2014 Smart Grid R&D Program Peer Review Meeting

Microgrid Testbed

Aleks Dimitrovski Oak Ridge National Laboratory

June 12, 2014

Microgrid Testbed

Objective

- Facilitate standardized microgrid testing at system and device level:
- Flexible and reconfigurable
- Standardized interconnections and communication protocols
- Standardized testing procedures with automated operation cases and scenarios

Life-cycle Funding Summary (\$K)

Technical Scope

Real Time Digital Simulator-based Hardware-in-the-loop system with high resolution in real-time to test:

- Energy management
- Operation and control
- **Communication**
- **Protection**

Challenges & Needs

- Frequency vs time domain:
	- ‒ Power system simulator: both frequency and time domain
	- ‒ Communication system simulator: time domain
- Continuous vs event-based:
	- ‒ Power system requires continuous time simulation
	- ‒ Communication system is based on discrete events
- Differences in time scales
	- ‒ Power system response in ms
	- ‒ Communication and control system response in μs
- Separate professional simulators available, but no convincing co-simulation results

Significance and Impact

Flexible platform for testing, verification, and assessment of microgrid components and controllers for system operation, energy management, and protection under different operation scenarios. Allows to:

- Provide standardized and independent testing
- Reduce deployment cost for new devices and solutions
- Perform research
- Investigate safety issues
- Facilitate standards development

Technical Approach – ORNL Microgrid Testbed

- DECC microgrid system modeled in RTDS
	- Complete system model with detailed inverter models
	- Relay-in-the-loop protection test bed
	- Communication-power co-simulation model being built

ORNL Microgrid System Modeling

ORNL Microgrid System Modeling

Microgrid Cable Parameters

Detailed Inverter Modeling

Microgrid with detailed inverter models

- Tested in grid-connected mode, islanding mode, and resynchronization.
- Grid-connected mode

Near Bus:

Inverter 1: P_{gen} = 80 kW \rightarrow 40 kW, Q_{gen} = 20 kVar **Load 1: P = 50 kW, Q = 10 kVar**

Far Bus:

Inverter 2: $P_{gen} = 20$ kW, $Q_{gen} = 0$ **Load 2: P = 50 kW, Q = 10 kVar**

Microgrid totals:

P_{gen} = 100 kW → 60 kW, Q_{gen} = 20 kVar, P_{load} = 100 kW, Q_{load} = 20 kVar

Microgrid with detailed inverter models

• Transition between grid-connected mode and islanding mode

Near Bus: Inverter 1, from P&Q mode to V&f mode

IC Engine driven Synchronous Machine

MC parameters and controller structure same as UW GENSET 12.5kW Voltage is regulated at the machine terminals instead of transformer. Controller parameters are tuned.

Load Step Up and Step Down – P&Q

R-Load 2 is initially supplied and ZIP Load OFF. Step up: R-Load 1 ON and R-Load 2 OFF at 3s Step down: R-Load 2 ON and R-Load 1 OFF at 7s.

Load Step Up and Step Down – Frequency

Load Step Up and Step Down – V & I

Load Step Up and Step Down – I zoomed

Load increase Load decrease

Load is well regulated

Current peak depends on the switching instant

Load Step Up and Step Down – V zoomed

ZIP Load Model

RISC Dynamic Load (R-X) RLDload1

QseO

QL.

OPset

 $PI₁$

$$
P = P_0 \left[a_1 \left(\frac{V}{V_0} \right)^2 + a_2 \left(\frac{V}{V_0} \right) + a_3 \right]
$$

$$
Q = Q_0 \left[a_4 \left(\frac{V}{V_0} \right)^2 + a_5 \left(\frac{V}{V_0} \right) + a_6 \right]
$$

V_0 , P_0 and Q_0

Coefficients $a_1 - a_6$ specify the composition of constant impedance, current and power loads

 $a_1 + a_2 + a_3 = 100\%$ $a_4 + a_5 + a_6 = 100\%$

RTDS dynamic load model is used All parameters can be specified in run time

Load Step Up and Step Down – ZIP Load

Some differences observed during step down

Relay-in-the-loop protection test

- SEL 351S relays interfaced with RTDS
	- Microgrid system simulated in RTDS
	- CT and VT measurements sent to relays
	- Circuit breaker control outputs from relays interfaced with RTDS
	- Circuit breaker status signals routed through RTAC

Relay-in-the-loop protection test

- Real Time Automation Controller
	- Monitor circuit breakers in RTDS
	- Monitor and coordinate relays
	- Dedicated HMI for physical relays
	- Web interface
	- Remote relay setting changes

RTAC Relay HMI

Differential overcurrent protection

FY 2014 performance and results, against objectives and outcomes

- FY14: microgrid testbed development for testing and assessment of microgrid operation and control system
	- ‒ RTDS-based with HIL capabilities
	- DECC lab system model
	- Standardized testing procedures
- Milestones are met or on track

FY 2015 Plan

- 1. CSEISMIC
	- Complete development of the microgrid controller EMS implementation, communication standardization, microgrid controller development for field demonstration.
	- Participation on Technical Advisory Committee.
	- Standards collaborate with NIST on microgrid standardized test bed, microgrid controller standard development.
- 2. Hardware-in-the-loop microgrid test bed completion
- 3. Networked microgrids, collaborate with Chattanooga Electric Power Board
- 4. DC microgrid & communications
- 5. De-coupled microgrid control, collaborate with OSIsoft

Collaborations

- **NIST**: Microgrid standardized test bed, microgrid controller standard
- **Hydro-Quebec IREQ**: microgrid protection
- **Chattanooga EPB**: networked microgrids
- **National Instruments**: microgrid control for field implementation
- **OSIsoft**: de-coupled microgrid control