#### 2014 Smart Grid R&D Program Peer Review Meeting

#### **Microgrid Testbed**

#### Aleks Dimitrovski Oak Ridge National Laboratory

June 12, 2014

# **Microgrid Testbed**

#### **Objective**

- Facilitate standardized microgrid testing at system and device level:
- Flexible and reconfigurable
- Standardized interconnections and communication protocols
- Standardized testing procedures with automated operation cases and scenarios

#### Life-cycle Funding Summary (\$K)

| Prior to | FY14,      | FY15,     | Out-year(s) |
|----------|------------|-----------|-------------|
| FY 14    | authorized | requested |             |
|          | 175        | 200       |             |



#### **Technical Scope**

Real Time Digital Simulator-based Hardware-in-the-loop system with high resolution in real-time to test:

- Energy management
- Operation and control
- Communication
- Protection

# **Challenges & Needs**

- Frequency vs time domain:
  - Power system simulator: both frequency and time domain
  - Communication system simulator: time domain
- Continuous vs event-based:
  - Power system requires continuous time simulation
  - Communication system is based on discrete events
- Differences in time scales
  - Power system response in ms
  - Communication and control system response in µs
- Separate professional simulators available, but no convincing co-simulation results

# **Significance and Impact**

Flexible platform for testing, verification, and assessment of microgrid components and controllers for system operation, energy management, and protection under different operation scenarios. Allows to:

- Provide standardized and independent testing
- Reduce deployment cost for new devices and solutions
- Perform research
- Investigate safety issues
- Facilitate standards development

# **Technical Approach – ORNL Microgrid Testbed**

- DECC microgrid system modeled in RTDS
  - Complete system model with detailed inverter models
  - Relay-in-the-loop protection test bed
  - Communication-power co-simulation model being built

# **ORNL Microgrid System Modeling**



#### **ORNL Microgrid System Modeling**



#### **Microgrid Cable Parameters**

| Cable | From                | То                           | Cable Model          | Length (ft) | Ground Length (ft) | Z1 (ohm)               | Z0 (ohm)             | C (uF)     |
|-------|---------------------|------------------------------|----------------------|-------------|--------------------|------------------------|----------------------|------------|
| 1     | PPA1                | 300 A Contactor              | Cobra XFLEX          | 20          | 20                 | 0.0013272+0.00069588i  | 0.0078965+0.0091801i | 0.0014894  |
| 2     | 300 A Contactor     | 200 A Fuse Block             | Cobra XFLEX          | 3           | 3                  | 0.00019908+0.00010438i | 0.0011845+0.001377i  | 0.00022341 |
| 3     | 200 A Fuse Block    | 4 mH Inductor                | Cobra XFLEX          | 7           | 7                  | 0.00046451+0.00024356i | 0.0027638+0.0032131i | 0.00052129 |
| 4     | 4 mH Inductor       | PowerEX PP150T120            | Cobra XFLEX          | 7           | 7                  | 0.00046451+0.00024356i | 0.0027638+0.0032131i | 0.00052129 |
| 5     | PPA1                | MTD 1000-150                 | Cobra XFLEX          | 33          | 33                 | 0.0035127+0.00121i     | 0.014706+0.015222i   | 0.024781   |
| 6     | РРЗ                 | 500 kW Resistive Load Bank   | Cobra XFLEX          | 125         | 125                | 0.013306+0.0048469i    | 0.053001+0.039889i   | 0.19955    |
| 7     | РРЗ                 | 375 kVAR Inductive Load Bank | Cobra XFLEX          | 125         | 125                | 0.013306+0.0048469i    | 0.053001+0.039889i   | 0.19955    |
| 8     | РРЗ                 | 125 A Motor Starter          | Cobra XFLEX          | 25          | 25                 | 0.0042326+0.00096616i  | 0.012026+0.014937i   | 0.022361   |
| 9     | 125 A Motor Starter | 30 A Fuse Block              | Cobra XFLEX          | 35          | 35                 | 0.0059257+0.0013526i   | 0.016836+0.020912i   | 0.031305   |
| 10    | 30 A Fuse Block     | Motor Variable Sizes         | Cobra XFLEX          | 7           | 7                  | 0.0011851+0.00027053i  | 0.0033672+0.0041823i | 0.006261   |
| 11    | РРЗ                 | 45 kVA xfmr                  | Cobra XFLEX          | 25          | 25                 | 0.013349+0.0010184i    | 0.019977+0.01787i    | 0.0048166  |
| 12    | РРЗ                 | 250 A Contactor              | Cobra XFLEX          | 3.5         | 3.5                | 0.00037256+0.00012833i | 0.0015598+0.0016144i | 0.0026282  |
| 13    | 250 A Contactor     | 200 A Fuse Block             | Cobra XFLEX          | 16          | 12                 | 0.0017031+0.00058667i  | 0.0071303+0.0073802i | 0.012015   |
| 14    | 200 A Fuse Block    | 2 mH Inductor                | Cobra XFLEX          | 13          | 13                 | 0.0013838+0.00047667i  | 0.0057934+0.0059964i | 0.009762   |
| 15    | 2 mH Inductor       | APS IAP150T120               | Cobra XFLEX          | 7           | 7                  | 0.00074513+0.00025667i | 0.0031195+0.0032288i | 0.0052565  |
| 16    | Building 3114       | Building 3129                | Southwire Quadraplex | 750         | 750                | 0.0255+0.0144i         | 0.05845+0.17445i     | 0.0133     |

#### **Detailed Inverter Modeling**



# **Microgrid with detailed inverter models**

- Tested in grid-connected mode, islanding mode, and resynchronization.
- Grid-connected mode

Near Bus:

Inverter 1:  $P_{gen}$  = 80 kW  $\rightarrow$  40 kW,  $Q_{gen}$  = 20 kVar Load 1: P = 50 kW, Q = 10 kVar Far Bus:

Inverter 2:  $P_{gen}$  = 20 kW,  $Q_{gen}$  = 0 Load 2: P = 50 kW, Q = 10 kVar

Microgrid totals:

#### P<sub>gen</sub> = 100 kW → 60 kW, Q<sub>gen</sub> = 20 kVar, P<sub>load</sub> = 100 kW, Q<sub>load</sub> = 20 kVar



## **Microgrid with detailed inverter models**

Transition between grid-connected mode and islanding mode



Near Bus: Inverter 1, from P&Q mode to V&f mode

#### Microgrid voltage, Grid voltage and current



#### **IC Engine driven Synchronous Machine**



MC parameters and controller structure same as UW GENSET 12.5kW Voltage is regulated at the machine terminals instead of transformer. Controller parameters are tuned.

#### Load Step Up and Step Down – P&Q

R-Load 2 is initially supplied and ZIP Load OFF. Step up: R-Load 1 ON and R-Load 2 OFF at 3s Step down: R-Load 2 ON and R-Load 1 OFF at 7s.



#### Load Step Up and Step Down – Frequency



#### Load Step Up and Step Down – V & I



#### Load Step Up and Step Down – I zoomed



Load increase





Load decrease

Load is well regulated

Current peak depends on the switching instant

#### Load Step Up and Step Down – V zoomed



#### **ZIP Load Model**

$$P = P_0 \left[ a_1 \left( \frac{V}{V_0} \right)^2 + a_2 \left( \frac{V}{V_0} \right) + a_3 \right]$$
$$Q = Q_0 \left[ a_4 \left( \frac{V}{V_0} \right)^2 + a_5 \left( \frac{V}{V_0} \right) + a_6 \right]$$

#### A B C RISC Dynamic Load (R-X) RLDload1 Pset PL1 QL1

#### $V_0$ , $P_0$ and $Q_0$

Coefficients  $a_1 - a_6$  specify the composition of constant impedance, current and power loads  $a_1+a_2+a_3 = 100\%$   $a_4+a_5+a_6 = 100\%$ 

> RTDS dynamic load model is used All parameters can be specified in run time



#### Load Step Up and Step Down – ZIP Load



Some differences observed during step down

#### **Relay-in-the-loop protection test**

- SEL 351S relays interfaced with RTDS
  - Microgrid system simulated in RTDS
  - CT and VT measurements sent to relays
  - Circuit breaker control outputs from relays interfaced with RTDS
  - Circuit breaker status signals routed through RTAC



# **Relay-in-the-loop protection test**

- Real Time Automation Controller
  - Monitor circuit breakers in RTDS
  - Monitor and coordinate relays
  - Dedicated HMI for physical relays
  - Web interface
  - Remote relay setting changes

SEL RTAC 3530

![](_page_20_Figure_8.jpeg)

#### **RTAC Relay HMI**

IIRTDS

Virtual microgrid

system

RSCAD

![](_page_20_Figure_10.jpeg)

# **Differential overcurrent protection**

![](_page_21_Figure_1.jpeg)

# FY 2014 performance and results, against objectives and outcomes

- FY14: microgrid testbed development for testing and assessment of microgrid operation and control system
  - RTDS-based with HIL capabilities
  - DECC lab system model
  - Standardized testing procedures
- Milestones are met or on track

| Due Date   | Milestone Type    | Milestone Description                               |
|------------|-------------------|-----------------------------------------------------|
| 12/31/2013 | Process           | DECC system model with complete circuit topology    |
|            | Milestone         | and parameters.                                     |
| 03/31/2014 | Process           | Basic operation and protection functions with       |
|            | Milestone         | simplified component models.                        |
| 06/30/2014 | Process           | Complete and detailed models of fundamental         |
|            | Milestone         | microgrid components.                               |
| 09/30/2014 | Final Deliverable | Integrated scenario testing with the ORNL microgrid |
|            |                   | controller. Final annual report.                    |

### FY 2015 Plan

- 1. CSEISMIC
  - Complete development of the microgrid controller EMS implementation, communication standardization, microgrid controller development for field demonstration.
  - Participation on Technical Advisory Committee.
  - Standards collaborate with NIST on microgrid standardized test bed, microgrid controller standard development.
- 2. Hardware-in-the-loop microgrid test bed completion
- 3. Networked microgrids, collaborate with Chattanooga Electric Power Board
- 4. DC microgrid & communications
- 5. De-coupled microgrid control, collaborate with OSIsoft

## **Collaborations**

- **NIST**: Microgrid standardized test bed, microgrid controller standard
- Hydro-Quebec IREQ: microgrid protection
- Chattanooga EPB: networked microgrids
- National Instruments: microgrid control for field implementation
- **OSIsoft**: de-coupled microgrid control