chemical agent

Protecting waterways, one lasagna pan at a time

by Jennie Saxe

Safer choiceHow can a mundane task, like washing dishes, protect local waterways like the Delaware River? It’s simple! When you roll up your sleeves to scrub that lasagna pan, reach for a dish soap with EPA’s Safer Choice label. The Safer Choice label indicates products that have safer chemical ingredients and meet quality and performance standards.

Products with the Safer Choice label have been reviewed to make sure they use chemicals from EPA’s Safer Chemicals Ingredients List that do their specific job (for example, as solvents – needed to dissolve substances – or surfactants that remove dirt) and are safer for aquatic life after they go down the drain. Safer Choice labeled products, like laundry detergent and dish soap, are reviewed to make sure that their ingredients and the break-down products (or “degradates” for the chemists out there) are not carcinogens, toxics, or persistent in the environment.

If the products are “greener” when they go down the drain, they’ll have less of an impact on aquatic life if they do happen to make their way through the wastewater treatment process. There is even a subset of Safer Choice products that are labeled for use in situations, such as cleaning your boat, where they could be directly released to the environment.

Check out the list of products that have received the Safer Choice label, and look for them at a store near you!

 

About the author: Dr. Jennie Saxe joined EPA’s Mid-Atlantic Region in 2003 and works in the Water Protection Division on sustainability programs.

 

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.

EPA Researchers Identify Technologies to Decontaminate Biological Threats

By Lahne Mattas-Curry

EPA and partners advance real world techniques to decontaminate anthrax bacteria.

EPA and partners advance techniques to decontaminate anthrax.

Since the terror attacks in 2001, most of us have adjusted to life with more security at airports, we’ve become accustomed to seeing police with guns protecting our train stations, and we probably didn’t even think twice about the “eyes in the sky” watching everyone during the Super Bowl a couple weeks ago.

Yet probably not many of us think about what might happen if there was an attack with a biological threat, like weaponized anthrax, and we probably don’t want to think about it either.

But there are people who think about it everyday. In fact, researchers in EPA’s Homeland Security Research Program don’t just think about what happens IF, but what happens AFTER. For more than a decade now, they have been researching the best methods to identify and decontaminate threats from chemical, radiological, and biological agents.

In fact, researchers tested several anthrax decontamination technologies during a multi-year project called Bio-Response Operational Testing and Evaluation, or BOTE. The project evaluated decontamination techniques in real-world situations so that the most promising techniques could be put into practice if necessary. BOTE tested not only the effectiveness, but it also examined the costs associated with each method and the expense of managing waste from cleanup – something local governments and building owners would need to understand in the aftermath of an event.

The three technologies tested included:

  • fumigation with vaporized hydrogen peroxide
  • fumigation with chlorine dioxide
  • a treatment process using a pH-adjusted bleach spraying technique

The results of the study found that the effectiveness of each of the three technologies differed based on certain conditions, such as the amount of humidity and temperature in the room. While no one method is a perfect solution, each method has advantages and disadvantages, so the information gained from this project will be important in guiding any future decontamination decisions and will ensure a more effective response to any biological incident. The knowledge was already put into good use when Capitol Police were looking for ways to decontaminate mailroom sorters after a 2013 ricin incident.

BOTE involved more than 300 participants and will provide state and local leaders, on-scene coordinators, waste managers and building owners with guidelines for effective decontamination in the event of a biological threat. Hopefully we’ll never have to really use it, but better to be prepared than not.

About the author:  Lahne Mattas-Curry is a frequent blogger covering water issues, but has recently expanded to share how researchers and engineers keep us safe from all the bad stuff, specifically in events of terrorism—chemical, biological, or radiological—or natural events like hurricanes, earthquakes and nuclear accidents.

 

Editor's Note: The opinions expressed herein are those of the author alone. EPA does not verify the accuracy or science of the contents of the blog, nor does EPA endorse the opinions or positions expressed. You may share this post. However, please do not change the title or the content. If you do make changes, please do not attribute the edited title or content to EPA or the author.

EPA's official web site is www.epa.gov. Some links on this page may redirect users from the EPA website to a non-EPA, third-party site. In doing so, EPA is directing you only to the specific content referenced at the time of publication, not to any other content that may appear on the same webpage or elsewhere on the third-party site, or be added at a later date.

EPA is providing this link for informational purposes only. EPA cannot attest to the accuracy of non-EPA information provided by any third-party sites or any other linked site. EPA does not endorse any non-government websites, companies, internet applications or any policies or information expressed therein.