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Executive Summary  
 

The study is the first to examine the role of State-level policies such as net metering and 

Renewable Portfolio Standards (RPS), as well as the role of electric cooperatives, on 

States’ adoption rates of solar and wind systems on U.S. farms.  The study found that 

States with higher energy prices, more organic acres per farm, and more Internet 

connectivity adopt renewable electricity at higher rates. For solar systems, full farm 

ownership and solar resources also have a significant and positive relationship with 

adoption rates.  

 

RPS targets are found to increase renewable electricity adoption at the State level. Our 

result accords with the literature; however, this is the first study to show an impact at the 

distributed-generation scale. Our study does not find a systematic relationship for State 

financial instruments, such as rebates, grants, investment tax credits, and production 

incentives, at least in the form captured by our policy variables.  Similarly, net metering 

and interconnection policies do not seem to influence renewable electricity adoption at 

the State level. Conversely, electric cooperative prevalence in the State is found to have a 

negative relationship to renewable electricity adoption share.  The interaction of those 

factors highlights the importance of coordinating approaches in policy formulation to 

meet Federal and State objectives of increasing renewable energy adoption. 

 

The results of this study can assist States as they further refine and focus their policies to 

promote renewable electricity, particularly during an era of declining government 

budgets. A more detailed examination of farm-level data from the On-Farm Renewable 

Energy Production Survey in combination with policy, institutional, and economic 

variables at the State level can provide a fuller and more realistic interpretation of the 

State-level determinants of adoption of wind- and solar-energy technologies.   
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Introduction 
 

Security, environmental, and economic concerns underlie recent investments in 

renewable energy technologies and implementation of policies to support renewable 

energy adoption.  Expanded production of renewable electricity can help meet a number 

of objectives, including increased energy security, reduced risk from rising and volatile 

energy costs, as well as decreased carbon emissions and other pollutants.
1
 Newer 

renewable electricity sources, however, such as wind, solar, geothermal, and small hydro, 

count for less than 3 percent of electricity generation, and more conventional renewable 

sources such as large hydropower and traditional biomass reached just below 8 percent of 

electricity generation in 2010 (U.S. Energy Information Administration (EIA ) 2012).
2
 

The cost of adopting renewable electricity systems remains high and is still dependent on 

Federal and State policies. Despite those obstacles, policy support and technological 

advances have led to a tremendous increase in new renewable capacity in the past decade, 

primarily in wind energy (Figure 1, U.S. Energy Information Administration 2012).  EIA 

projects further increases by 77 percent from 10 percent in 2010 to 15 percent in 2035. 
 

Figure 1. Renewable Share of Net Electricity Generation by State (excludes Hydroelectric). 

 

 

Source: U.S. Energy Information Administration (EIA) 

 

 

                                                 
1
 Although this report focuses on solar and wind electricity on U.S. farms, the largest contribution of U.S. 

agriculture to renewable energy continues to be biomass, which, in addition to electricity, is used also for 

heating/cooling, and transportation.  Altogether, biomass accounts for almost 50 percent of renewable 

energy consumption (U.S. Energy Information Administration 2012). By comparison, hydroelectric is 

around 30 percent, while wind and solar are less that 18 percent of renewable energy consumption (U.S. 

Energy Information Administration 2012). 
2
 Large hydropower and traditional biomass are considered established sources of renewable electricity and 

count for almost 9 percent of electricity generation (U.S. Energy Information Administration 2012). 
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Wind and solar installations are often located on or close to agricultural land.  For that reason, 

and because 40 percent of the total U.S. land area is in agriculture, many leading States in 

renewable electricity installations are States with large agricultural sectors (National 

Agricultural Statistics Service, 2009a).
1
 Farming operations are also a natural fit for smaller 

scale renewable electricity applications. Agricultural producers are actually early adopters of 

renewable powered technology due to its convenience for small and remote power needs. 

Wind turbines, for example, were used to pump water and for remote electricity generation 

since the early 1900s and, in the absence of rural electrification, were widely incorporated in 

agriculture operations by 1930.   

 

At the time, agriculture represented the main market for wind energy systems and 

continues to present a large market opportunity for sales of small wind systems (less than 

100 kilowatts) today (American Wind Energy Association 2011).  Stand-alone solar 

photo-voltaic (PV) systems were introduced in the 1980s and have become the most 

common form of on-farm electricity generation (National Agricultural Statistics Service 

2011). Though those off-grid applications represented the majority of renewable energy 

use throughout the 1990s, grid-connected systems are now leading the growth in on-farm 

systems (Xiarchos and Vick 2011). 

 

The 2009 On-Farm Renewable Energy Production Survey (OFREPS) was the first 

national survey of on-farm renewable energy generation.  It addressed only distributed 

generation of on-farm renewable energy applications owned and operated as part of 

individual farm operations.
3
 It excluded “large wind” systems of 100 kilowatts or more, 

which are generally commercial applications often located on farms but operated by other 

business entities under wind rights lease agreements with the farm (National Agricultural 

Statistics Service 2011).
4
 The number of small wind systems has almost doubled since 

2001 (American Wind Energy Association 2011), while solar power has increased by 146 

percent since 2000 (Sherwood 2010).
5
 The OFREPS survey provides insights about 

renewable electricity in agriculture and factors that influence distributed generation.  

 

Following the examples of Menz and Vachon (2006), Adelaja and Hailu (2008), and 

Sawyer, et al. (1984), our examination applies specifically to State-level adoption rates of 

wind and solar systems for  farms and evaluates the State factors that might explain the 

                                                 
3
 Distributed generation (DG) is an approach that employs small-scale technologies to produce electricity 

close to the end users of power. DG technologies often consist of modular (and sometimes renewable-

energy) generators and provide power onsite with little reliance on the distribution and transmission grid. 

DG can often provide lower-cost electricity and higher power reliability and security with fewer 

environmental consequences than can traditional power generators.  
4
 This report focuses on wind and solar installations captured in the OFREPS (available at 

http://www.agcensus.usda.gov/Publications/Energy_Production_Survey/). It excludes anaerobic digesters 

(also included in the OFREPS), as well as small hydro, and geothermal systems (not examined in the 

OFREPS).  
5
 Until 2009, which frames the study period of the paper, most of the PV installations had been customer 

sited. 2010 marks the emergence of the utility sector in PV. The share of utility sector installations rose 

from virtually none in 2006 to 15 percent of all installations in 2009 and 32 percent in 2010 (Sherwood 

2010). 

http://www.agcensus.usda.gov/Publications/Energy_Production_Survey/
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States’ varying adoption rates.
6
 Our main interest lies in identifying policy and 

institutional influences on State-level adoption differences while controlling for State 

differences in economics and structural factors in agriculture.  The interest on policy 

variables is nested in the perceived importance of policy in promoting renewable 

electricity technologies until volume-related costs reach parity with fossil-based 

technologies. That study is unique in that it focuses on distributed generation on farms, 

whereas previous State-level work focused primarily on utility-scale installations (Menz 

and Vachon 2006, Adelaja and Hailu 2008, Yin and Powers, 2010, Shrimali and Kniefel 

2011). Small-scale renewables have, up to now, mostly been examined at the household 

level (Mills and Schleich 2009, Durham et al. 1988, Labay and Kinnear 1981, Willis et 

al. 2011). 

  

To  identify a range of potential factors that might systematically account for State 

variations, bivariate statistical correlation tests are performed in accordance to Sawyer et 

al. (1984).  Variables that show a significant relationship are used to construct a 

parsimonious multivariate representation of those relationships in the absence of multi-

period observations following Menz and Vachon (2006) and Adelaja and Hailu (2008). 

Although technology adoption is ultimately an individual farm-level choice, analyzing 

State-level variables can help explain underlying State variation and evaluate policy 

effectiveness.  
 

 

 
 
 
 
 
 

                                                 
6
 The term adoption rate herein refers to the proportion of farms in each State that installed renewable 

electricity systems on their operation until 2009, based on the OFREPS survey. 
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Literature Review 
 

The literature on for renewable electricity varies in at least four ways:  

 

1. Technologies analyzed. 

2. Level of aggregation (individual decisionmaker or State-level totals) 

      examined.   

3. Sector (utilities, residential users, or farm operators) evaluated. 

4. Analytical methods used to evaluate adoption (ordinary least squares  

      regression, limited dependent variable regression, other statistical  

      technique, or simulation). 

Analytical methods used in renewable energy adoption research can be characterized as 

statistical and non-statistical.  Most recent statistical technology adoption research has 

focused on total renewable electricity capacity or generation in the State. At aggregate 

levels, utility-scale capacity overshadows distributed generation by end-users such as 

farmers, and consequently, total renewable electricity capacity represents utility-scale 

capacity in those studies.  State-level studies face the disadvantage of relying on 

secondary data, while studies of individual decisionmakers use data from surveys 

designed specifically for that purpose.  Also, State-level studies generally involve fewer 

degrees of freedom and narrower ranges of values for the variables, so that consequently 

they are less likely to find statistically significant results. 

 

Menz and Vachon (2006) was the first State-level evaluation of how utility-scale 

renewable electricity capacity relates to State policies. They examined the impact of an 

array of government policies in 39 States on wind energy capacity and its growth from 

1998-2003 through hierarchical linear regression analysis.  They considered renewable 

portfolio standards (RPS), generation disclosure, a mandatory green power option, public 

benefit funds, and choice of electricity source.  Their study was conducted in two parts. 

The first part used bivariate variables for the above policies in existence prior to 2003. 

The second part used the experience related to each policy expressed as the time since 

each policy enactment. They found that both renewable portfolio standards (RPS) and 

green power options were positively related to wind power development. Adelaja and 

Hailu (2008) furthered the analysis by adding State socioeconomic and political 

characteristics in addition to renewable energy policies in the examination of State 

differentials in wind industry development. That study found that RPS has a significant 

effect on wind development as do the State’s wind potential, economic conditions, and 

political structure.  

 

Yin and Powers (2010) evaluated by means of a fixed effects panel model the presence of 

an RPS and its stringency (as measured by whether some utilities in the State are exempt 

from the RPS, whether existing generation when the RPS is implemented is allowed to 

“count” against the RPS, whether utilities can purchase renewable electricity credits from 

outside the State to meet part of the RPS, and penalties imposed on non-compliant energy 
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producers). They found that an RPS that requires additional renewable generation above 

that existing at implementation has a positive impact where the mere presence of a 

weaker RPS does not.  Net metering and interconnection were not found to be effective in 

increasing renewable generation, while mandatory green power offerings and greater 

imported power had positive and significant impacts. 

 

Shrimali and Kniefel (2011) consider the impact of RPS, government green power 

purchasing, and financial incentives along with resource, economic, and political 

measures on wind, biomass, geothermal, and solar generation capacity. They used a 

fixed-effects model with State-specific time-trends for State-level data from 1991-2007 

and found that RPS impact varied by type of renewable and was negative for combined 

renewables.  It was positive for solar and geothermal and negative for wind and biomass.  

They also found that clean energy funds have a significant impact on the share of 

renewable energy, while previous literature showed that a related policy, public benefit 

funds, was not significant.  

 

Delmas and Montes-Sancho (2011) focused on determinants at the utility rather than the 

State level.  They found that the RPS has a negative influence on utilities’ decision to 

invest in renewable capacity and that investor-owned utilities respond more positively to 

RPS mandates than publicly owned utilities.  They consider the possibility that renewable 

capacity expansion may be due to the natural, social, and policy context in the State 

rather than due to the RPS, resulting in “sample selection” bias.  They employ a two-

stage Heckman approach with a logit model predicting RPS adoption and then use the 

predicted RPS in a Tobit model of capacity.   

 

Adoption of distributed generation for residential and small commercial entities is likely 

to differ from utility-scale generation.  For example, renewable energy technologies 

adopted by farmers usually represent only a small part of the farm business and produce 

electricity mainly for consumption on the farm, in contrast to renewable energy 

technologies adopted by utilities whose main product is electricity for sale to the public in 

the marketplace.   

 

Sawyer et al. (1984) performed a State-level analysis for distributed generation; 

specifically, they used a statistical approach to examining how adoption rates for 

residential solar installations have varied across States.  They conducted bivariate 

statistical correlation tests of 11 independent variables with solar adoption rates. They 

also found that actual adoption was low even where it was expected to be economically 

feasible.  They attributed the low adoption rates to consumers being more concerned with 

time to pay back the investment rather than the overall life-cycle cost criterion that had 

been used in the projections.  Anticipating Delmas and Montes-Sancho’s concern about 

causation and sample selection bias, Sawyer et al. included an index of regional 

differences in cultural attitudes toward adoption of policy innovations and alteration of 

established patterns. 

 

At the household level in the residential sector, economic variables shown to impact solar 

hot water adoption choices have included solar radiation availability (Mills and Schleich 
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2009), electricity rates (Fujii and Mak, 1984; Durham et al., 1988), and State tax credits 

(Durham et al. 1988). Demographic variables that positively related to energy-conserving 

investments are income, education, age, and household size (Labay and Kinnear 1981, 

Fujii and Mak 1984, Dillman et al. 1984, Durham et al. 1988, Long 1993; Walsh 1989, 

Sardianou 2007, O’Doherty et al. 2008, Mills and Schleich 2009, Willis et al. 2011). 

However results are not homogeneous. For example, Durham et al. (1988) find no 

significant impact from income and solar radiation availability.  

 

No regression analyses have come to light that look specifically at renewable electricity 

adoption on farms, but two studies have used non-statistical approaches – in particular, 

simulation benefit-cost models have been used to analyze the economic feasibility of 

adopting the technology from the perspective of the individual farm operation.  Solar 

photovoltaic technology has been evaluated for crop irrigation (Katzman and Matlin 

1978) and to run fans and lighting in poultry barns (Bazen and Brown  2009).   

 

Adoption of sustainable agriculture practices at the farm level involving reduced tillage, 

fertilizer, and chemicals has been studied more than adoption of renewable energy 

technologies, and those studies may offer insights about what influences the latter.  

Knowler and Bradshaw (2007) reviewed 55 such studies conducted in the United States 

over 25 years.  They found that education, farm size, additional information, labor 

availability, networking (with agency, business, or other local individuals), and 

willingness to take risks were positively related to adoption.  Age tended to be negatively 

related, but that depended on the type of practice studied.  They found generally a great 

deal of discrepancy in the findings from study to study for the variables evaluated. 

 

In addition to the above regression analyses, crosstabs, multivariate nominal scale 

analysis, and multiple discriminant function analysis have also been used to test various 

hypotheses about consumer decisions to adopt solar energy systems in Maine (Labay and 

Kinnear 1981).  In that approach, perceived attributes of the product are found to explain 

adoption better than commonly used respondent personal characteristics (Ostlund 1974).  

Factor analysis has been used to explain technologies as diverse as hybrid corn, tractors, 

and beta-blockers (Skinner and Staiger, 2007).  The advantage of factor analysis is that a 

large number of factors plausibly associated with technology diffusion are assumed to be 

linear combinations of a few unobserved factors (representing barriers to adoption) that 

are estimated. 
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Solar and Wind Electricity on U.S. Farms 
 

Commercial wind and solar installations are often installed on or close to agricultural 

land, and many States with large agricultural sectors are leaders in renewable energy 

installations. This report focuses specifically on smaller scale distributed generation in 

agriculture. 

 

Wind and solar applications can help farming operations stabilize electricity and energy 

expenditures and decrease carbon emissions. Further, off-grid wind and solar systems can 

provide the producer with an energy source where electricity transmission is difficult or 

impossible. Additionally, it can substitute fuel and gas use for generators on the farm, 

reducing transportation and maintenance costs as well as environmental concerns 

(Xiarchos and Vick 2011). However, renewable energy adoption remains rare on U.S. 

farming operations: the adoption rate is less than 1 percent (National Agricultural 

Statistics Service 2011).  

 

The 2009 On-Farm Renewable Energy Production Survey (OFREPS), conducted as an 

add-on survey for operations who responded that they had produced some form of 

renewable energy on the 2007 Census of Agriculture (National Agricultural Statistics 

Service, 2009a), provides the first national observation on farm renewable energy 

generation (National Agricultural Statistics Service 2011).
7
 Data portrayed include the 

type, size, cost, incentives, and estimated savings of renewable energy production.  In 

2009, 8,569 farms were reported to produce renewable energy from solar, wind, or 

methane digesters. We focus on renewable electricity from wind and solar. Solar energy 

is the most prevalent, generated on 7,968 of the farms in the survey (93 percent of all 

farms with renewable energy generation). The prominence of solar technology as a 

renewable energy source on farms is not surprising due to its many agricultural 

applications, the most important of which are water pumping for irrigation, electric 

fences, building lighting, and livestock watering, in descending order (Food and 

Agriculture Organization, 2000). The U.S. Department of Agriculture (USDA), National 

Agricultural Statistics Service (NASS) showcases the role of solar energy in irrigation in 

its Farm and Ranch Land Irrigation Survey (National Agricultural Statistics Service 

2004, 2009b). 

 

Solar PV systems are installed in 7,236 farms across the United States and are distributed 

in all the States.  Top States for PV are California, Texas, Colorado, and Oregon. 

California leads the Nation with 25 percent of all farms reporting adoption of a PV 

system, while half of the operations generating on-farm solar PV are concentrated in the 

western parts of the United States. The number of farms using solar energy ranges widely 

from just 4 farms in Delaware to 1,906 operations in California, with an average of 159 

and a median of 86 farms per State. In terms of capacity, the concentration of solar 

energy production is more pronounced. California represents almost 64 percent of PV 

                                                 
7
 Since the sample was drawn from the 2007 census questionnaire, farmers who installed renewable energy 

systems for the first time in 2008 and 2009 will not be captured.  



 Solar and Wind Electricity on U.S. Farms     9 |  
 

capacity in agriculture, followed by New Jersey with 6 percent; the Western States hold 

74 percent, and the top 10 States, 83 percent (table 1). Capacity is calculated based on 

State average system capacities. The average system capacity is 4.5 kilowatt (kW) for the 

United States; however the State variation is significant and ranges from 0.4 kW in 

Kansas and 15.5 kW in Delaware. New Jersey and California also have average capacity 

over 10 kW.  The average capacity in the rest of the States ranges from about 0.5 kW to 

4.5 kW, with a median of 1.35 kW.  

 

For the analysis, we focus on farms adopting PV installations normalized by total number 

of farms in each State forming State adoption rates. Adoption rates for solar PV are 

presented in figure 2. 

 
Table 1. Farms With Solar Photovoltaic (PV) by State

 

 

FARMS CAPACITY 

State Rank Count Percent State Rank kW Percent kW* Farms 

California 1,825 25 California 20,493 63.7 11.23 1,825 

Texas 541 7 New Jersey 1,943 6.0 14.08 138 

Hawaii 469 6 Oregon 883 2.7 3.00 294 

Colorado 445 6 Hawaii 840 2.6 1.79 469 

Oregon 294 4 Colorado 736 2.3 1.65 445 

Top ten 4,639 64 Top Ten 26,789 83.2 4.08 4,469 

Western 3,739 52 Western 23,757 73.8 2.39 3,739 

U.S. 7,236 100 U.S. 32,193 100.0 4.45 7,236 

Only includes positive reported data and is confined to USDA National Agricultural Statistics Service 

disclosure limitations 

*State average per farm 

 

Small wind is the second most prevalent renewable fuel source; 17 percent of farms 

reporting renewable energy generation have wind-generating capacity (installed in 1,420 

farms across the United States). The States with the largest amount of on-farm wind 

production are California, Texas, Colorado, and Minnesota. California leads the Nation 

with 9.5 percent, and about half of the operations with small wind are concentrated in the 

top 10 States, which show no district geographic pattern. The number of farms using 

small-wind energy ranges from zero farms in Delaware to 134 operations in California, 

with an average of 29 and a median of 21 farms per State. The concentration of small 

wind is more pronounced in terms of capacity. Minnesota represents about 22 percent of 

small-wind capacity in agriculture, followed by Washington with 12 percent. The top 10 

States hold 66 percent (table 2). The average installed generating capacity of small-wind 

turbines is 6 kW, greater than the average solar capacity—4.5 kW per farm. The average 

is 4 and median is 3 kW per farm. 

 

For the analysis, we focus on farms’ small-wind installations normalized by total number 

of farms in each State forming State adoption rates. Adoption rates for small wind are 

presented in figure 2. 
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Table 2. Farms with Small Wind by State
 

FARMS CAPACITY 

State Rank Count Percent State Rank kW Percent kW* Turbines Farms 

California 134 9.53 Minnesota 2,880 26.22 20 144 99 

Texas 102 7.25 Washington 1,273 11.59 19 67 50 

Minnesota 99 7.04 Texas 592 5.39 4 148 102 

Colorado 98 6.97 California 480 4.37 3 160 134 

Arizona 63 4.48 Wisconsin 472 4.3 8 59 46 

Montana 63 4.48 Colorado 441 4.01 3 147 98 

Top 10 762 54.2 Top 10 7,291 66.37 8 946 711 

U.S. 1,406 100 U.S. 10,986 100 6 1,831 1,406 

Only includes positive reported data and is confined to USDA National Agricultural Statistics Service 

disclosure limitations 

*State average per turbine 

 

Figure 2. State Adoption Shares for Photovoltaic Solar and Small Wind. 

 

Only includes positive reported data and is confined to USDA National Agricultural Statistics Service 

disclosure limitations. 

The average installation cost per U.S. farm for solar PV was $31,947, corresponding to a 

size of 4.5 kW (7.1 $/W).  The average installation cost per turbine for small wind was 

$12,972, corresponding to 6 kW (2.2 $/W). For solar PV systems smaller than 1kW, the 

cost to farmers averaged $8,000, while it was $18,000 for 1-5kW systems and $98,000 

for 10-16kW systems. For small wind, the cost for turbines averaged $3,000 for systems 

smaller than 1kW, $6,000 for those between 1 and 5kW, and $27,000 for those between 5 

and 20kW. Farmers spend, on average, less than $10,000 for installing solar PV systems 

in 17 States. The average expense was $10,000-$20,000 in 20 States, and $20,000-

$40,000 in 10 States; only in 3 States the average expense for solar energy was higher 

than $40,000. Farmers spend, on average, less than $5,000 per turbine installed in 13 
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States. The average expense was $5,000-10,000 in 10 States, $10,000-$20,000 in 12 

States, and $20,000-$50,000 in 6 States.  

 

Table 3 shows the States with the highest and lowest installation costs, and the 

corresponding average residential electricity prices. There does not seem to be much 

correlation between State-level electricity prices and installation costs for small 

wind(r=0.02); correlation is more substantial in the case of solar PV (r=0.32). State-level 

electricity prices will affect the period of time needed for a farmer to recoup the initial 

investment in the renewable system.  While the average installation costs are higher in 

New Jersey and Delaware relative to Nebraska and Indiana, for example, electricity 

prices are also much higher, indicating that over the life of the system, potential savings 

could be much higher.  The payback period (time to recover initial installation costs) and 

potential lifetime savings are two metrics that a farmer may consider in addition to 

installation costs when deciding to invest in a renewable system.  

 

Farmers that produced renewable energy on-farm reported savings on their utility bills for 

2009 in nearly every State.
8
 The savings were especially noticeable in New York, with 

annual savings over $5,000; Rhode Island and California with annual savings over $4,000; 

as well as South Carolina, Vermont, New Jersey, and Arizona with annual savings above 

the national average of $2,400. The median utility savings was $1,250; 13 States saved less 

than $1,000 in utility bills, 21 between $1,000-2,000, and 15 over $2,000. 

 

The period of time needed for a farmer to recoup the initial investment in the renewable 

system will also be influenced by the financial support received. Farmers received 

financial support for installing renewable electricity from a number of sources such as 

Federal, State, and local government, as well as utilities. The average financial support 

received for solar PV was 44 percent of the project cost, slightly lower than the support 

for small wind (49 percent). 

 

  

                                                 
8
 Includes farmers that reported wind turbines, solar panels, and/or methane digesters. 
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Table 3. Lowest and Highest Average Installation Cost by State
 

 

State 

Installation 

Cost($)* kW* 

Electricity 

Price*** 

(c/kWh) State 

Installation 

Cost($)** kW** 

Electricity 

Price*** 

(c/kWh) 

Solar PV Small Wind 

Highest Five States 

New Jersey 112,855 14.08 15.66 New Jersey 47,518 8 15.66 

Delaware 101,250 15.5 13.93 West Virginia 44,400 5 7.06 

California 78,910 11.23 13.81 Massachusetts 43,218 7 17.68 

Illinois 39,018 4.58 11.07 Minnesota 37,647 20 9.74 

Connecticut 29,571 4.17 19.55 Iowa 23,840 8 9.49 

Lowest Five States 

Kansas 4,607 0.41 8.88 Nevada 1,455 1 11.93 

Oklahoma 4,612 0.43 9.09 Nebraska 1,563 1 7.87 

North 

Dakota 5,048 0.43 

7.51 

Hawaii 1,799 1 

32.5 

Indiana 5,262 0.54 8.87 Utah 2,562 1 8.26 

Nebraska 5,632 0.74 7.87 Arizona 2,768 1 10.27 

Only includes positive reported data and is confined to USDA National Agricultural Statistics Service 

disclosure limitations  

*Per farm 

**Per turbine 

*** Average residential electricity price 

 

The OFREPS Survey is not sufficiently detailed to evaluate small-wind and solar-PV 

system return by State in this paper. The length of the payback period for solar PV and 

small wind depends on the panel type or the turbine, the quality of solar or wind resource 

at the installation site, grid-connection, prevailing electricity rates, and available 

financing and incentives. Depending on these and other factors, payback can range 6 to 

30 years
9
. This paper, however, evaluates the factors that Denholm et al. (2009) and 

Edwards et al. (2004) identify to directly impact the return for solar-PV and small-wind 

installations respectively: energy prices, resource potential, and incentives that directly 

impact the return for renewable energy installations. Denholm et al. (2009) 

characteristically show in figure 3 that residential PV is close to breakeven cost in areas 

where there is a combination of high electricity prices and good solar resources (like 

California) or a combination of high electricity prices and incentives (like New York or 

Massachusetts). Similarly, Edwards et al. (2004) show that the economics of residential 

small-wind systems, as measured by breakeven cost and simple payback, depend on 

wind-resource class, electricity prices, and incentives. 

 

 

 

 

 

                                                 
9
 Sources include a. Solarbuzz http://www.solarbuzz.com/going-solar/using/economic-payback, and b. 

AWEA http://www.awea.org/learnabout/publications/upload/Small_Wind_FAQ_Factsheet.pdf.  For 

specific case studies and/or scenarios, payback can be determined through discounted cash flow analysis or 

calculators available on the Web. 

http://www.solarbuzz.com/going-solar/using/economic-payback
http://www.awea.org/learnabout/publications/upload/Small_Wind_FAQ_Factsheet.pdf
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Figure 3. Increase in Electricity Price Required for Residential PV Breakeven at $8/Watt. 

 

 
Source : Denholm et al., 2009
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Factors Influencing Solar and Wind System Adoption on Farms 
 

A range of potential factors that may account for State variations in renewable electricity 

adoption rates on farms is identified and evaluated.
10

  Descriptive statistics and 

correlation analysis are presented.
11

 Bivariate statistical correlation tests are performed, 

and significance is denoted as *** at the 0.01 level, and ** at the 0.05 level and * at the 

0.10 level. A multivariate specification is constructed in the next section, following Menz 

and Vachon (2006) and Adelaja and Hailu (2008), to account for policy and institutional 

influences while controlling for structural and economic factors in the States (Adelaja and 

Hailu 2008, Yin and Powers, 2010, Shrimali and Kniefel 2011).
12

 Even though the rigor 

of this analysis is restricted because some of the State characteristics do not necessarily 

represent the specific characteristics of the solar adopters, the analysis is pursued in order 

to understand adoption at the aggregate State level and to identify policy choices that can 

have an impact in renewable electricity technology adoption in the agricultural sector 

while accounting for other influences. This paper may also guide further analysis of 

farmer adoption behavior at the microdata level and serve as a background for future 

interpretations.
13

  

 

Economic Factors 
 

The influence of economic factors on renewable energy adoption has been examined on 

the residential (Mills and Schleich 2009, Fujii and Mak, 1984; Durham et al., 1988) and 

State (Adelaja and Hailu 2008) level. We focus on energy prices and resource potential 

that directly impact the return for renewable energy installations.  

 

The cost of energy can be an important determinant for the diffusion of solar and wind 

energy. The State average electricity and diesel prices (p.electricity and p.diesel) 

approximate avoided energy costs when renewable electricity is produced on-farm. The 

electricity prices represent prices for residential customers in 2008 (U.S. Energy 

Information Administration, 2012a). Diesel prices are computed by subtracting State 

taxes from 2008 average regional on-highway (No2) diesel fuel prices (U.S. Energy 

Information Administration 2012b; U.S. Energy Information Administration 2009b).  

 

The Pearson’s correlation coefficient for the adoption share of PV (PVAS) is 0.48*** 

with diesel prices and 0.35** with electricity prices.
14

 The Pearson’s correlation for the 

adoption share of wind (SWAS) is 0.45*** with diesel and 0.35** with electricity prices.  

                                                 
10

 Variable abbreviations are summarized in table 13 of the appendix. 
11

 Descriptive statistics are presented in table 14 of the appendix for select variables. 
12

 Preliminary correlation analysis provides the basis for variable selection in the multivariate analysis 

because of limitations imposed by the small number of observations (Evans and Olson, 2003). 
13

 Results can guide attention to variables of interest and be compared to future analysis; inferences about 

individual adoption impacts, however, are not recommended because of the potential of ecological 

inference fallacy (Robinson, 1950). 
14

 Pearson’s correlation coefficient is a measure of the strength of linear dependence between two variables 

that ranges from +1 to -1. 
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Solar and wind energy can directly replace electricity for on-grid applications and fossil-

based fuels for off-grid applications. Most of the early adoption of PV on farms was for 

off-grid applications like water pumping; however, in the last decade, most PV additions 

have been on-grid.  

 

State average electricity and diesel prices are highly correlated (r = 0.73), and 

consequently, only one is used in the multivariate analysis. Electricity prices 

(p.electricity) vary widely across States, ranging from $6.99/kWh in Idaho and 

$19.55/kWh in Connecticut. There is less variation in diesel prices (p.diesel); the 

coefficient of variation is 2.8 percent for diesel prices compared to 28.7 percent for 

electricity prices.  So, it seems likely that even though electricity prices are less closely 

correlated with adoption than are diesel fuel prices, the wider variation in electricity 

prices makes them a better measure to reflect State-level differences in energy costs.  

 

The economics of a renewable energy installation are also dependent on the resource 

potential available for energy production. The more potential there is for energy 

production, the faster the payback period is for the initial investment in the renewable 

system and the larger potential savings over the life of the system. Therefore, consumers’ 

adoption behavior might likely be influenced by how “sunny” or “windy” their State is.  

We calculate the State resource potential for both wind and solar. The State annual 

average for daily solar resource denoted as PV resource was calculated in ArcGIS from 

low resolution data (surface cells of approximately 40 km by 40 km in size) developed by 

the National Renewable Energy Laboratory’s (NREL’s) Climatological Solar Radiation 

Model (National Renewable Energy Laboratory 2009). Arizona has the highest average 

State annual solar resource potential at 6.2 kWh/m2/day, and Michigan the lowest at 4.2 

kWh/m2/day. The wind resource potential was calculated as an integer from one through 

five designating the average State wind classification based on wind-power density at 50 

meters.  The State averages were calculated in ArcGIS based on low-resolution data (25-

kilometer grid cell resolution) from the national wind-resource assessment of the United 

States, first created for the U.S. Department of Energy by the Pacific Northwest 

Laboratory (National Renewable Energy Laboratory 2003). Mississippi, with an average 

classification of one, has the lowest State average, while Maine, North Dakota, and South 

Dakota have the highest, with an average classification of 5. The correlation of the PV-

adoption share is 0.28* with solar resource, while the correlation of the wind-adoption 

share with the wind resource of 0.21 is non-significant. 

 

Institutional Factors 
 

The Rural Electrification Act of 1936 led to the formation of numerous cooperatives 

tending to rural electrification. As a consequence, farms are often served by electric 

cooperatives which are member-owned, private, independent, and non-profit electric 

utilities. The percentage of electric customers served by an electric cooperative (% coop) 

is included as an indicator of the  prevalence of  cooperatives in the electricity generation 

for each State, based on data available from the U.S. Energy Information Administration 

(U.S. Energy Information Administration 2012c). Electric cooperatives have distinct 

characteristics that can impact renewable energy adoption by farms. For example, the 
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high cost of maintaining the infrastructure needed to cover large rural areas can cause 

prices for electric cooperatives to be higher. Indicatively, in Kentucky, electric 

cooperatives serve an average of eight consumers per mile of electric line, while investor-

owned utilities (IOU) and municipal utilities serve 25 and 60 consumers per mile of 

electric line respectively (KAEC). Additionally, electric cooperatives, unlike IOUs, are 

not required by the Public Utility Regulatory Policies Act of 1978 (PURPA) to 

interconnect with and purchase power at avoided cost from customers with excess onsite 

generation.  Similarly, many States with net metering, interconnection, and RPS exclude 

cooperatives from the regulation. Not surprisingly, the adoption share on farms is 

negatively correlated with the share of customers in the State that purchase electricity 

from electric cooperatives (r=-0.35** for PV adoption and r=-0.28* for wind adoption).  

 

Policy Factors 

 

Renewable energy policies have been important to the growth of renewable electricity 

production in the last decade. However, policies promoting renewable electricity 

development vary widely from State to State in formulation and effectiveness.  Menz and 

Vachon (2006), Adelaja and Hailu (2008), Yin and Powers (2010), and Shrimali and 

Kniefel (2011) examined policies expected to impact State-level adoption at the utility-

scale. Our examination is unique as it focuses on policies that can impact State-level 

adoption of distributed generation specifically in agriculture. Table 4 shows Pearson’s 

correlation for the different policy instruments promoting distributed generation with 

solar PV and small-wind adoption rates in agriculture. Table 8 provides a view of the 

geographic distribution of such State policies. 

 
RPS 

Renewable Portfolio Standards (RPS) require a minimum amount of renewable electricity 

sales, or generating capacity, that electricity utilities must achieve according to a 

specified schedule of dates and mandates. By December 2009, 29 States and the District 

of Columbia had established an RPS.
15

 The specified target amount and date to meet the 

requirements varied by State. Some States also provided specific solar and/or distributed 

generation (DG) “set asides.” A “set-aside,” also called a “carve-out,” is a provision 

within an RPS that requires utilities to use a specific renewable resource to meet a certain 

percentage of their RPS. While RPS policies are designed to encourage utility-scale 

investments, those set-aside provisions provide incentives specifically for DG, such as 

solar and small-wind. Sixteen States and the District of Columbia have such set-asides 

implemented (Database of State Incentives for Renewables & Efficiency, DSIRE).   

The RPS variables presented in the study are based on our analysis of DSIRE's 

Quantitative RPS Data Project (2009) for December 2009. RPS targets represent a 

percentage of retail electricity sales covered by the RPS at the final target date in each 

State. We estimate the RPS target for new renewable generation (nr rps target) by 

excluding traditional sources like biomass and hydro from our interpretation of the RPS 

tiers for each State. Similarly, we identify solar and distributed generation RPS set-aside 

                                                 
15

 Two States express their target in terms of installed capacity, while five additional States set a non-

binding renewable energy goal. Those are excluded from the analysis.  
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targets (sdg rps target). We further identify States that exempt cooperatives from the RPS 

(coop exemption) and States that have a separate RPS for cooperatives (coop _ rps) as 

well as the respective targets that the cooperatives face (coop rps target). New renewable 

RPS targets (nr rps target) vary from zero to 33 percent of electricity sales, while 

solar/DG RPS targets (sdg rps target) only reach 5 percent. When a separate target is 

granted to cooperatives, it is much lower. Correlations with the different RPS indices are 

large and significant for solar adoption rates (maximum of 0.54 for coop new RPS 

target); they are much smaller for small-wind adoption rates and only significant for coop 

new RPS target and coop exemption.  As expected, the adoption rates are negatively 

correlated with coop exemptions. We also find that there is a statistically significant 

difference in the mean adoption rate of States with a coop exemption relative to those 

without one (table 5). The overall and cooperative specific targets are highly correlated 

both for new renewables (r=0.79) and solar/DG(r=99), and only one of each is used in the 

analysis.  
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Table 4. Correlation Analysis for Policy Variables With Solar-PV and Small Wind Adoption 

Rates 

  

Correlation with 

 

Share PVAS SWAS 

RPS 

NR RPS Target NA 0.47*** 0.23 

Coop Exemption  0.31 -0.39** -0.35* 

Coop NR RPS Target NA 0.54*** 0.32** 

SDG RPS Target NA 0.33** 0.22 

Coop SDG RPS Target NA 0.34** 0.23 

Net Metering 

Net Metering 0.83 0.28* 0.24 

Effective Net Metering 0.54 0.46*** 0.35** 

NM P. Excess Electricity NA 0.27* 0.30** 

Cooperative Net Metering 0.54 0.21 0.25 

Effective Coop Net Metering 0.40*** 0.39** 0.36 

Interconnection 

Interconnection 0.75 0.21 0.17 

Effective Interconnection 0.29 0.47*** 0.37** 

Coop Interconnection 0.4 0.28* 0.28* 

Effective Coop Interconnection 0.17 0.43*** 0.47*** 

Financial Incentives 

Incentive 0.56 0.1 0.09 

ITC  rate, % NA -0.02 0.01 

ITC 0.23 0.03 0.09 

ITC Years NA 0.0008 -0.04 

PI rate, $/kWh NA 0.2 -0.09 

PI 0.17 0.22 -0.07 

PI Years NA 0.08 0.22 

DP 0.4 0.17 0.22 

DP Years NA 0.17 -0.06 

REAP # NA 0.02 0.09 

REAP $ NA 0.07 0.07 

PVAS: Solar-PV adoption share. SWAS: Small-wind adoption share. Independent variable abbreviations 

summarized in Table 13 of the appendix. 
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Table 5. Test of Means of Solar-Photovoltaic (PV) and Small-Wind Adoption Rates for 

renewable Portfolio Standard (RPS) 

  
N Mean  SD z p 

Solar-PV Adoption Share(PVAS) 

C
o

o
p

 
E

xe
m

p
ti

o
n

 0 22 0.0077 0.0065 

1.992** 0.0464 

1 10 0.0028 0.0024 

Small-Wind Adoption Share (SWAS) 

C
o

o
p

 
E

xe
m

p
ti

o
n

 0 21 0.0014832 0.0012  

1.775* 

 

0.0759 1 10 0.0007 0.0007 

z and p are based on the Wilcoxon-Mann-Whitney non-parametric mean equality test.  

***, **, * means are statistically different at the p>0.01, p>0.05 and p>0.10 level of confidence. 

  
Net metering  

Net-metering policies are aimed at small-scale distributed generation installations. Those 

policies allow utility customers with renewable energy systems to be compensated for 

electricity generated in excess of what they consume. Consequently, net metering can 

have positive financial implications for renewable energy adoption (Xiarchos and Vick 

2011). The specific rules, however, vary significantly in design from State to State: for 

example, in terms of policy coverage, compensation rate per excess kWh generated 

(retail, avoided cost, or other), carryover and rollover timeframe, unidirectional or 

bidirectional meter use, subscriber and power limits (Freeing the Grid, DSIRE). Due to 

that variation, Freeing the Grid grades the effectiveness of net-metering legislation in 

each State (Rose 2008). Of the 41 States and the District of Columbia with net-metering 

policies in 2008, only 26 States were considered by Freeing the Grid to have “effective” 

net-metering policies (that is, received a grade of A, B, or C) based on their scoring 

methodology. Additionally, 14 States excluded electric cooperatives (the electric utilities 

that most often service farmers and ranchers) from net-metering requirements in 2008 

(Xiarchos and Vick 2011).
16

 The norm in net metering is a single bi-directional meter; 

however, it is possible that the electricity provider requires two meters: one that measures 

the flow of electricity from the grid and the other into the grid. For such a purchase-and-

sale arrangement, the customer is required to receive only the utility’s avoided cost for 

the excess electricity, which is a much lower price than the retail rate.
17

 In 2008, only 29 

                                                 
16Additionally Delaware only requires net metering from cooperatives that competed outside their 
service territories. 
17PURPA requires power providers to purchase excess power from grid-connected small renewable 
energy systems at a rate equal to what it costs the power provider to produce the power itself. 
Alternatively, the utility may offer a premium price above the utility’s avoided cost. 
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States and the District of Columbia offered retail electricity price for the excess 

electricity generated. 

 According to the U.S. Energy Information Administration (2009a, 2010, 2011), the 

number of renewable electricity customers in net-metering programs has been steadily 

increasing: from 4,472 customers in 2002 to 48,886 customers in 2007, up to 96,506 

customers in 2009. The majority of those customers (over 90 percent) are residential.
18

  

 

Five indicators for net metering are examined: having a net metering regulation, having 

an effective net metering regulation, and having the regulation apply to electric 

cooperatives in the State (coop net metering and coop effective net metering) as well as 

the excess electricity price received in each State based on the net-metering rules (nm p. 

excess electricity). Net-metering indicators have lower correlations than effective net-

metering indicators. Low correlation is also found for the estimate of the price received 

for excess electricity based on the net-metering rules of each State. Correlation is highest 

for effective net metering (r=0.46) and effective coop net metering (r=0.39).  Focusing on 

those net metering indicators, we find that there is a statistically significant difference in 

the mean adoption rate of States with effective net-metering rules relative to those 

without effective net-metering rules for PV adoption (table 6). The statistical significance 

is highest for effective net metering. For effective cooperative net metering, Wilcoxon’s 

rank-sum test of means is statistically significant only at the p>0.10 level of confidence, 

while for small wind, Wilcoxon’s rank-sum test of means for adoption rates is 

statistically significant only for effective net metering at the 10-percent significance level.  

Another observation is that the correlation for cooperative indicators does not differ 

substantially from the respective general State indicators.
19

  Due to the high correlation of 

the cooperative and the general State effective net-metering indicators (r=0.74), only the 

general State effective net metering is evaluated in the multivariate analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                                                 
18

 Some farms are included in the Energy Information Administration (EIA) “residential” category, while 

other farms are classified as commercial customers depending on the utility schedule they qualify for. 
19

 Wilcoxon’s rank-sum test of means for States with (effective) interconnection by (effective) coop 

interconnection further supports that the mean adoption rates of States with (effective) net metering does 

not differ significantly for States that exclude electric cooperatives from the regulation (not shown but 

available upon request). 
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Table 6. Test of Means of Solar-Photovoltaic (PV) and Small-Wind Adoption Rates for Net 

Metering 

 

  
N Mean SD z p 

Solar-PV Adoption Share(PVAS) 

E
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 0 22 0.0024 0.0025  

-2.607*** 

 

0.0091 1 26 0.0077 0.0067 
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 0 34 0.0035 0.0042  

-1.929* 

 

0.0537 1 14 0.0094 0.0071 

Small-Wind Adoption Share(SWAS) 
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 0 21 0.0005806 0.0006  

-1.819* 

 

0.0689 1 25 0.0015 0.0016 
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 0 28 0.0007 0.0007  

-1.418 

 

0.1562 1 18 0.0016 0.0018 

z and p are based on the Wilcoxon-Mann-Whitney non-parametric mean equality test. 

 ***, **, * means are statistically different at the p>0.01, p>0.05 and p>0.10  level of confidence. 

 
Interconnection 

Interconnection standards stipulate the technical specifications and procedures by which 

the renewable energy systems will connect to the distribution grid. They are essential for 

ensuring the safety and stability of the distribution system, and they reduce transaction 

costs and uncertainties for customers interested in installing distributed generation 

systems and their utility. Rules again vary considerably by State, and according to the 

scoring methodology used in Freeing the Grid, only 14 of the 37 States and the District 

of Columbia that implemented interconnection standards were considered to be 

“effective”—that is, received a grade of A, B, or C—and met the requirements for 

satisfactorily having removed interconnection market barriers for renewable energy 

development (Rose 2008). Additionally, the electric cooperatives that most often service 

farmers were not subject to interconnection standards in 15 States in 2008 (Xiarchos and 

Vick 2011). We examine four indicators: interconnection, effective interconnection, coop 

interconnection, and effective coop interconnection. 

Similarly to net metering, correlation is high only for effective interconnection and 

effective cooperative interconnection. Focusing on the effective interconnection 

indicators, we find that both for solar and small wind there is a statistically significant 

difference in the mean adoption rate of States with effective interconnection rules relative 
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to those without effective interconnection rules (table 7). Additionally, the correlation for 

cooperative indicators does not differ substantially from each respective general State 

indicator.
20

  Due to the high correlation of the cooperative and the general effective State 

interconnection indicator (r=0.74), only one is examined in the model representation. 

Table 7. Test of Means of Solar-Photovoltaic (PV) and Small-Wind Adoption Rates for 

Interconnection 

  
N Mean SD z p 

Solar-PV Adoption Share (PVAS) 
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0 29 0.0034 0.0040 -3.153*** 0.0016 

1 19 0.0080 0.0070 
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0 40 0.0042 0.0047 -2.656*** 0.0079 

1 8 0.0108 0.0078 
  

Small-Wind Adoption Share (SWAS) 
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0 32 0.0008 0.0009 -2.483** 0.0130 

1 14 0.0018 0.0017 
  

E
ff

ec
ti

ve
 

C
o

o
p

 

In
te

rc
o

n
-

n
ec

ti
o

n
 

0 38 0.0008 0.0009 -2.318** 0.0204 

1 8 0.0024 0.0020 
  

z and p are based on the Wilcoxon-Mann-Whitney non-parametric mean equality test.  

***, **, * means are statistically different at the p>0.01, p>0.05 and p>0.10 level of confidence. 

 
Financial Incentives  

Tax incentives, rebates, and grants are offered by States to encourage the use of 

renewable electricity by making its installation more cost effective.  Rebates and grants 

are direct payments: they offer a payment or discount that reduces the cost of renewable 

electricity installations.  Installation tax credits are corporate and personal (income) tax 

credits expressed in terms of percent of expenses for renewable electricity installations.  

However, tax credits with low limits of payment act more like rebates and are estimated 

in the report as such.
21

 Lastly, production incentives (or performance-based incentives) 

provide payment per generated kilowatt-hours (kWh).  Payments, like feed in tariffs, are 

one form of production incentive (as in Washington State); renewable energy credits 

                                                 
20

 Wilcoxon’s rank-sum test of means for States with (effective) interconnection by (effective) coop 

interconnection also shows that the mean adoption rates of States with (effective) net metering does not 

differ significantly for States  that exclude electric cooperatives from the regulation (not shown but 

available upon request). 



 Factors Influencing Solar and Wind System Adoption on Farms     23 |  
 

(RECs) and solar RECs (SRECs) are another (examples include California and 

Pennsylvania). Even a tax credit can be a performance-based incentive, like in Nebraska, 

where the tax credit offered is based on generated kWhs. 

 Twenty-seven States were identified to have some State incentive (incentive) that 

supported small-scale renewable distributed generation in 2008: 11 had tax credits (ITC); 

19 had grant and rebate programs (DP); and 8 had production incentives (PI). Loan 

programs can also provide financing for the purchase of renewable energy equipment, but 

such programs are not identified for our analysis. Database of State Incentives for 

Renewables and Efficiency (DSIRE), individual State programs, and REC markets were 

consulted to extract the financial variables examined. We include policy dummy 

variables and, when quantitatively comparable, we also include the incentive rates as well 

as the years since the policy adoption as measures of policy stringency.  A binary variable 

is included for having some incentive (incentive) and for each policy separately: ITC, PI, 

and DP. For the investment tax credit and the production incentive, we also have each 

State’s rate (ITC rate and PI rate) and the years from adoption (ITC years and PI years). 

For direct payments, incentives are not easily compatible, so we only include the years 

since policy adoption (DP years). We find that correlations with renewable electricity 

adoption rates are small and insignificant, not only for the binary variables but also for 

the incentive rates and years since enactment, which are examined as measures of policy 

stringency. The results are somewhat surprising provided the high upfront capital cost of 

renewable energy installations and the potential for those policies to increase cost 

effectiveness.  

Rural Development’s Renewable Energy Systems and Energy Efficiency Improvement 

Program, renamed Rural Energy for America (REAP) in the 2008 Farm Bill, has also 

provided some financial support to solar and small-wind installations. Most of the 

awards, however, have been for energy efficiency; for example, 74 percent in 2008. From 

2001 to 2009, USDA’s Rural Development funded 550 solar and small-wind projects 

with a total of over $17.5 million in funds. However, through 2009, awards were 

geographically concentrated to only a few States and did not focus on smaller systems 

(Xiarchos and Vick 2011). Consequently, State adoption rates for solar and small-wind 

are not expected to be highly correlated with the number of REAP awards in the State 

(REAP #), or the dollar amount of awards (REAP $). Program changes after 2009 should 

make them a more influential factor (Xiarchos and Vick 2011), provided continuation of 

program funding in the coming years.  

 

 

 

 

                                                                                                                                                 
21

 For the purposes of this study, we placed tax credits with a limit of $2,000 or less in the “rebates” 

category.  Tax credits with a limit of more than $2,000 are shown in the “tax credits” category. 



 

24 |       Factors Influencing Solar and Wind System Adoption on Farms     
 

Table 8. Select Policy Variables for the U.S. States.  

 
State Net Metering Interconnection Incentive RPS S DG RPS 
Alaska 

     
Alabama 

     
Arkansas Effective Yes 

   
Arizona Effective Effective ITC, DP Yes Yes 
California Effective Effective PI Yes 

 
Colorado Effective Effective 

 
Yes Yes 

Connecticut Effective Yes DP Yes Yes 
District of Columbia Effective Effective 

 
Yes Yes 

Delaware Effective Yes DP Yes Yes 
Florida Effective, Exempt Exempt 

   
Georgia Yes Yes 

   
Hawaii Yes Yes 

 
Yes 

 
Iowa Effective, Exempt Exempt PI Exempt 

 
Idaho 

     
Illinois Exempt Effective, Exempt DP Exempt Yes 
Indiana Exempt Exempt DP 

  
Kansas 

  
ITC Exempt 

 
Kentucky Effective 

    
Louisiana Effective Yes 

   
Massachusetts Effective Effective DP Yes 

 
Maryland Effective Effective PI, DP Yes Yes 
Maine Effective 

  
Yes 

 
Michigan 

 
Yes PI Yes 

 
Minnesota Yes Yes 

 
Yes Yes 

Missouri Effective Yes 
 

Exempt Yes 
Mississippi 

     
Montana Effective, Exempt Exempt ITC Exempt Yes 
North Carolina Exempt Effective, Exempt ITC Yes Yes 
North Dakota Exempt 

 
ITC Voluntary 

 
Nebraska 

  
PI 

  
New Hampshire Effective Yes 

 
Yes Yes 

New Jersey Effective, Exempt Effective, Exempt PI Yes Yes 
New Mexico Effective Yes 

 
Yes Yes 

Nevada Effective, Exempt Effective PI, DP Yes Yes 
New York Effective, Exempt Effective, Exempt ITC, DP Exempt Yes 
Ohio Effective Exemption DP Exempt Yes 
Oklahoma Yes 

    
Oregon Effective Effective, Exempt ITC, DP Yes 

 
Pennsylvania Effective, Exempt Effective, Exempt PI, DP Exempt Yes 
Rhode Island Exempt 

 
ITC Yes 

 
South Carolina Yes Exempt ITC 

  
South Dakota 

   
Voluntary 

 
Tennessee 

  
ITC, DP 

  
Texas Yes Exempt 

 
Exempt Yes 

Utah Exempt Exempt ITC, DP Voluntary 
 

Virginia Effective Yes 
 

Voluntary 
 

Vermont Effective Effective DP Voluntary 
 

Washington Yes Effective PI,DP Yes 
 

Wisconsin Exempt Exempt DP Yes 
 

West Virginia Yes Yes DP 
  

Wyoming Effective Yes 
   

Exempt: Cooperatives are exempt from the policy 

Source: USDA Office of Energy Policy and New Uses (OEPNU), Database of State Incentives for 

Renewables and Efficiency (DSIRE), Rose (2008), and Xiarchos and Vick (2011). 
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State Agricultural Characteristics 

Adelaja and Hailu 2008, Yin and Powers 2010, and Shrimali and Kniefel 2011 account 

for economic, political, and demographic characteristics. Our analysis focuses in 

agriculture, so in addition to such characteristics, we also account for differences in the 

agricultural sector of the States.   Structural characteristics of the agricultural sector 

should have an effect in the resulting renewable electricity adoption rates at the State 

level. In this section, we investigate which structural characteristics of the agricultural 

sector to include in the multivariate analysis as control variables. Even though most of 

the variables can serve as proxies to individual farmer characteristics at the aggregate 

level, they are analyzed for representing State conditions that increase the adoption 

probability for all farmers in the State. For example, organic acres can indicate a 

predisposition in the State’s agricultural sector for addressing environmental concerns.  

Another example is share of cattle operations; since a predominant use of renewable 

energy systems in agriculture has historically been for water pumping, “ranching” States 

with many cattle operations can be expected to have larger adoption rates. All variables 

are normalized (as averages by operation or shares in the agricultural sector of the State) 

and are extracted from the 2007 Census of Agriculture (National Agricultural Statistics 

Service 2009a). 

Correlation analysis for State agricultural characteristics with solar-PV and small-wind 

adoption rates are presented in table 9. We distinguish financial State variables like 

energy expenses by operation ( fuel expense and electricity expense
22

) and electricity used 

by operation (electricity used), derived by dividing electricity expense by the 2008 State 

electricity price average,
23

 and average funding share supporting renewable energy by 

operation
24

 (funding). Wealth and investment effects are examined through the financial 

State variables of average profitability by operation (net cash income), average land 

owned (land value), and machinery value by operation (machine value). Agricultural 

production mix variables like the share of cattle and fruit operations in the State (fruit, 

cattle) as well as organic and conservation acres by operation (organic and conservation) 

are also evaluated. Solar and wind systems are often used for water pumping associated 

with cattle and small fruit operations (Xiarchos and Vick 2011) and are potentially 

adopted by farmers that are concerned with the environment and practice organic or 

conservation practices, so such State characteristics can have an effect on State adoption 

rates. Last, we examine farmer constituent variables like the State average for acre size of 

an operation (size), the share of operations in the State that are connected to the Internet 

(internet), and the agricultural sector’s investment in the land expressed as the share of 

operations with full tenure of the land it operates (tenure).  

From the financial variables, electricity used, utility, and land value have significant 

correlations. The average funding share for renewable energy installations reported in 

                                                 
22

 The variable “utility expense” is used as a proxy for electricity expense, although the utility expense 

would also include other utilities such as phones (National Agricultural Statistics Service 2009a).  
23

 Electricity prices used are for residential customers in 2008 and come from the U.S. Energy Information 

Administration (2012a). 
24

 The funding share for supporting renewable energy is extracted from the OFREPS (National Agricultural 

Statistics Service 2011). 
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NASS is not correlated with adoption share; this result is in line with the insignificant 

correlation for financial policy instruments. Average farm income (representing wealth  

and profitability in the State’s agricultural sector), and machine value (representing 

wealth as well as capital investment in the State’s agricultural sector) are not correlated 

with adoption shares. Average land value, another indicator for wealth, holds a 

significant correlation to solar-adoption shares, but not to wind-adoption shares.   Fuel 

costs are uncorrelated, while electricity cost and electricity use are highly correlated with 

adoption rates. Electricity cost and electricity use are highly correlated (r = 0.92) and 

consequently only one is used in the multivariate analysis.  

The product mix also seems significant. States with a lot of organic production are 

significantly correlated with solar and wind adoption rates. The share of cattle operations 

in the State is significantly correlated with wind adoption rates, while the share of fruit 

operations holds a significant relationship specifically with solar adoption rates. Internet 

connection share has a significant correlation with adoption shares, and tenure share has a 

significant correlation with the solar PV adoption share. Wind adoption rates are 

correlated with less variables (only about half) than solar adoption rates. 

Table 9. Correlation Analysis for State Agricultural Characteristics With Solar-PV and Small-

Wind Adoption Rates 

 

PVAS: Solar-PV adoption share. SWAS: Small-wind adoption share. 

Independent variable abbreviations summarized in Table 13 of the appendix. 

 

 

 

 PVAS SWAS 

Financial 

Fuel Expense 0.23 0.06 

Electricity Expense 0.62*** 0.3** 

Electricity Used 0.48*** 0.23 

Land Value 0.36*** 0.1 

Machine Value -0.13 -0.11 

Net Cash Income -0.02 -0.11 

Funding Share -0.01 -0.09 

Product Mix 

Conservation Acres 0.02 0.03 

Organic Acres 0.6*** 0.68*** 

Fruit  0.55*** 0.21 

Cattle  -0.23 -0.33** 

Constituent 

Internet  -0.33** -0.38*** 

Tenure 0.41*** 0.23 

Size 0.22 0.09 
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Modeling Aggregate Renewable Electricity Adoption 
 

The proportion of farms that adopt renewable electricity in a State is bounded between 0 

and 1. The logit transformation of data such as the proportion of adopters removes the 

upper and lower boundaries of the scale and spreads out the tails of the distribution.
25

 The 

logit transformation is recommended for proportions close to zero, as in the case of 

renewable electricity adoption on the farm, which is an extremely rare event. For 

example, the proportion of farms that have installed solar systems averages 0.005, with a 

range of 0.0004 in Iowa to 0.023 in California. The transformation of the renewable 

electricity adoption shares “stretches out” the proportions that are close to 0 and 1 and 

“compresses” proportions closer to 0.5, thus “normalizing” the data (figure 4).  

 
Figure 4. Kernel Density Plots for the Share of Farms with Solar Photovoltaic (PV) and Small- 

Wind Installations Before and After the Logit Transformation
26

 

 

  

  
 
  

                                                 
25

 The zero wind-adoption observations in Delaware and South Carolina are treated as missing 

observations. 
26

 A kernel density estimation is an alternative to a histogram that shows a visual impression of the 

probability density function of a variable, which in comparison to the discreteness of histograms is 

endowed with smoothness or continuity. 
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The model becomes: 

    (
 

   
)                     

Aitchison (1986) calls the above transformation the additive logratio transformation and 

shows that z will follow a normal distribution, N(μ, σ
2
), if y follows an additive logistic 

normal distribution. Aitchison (1986) proposes testing the appropriateness of the model 

(if y is distributed as an additive logistic normal distribution) by testing if z is normally 

distributed.  

 

The model is fitted with ordinary least squares (OLS), and its formulation is influenced 

from the technology adoption literature. Due to the small number of observations, the 

empirical analysis needs to be parsimonious (Evans and Olson, 2003): the determinants 

are selected based on the preliminary correlation analysis in the previous section and a 

stepwise regression procedure. Results are presented in Table 10 and 11. Model 1 

includes factors of interest, while Model 2 includes only those factors that are found to be 

significant. The variance inflation factors (VIFs) suggest that multicollinearity does not 

pose a problem.  The model residuals are normally distributed as supported by the 

Shapiro-Wilk, Shapiro-Francia, and Skewness/Kurtosis tests in table 12 at the 1-percent 

marginal significance level. Consequently, our data support the distributional 

assumptions underlying the logit transformation regression model. We use robust 

standard errors, which Kieschnick and McCullough (2003) identify are more trustworthy 

for inferring significance with the logit transformation model. The logic transformation is 

worth exploring according to Smithson and Verkuilen (2006); it serves our rare event 

analysis well, while our data support that modeling approach. However, due to increased 

support for using the beta distribution for proportions (Kieschnick and McCullough 2003, 

Smithson and Verkuilen (2006), we also run the beta regression and show its results in 

tables 10 and 11. The beta regression assumes the dependent variable follows a beta 

distribution with two parameters μ and φ: 

          
    

             
                                  >0 

where                      
      

   
;       

 

    
           

The parameters ω and τ are shape parameters (ω pulls the density towards 0 and and τ 

toward 1), that are parameterized into a location (mean) μ and a precision φ parameter. 

The parameter φ represents dispersion because variance increases as φ decreases:  σ= 

μ(1- μ)/ φ+1. However, φ is not the sole determinant of dispersion; variance is a function 

of both the mean and parameter φ, since the dispersion of a bounded random variable 

depends partially on location. Still, the location parameter μ and the precision parameter 

φ place no restrictions on each other and can be modeled separately (Smithson and 

Verkuilen, 2006).   We run the beta regression on the formulation of variables appointed 

from the stepwise logit transformation model, and in accordance to Smithson and 

Verkuilen (2006), examine impacts of the variables both on the location (μ) and the 

dispersion (φ)
27

 of adoption rates.  Explicitly modeling dispersion on explanatory 

variables increases the Chi-square for both solar and wind adoption rates. The variables 

in the dispersion submodel that maximize the Chi-square are land value for solar 

                                                 
27

 The precision factor expressing variance. 
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adoption rates and land value and tenure for wind adoption rates.  Slight differences in 

the mean results are noted. The beta models pick up significance for some additional 

variables to those found significant by the logic transformation regression. 

 

PV adoption rates are positively influenced by economic factors in the State. Higher 

electricity prices correspond to higher State adoption rates. Furthermore, solar potential 

also accounts for variation in PV adoption rates. Higher radiation is positively related to 

increased State-level adoption. Institutional influences also systematically account for 

adoption variation. The percentage of State electric customers served by an electric 

cooperative is negatively related to PV adoption rates. In terms of policies supporting 

renewable electricity, only the solar and distributed generation target has a significant 

effect on adoption rates. Correlation analysis already showed a lack of connection 

between financial policy instruments and adoption rates, regression analysis further 

shows no statistically significant relationship for net-metering and interconnection 

policies with State-level adoption shares. Land ownership, Internet connectivity, and 

organic practices in agriculture at the State level are also found to have a significant 

relationship to adoption rates. The beta regression also picks up a negative relationship 

between adoption rates and electricity used in the farm sector. 

 

The picture is similar for small-wind adoption rates. Share of customers served by 

electric cooperatives, organic practices, and Internet connectivity in the State have a 

systematic link to adoption shares for small wind, while net-metering and interconnection 

policies do not. The beta regression further shows a significant systematic positive 

relationship with electricity prices. However, some differences arise: adoption rates are 

not related to the intensity of the wind resource at the State level or land ownership; the 

beta regression also picks up that small-wind adoption rates are systematically related to 

the RPS for new renewables in addition to the solar and distributed generation target. 
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Table 10. Modeling Results for Solar-Photovoltaic (PV) Adoption Rates 

 

PVAS Logit  Transformation 
Regression 

Beta Regression 

 Model 1 Model 2 Model 1 Model 2 
   Location Submodel (μ) 
Electricity Price 0.06* 0.06** 0.04* 0.04** 
 (0.03) (0.02) 0.02 0.02 
PV Resource 0.54*** 0.44*** 0.46*** 0.45*** 
 (0.19) (0.15) 0.13 0.13 
% Coop -0.02*** -0.02*** -0.01** -0.01** 
 (0.01) (0.01) 0.01 0.01 
SDG RPS Target 17.89* 20.54** 31.79*** 28.18*** 
 (9.32) (7.98) 7.30 4.71 
Organic  0.28*** 0.26*** 0.21*** 0.21*** 
 (0.05) (0.03) 0.03 0.02 
Internet 4.86** 5.41*** 7.50*** 6.93*** 
 (1.88) (1.06) 1.35 0.85 
Tenure 5.80*** 5.26*** 5.12*** 4.97*** 
 (1.34) (1.02) 1.26 0.96 
Effective Net Metering -0.16  0.01  
 (0.22)  0.12  
Effective  Interconnection 0.09  -0.16  
 (0.24)  0.14  
NR RPS Target 0.62  -0.23  
 (1.64)  1.04  
Electricity Used -0.0004  -9E-04** -8E-04** 
 (0.0006)  (4E-04) 0.0004 
Fruit 0.70  0.22  
 (1.34)  0.84  
Land Value 3.40E-08  3.9E-07* 4E-07* 
 (2.86E-07)  (2.2E-07) 2E-07 
Constant -16. 54*** -15.79*** -16.77 -16.29*** 
 (1.90) (1.29) 1.16 0.96 
   Dispersion Submodel (lnφ) 
Land Value   -2.7E-06*** -3E-06*** 
   (8.3E-07) 8E-07 
Constant   9.97*** 9.87*** 
   0.74 0.68 
N 48 48 48 48 
R2 0.86 0.85 - - 
F (13,34)=34.09 (7, 40)=57.89 - - 
Wald Χ2   (13)=531.92 (9)= 516.45 
Prob > F  0.00 0.00 0.00 0.00 
Mean VIF 2.4 1.56 - - 
Max VIF 3.62 1.89 - - 

*,**,*** significant at 1, 5, and 10 percent respectively. Robust standard errors in parenthesis.  

Variable abbreviations summarized in Table 13 of the appendix. PVAS: Solar-PV adoption share. 
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Table 11. Modeling Results for Small-Wind Adoption Rates 

 

SWAS Logit  Transformation 
Regression 

Beta Regression 

 Model 1 Model 2 Model 1 Model 2 

   Location Submodel (μ) 

Coop New RPS Target  2.31  3.74*** 4.79*** 

 (2.19)  (1.44) (0.99) 

SDG RPS Target 35.45* 39.70** 19.55** 17.58** 

 (19.79) (16.23) (9.81) (7.95) 

% Coop -0.03** -0.03*** -0.02** -0.02*** 

 (0.01) (0.01) (0.01) (0.01) 

Organic 0.37*** 0.31*** 0.29*** 0.27*** 

 (0.06) (0.05) (0.02) (0.02) 

Internet 4.81* 5.47** 5.50*** 4.86*** 

 (2.73) (2.10) (1.65) (1.22) 

Wind Resource -0.03  -0.01  

 (0.19)  (0.09)  

Electricity Price 0.01  0.05(*) 0.04** 
 (0.05)  (0.03) (0.02) 
Tenure 2.27  2.28  

 (2.80)  (2.26)  

Effective Net Metering -0.41  -0.14  

 (0.30)  (0.20)  

Effective Coop Interconnection -0.05  -0.08  

 (0.27)  (0.16)  

Electricity Used -0.18  0.29  

 (1.49)  (0.98)  

Cattle -0.0005  0.00  

 (0.0007)  (0.00)  

Constant -12.12*** -11.09*** -13.19*** -11.15*** 

 (2.34) (1.21) (1.54) (0.68) 

   Dispersion Submodel (lnφ) 

Land Value   -3.8E-06*** -4.5E-06 

   (1.1E-05) (7.6E-07) 

Tenure   -8.21* -5.58 

   (4.44) (2.22)** 

Constant   17.64*** 16.36 

   (2.75) (1.80)* 

N 46 46 46 46 

R2 0.72 0.68 - - 

F (12,33)=15.00 (4,41)=39.40 - - 

Wald Χ2   - - (12)= 730.59 (6)= 748.22 

Prob > F or or Χ2 0 0 0 0 

Mean VIF 2.2 1.37 - - 

Max VIF 3.3 1.7 - - 

*,**,*** significant at 1, 5, and 10 percent respectively. Robust standard errors in parenthesis. 

Variable abbreviations summarized in Table 13 of the appendix. SWAS: Small-wind adoption share. 
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Table 12.  Normality Test for 2005 Logit Transformation Regression Models 

 

  PVAS SWAS 

 Statistic Test P value Test P value 
Skewness/Kurtosis test Χ2 1.41 0.493 4.30 0.12 
Shapiro-Wilk W 0.98 0.62 0.96401 0.16 
Shapiro-Francia W' 0.99 0.84 0.96346 0.14 

PVAS: Solar-PV adoption share. SWAS: Small-wind adoption share 
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Summary and Concluding Remarks 
 

Adoption of solar and wind systems for generating on-farm electricity is not widespread, 

but installations on the farm have increased greatly, especially since 2005 following a 

trend of increased policy attention and investment in renewable energy. In 2009, policy 

support intensified as the American Recovery and Reinvestment Act of 2009 (ARRA) 

provided new incentives for the adoption of renewable energy systems, while an accruing 

number of States continue to adopt incentives to promote renewable energy installations. 

 

Though technology adoption is ultimately an individual farm-level choice determined by 

specific farm-level characteristics, analyzing State-level variables can explain underlying 

State variation in adoption rates, evaluate policy effectiveness, and even inform model 

formulation of microlevel analysis.  Our results suggest that some agricultural 

characteristics are found to relate to higher adoption rates: States with more organic acres 

per farm and more Internet connectivity have higher renewable electricity adoption rates. 

Higher energy price and solar resource have a significant and positive relationship with 

solar electricity adoption rates. For wind, economic influences do not appear to exhibit as 

strong of a systematic relationship with State adoption rates, with the exception of 

electricity price based on the beta regression. There are distinctions between wind and 

solar energy, but the differences are not dramatic. For example, tenure is significantly 

related to solar energy adoption but not wind adoption. Furthermore, wind energy 

adoption is influenced by both new renewable RPS target and solar/DG RPS target, while 

solar energy adoption is influenced by the solar/DG RPS target.  

 

Electric cooperative prevalence in the State is found to have a negative relationship to 

renewable electricity adoption share, which underlines the importance of policy 

formulation. Out of the list of policy variables we considered, the RPS is actually the 

only policy variable to show a large and systematic effect on State adoption rates. Our 

results agree with Menz and Vachon (2006), Adelaja and Hailu (2008), and Yin and 

Powers (2010), who found the RPS to be important for renewable electricity adoption; 

however, their results applied to utility-scale renewable electricity adoption, while this is 

the first study to show an impact at the distributed-generation scale. While both wind and 

solar adoption rates have a significant relationship to the solar/DG RPS, only wind is also 

significantly related to the new RPS standard. Our study does not find a systematic 

relationship for other State policy instruments, at least in the form captured by our policy 

variables. Financial policy instruments like rebates, grants, investment tax credits, and 

production incentives do not appear to be correlated to State adoption rates for solar and 

wind systems. Multivariate analysis further showed that effective (coop) net-metering 

and interconnection fail to reveal a systematic relationship with renewable electricity 

adoption rates on farms.   

 

While Yin and Powers (2010) showed that net metering and interconnection were  not 

effective in increasing renewable generation, their analysis focused on utility capacity, 

and we expected that effective net metering might have an impact on distributed 
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generation. Performance-based incentives, similarly to net metering, increase the positive 

flow of revenues from the renewable electricity system and reduce its payback period. 

Tax credits and direct payments, on the other hand, have the potential to reduce the high 

upfront capital cost of renewable energy installations that are considered impediments to 

adoption. For installation tax credits, the results further contradict the recent experience 

with the Federal investment tax credit, which increased to 30 percent under the Energy 

Policy Act of 2005 and resulted in a tripling of renewable energy installations between 

2005 and 2008 (Sherwood 2010, 2009).   

The incentives provided at the State level might indeed not influence adoption rates; 

adoption decisions might instead be determined by farmer characteristics. It is also 

possible that the effective incentives at the farm level are not sufficiently large to induce 

a significant impact.  Alternatively, incentive dummies and stringency averages might not 

be adequately capturing the prices and incentives farms face. For example, the form of 

the direct payments and benefits offered vary substantially from State to State, making a 

comparable quantitative representation difficult. Furthermore, the dataset excludes any 

incentives provided at the utility or local level, which could play a significant role in 

adoption choices. Future examination at a more disaggregate level might provide more 

insights. 

The lack of systematic impact of those policies on solar and wind system adoption seems 

to apply specifically to the agricultural sector, due to the smaller size bounds of 

renewable electricity installations used by farmers until 2009 as well as to institutional 

limitations. The negative relationship that the cooperative prevalence in electricity 

distribution has with solar-PV and small-wind adoption suggests that the institutional 

settings for rural energy policies are important determinants in the success of those 

policies. It also suggests that USDA’s Rural Development Utilities Programs, which 

helps rural utilities expand and keep their technology up to date while promoting rural 

infrastructure development, is in a unique position to work with electric cooperatives to 

promote distributed generation of renewable energy while increasing green job 

opportunities (Rural Development a, b). 

The study is the first to examine the role of electric cooperatives on solar and wind 

system adoption on farms. It contributes to the literature of policy impacts on States’ 

renewable energy investment by providing insights on the effect of policies geared 

towards distributed generation, specifically on renewable electricity production in 

agriculture. Future work that could better categorize the different State policies might 

provide better insights on the role of financial policy instruments in promoting small-

wind and solar installations in commercial, residential, as well as farm settings. The 

results of this study can assist States as they further refine and focus their policies to 

promote renewable electricity most effectively with limited budget resources. A more 

detailed examination of farm-level data from OFREPS in combination with the policy, 

institutional, and economic State-level variables identified in this report can provide a 

fuller and more realistic interpretation of the determinants of adoption of solar and wind 

energy generation.   
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Appendix 
 
Table 13. Variable Abbreviations 

Diesel Price Diesel Price per Gallon 

Electricity Price Average Residential Retail Electric Price  per Kilowatt Hour 

PV Resource Solar potential, (4.2-6.2) 

Wind Resource Wind classification, (1-5) 

% Coop Percentage of Customers Served by Electric Cooperatives 

NR RPS Target Renewable Portfolio Standard Target for New Renewables 

Coop Exemption  Cooperative exemption from  Renewable Portfolio Standard 

Coop NR RPS Target Cooperative Specific Renewable Portfolio Standard Target for New Renewables  

SDG RPS Target Renewable Portfolio Standard Target for Solar/Distributed Generation 

Coop SDG RPS Target 
Cooperative Specific Renewable Portfolio Standard Target for Solar/Distributed 
Generation  

Net Metering Net Metering Policy, (0,1) 

Effective Net Metering Effective Net Metering Policy, (0,1) 

NM P. Excess Electricity Net Metering Price for Excess Electricity per Kilowatt Hour 

Cooperative Net Metering Net Metering Policy for Cooperatives, (0,1) 

Effective Coop Net 
Metering 

Effective Net Metering Policy for Cooperatives, (0,1) 

Interconnection Interconnection Policy, (0,1) 

Effective Interconnection Effective Interconnection Policy, (0,1) 

Coop Interconnection Interconnection Policy for Cooperatives, (0,1) 

Effective Coop 
Interconnection 

Effective Interconnection Policy for Cooperatives, (0,1) 

Incentive Financial Incentive, (0,1)  

ITC Investment Tax Credit, (0,1) 

PI Production Incentive, (0,1) 

DP Grant and Rebate Program, (0,1) 

ITC rate, % Investment Tax Credit Rate, Percent 

PI rate, $/kWh Production Incentive Rate per Kilowatt Hour  

ITC Years Investment Tax Credit, Years since Enactment 

PI Years Production incentive, Years since Enactment 

DP Years Grant and Rebate Program, Years since Enactment 

REAP # Number of Projects funded by  Rural Energy for America Program 

REAP $ Dollars distributed to projects  funded by  Rural Energy for America Program 

Fuel Expense Fuel Expense by Operation 

Electricity Expense Electricity Expense by Operation 

Electricity Used Electricity Used by Operation 

Funding Share Funding Share Supporting the Cost of Photovoltaic and Small-Wind  Installations  

Net Cash Income Net Cash Income by Operation 

Land Value Land Value by Operation 

Machinery Value Machinery Value by Operation 

Organic Organic Acres by Operation 

Conservation Conservation Acres by Operation 

Fruit Share of Fruit Operations in State 

Cattle Share of Cattle Operations in State  

Tenure Share of Operations Tenure with Full Tenure of Operated Land 

Internet Share of Operations Connected to the Internet 



 

40 |       Appendix     
 

Table 14. Descriptive Statistics  

Variable Mean Std. Dev. CV Min Max 

      Diesel Price $3.61  0.1 0.03 $3.43  $3.85  

Electricity Price $11.00  3.19 0.29 $6.99  $19.55  

PV Resource 4.92 0.52 0.1 4.2 6.23 

      

ACV_Score 56.65 25.47 0.45 9 96 

% Coop 15.72 13.01 0.83 0 48.64 

      New Renewable Target 0.09 0.09 0.11 0 0.33 

Solar/DG Target 0.005 0.01 2.27 0 0.05 

      NM P. Excess Electricity 0.08 0.058 0.648 0 0.19 

      ITC rate, % 0.06 0.11 2.086 0 0.4 

PI rate, $/kWh 0.02 0.06 3.55 0 0.3 

ITC Years 9.18 10.66 1.16 31 1 

PI Years 1.88 0.646 0.34 3 1 

DP Years 7.68 7.636 0.99 29 1 

      REAP # 10.92 15.036 1.38 0 61 

REAP $ 350,151 481,090 1.37 0 2,341,720 

      Electricity Expense 2,942.59 2,434.41 0.83 452.96 15,198.09 

Electricity Used 280.55 221.28 0.79 64.16 1,100.51 

Land Value 847,956.2 386,596.8 0.46 364,807 2,073,605 

      Organic 1.7 2.22 1.31 0.03 9.64 

Fruit 0.05 0.07 1.58 0 0.46 

Cattle 0.26 0.14 0.55 0.06 0.53 

      Tenure 0.7 0.08 0.12 0.5 0.89 

Internet 0.59 0.08 0.13 0.4 0.74 
  Variable abbreviations summarized in Table 13 of the appendix. 
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