sequence.of terms {~} were uncorrelated because they were due to a Bet of ad­

joining pulse shells within the scattering layer. Since the only requirement for 

{IN} to be uncorrelated is that the sample times be taken a pulse length apart we 

might create another uncorrelated sequence say {lIN} by sampling at times 

ttl =to+ T +(. t'2=to+2r+( ••••• t'n=to+NTt.(. where (ischosenarbitrarily 

from a range 0 < « r. It should be noted that the cross correlation between the 

Nth respective terms. ~ and I' N is ; 0 since there is overlap between the re­

spective pulse shells associated with T'N and IN. We might make two unbiased 

estimates based on the sequences {~} and rl'N} namely a and ~'. From 

(44) 

N 
and 

2a'R'_ 

(
N 1 +( )1\,3 -"N ) 

'" __ --'~=__'I' _ ____:J:rN-e __ I'N 
L ;pIN 
all 

N 

the primed quantities R'N and ¢'N are defined 

R' = R +~ (Nr-t) 
N 0 2 

1 -
2" cos- Ro/R'N 

¢'N'!! G2(B.~)sinjld~dB 
o 0 
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" " We now have two quantities Q and Q' which are estimates of the same number of 

fish. Though they are not based on independent data (i. e. {~} and {r N} are 

correlated)~ it may be shown that from a statistical standpoint the sample mean is 

given by 

1 " " 2" (Q +Q') sample mean 

" 1\ is a better estimate than either Q or Q' respectively. 

(47) 

We might create yet another sequence say {I!lN} by selecting times 

t"l = t + ri. 2£. t"2 = t + 21"+ 2€ .... t"N = t + Nr+ 2(. This then leads to another 
o 1\ 0 'A 1\ 0 

estimate, QTI. in addition to Q' anj:l Q. and a sample mean 

1""" (Q +Q' +Q") 3" (48) 

Obviously this process may be extended indefinitely with the sample mean giving 

even better estimates. In the limit, the intensity level profile is divided up an 

infinite number of times giving an infinite number of unbiased. but correlated 

estimates. This may be shown mathematically as follows. Instead of the primed 

notation as in (47) and (48) it is convenient to order the estimates by subscripting 

" " " "," " them. That is Q 1 = Q', Q
2 

= Q'. Q
3 

= Q"' .•. etc. The data sequences will be 

double subscripted where the second subscript will correspond to the subscript 

"" 1- ) " on the ~'s..:. Thus Q1 will depend on the sequenc.: IN, 1 ' Q 2 on the 

sequence {IN, 2} and so on. Thus a component IN, K will be the Nth data 

point of the Kth sequence. Fig. 12 is a sketch of an intensity level profile of 

which each interval a ·pulse length wide has been partitioned M times. Each 

sample component IN K is a time step 4t = TIM from the adjacent points 

IN, K-l ' and IN. K+~. Here we must also impose a double subscript notation 

on RN and ¢iN of the basic expression (46). Let 

!: R +.£.!... (N -.!. + K..:.\ t ) 
a 2 2 T 

2. RN K -11 . 2 ~NK= G(O.jI) 
• 0 0 

(49) 

sinjl ct .. cte 
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1\ 
Then the Kth estimate QK may be expressed as 

1\ TTCT 
Q = -iii'-'­

K TSlo 
2: (N-i + K:t) 
all 
N 

- 1\ , The sample mean, QM' may be defined as the average of the Q K S • thus 

1 
M 

but since M '" T / ~ t. QM may be expressed as 

"t 

(50) 

(51 ) 

(52) 

If we let .:It-O by forcing M-oe , the sum on K multiplied by the quantity .1.t 

approaches an integral. That is, 

with expression (50) inserted for 

where -I 
217 cos 

<f, (t) = f f 
o 0 

the limit as !.I.t - 0 

'" 
of the right hand side of (52) 

QK. is given by 

1 
T t 

t + 1: 
o 2 

ac(t-.!:) 3 

e 2 (t-i) (t-to-f) l(t)dt 
¢ (t) 

(53) 

If we compare expression (53) with its discrete counterpart (44) it is seen that the 

equations are basically the same except that integration with respect to time has 

replaced summation over discrete sampled points. The advantage of echo integra­

tion (53) over counting or summation (44) is a smaller error variance. 

3.4 THIN SCATTERING LAYER 

A thin scattering layer may be described as a large expanse of scatterers 

of thickness much less than c r/2. The pulse reflection from this type of layer 

is envisioned as an expanding circular ring in the plane of the scatterers. These 

rings are analagous to the hemispherical shells of the preceding section. The 

geometry is sketched in Fig. 13. The incremental area of the Nth ring dS
N 

is 

given by 
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The total area of the Nth ring is 

R2 
o 

2. 

f 
o 

-I(RO) cos --
RN 2 f tanllsec II dll dO 

-I( Ro ) cos R _CT 
NT 

(54) 

(55) 

Since the scatterers lie in the plane~ the density p is a surface density in units of 

meters2. The differential form of the received average intensity from the Nth ring 

is given by 

dl = 
N R 4 

N 

Substituting RN = Ro sec~N. and (54) into (56) yields the integral form 

2. 

f 
o 

If we define cP I N 

_I(RO) 2" cos _ 

¢'N! J J RN e-2aRosecllG2 (0.11) sin<PcoslldlldO 

cos-I! min (I; RN~~)1 o 

(56) 

(57) 

(58) 

and manipulate terms in a manner consistent with the procedure for determining the 
1\ 

"QI! of the thick scattering layer (expression 44). we arrive at 

1\ 
Q 

An integrated form of (59) is found to be 
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1TR02 c2 r 1 +r 
1
0

(1-1
0

) 
~ 

0 1(1) ., 
1 1(1) dl] (60) 

I J dl + J 210 TS r Ii '(I) Ii'(t) 

to 1 + r 
0 

where 
2' cos -1(10 /1) 

16'(1) ! J J .• -OC10S.C9> G2 (e.lI) sin!6coslldllde 

o cos -1 ! min (I, 10/t-r)J 

3.5 VARIANCE ERROR - THICK SCATTERING LAYER 

We have by means of (44) and (53) an unbiased estimate of the number of 

targets in a portion of the thick scattering layer. It remains to be seen how good 

an estimate this is. We define the error. EQ • as follows 

E ! 
Q 

1\ _ 
Q-Q 

Q where (61) 

The mean or expected value of EQ is zero. consistent with the fact that ~ is an 

unbiased estimate of Q. Determining the variance of EQ is not a trivial problem 

(see Appendix D). The final results are * 

2: Ts2 2: -4 
V 2 + (~) 

GN VN all N 'i'S2 all ~2 
2 N N G 

"Q = 

(~l VN )2 

N 

(62) 

where 

2~cr 2 ( (N-!) 
2 

2: V 2 
2 

cr) m (cr)4 (N-!) Ro+ 2 
all N N=1 2 2 
N 

(63) 

2: VN 

26/cr 

(N-~) (Ro + (N-~) ~r) = • (c r )2 2: 2 all N=1 N 

* The variance O"Q2 is sometimes called the mean squared error. 
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and 

a) 

b) 

c) 

d) 

o layer thickness· 

T = pulse length 

c = sound velocity 

- 1 TS=-
4 rr 

2rr rr 

J f TS(e'.¢') sin¢'d¢'de' 
o 0 

Expression (55) can be broken down into two components of variance. For high 

densities. expression (55) is given approximately by 

(65) 

c2r y/(~:r(N_~)(Ro+(N_~) cny 
which. if R »0 and 2 0 leT> 1 is approximately 

o 

2) _ 
"Q -

p-oc 

!(2!.§.. + 1) 
3 cr 

Thus. at high densities. the variance of the error is a function of the ratio of 

pulse length to scattering layer thickness. This portion of the error can be 

attributed to the random phases of the echo components. The fact that the 

error decreases with larger 61r is indicative of the fact that with smaller 

pulse lengths we base our estimate on more uncorrelated data points for a 

(66) 

given insonified volume. For example. suppose we were implementing a scheme 

based on expression (44) to estimate the number of fish in a highly dense. 5 meter 

thick scattering layer. If a 1/2 millisecond pulse were used then based on expres-

sion (66). uQ
2 :;:: 0.1 For a pulse length of about 6.6 milliseconds we can calculate 

uQ
2 :;:: 1. O. Since we have only one significant data point. it is expected that the results 
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of (66) should be in agreement with expression (18). A plot of expression (66) is 

shown in Fig. 14. At low densities. P- 0 • the second component of variance 

predominates: 

2 
"Q) p-o 

1 TS2 
:::: ---

p ~2 
( 67) 

The ratio of the mean squared to the squared mean target strengths contributes 

directly to the variance. This is because of the fact that the estimate, expression 

(44). uses a target strength averaged over all orientations. The members of the 

target aggregate generally have scattering strengths which. at different orienta~ 

tions. fluctuate significantly about the mean. Mathematically. this will be reflected 

in the ratio TS2/Ts2 which can vary from I, for spherical isotropic scatterers. 

to larger numbers for more complex scatterers. Unfortunately. there seems 

to be little in the way of analytical techniques to aid in the calculation of the first 

and second moments. TS and TS2 respectively. for a given fish. Estimates 

would probably have to be made on the basis of experimental investigation. For 

example, one could numerically integrate the experimental data published in page 

4 of Reference 2 for the POMOXIS NlGROMACULATUS (black crappie). A polar 

plot for this data is shown in Fig. 15. For this example we assume that the target 

strength TS(O', q,') does not vary with 0' (cylindrical symmetry) so that the polar 

plot of Fig. 15 fully defines the aspect behavior of TS (i. e. TS (e'. <,I') = TS (<,I') ). 

In this instance equations 64 (a) and (b) reduce to 

(a) 

(b) 

• TS = 1. J TS (<,I') sin<,l' d <,I' 
2 0 

- . 
TS2 = 1 J TS2 «,1') sin<,l' d <,I' 

2 0 

Two integrations of the data in the polar plot of Fig. 3(a) corresponding to the 

expressions of 68 (a) and (b) resulted in the ratio 

2.7 

for a 20.6 cm black crappie at a frequency of 30 kHz. 

(68) 

(69 ) 

also contributes directly 
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to the variance at low densities (equation (60))~ Generally, this ratio is about unity 

for N:: 1 and becomes larger with greater N at a rate dependent upon the depth 

of the scattering layer (Ro) and the aperture size of the transducer. Smaller Ro 

and narrower beam widths result in larger quantities for the sequence {GN
4 /(GN

2 )2} 
As an example, these ratios were calculated for a few specific cases and are shown 

in Figs. 16 (a), (b). and (c). A circular directivity pattern (equation 6A) with 

d/)":: 2. 4, 6, 8 was integrated with the aid of a digital computer. The other pa-
-3 rameters were set at r(pulselength) = 10 seconds and Ro (layer depth) = 100 

meters (Fig. 16(a). Ro = 50 meters (Fig 16 (b) , and Ro :: 25 meters (Fig. 16 

(c) ). 

Equation (67) was evaluated with the aid of a digital computer using the 

data in Fig. 16 (a), (b). and (c). Figure 17 (a), (b). and (c) depicts the variance 

error in the estimated number of fish C1Q
2 versus layer depth Ro' For various 

circular transducer aperture sizes. The results in Fig. (17) are merely repre­

sentative values based upon arbitrarily selected parameters. 

Note that in all situations presented the variance error decreases with 

increasing depth Ro and increases with larger transducer apertures d/"A. e. g. , 

smaller half power beam width angles. It is shown in Appendix C that the variance 

of the integration estimate is given by 

V 2 
N 

+ (_pI) TS2 
TS2 

(70) 

Comparison between (70) and (62) shows that the difference lies in the coefficients 

O/2+1/2N) and (2/3+2/3N). Since. 

1 1 1 
- +- --
2 2N 2 

(N=I.2 •••• ) 

2 2 2 -+--
3 3N 3 

it is seen that integration reduces the variance of the error. r:1
Q

2 • by approxi­

mately 1/2 in the high density component and by 1/3 for the low density com­

ponent. 
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It is interesting to modify (53) by means of the following approximation; 

let 

[' 
t +.! 
o 2 

Then by multiplying by rlr we get from (63): 

We observe that the term 1 
T 

to+(N+.!)r _ f 2 I dt 

to+(N-%)r 

t 3 
o 

is simply the time average of the 

intensity over a pulse length. Thus. it is not surprising that the variance of the 

high density error component approaches 1/2 ~ V N
2 I (~ V N)2 • since this is 

consistent with out investigation of time averaging over a pulse length (equations 

22 and 23 with ~t set equal to T ). 

3.6 VARIANCE ERROR - TIllN LAYER 

The error analyses for the thin scattering layer configuration can be 

carried out in a manner similar to those for the thick scattering layer. The 

results are nearly identical to expression (62) for echo sampling. 

The variance for echo sampling of a thin layer is 

L S 2 + 1 TS2 L C4 
N 

SN all N p 
TS2 all ~ 

2 N N GN 
"Q = 

(L SNt all 
N 

and for integration a4 
1 L S 2 +.! TS2 2 L N 
2 N p 

TS2 3 =2 SN 
2 N N GN a Q 

(~ SNY 
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where 

S = 
N 

1TCTR
N 

-2 1 2' 
G 

2 [cos -1 (:~). 0] de GN - J 2" 
0 

~4 1 2' 
G

4 
[C08-

1 (::).e] de GN -- J 2" 
0 
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4.0 SUMMARY 

In this note we have employed a series of mathematical expressions, begin­

ning with a form of the basic sonar equation, and developed methods for estimating 

the number of independent random scatterers contributing to a single hydroacQustical 

echo signal. 

This analysis has been limited to an examination of the echo signal as it 

appears at the terminals of an electro-acoustic transducer. 

We have assumed a static environment, i. e •• within the time interval 

between a transmitted hydroacoustical pulse and the received echo from the 

targets of interest there is no relative motion between the transducer and the 

insonified targets. 

We have defined the positions of the targets of interest to be based upon an 

average number per unit volume. If the concept of average target density is accept­

able for fish distributions in a natural environment then the error models developed 

in this note are valid. If. howe:rer. fish in the wild are in an ordered array then a 

different distribution and corresponding error model would be required. For the 

present. the concept of average target density appears applicable for situations 

where fish are separated to a point where the mean distance between them approaches 

their individual length. 

A detailed discussion, concerning the basic concepts of linear hydroacoustics* 

as it relates to biomass measurement. has been developed. 

We have devoted a considerable amount of discussion to the postulation of 

random phases of the individual target echo signals as they appear at the transducer. 

This has been done to illustrate the expected amplitude variation of the echo signal 

envelope and to provide insight into the information contained therein. 

In the derivation of the correlation coefficient we have shown that it is 

necessary. if the echo signal envelope is to be sampled at discrete intervals. that 

the amplitude measurement must be at pulse length intervals. This interval is 

necessary to assure statistical independence of the measurement of signal ampli­

tude in order to avoid bias error. 

* Linear acoustics assumes that the density and compressibility of sea water and 
the targets of interest are not affected by the acoustic intensities resulting from 
the pulse time durations employed in simple echo sounding equipment. Non-linear 
hydroacoustical techniques are not within the scope of this note. 
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It has also been shown that if measurements of the echo signal amplitude is 

averaged over a time interval (integrated)~ the amplitude variations can be smoothed 

without introducing measurement bias error. 

We have developed two echo signal envelope amplitude processing methods 

which produce a quantity which is the estimated number of fish targets within the 

sea volume insonified by a single hydroacoustical pulse. These methods are defined 

as echo signal envelope sampling and echo signal envelope integration. 

The geometrical configuration of the target aggregation we have examined 

may be loosely defined as a scattering layer. We have defined the scattering layer 

as "thick!! or IIthin" according to the mathematical manipulations required to estimate 

the nwnber of targets from the insonified volume. It should be noted that our definition 

of the thickness of the scattering layer implies no biological significance. 

The variance error models derived include the effects of the transducer 

directivity function, the density of the targets~ target strength~ transmitted hydro­

acoustical pulse length and layer thickness. Arbitrary and perhaps typical situations 

are presented from computer aided solutions of the echo envelope sampling variance 

error model. 

It is shown that in all cases the variance error is minimized when a small 

aperature transducer and a short transmitted pulse length is employed. 

It should be noted that the variance errors given are the absolute minimwn 

that may be obtained under ideal conditions. The significance of this result suggests 

that considerable investigation and thought into a particular hydroacoustic equipment 

configuration must precede a decision to commence measurements at sea. 

For example, it is shown that if the ratio of the transduce'r aperture to the 

wave length of the transmitted carrier frequency is small (resulting in a large half 

power beam width) the variance error is minimized, theoretically at least. Practi­

cally speaking a small aperture transducer will receive more unwanted noise signal 

than a large aperture transducer. This noise will reduce the signal to noise ratio 

at the receiver input terminals. The point at which the noise signal introduces 

significant error into the measurement must be known in order to evaluate the use­

fulness of any data which may be obtained. 

In this note fish targets are treated as individual point sources of scattered 

hydroacoustical energy. In Appendix E, we have combined the theoretical work of 

others with our own to support this thesis. 
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It will be noted that we have ignored the effect of multiple scattering. 

Multiple scattering is presumed to exist in dense aggregations of fish and is 

related to the scattering of acoustic intensity from one fish to another. In 

addition. we have ignored the effect of acoustic absorption by the aquatic 

animal. The analyses of these effects in Appendix E suggests that multiple 

scattering and absorption have no significant effect upon the results of the 

work we have done to date. If. however. appropriate modifications can be 

identified the mathematical model described in Appendix E and the corre­

sponding environment simulation described in Appendix F will be changed. 

Appendix F contains a brief description of the digital computer aided 

simulations and analyses we have developed in the course of our engineering 

investigations to support the conclusions presented in this note. 
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5.0 CONCLUSION 

It has been demonstrated that there are many factors interacting in the 

simple hydroacoustical environment we have examined and the precision of the 

measurement of biomass or fish quantification is related to the following: 

1. The average target strength of an individual fish. 

2. The density and spatial distribution of the individual fish. 

3. The geometrical shape of an aggregation of the fish. 

4. The characteristics of the hydroacQllstical equipment employed. 

5. The characteristics of the surrounding sea environment. 

Any attempt to apply pulsed hydroacoustical signals for aquatic biomass 

or resource assessment measurements which does not properly account for the 

factors listed above can hardly be expected to yield useful results. 

As stated in the preface we have avoided analytical short cuts which can 

lead to erroneous conclusions concerning the applicability of hydroacoustics to 

aquatic biomass measurements. 

It is our considered opinion that it is impractical to predict or estimate 

errors in a particular hydroacoustical biomass or fish quantification scheme 

without first performing careful analyses. 

The analyses we refer to here are the kinds which deal with a clearly 

defined situation. 

The detailed specification of such a situation and the subsequent description 

by mathematical modeling, supported by computer aided simulation techniques~ is 

a form of systems analysis. The overall objective of systems analysis~ in this 

context, is to examine specific situations in order to determine the performance 

of a postulated system. 

It is obvious that. if a postulated situation or environment cannot be defined 

in some detail, the concept of systems analysis is of doubtful value. 

Realistic models of a biomass measurement system, including the man­

machine combination, must be clearly defined in order to apply systems analysis 

effectively. 

In view of the above, the analysis we have presented in this note is by no 
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means complete. however. we believe it to provide a sound basis from which to 

continue further investigations. 

The reader will note that we have not considered the effects of transducer 

motion, target motion and noise. therefore. we are suggesting that effort should 

be expended in examining. by analytical techniques, the probable effects of these 

upon hydroacoustical measurements. 

We are also suggesting that a hydroacoustical measurement program be 

initiated to verify the analytically derived echo signal processing methods described 

in this note. This program should be carefully planned and executed in order that 

any hydroacoustic biomass measurement system that may result will be verified 

for concept. accuracy and cost to benefit criteria. 
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APPENDIX A 

DISTRIBUTION OF THE SPACING 
BETWEEN UNIFORMLY DISTRIBUTED POINTS 

Let N+l objects be randomly distributed throughout a volume enclosed by 

a sphere of radius "R". We concentrate on anyone of the objects located at say 

position !lp a" and proceed to determine the probability distribution of the distance 

to its closest neighbor. Let liD" be an arbitrary, fixed distance from Po. The 

probability of the remaining N objects being greater than distance "0" from Po 

can be found by considering each object separately. Define the following quantities: 

total volume enclosing all objects 

volume enclosed by sphere of radius D 

Thus any given object. other than that located at Po of course. say the 

"ith!! one. has a probability of being located outside V equal to: 

v - V 
P {jth object located outside vnj = T n (A-I) 

VT 

and the probability that all N objects have locations outside V D. since these are 

independent events, is given by: 

P {all N objects located outside V D } (A- 2) 

It then follows that the probability of at least one object falling within V D is given 

by: 

I 1 (V -V )N 
P at least one object falling within Vn f = 1 - TVT D (A-3) 

Thus, the distribution function F N(D) of the random variable D. is given by: 

(A-4) 

A-I 



or 
F (D) ~ 1 _ (1 _ D3 )N 

N R3 

Define the volume density p to be: 

N 

Then F N(D) may be written: 

! IT P D3 ) N 
~3 _ 

N 

(D> 0) (A-5) 

(A-6) 

(D > 0) (A-7) 

Equation (7) is cumbersome and difficult to work with. The following relation may 

be used to alleviate the probeIm: 

-a e (A-B) 

Since N = VT P = 4/31TR3
p • we may let R-oc while holding p constant and 

_! 1TfJD3 

F N(D) ~ 1 - e 3 (D > 0) (A-9) 

-Therefore. for large N the distribution function of the random variable D may 

be approximated by 

F (D) ~ Lim FN(D) 

'" N-", 
(A-10) 

or 
4 3 

--l1pD 
F (D) 1 _ e 3 

'" 
(D > 0) (A-l1) 

The mean of D is given by: 

(A-12) 

but 

A-2 



dF 
'" 

4 3 
--Jr P D 

4 7T p 0 2 e 3 
dD 

and 

4 3 
'" D. (4 .. D2) 

--7Tp 0 

J e 3 d D 

0 

or 

dbz .55 

.1/3 

The second moment of D is given by: 

<Ii2> = '" J 
0 

Therefore, the variance is: 

2 
aD 

D2 • 
Cd

F

;) 
dD 

.OS7 z 
,2/S-

W! 
'" 

.55 

(irrp)I/3 1/3 , 

m! .342 

(4 )27S 
z 

,273 
"'3

1TP 

It is important to note that the probability of the following events are easily 

calculated: 

[. The probability that Ii will be less than any number Dl > 0: 

4 S 

115 <Dl1 

--1TpD 
p F",(D1) = 1 _ e 3 1 

II. The probability that 15 will be greater than any number D2 > 0: 

4 S 

115>D21 
--l1P D2 

P 1 - F", (D2 ) = S v e 

A-S 

(A-IS) 



III. The probability that i5 wil11ie between 01 and 02 where 01 S 02 • : 
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APPENDIX B 

CORRELATION COEFFICIENT FOR 
THICK SCATTERING LAYER 

The coherence between two distinct points on the echo level is described 

by its correlation coefficient. Suppose Ih1) is the value of the intensity level at 

time t1 • and «t2) is the value at time t 2 , and 0 -'" t2 - t1 :5 1 • The correlation 

coefficient r(t p t
2

) is given by: 

(A-!4) 

As before we assume that the targets are dispersed uniformly throughout the thick 

scattering layer with an average density p. In figure B-1 a portion of the scat­

tering layer has been broken up into three, distinct volumes designated A. B, and 

C. The intensity level l(t1) is defined to be that produced by the scatterers 

contained in volumes A and B which comprise a complete pulse shell. The 

intensity level 1(t2) is produced by Bcatterers contained in volumes B and C 

which also comprise a complete pulse shell. The volume B is therefore the 

overlap region which couples I(t1) and I(t2). Since Ih1) and I(t2) are the 

squared magnitudes of vector or phasor sums, they may be expressed mathe­

matically as: 

where 

-NC 

P. sin i. + " J J L 

10 = source level 

R = average range to volumes A. B. and C 

£lA• NB• NC = random number of scatterers in volumes 
A. B. and C. respectively 
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Figure B-1 

B-2 



1 ~ 

Pi::: [Ts
i 

G2 (er ~i)J~= [Target strength X directivity function
2J 2 

ii random phase of an individual acoustical wave 

We note that in (A-I5) there are sums of random variables to limits which are 

themselves random variables~ namely N A • NB • and NC ' These are Poisson 

distributed random variables with first and second moments given by: 

E p'iA I " fJV A • E !NA
21 " pV A (1 + pV

A
), 

E ! NB j " pV
B

, E ! NB2j pVB (I + pV
B

) , (A-I6) 

E ! Nc) " pVC' E { Nc
2j pVC (I + pVC>, 

where 

E { } = expected value 

VA UR(R2 -R1)(R-Ro) 

VB 2'R(R1 - R2 + Cr/2)(R - Ro) 

V C 2.R (R2 - R 1) (R - Ro) 

An important relationship involving random sums may be found on pp. 248-249 of -Reference 1. It states that if we have a random variable N of discrete type. 

taking on values I, 2, ... n .•.• and a sequence of random variables 

xl' x2, .. , 'in' •.. that are uncorrelated and independent of N. the first 

and second moments random sum 

N 
S " 2: xK 

k"1 

are 

E Is} " E (N) E (XKI 
E ! S2) E I N2} E (XKI2 + ~ E {N) 

B-3 

(A- 1 7) 



where 

Finally, we make the assumption that the random phases. ii' are independent 

and illliformly distributed between 0 and 21T. Thus. the moments of the trig­

onometric functions are given by: 

= TiT 
) 2" 

J sinnlP de/) 

0 
(A-)S) 

2" 

f 
n 

cos <1> d<1> = 
0 

We now multiply the right hand sides of equations (A-15) and square the indicated 

terms. After much algebra and application of (A-1?) and (A-18) we find 

(A-)9) 

but. from (A-)S) 

NA - E {NA) = p • 2" R (R2 - R) (R - Ro) 

NB - E {NB ) = p. 2" R (R) - R2 + cr/2) (R - Ro) 

NC " E {Ncl = p • 2" R (R2 - R) (R - Ro) 

-2 
E INB

2
) NB - = p • 2" R(R) - R2 + C r/2) (R - Ro) 

[ ) + p. 2' R(R) - R2 + C r/2)' (R - Ro)] 

Since t) and t2 are related to R) and R2 by t) =2R)/C • and t 2=2R2/C. 

(A-19) becomes. with ...It substituted for t2-t1 • 
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I 2 
o 

iiB 

The second moment of l(t) can be found by setting ~t '" 0 in (A-20): 

2 I 2 
o 

iiB 

(A-20) 

(A-2I) 

The first moment of 1"(t) can be found by taking the expected value of either 

equation in (A-15). 

10 -::2 _ 
::; 1T CPT TS G (R - Ro) R3 

(A-22) 

We may now expand the numerator and denominator of (A-14): 

[I(t l ) - ntl)] [1h2 - l(t2)] 0 Ih l ) I(t 2) - I(t 1) I(t 2) - I(t 1) Ih2) + !(tl) I(t 2) 

o I(t
1
)I(t2) - fl 

1 1 

[[I(t
1

) - nt
1
)p . [I(t2) -1(t2) ]2]2 =[«12 _12) «22 -fl)J2 or _ 12. 

(A-23) 
where 
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Expression (A-23) was derived assuming 0 ~ t2 -t l !S T. It is easy to show 

that if we assumed that O:s tl - t2 ~ T , the results would be identical to (A-23) 

except that ~t would be replaced by -.at. Thus, for I~tl ~ T 

p rrc R(R-Ro)(j"t 1_ T)2 1'82 (i2 2 + (r -I"tl )TS 2 (;"4 

prrCR(ii-R) r2T"s2(i2 2 + (T-I"tl )TS2 G4 

o for I "t I 2 0 • 

For high densities (p- oe). (A-24) reduces to 

otherwise. 

For low densities (A-24) is approximately 

1 I"tl ~ T 

o otherwise. 
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APPENDIX C 

DETERMINATION OF VARIANCE 
ERROR OF INTEGRATION 

1\ 
The quantity Q given by equation (53) in the text is a method of thick 

1\ 
scattering layer quantification by echo integration. In this method Q is given 

by: 

The error EQ is given by (61) 

where 

The variance of (49) is. 

ac(t- r/2) 
e 

(t- r/2)3 (t-t - r/2) 
o I(t)dt 

1\ -Q-Q 
Q 

¢ (t) 
(53 ) 

(61 ) 

(A-43) 

In order to evaluate (A-43) we make some initial simplifications. In expression 

(67) the integral may be expressed as a sum of integrals 

., 
J 
t +(,/2) 
o 

ac(t- -/2) 
e 

( r)3( r) t-- t-t--
2 0 2 I(t) d t ~ 

¢ (t) 

., L /o+(N+ 1/2)r eac(t- r/2) 

N o l t +(N-l/2)r 
o 

(A-44) 

3 . (t -on -I (t) d t 

We may assume for present purposes the terms eQc(t- r/2) • 

(t- 7/2)3 and ¢(t) vary slowly over a short time interval so that they may 

be taken out from under the integral signs. Then, to a first order approximation 

C-l 



to+(N+ 1/2)r 

f 
t +(N- 1/2)r 
o 

ac(t- r/2) 
e 

3 
(t-f) (t-to-·f) 

(b (t) 

_ e~C[to+(N-l/2)r][t +(N-l)r]: 
I (t) d t " _ 0 2_ 

(b(t +N r) 
o 

(A-45) 

Therefore. expression (53) may be rewritten 

where 

K -

t +(N+l/2)r r (t-to- ; )i(t)dt 
t +(N-l/2)r o 

_ e~C[tO+(N-l/2)r] [t
o

+ (N-~) r r 
(b(tO+NT) 

Do 
The expected value of Q is given by: 

t +(N+1/2)r r (t-to-;) I(t)dt 
t +(N-l/2) r 
o 

Substituting (A-46) and (A-47) into (61) yields 

K L 
N 

(A-47) 

/O+(N+1/2) r 

to +(N-l/2) T 

-------=----=-------___ . (A-48) 
Q 

Since our goal is to evaluate (A-43) we must first square both sides of (A-48). 
- 2 Then taking the expected value of the quantity f Q • we are left with 
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o 2 
Q L L 

M=I N=I 

(A-49) 

The product of the integrals can be written as a double integral and the averaging 

can be carried out under the integral signs. Thus. 

t +(N+ 1/2)T r ( )dt 

t +(M+ 1/2)T r ( 
to+(N-I/2)T to+(M-I/2)T 

) d t = 

. ( 

t (N+I/2)T r 
t +(N- 1/2)T 
o 

) ( 

The integrand of the right hand side of (A-50) is reducible to 

It I -t21S T 

It1 -t2 j> T 

(A-50) 

(A-51) 

The reason that the mean of the integrand of (A-50) is zero for It 1 - t212: T is a 

consequence of the fact that i'<t2) and 1'<t1) are uncorrelated for It 1 -t212: r. 
(See Appendix B. equation (A-24).) Thus. for It 1 -t21 > T. 

It follows that from (A-50) and (A-51) that the double sum in (A-49) reduces to a 

single sum and the variance of EQ is given by 
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" X 2 1 L N r2 

/0+(N+I/2)r J 
t +(N-I/2)r 

t -t - - t -t - - t) [(t ) - I ( . r)( r)(1l >C -2) 
10 220212 

N o 
(A-53) 

Analytic expressions for the terms T(t
1

) lh2) and T are developed in Appendix B 

and are given by equations (A-20) and (A-22). respectively. These may be sub­

stituted into the right hand side of (A-53) and the integration may then be carried 

out. The results after integration and substitution are: 

-2 -4 
" (1. + _I + ~) V 2 + 1. ~ " (2 + 2 + 11) G

N 
L. 2 2N 90N2 N p 1'82 L. "3 ?iN 60N2 22 

2 N N GN 
"Q = -------------------------------------~----

- 2 VT 

where 

cr 
2 

(A-54) 

Note that V N is the volume of the Nth pulse shell given by expression (43) of 

the text. 
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APPENDIX D 

DETERMINATION OF VARIANCE 
OF EQ (SAMPLING ERROR) 

1\ 
The quantity Q given by expression (44) in the text was seen to be an 

unbiased estimate of the total number of targets in the insonified portion of a 

thick scattering layer. The error EQ was defined by (61) such that 

/\ -
EQ 

Q-Q 
Q 

where 

Q = E(e] 

The mean of EQ is seen to be zero and the variance is given by: 

(61) 

(A-27) 

/\ 
In order to evaluate (A-27) we proceed with the definition of Q given by (44) 

L (44) 

All N 

But, TN' the random variable representing the received intensity from the Nth 

pulse shell, may be written: 

where 

2 

random number of scatterers contained in Nth 
pulse shell 

random phase of an individual acoustical wave 
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The double subscripted random variables 7J N. are defined as 
1 

1 

- [- 2 __ ]2 
il N. " TSi GN (e i , 1\) 

1 

(A-29) 

TS
i 

is the random quantity which represents the target strength of the ith fish in 

the Nth pulse shell. Its first and second moments are defined by equations (64-a) 

and (64-b) in the text. 

The term G
N

( Rp ¢;'i) refers to the directivity flmction of the transducer as 

a function of the directional angles (8
i
, ~i) of the ith fish in the Nth pulse shell. 

These angles are assumed to be independent random variables with a joint probability 

density function given by: 

sin q,i -1 -
cos (Ro/RN) 

(A-30) 

The second and fourth moments of the directivity function associated with the Nth 

shell are found by averaging over all Eli and ¢i' and are given by equations 

(64-c) and (64-d) in the text. It follows that 

-2 TS' G 2 (8i, ¢i) ilN " N 
(A-3!) 

iJ4 N 
TS2 , G 4 

N (8i ,1'i) 

In evaluating (A-27) we will need the first and second moments of (A-28). First~ 

Since the random quantities K
N

, ifNi. and 

assumed to be uniformly distributed between 

D-2 

i. are independent. and f:. is 
1 1 

o and 2 Tr, it is easily shown that 



[ (~ 2 KN 

COSiJ] PN . sin ii) (L PN 
- -2 

(A-33) + KN liN 
1 i= 1 1 

Thus, 

-2a~ 
10 

E (IN) 
e - -2 

R4 
~ liN • (A-34) 

N 

For the second moment: 

. It is shown after much arithmetic that, 

Thus, 

(A-37) 

Now EQ may be expressed as 

L (N - ~) -3 2a~ 
(IN - IN) RN e - N ¢N 

EQ 

(N-~)R3 2aR
N 

_ 
(A-38) 

L 
N ¢N N 

e IN 

and squaring the above and taking the expected value of both sides yields: 
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1 ) 
2 

4aRN 2: 
(N- "2 -6 

[E (IN
2

) - E2( IN)] 
¢N

2 RN • 
E (EQ2) 0 

N (A-39) 

[~ 
-3 2 a R

N 
IN r (N - t) RN 

(ON 
e 

We recall that KN is a random variable with assumed Poisson distribution with 

first and second moments given by 

(A-40) 

where p is the target density and V N is the volume of the Nth pulse shell. 

Also comparing ¢-N. equation (37) in the text. with GN
2 (64-c) we see that 

(A-41) 

Substituting expressions (A-3l), (A-34), (A-37), (A-40) and (A-4l) into (A-39) 

yields: 

-4 

2: V 2 + 1 Ts
2 ~ GN ) N Ii TS2 2: GN22 VN 

2. N 

"Q (A-42) 

(~ VN ) 2 
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APPENDIXE 

PROPAGATION OF SOUND THROUGH 
A SCATTERING LAYER 

REFERENCES: 

1. 

2. 

3. 

4. 

SUMMARY 

L. L. FaIdy: The Multiple Scattering of Waves, Physics Revue, 67, 
1945. 

E. L. Carstensen and L. L. FaIdy: Propagation of Sound Through a 
Liquid Containing Bubbles; The Journal of the Acoustical Society of 
America, 19, 1947. 

R. H. Love: An Empirical Equation for the Determination of the 
Maximum Side-Aspect Target Strength of an Individual Fish; Naval 
Oceanographic Office, 1969. 

D. E. Weston; Sound Propagation in the Presence of Bladder Fish; 
Underwater ACOllStics-2. Pfemun Press, N. Y. 

The problem of wave scattering by large (random) ensembles of scatterers 

has been dealt with in some detail in the scientific literature. For a layer conSisting 

of absorption and! or scattering bodies of high density the problem is extemely complex 

due to the multiple scattering phenomena, and may be approached by a painstaking 

statistical treatment of scalar wave theory. With some suitable approximations the 

latter method has yielded results (References 1 and 2) which will be discussed. On 

the other hand, for a layer where the number per unit volume of significant scatterers 

is sufficiently small. each scatterer may be treated independently of the other and it 

is a simple task to derive an expression for the attenuation effect. Also of interest is 

the measure of density, i. e., when does a scattering layer appear "dense" to an 

impinging sound wave. This question is directly related to the propagation velocity 

in the scattering layer, i. e •• if the velocity in the scatterer-free medium is very 

different from that in the layer. the layer appears dense and multiple scattering 

cannot be neglected. 

A. Scattering Parameters 

It is useful to introduce a quantity (generally complex) called the scattering­

coefficient that contains all the information concerning the scattering and absorption 

characteristics of a point target. The scattering coefficient can be used as a basis 

to calculate!! scattering cross section!!. II extinction cross section". etc. Consider 
/\ 

a (plane) pressure wave Pi incident on a point target (Figure 1). If the incident 

pressure is written: 
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where 

A 
P. 

1 

A. = peak amplitude of incident pressure 
1 

w =: frequency 
o 

e = electrical phase of incident wave 

A 
The scattered field P s may be written as a function of distance r away from 

the scatterer; 

where 

r 

A 
G (wo ) = scattering coefficient 

Ko = wa/co' sound velocity = Co 

r = distance from Bcatterer 

(2) 

A 
The quantity G (wo ) is the scattering coefficient written as a function of frequency 

Wo and characterizes the properties of the point target by making the strength of 

the scattered field (pressure) proportional to the incident field acting on it. The 
A • 

quantity G(wo ) is in general complex. Mathematically. this results in an am-

plitude and phase change in the scattered field expression (2). relative to the 

incidnet field (1). It is shown in Reference 1 that at a frequency Wo ~ the scat­

tering cross section as is given by: 

The quantity CT s represents the fraction of the total scattered power to the 

incident intensity. The target strength TS is given by: 

"s ] A 2 TS " - " I G(w ) I 2 0 
4rrr r:::l 

':' A complex quantity is implied by circwnflex (1\). 
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The target strength is the ratio of scattered intensity at unit distance from the 

target to the incident intensity. The extinction cross section IT e is given by: 

"e = 

where 

1M [ ] = imaginary 
-part-of[ ] 

(5) 

IT e represents the ratio of power absorbed and scattered to the incident intensity. 

The absorption cross section (J A is given by: 

" -" e s 
(6 ) 

represents the ratio of the power absorbed to the incident intensity. 
1\ 

The specification G (wo) is sufficient for a single scatterer or group of 

identical scatterers. Now suppose there are many scatterers of different "size" 

which though they may be considered point targets cannot each be represented by 
1\ 

the scattering function G (w ). Usually there is some unique physical dimension 
o 1\ 

associated with each scatterer which determines a G (w o ) for each Bcatterer. For 

example, in the case of a spherical bubble, the scattering c;:oefficient is uniquely 

determined by its radius. In any case, we will denote this physical quantity by "13" 
and now express the scattering parameter e as 

"'G (w
o

) 1\ ( ) - G "'0 ;/l (7 ) 

Suppose we are concerned about a uniform layer of scatterers distributed 

in size over a range of {3. (For example, /1 might be the radius of the swim 

bladders if we are working with a school of fish.) It is particularly useful to 

define a set of averaged scattering parameters analogcus to equations (3), (4), 

(5), (6) and (7). In particular, let the average numbel' of scatterers per unit 

volume (volume density) in a given scattering layer b,~ p. Let the average number 

of scatterers per unit volume with parameter {3' lying between JJ and /3 +!::'/3 be 

specified by N (p) l:l.fj. Then the following average scattering parameters may be' 

used assuming the distribution function N (P) to be defined for all values of P • 
The average scattering coefficient crs is defined (see equation 3) 
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_ = 1 
"s p 

(' 4rr l\i(wo ; /l) 12 N(/l) d/l 

o 

Likewise. for the other parameters (see equations 4. 5, 6 and 7) 

Ts = 1 
p 

, 

f'" 1\ 2 
1 G(wo ; /l) 1 N(!ll d/l 

o 

f '" 4rr 

o - ko 

f '" 1\ 
G(wo ;/l) N(/l) d/l 

o 

(3-A) 

(4-A) 

(5-A) 

(6-A) 

(7-A) 

Using the above averaged quantities we will proceed to examine scattering layers 

of the simplest shapes. 

B. Independent VB Multiple Scattering 

Intuitively one feels that if the density and strength of scatterers in a 

cloud or layer is sufficiently small the multiple scattering effects are negligible 

and one can proceed to analyze the total effect by treating each scatterer as if it 

were independent of its neighbors. This is of course the situation and is rigorously 

shown to be true on the average in many published articles (see References 1 and 2 

for example). A pertinent question is how small is I1 sufficiently small". The work 

done by L. Faidy (Reference 0, sheds some light on this. It follows from exam­

ination of expressions (54) and (55) in Reference 1 that the value of the wave 

propagation parameter Ko := 211'/)"0 is subject to change in scattering layers 

of high density and scattering strengths. Physically, this change in the wave 

parameter implies a change in sound velocity through the medium. More spe-
1\ 

cifically. the average value of the wave parameter K in a scattering layer is 

related to that of the incident sound wave Ko by the expression: 

1\ 
G(w.o ;/l) N(/l) d/l (8) 
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The velocity of sound in the scattering layer is given by: 

/\ ]1/2 G(w
o

: p) NUl) dfl 

But since Co::: 1.1'0/ Ko' and Ko::: 2fT / Ao • it follows from equation (9) that: 

/\ 
C " 

A 2 
o 
IT 

(9) 

( 10) 

It has been shown that as C - Co the effects of multiple scattering become negligible. 

Thus~ theoretically at least~ the magnitude of the term f. where: 

/\ A 2 
r ~ ....::.... 

IT 

'" /\ £ G(wo:fJ)N(fI)dfl (11) 

/\ 
is indicative of the measure of multiple scattering. As defined. r is complex 

/\ 
since G (w ; J3) is in general complex. Examination of expressions (53) through 

o /\ 
(56) of Reference 1 leads to a range of r for which there is no interference between 

scatterers (i. e •• multiple scattering is negligible). That is. if f is sufficiently 

small so that we may expand the square root: 

1 

[ /\11/2 
1 + r 

;:: 1 -

/\ r 
2 

( 12) 

then we can ignore the effects of multiple scattering. Expression (12) is good to 
A 

within a few percent for I r 1< 1/4. so let us set 1/4 as a limit on the magnitude 

of P for which we can ignore the effects of multiple scattering. Since the target 

strength TS ~ of most scatterers is usually more accessible than is the scattering 

coefficient e(wo ) ~ it is useful to rework condition (13). 

(for independent 
scattering) 

(13) 

in terms of the average target strength Ts (Equation 4-A). To do this we can use 

the "Schwarz Inequality" which states that for any two functions L (fl) and M (f3) : 
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Il L (jJ) M (jJ) djJ 

b 

J 
a 

2 
I L(jJ) I djJ 0 

If we let 

a :: 0 b -;; +oc: 

L(jJ) " e (w o ;jJ) N
1

/
2

(jJ) 

M(jJ) " Nl/2(jJ) 

and substitute in (14) we get: 

1 
b 2 2" J IM(jJ)1 djJ (14) 

a 

/\ "'/\ 
Irl= J G(w o ;,8) N(,8) djJ ~ 

o 

1 f ,e (W o ;,8),
2

N(jJ)djJo (N(jJ)djJI2 (15) 

but by definitions of N (,8) and average target strength (Equation 4-A) 

'" J N(jJ) djJ = P 

o 
(p :: number of scatterers 

per unit volume) 

'" /\ 2 f I G(wo ;jJ) I N(,8) djJ = Tsp 
o 

Thus it follows from (13) through (16) that if 

/\ I rl ~ 

expression (17) is sufficient to satisfy (13). Rearranging (17) we have: 

" 
4\2 

o 

(16) 

( 17) 

(18) 

Thus by the inequality (18) we may judge whether the number of scatterers per 

unit volume~ (p) , is sufficiently small when the average target strength~ fS. 
is known. 
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Example: A hypothetical scattering layer of nearly identical fish at a 

frequency of 50 kHz. 

Equation (7) of Reference 3 gives a deterministic expression for the 

scattering strength 0" s of an individual fish. In MKS units this expression 

is 

where 

L 2.41 
"s '" . 5 8 ..::.-;-:­

A .41 
o 

L length of fish in meters 

-Xo:; wavelength in meters 

The target strength therefore is: 

TS 
(js L 2. 41 

= .046 =-_ 
A .41 

o 
4. 

at a frequency of 50 kHz in seawater (Co:; 1500 ml sec) the wavelength is: 

-2 
-Xo :; 3 x 10 meters 

For a fish of L:; .3 meters 

TS = 
.046 (.3)2.41 

-2 .41 
(3 x 10 ) 

1.lxI0-2 

and by expression (18) the maximum allowable number of fish per cubic meter 

(p) is: 

P 
3 

8.7 x 10 • 

Obviously 8. 700 fish per cubic meters each. 3 meters in length is a physical 

impossibility. However the mathematics is founded on a "point source" 
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representations of targets and therein. lies the reason for such an unrealistic 

number. Most of the fish in the sea possess a swim bladder comprising about 

1/20 of the total volume. Since the acoustic parameters of fish tissue are 

practically identical to those of sea water. the point source representation is 

a very reasonable model. The fact is that the swim bladder dominates acoustic 

scattering and absorption even away from the low frequency resonant point (see 

Reference 4). 

C. Attenuation Coefficient - Independent Scatter / Absorption 

Given the case where the average target strength and density are suffi­

ciently small it is easy to derive the attenuation coefficient for a plane wave 

propagating through the layer. Consider the situation depicted in Figure 2. 

The scattering layer is assumed to have thickness 6. A 1!pencil beam" of 

itensity Ii is assumed incident on the scattering layer at an angle 1>. The 

layer is assumed to be made up of point scatterers. all of which may be re­

presented by an average extinction cross section Be (Equation 5-A). We now 

proceed to analyze an incremental length ".6.1'1 of the sound"beam at an arbi­

trary point in the layer. (Figure 3). The average number of scatterers .6.N 

contained in .6..1. is 

"N " pAM 

where 

A cross sectional area of "left l1 face 

.6. A change in area 

(19) 

The intensity of the power entering .6.1 is denoted by "I" and leaving .6.1 by 

1+.6.1. The cross sectional area at the left face is A and the right face A +.6.A • 

We may now calculate the power entering. leaving. scattered. and absorbed 

by the element .6.1 . 

POWER IN 
THRU RIGHT 
FACE 

= P. 
m 

POWER SCATTERED 
AND ABSORBED FROM 
BEAM 
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POWER CROSSING = Pout = (I + e.!) (A+t.A) 
LEFT FACE 

By the conservation of energy laws 

Pin = P S + A + Pout 

IA = IA p t.l ij + (I+e.!) (A+e.A) 
e 

(21) 

Rearranging terms in (21) and neglecting any 6 2 (second order) terms we get: 

I!l.A + At:l.I +p(jlH 
AI e 

o 

Now if we let LH - 0 • Equation (22) becomes the differential equation: 

dIA I'A = - pCiedl 

integrating both sides (subscript 116
11 denotes for boundary of layer) 

d (IA) 
IA f

o sec ~ 
pCiedl. 

o 

- P!7e "sectp 
e 

Since the term Ail A" is the geometric spreaqing loss, the quantity: 

I - P 0- e 0: sec tp ) 
\ e 

(22) 

(23) 

(24) 

is that attributable to scattering and absorption out of the sound beam by elements 

of the scattering layer. This result agrees completely with Faldy's results of a 

more detailed analysis (Ref. 1, Equation (56) ). 
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D. Attenuation Coefficient - Multiple Scattering Effects 

For those scattering layers where the number of scatterers per unit 

volume and average target strength combine to produce significant multiple 

scattering. i. e •• inequality (18) does not hold. the analysis is extremely com­

plex. It in~ves solving the scalar wave equation with distinct boundary con­

ditions in a medium of isotropic point scatterers. The reader is referred to 

References 1 and 2 for the methods of attack and derivation. The results for 

the same geometry depicted in Figure 2 are: 

4'0 
Ta e 

cost/J 1M [ 2 A J 1 + sec t/J r 

where 1M [ 1 + sec2 l' r J denotes the imaginary part of the quantity 

(25 ) 

[ 1+ sec2tpr J. The term A.tAr merely refers to the geometrical spreading 
lOA 

loss. Thus we are left to evaluate the expression Q which is defined as: 

Recalling that: 

), 2 
o 

• 

/\ 
and manipulating equations (3) and (5). we can write G(w

o
; fJ) as: 

[ 

2 ]1. /\ (f cr 2 
G(.., ;f3l = 2. __ e_ -

o 4'17 4).2' 
o 

Substitution of expression (27) into (11) yields: 

/\ r= 
), 2 

o 

• [ '2._~]~ 4. 4), 2 
o 

If we define a and }- such that 
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(26) 

(11 ) 

(27) 
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1\ 
a " Re (r) = 

A 2 
o 

• 
2 ] . u e C __ N(P) dP 

41. 2 
o 

1\ 
y" 1m (rl "e = A p-

o 2. 

Then Equation (26) becomes: 

1 

~ = [ 1 + a sec2 11 + j ysec211] 2 

It can then be shown by algebraic manipulations that: 

I 

[ 

[ 2 2 2 4 ~-
1M (~) = (a sec II + 1~ + y sec 11.2_ 

I 

asee r + 1 2 2 ]-
2 • 

(29) 

(30) 

(31 ) 

Equation (31) then may be substituted into (25) to give the value of the attenuation 

coefficient. since by definition: 

and thus: 

RESULTS 

!.t 
I'. 

1 

1M [ (1 + sec2 ~ p ) i ] 

1\ 
(4.6/1. 0 ) cos~IM(Q) 

e (32) 

Expressions (29) through (32) offer a direct. if somewhat laborious method 

for estimating the average 10s8 of intensity of a sound beam passing through a dense 

scattering layer of thickness {,. What must be specified are tl;le scattering cross 

section O"s cm • the extinction cross section IT e (,8) as well as the size distribution 

N (P). If we compared equations (24) and (32) we find that (24) is merely a special 

~ of (32) when the quantity If sec2 ~ I < < 1 • 
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APPENDIX F 

COMPENDIUM OF SIMULATIONS AND 

SUPPORTING ANALYSES 

This Appendix briefly describes a number of simulations and analyses 

developed in the course of an engineering investigation of the application of 

pulsed hydroacoustic techniques for aquatic biomass measurements. 

The simulations and supporting analyses described below have been 

performed with the aid of an IBM 360-75 Digital Computer. They are coded 

in the MAC-360 program language. MAC-360 is an algebraic compiler de­

veloped at MIT. C. S. Draper Laboratory, for use in digital computations 

in fields such as dynamics and control theory. MAC is a programming lan­

guage. designed to simplify the task of describing the mathematics of space 

mechanics. It features a three-line format. permitting the use of superfields 

and subfields while preserving their readability. The use of superfields 

which define vectors and matrices allows a concise and powerful notation of 

complicated algebraic expressions. 

1. 0 SIMULATIONS 

1. I FISHSPY II-A 

This program synthesizes the echo received from an aggregation 

of identical or nearly identical point sources of scattered hydroacollstical 

energy. 

The scatterers are assumed to be uniformly distributed between 

two parallel planes located perpendicular to the acoustic axis of a hydro­

acoustic transducer. The received echo is assumed to provide a single 

square pulse of acoustic energy at the working face of the transducer. 

The thickness criteria of the scattering layer in this simulation 

is defined as "thick' ! if the layer is greater than one half of the transmitted 

pulse length. The accuracy of this program is optimal for situations where 

the thickness of layer is not less than twice the length of the transmitted 

hydroacoustical pulse in water. 
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Arbitrary inputs to this program include transmitted acoustic source 

level, transducer voltage response, transmitted pulse time duration, trans­

ducer directivity characteristics, average target strength and target array 

configuration. 

The output of this program includes the average incoherent (summa­

tion of hydroacoustic intensities) echo signal. an estimate of the peak co­

herent (summation of hydroacoustic pressures) echo signal and a typical 

stochastic incoherent echo signal which is the result of a Rayleigh Power 

distribution generated by a random number routine. A typical program 

output listing is illustrated in Figure F-l. 

The plotted output of this program is the mean or average incoherent 

intensity and a typical stochastic incoherent intensity versus time. A typ­

ical plotted output is illustrated in Figure F-2. 

1.2 FISHSPY II-B 

This program is similar to FISHSPY II-A except that it operates on 

a scattering layer of thickness less than the transmitted pulse duration. 

The input and output characteristics are identical to FISHSPY II -A. 

1. 3 FISHSPY II - C 

This program is similar to FISHSPY II-A and I1-B except that the 

targets are uniformly distributed throughout a spherical volume of arbi­

trary dimension located at an arbitrary range from a transducer. 

The input and output characteristics are identical to FISHSPY II-A 

and II-B. 
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0.20';'> 410111 41.482 311.751 2.36 20.9753 
C.2":' 40.499 "~.100 39.808 O.tl9 70.7013 
C.300 4('.332 48.261 40.t.411 0.31 20.5252 
(.350 37.<;47 51.052 "1.349 3.80 20.3968 
O.40') 34.638 53.91>1 41.9<109 7.31 20.2943 
0.45,) 26.763 61.113'<' 42.4H - 15.71 20.2062 
r.SO" 23.r98 65.501 42.939 19.84 20.1291 
C.55'J 21.616 1.1'.113 43.351 15.46 20.0619 
O.6!' .... 30.164 5e.43S 41.736 13.57 Z/'I.nOI2 
C.bS,) 31.184 51.415 44.083 6.89 19.9460 
0.700 33.1U9 55.49') 44.402 - 11.29 19.8941 
(".15) 38.64& 49.953 44.698 6.05 19.8462 
'-:.6{)0 42.C42 46.S51 44.973 2.93 19.8012 
<'.115') 45. t.13 42.'126 '45.231 0.44 1'1.1586 
:: .901 46.r2~ 42.571 45.412 0.55 19. nRO 
0.950 <105.9&3 42.6~6 45.100 0.26 1'1.6191 
1. (10,) 107.523 41.C76 45.915 1.60 19.6416 
1.050 48.014 4(l.S85 45.974 2.04 19.4199 
1.10.) 48.11? 4".467 4'5.951 2.11 19.3342 
1 .1 S 1 47.106 41.433 4<;.932 1.23 19.2729 
1.201 47.216 41.383 45.908 1.3::1 19.211<; 
1.25') 48.40') 4C .199 lt5.883 2.51 1<;1.1618 
1.30.) 47.239 41.360 45.859 1.38 1<;1.1070 
I.)'>'} 48.65<;1 1'1.94J 45.834 2.82 19.0ltb6 
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1.15') 47.4Q3 41.106 45.638 1.85 18.6194 
1."100 44.141 4?-. 8 52 45.614 n. At. 18.5616 
1.850 39.598 49.001 45.590 <;.99 18.5151 
1.90,) 3Q.037 49.S62 45.566 6.52 18.4639 
1.950 40.A21 41.11S 45·.542 4.12 18.4129 
2.CO.) 24.607 61.992 t, 5. "il8 - 2(1.91 18.3622 
2.05·1 37."11> 55.661 45.494 - 12.55 18.3112 
2.10·1 31.565 '> 7. (134 45.4Ui - 13.<,1(1 18.2610 
2.15(' 31.474 57.125 45.446 - 13.91 18.2111 
2.2C(J 23.642 64.951 45.422 - 21.78 18.1613 
2.250 38.651 49.44'" <105.399 6.14 18.111 9 
2.30,) ) 1 • 5')~) 51. "91 45.375 - 13.86 18.0628 

Figure F-l. Input and Output Listing-FISHSPY II-A 
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2.0 SUPPORTING ANALYSES 

2.1 ~-PROGRAM 

This program reduces the voltage data produced by a hydro­

acoustic echo signal from a scattering layer of infinite expanse. The out­

put consists of an unbiased estimate of the density of the layer and the es­

timated number of scatterers. 

The input to the program includes the average target strength 

of the scatterers and the transducer characteristics, such as directivity 

function, source level. pulse length and voltage response. 

The voltage data to be reduced must be in a digital sequence 

either on cards or on magnetic tape. 

2.2 ERROR PROGRAM 

This program computes the mean squared error associated 

" with the Q estimators presented in the note. 

The output consists of a printout of the normalized variance 

error for echo envelope sampling and integration techniques. 

The input includes scattering layer depth. transducer directivity, 

target strength variance and transmitted pulse time duration. 
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