

Climate Absolute Radiance and Refractivity Observatory (CLARREO)

CLARREO Mission Overview January 2010

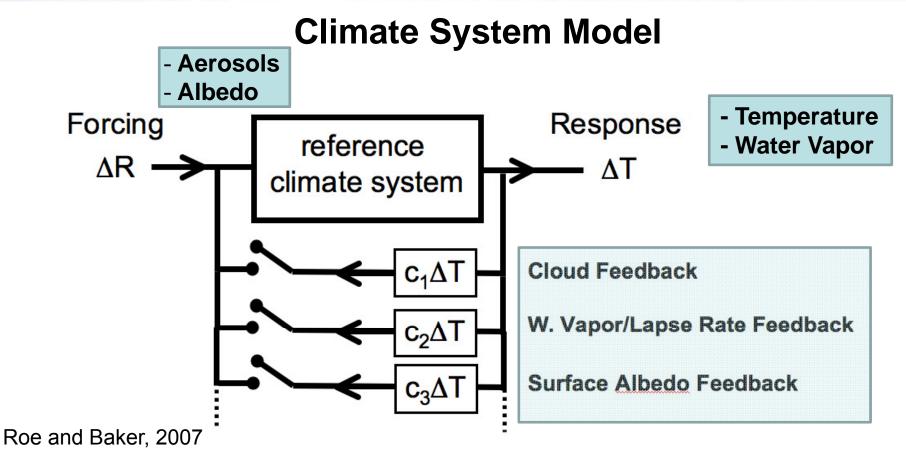
NASA Langley Research Center Hampton, Virginia

CLARREO Mission Overview

- Mission Purpose, Objectives, and Requirements
- Measurements and Instruments
- Spacecraft Bus and Observatory
- Launch Vehicle Strategy

Mission Objectives and Purpose

CLARREO Goal and Objectives


Mission Goal:

To provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society.

Key Societal Objectives:

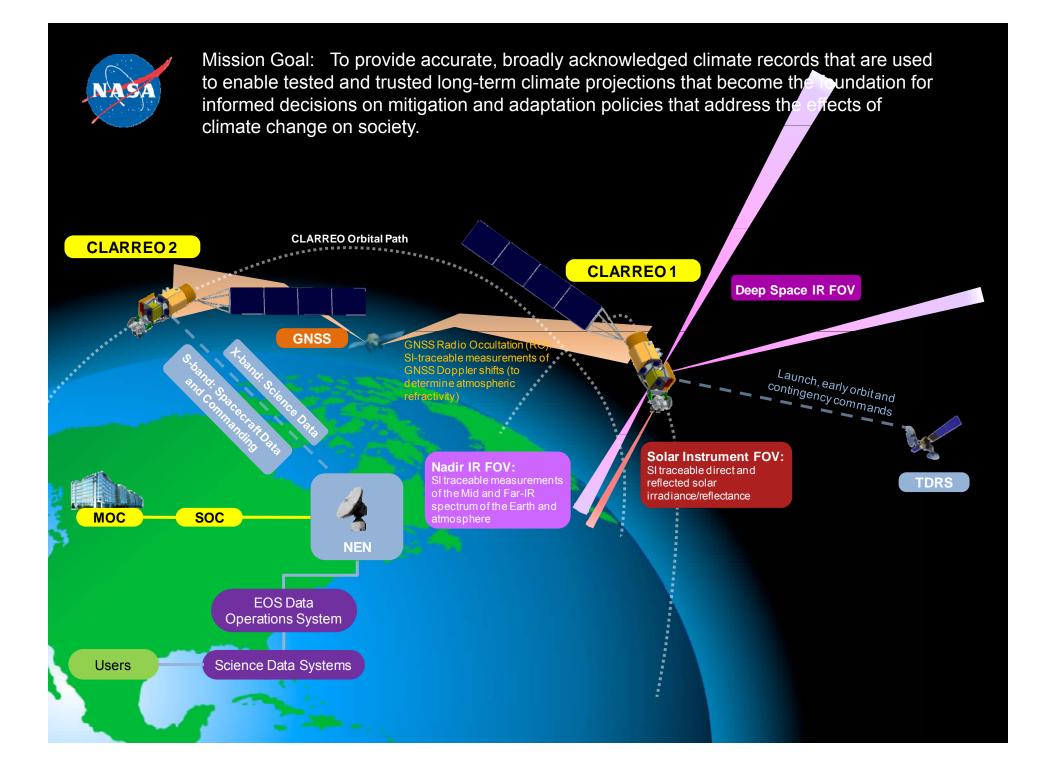
- 1. To establish a multi-decade benchmark climate record that is global in extent, accurate with rigorous traceability to international standards, and tested against independent methods.
- 2. To enable an operational climate forecast that is tested and broadly trusted through a disciplined strategy using state-of-the-art observations and mathematically-rigorous analytical techniques to establish credibility.
- 3. To enable the creation of decision structures that assimilate accurate data and forecasts into intelligible and specific products, promoting international commerce, societal stability and security.

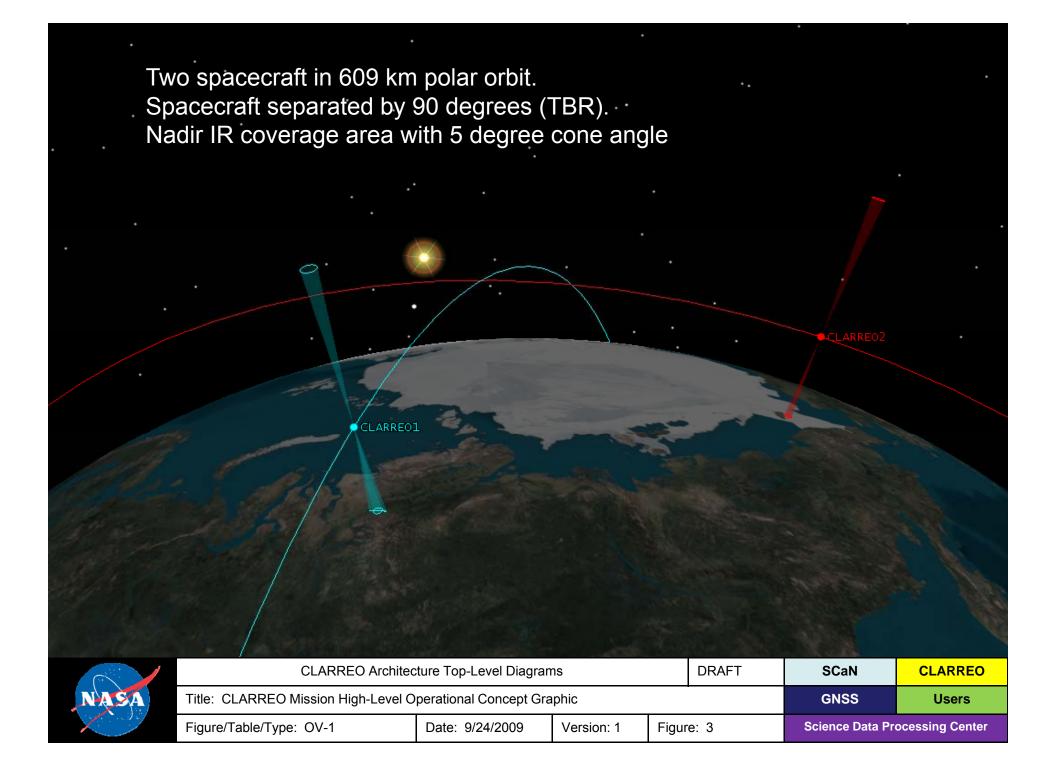
Reducing uncertainty in predictions of ∆T is critical for public policy affecting adaptation to changes in sea level and precipitation

CLARREO Science Goal and Requirements

Overall Science Goal:

Make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks.


Specific Key Science Requirements:


- To measure the absolute spectrally resolved radiance in the infrared with high accuracy (0.1 K 3σ brightness temperature) by downward-directed spectrometers in Earth orbit.
- 2. To measure the absolute spectrally resolved nadir reflectance of solar radiation from Earth to space with high accuracy ($0.3\% 2\sigma$). Solar radiation reflectance constitutes a powerful and highly variable forcing of the climate system through changes in snow cover, sea ice, land-use, aerosol, and clouds.
- 3. To utilize Global Navigation Satellite Systems (GNSS) radio occultation as a source for another benchmark of the climate system. This technique is traceable to the international standard second and is an independent method complementing the spectrometers.
- 4. To use CLARREO as a high accuracy calibration standard for use by operational, climate relevant infrared and reflected solar instruments like CERES, CrIS, IASI, VIIRS and Landsat.

CLARREO Mission Description

Launch Requirements	
Nominal Orbit	LEO
Altitude (Km)	609
Inclination	90°
Design Operational Life	3 years
Estimated Launch Readiness Date (LRD)	NET 2016-19
CBE Instrument Size	Variable
Launch Site Requirement (East or West Coast)	West
Science and C&D Handling	
Science Downlink Format	CCSDS
Science Data Downlink Frequency	X Band
Science Data Rate (Gb/day)	314 Gb/day
Instrument Housekeeping Telemetry	S-Band & X-Band
Instrument Housekeeping Telemetry Data Rate (Gb/day)	~ 1 Gb/day
Onboard Data Storage (Gb)	≥ 314 Gb
Payload Mass	
Payload Mass Allocation (w/contingency)	295 kg
Mass Margin	30 percent
NTE Payload Mass (kg)	384
Payload Power	
Payload Orbit Average Power Allocation (W)	405 W
Payload Peak Power Allocation (W)	618 W
Power Margin	30 percent
NTE Orbit Average Payload Power (W)	527
Bus Voltage (V)	28

Mechanical Interface		
Mechanical Interfaces	Individual specified interfaces for each payload element	
Field Of View (FOV)	 Infrared Instrument FOV = 2.4° (Pointed either nadir, zenith, or 45° from zenith) Reflected Solar Instrument FOV = 500m, with 100 km swath (Pointed either nadir or off-nadir up to 120°) GNSS-RO Instrument Occultation antennas (2) centered 65° w.r.t. nadir, ±10° in nadir-ram/wake planes, ±45° out of plane Precise Orbit Determination (POD) antenna, ±75° cone w.r.t. zenith 	
Attitude Control		
Pointing Knowledge (1 sigma)	< 0.1 degree or 360 arc sec	
Pointing Accuracy (1 sigma)	< 0.1 degree or 360 arc sec	
Jitter	< 0.1 degree or 360 arc sec over 0.1 second	
ACS	3-axis stabilized - reaction wheels and magnetic torque rods	
GPS Receiver	Minimum 1	
Star Trackers	Minimum 1	
Instrument Thermal Requirement		
Thermally Isolated	Yes	
Propulsion	5 years Mission Capability	
Observatory Environmental & Facility (driven by Instrument)		
NASA Risk Classification	Class C	
EMI/EMC	GSFC 7000	
Vibe	GSFC 7000	
Thermal Vacuum	GSFC 7000	
Radiation	GSFC 7000	
Clean Room Class	10K	
Special Facility Needs	None	

Measurements and Instruments

CLARREO Measurement Concept & Instrument Suite

Key Measurement Concept :

Make climate measurements that are SI traceable

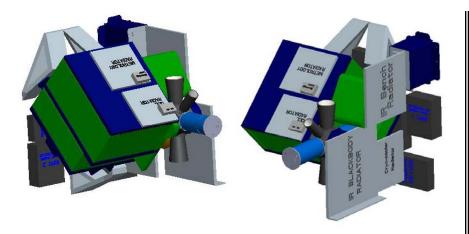
Infrared Measurements

- One infrared interferometer
- On-orbit calibration and verification systems
- Primary measurement is nadir benchmarking
- Inter-calibration at nadir only

Reflected Solar Measurements

- One suite of grating spectrometers
- Nadir benchmarking approx. 95% of duty cycle
- Sun and lunar views for calibration
- Inter-calibration requires off-axis pointing

GNSS Radio Occultation (RO)


- One GNSS-RO system
- Fore and aft occultation antennas
- Zenith antenna for precise orbit determination

Payload Suite

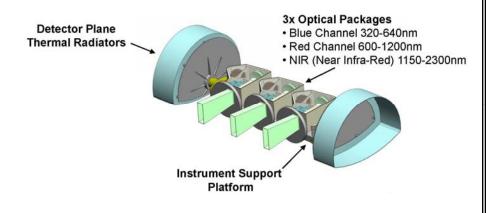
Instrument	Observatory I	Observatory II
Infrared Spectrometer	FTS	FTS
	5 to 50 micron	5 to 50 micron
	Nadir	Nadir
Reflected Solar Spectrometer 1	Grating	Grating
	320-640 nm	320-640 nm
	Gimbal-mounted	Gimbal-mounted
Reflected Solar Spectrometer 2	Grating	Grating
	600-1200 nm	600-1200 nm
	Gimbal -mounted	Gimbal -mounted
Reflected Solar Spectrometer 3	Grating	Grating
	1150-2300 nm	1150-2300 nm
	Gimbal -mounted	Gimbal -mounted
GNSS Radio Occultation System	POD	POD
	1 Receiver	1 Receiver
	3 Antennas	3 Antennas

Infrared Instrument Suite

Baseline Instrument Package:

- FTS, calibration-verification system, thermal management hardware, support structure, and electronics
 - > Mass: 85 kg CBE
 - > Average Power: 158 W CBE
- Instrument Dimension: ~42x65x70 cm³
- > Data Rate: 224 kb/sec
- > Data Volume: 19.3 Gb/day

Instrument Description:


- A Fourier Transform Spectrometer (FTS) for SI traceable measurements of the Mid and Far-IR spectrum of the Earth and atmosphere using two detectors within a single instrument
- Utilizes one ambient black body and deep space as onorbit calibration sources.
- > Utilizes one phase-change cell equipped blackbody and an emissivity monitoring system
- > Uncooled pyroelectric detector for the Far-IR and an actively cryocooled MCT detector for the Mid-IR

Characteristics:

- Spectral Range: ~ 5-50 μm (200-2000 cm⁻¹)
 - > ~5 to 15 μ m (actively cooled MCT)
 - > ~15 to 50 μ m (Pyroelectric)
- Unapodized Resolution: 0.5 cm⁻¹
- \triangleright Radiance Scale Accuracy: 0.1 K 3 σ
- FOV: ~2.4 deg
- ➢ GIFOV: ∼24 km
- > Integration Period: ~ 8 seconds

Reflected Solar Instrument Suite

Baseline Instrument Package:

- Three spectrometers, thermal management, and electronics
 - > Mass: 75 kg CBE
 - > Average Power: 99 W CBE
- Instrument Suite Dimension: ~185x58x91cm³
- > Data Rate: Up to 160 Mb/sec (compressed)
- > Data Volume: Up to 130 Gb/day (compressed)

Instrument Description:

- A trio of pushbroom hyperspectral imagers with high spatial and spectral resolution for SI traceable direct and reflected solar irradiance measurements
- Calibration of detectors obtained through precision apertures -neutral density filters rotated via filter wheels
- Field of regard (FOR) needed for Solar-Lunar Calibrations, Intercalibrations, and Benchmarking achieved with two-axis gimbal

Characteristics:

- > Spectral Range: 320 2300 nm
 - > ~320 to ~640 nm ("Blue")
 - ~600 to ~1200 nm ("Red")
 - > ~1150 to ~2300 nm ("NIR")
- Spectral Sampling: ~2 4 nm
- Range of pointing: 120 degrees
- > Swath Width: ~100 km cross-track
- > Spatial Sampling :~0.5 km at Nadir

GNSS Radio Occultation Instrument

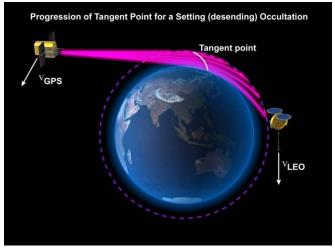


Figure from "COSMIC Update and Highlights" C. Rocken, UCAR

Baseline Instrument:

- > Receiver, antennas, and cabling
 - > Mass: 16 kg CBE
 - > Average Power: 32 W CBE
- > Dimensions:
 - Receiver: ~19x12x23 cm³
 - > POD Antenna: ~31 cm dia. x 4 cm (cone)
 - > RO (Ram-Wake) Antennas: ~48x87x2 cm³
- > Data Rate: 112 kb/sec
- > Data Volume: 10 Gb/day

Instrument Description:

- GNSS (Global Navigation Satellite Systems) receiver using radio occultation (RO) to measure atmospheric refractivity through Doppler shifts
- > Traceable to international standards (time)
- > Used to derive atmospheric pressure, temperature, and water vapor concentration

Instrument Subsystems:

- > One GNSS receiver
- > One zenith facing, choke ring, precise orbit determination (POD) antenna
- Electronically steerable phased array ram and wake RO antennas

Instrument Operations:

- > Number of occultations : ~2000/day/observatory
 - > 1000 each from GPS and Galileo
- Rising and Setting Occultations
 - Ram/Wake antennas provide both options with observatory yaw flip
- > Clock corrections on ground if necessary

Spacecraft Bus and Observatory

Spacecraft Requirements and Drivers

• Mission Orbit:

- The spacecraft will be in nearly circular polar orbits at 609 km (+/-200m) altitude, 90 degree inclination angle (+/-0.1) degree and 90°separation in longitude of ascending node between observatories – beta angle in 90 degree orbit drives solar array design

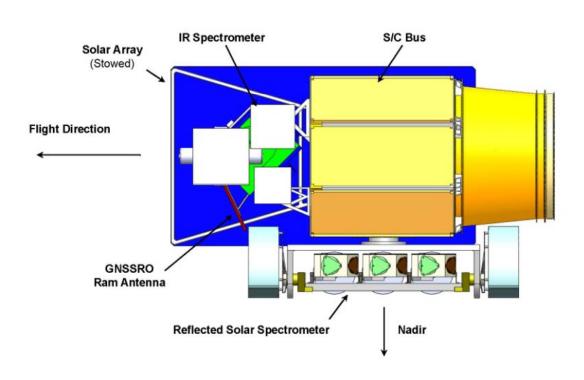
• Mission Lifetime:

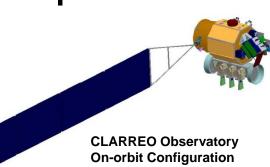
- The mission lifetime shall be a minimum of 3 years
- Operational consumables for 5 years of life
- Post-mission orbit lifetime: <25 years Controlled de-orbit drives propulsion system

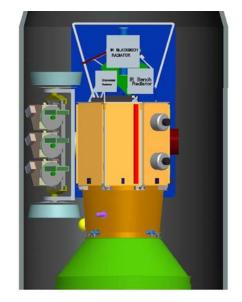
• Payload:

- Instrument Field of Regard's (FOR's) –drives instrument location and solar array design

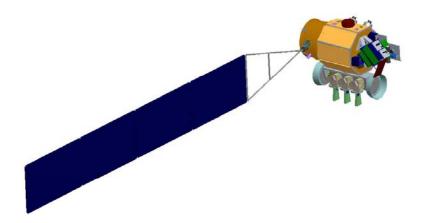
• Launch Vehicle:


 Minotaur IV+ Launch Vehicle launch capability, fairing diameter and CG offset limits – drives instrument location, mass of spacecraft, and solar array design


Mission Success:


- Spacecraft Reliability allocation –drives redundancy, mass and costs

CLARREO Observatory Concept



CLARREO Observatory (stowed configuration in Minotaur IV+)

Spacecraft Bus Subsystems

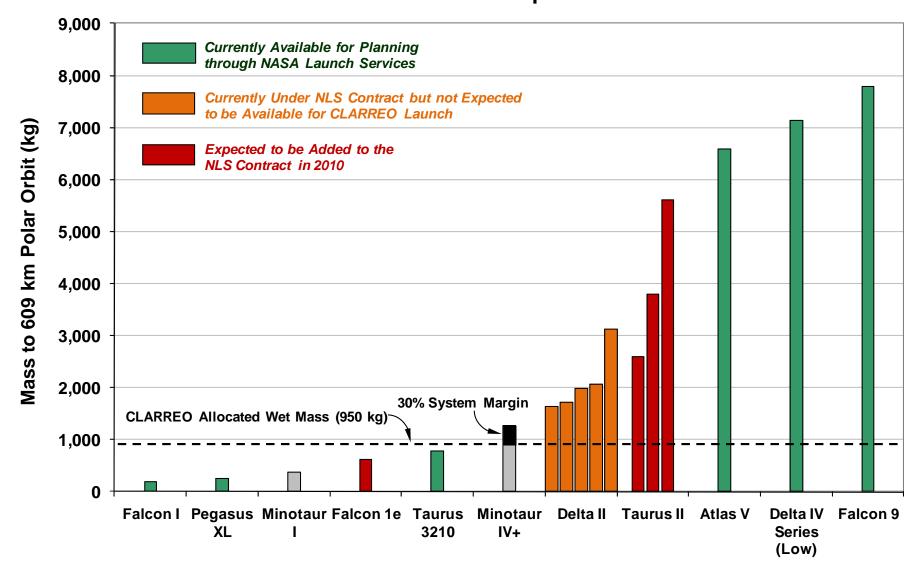
- Electrical Power System
 - 158 A-Hr Li-ion battery capacity
 - 28V Direct Energy Transfer Power Bus
 - Deployable, 10.0 m² (1060W EOL)
- <u>Command and Data Handling</u>
 - Central Electronics Processor
 - Provide C&DH, Communications, Thermal, Propulsion and payload command and telemetry interfaces (SSR, C&DH computer)
- <u>Communications System</u>
 - X-Band for downlink for stored engineering and payload data
 - S-band for command uplink and telemetry downlink
 - Data Volume: 314 Gbits/day
- Attitude Determination & Control System
 - 3-axis stabilized attitude control system
 - Star trackers, IMU's, CSS, Magnetometers
 - Reaction Wheels and Magnetic Torque Bars
 - GPS for Orbit determination

- Propulsion System
 - Monopropellant Hydrazine blowdown system
 - 4 +4 22 N Thrusters for orbit maintenance and controlled re-entry
- <u>Thermal System</u>
 - Thermal control using radiators and MLI
- Mechanical/Structural System
 - Aluminum sheet over aluminum honeycomb panels

Launch Vehicle Strategy

Launch Vehicle Trades

Pre-Phase A trade studies evaluated multiple launch vehicle options to identify the most cost-effective access-to-space solution.

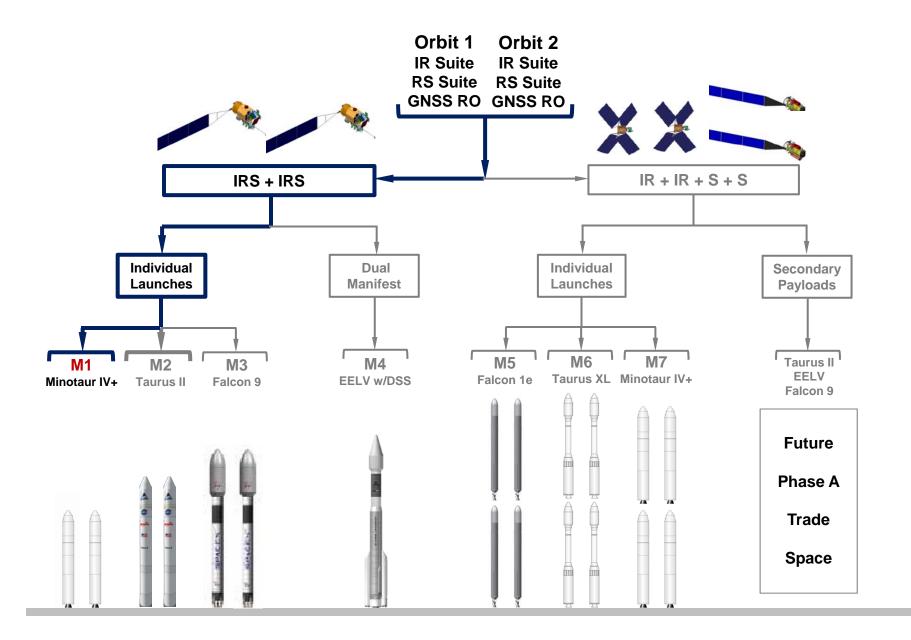

Options Considered

- Individual launches
 - Falcon 1 and 1e
 - Pegasus XL
 - Taurus XL
 - Minotaur I and IV+
 - Taurus 2
 - Falcon 9
- Single launch with dual manifest on an EELV (Atlas V or Delta 4) using the Dual Satellite System (DSS) currently under development
- Evaluation for Pre-Phase A focused mainly on the costs of the different options

CLARREO Launch Vehicle Options

Climate Absolute Radiance

& Refractivity Observatory


NASA

Mission Architecture Strategy for MCR

- The three most cost competitive and viable mission architectures available when future launch vehicles are included in the trade space are:
 - Launch two observatories as a dual-manifest on a single EELV
 - Derivative concept is to replace the EELV with a Falcon 9 if the Falcon 9 proves to have polar orbit capability and dual-manifest capability
 - Launch two observatories individually on two Minotaur IV+ vehicles
 - Derivative concept is to replace the Minotaur IV with a Falcon 9 if the Falcon 9 proves to have polar orbit capability
 - Launch four observatories with one spectrometer (IR or RS) on four Falcon
 1e launch vehicles (assumes that the Falcon 1e cost < Minotaur IV cost)
- Based on current data, the Minotaur IV+ appears to be the most costeffective solution, but launch vehicle trade studies will continue to be conducted in Phase A

Mission Architecture Decision Tree

Climate Absolute Radiance & Refractivity Observatory

CLARRE

320 K

280 K