

Value of a VAR Panel

A Solution Provider's Perspective: Performance, Price, Packaging

DOE Energy Advisory Committee Meeting
June 29, 2015

MITSUBISHI

VAR Resource 'Q' Characteristics

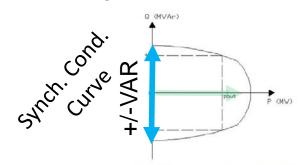
Static VAR
1 Quadrant

Capacitor Curve

'+' Q, voltage boosting VAR.

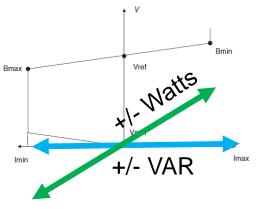
Q is not variable, it is dependent on V

Dynamic VAR
2 Quadrant


STATCOM Curve

Vref

Vref


Vmin

+/- Q, voltage boosting and bucking VAR. Q is variable

Dyn. VAR+W 4 Quadrant

UPFC or ES Curve

+/- Q, and +/- P. Q and P are variable

Performance Adds Value

Changes for the Better

Static VAR 1 Quadrant

Provides

Steady State Voltage boost with a capacitor, or buck with an inductor

But, capacitor's ability to support system voltage diminishes.as system voltage drops

Dynamic VAR 2 Quadrant

Plus

Dynamic V-Boost and V-Buck Increase V-Stability Margin Mitigate Voltage Transients Mitigate Renewable' Impacts Enable Volt/VAR Optimization Enable Conservation Voltage Reduction

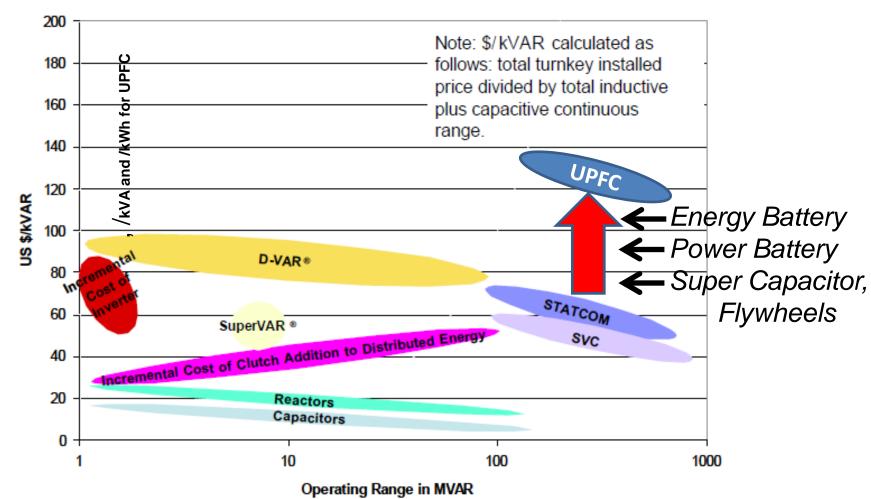
STATCOM and some inverters will maintain voltage support capability down to very low system voltages during severe system events

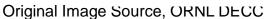
Dyn. VAR+W 4 Quadrant

Plus

Provide Peaker Capacity
Provide FR/FRR Capacity
Provide Blackstart Support
Provide Synthetic Inertia
Release Constrained T&D
Incr. XMSN Path Capacity
Recover Renewable Spill
Manage Ramp Rates

UPFC and some Energy Storage Systems provide system frequency support, in addition to system voltage support





Value, or Benefit, Must

Changes for the Better

Exceed Cost of Performance

MITSUBISHI Advances in VAR Packaging Changes for the Better

= More Cost Effective Solutions = More Net Value Delivered

VAR's located closer to load via distributed resources, e.g. 'smart' PV Inverters and D-STATCOM, can increase the relative Value/VAR +/-VAR

+/-VAR

Thank You

Charlie Vartanian, P.E.
Mitsubishi Electric Power Products, Inc.
Northwest Territory Manager
626-818-5230
Charlie.Vartanian@MEPPI.com

www.meppi.com

References and Further Reading

Value of Dynamic VARs

ORNL report on valuing dynamic VARs, http://web.ornl.gov/sci/decc/Reports/Economics%20of%20DE%20for%20Reactive%20P ower%20(ORNL-TM-2006-014).pdf

Early Thought Leadership and Action on Storage, Synthetic Inertia, and Frequency Responsive Reserves (FRR)

Energy Storage Association comments to FERC, http://energystorage.org/system/files/resources/ferc_esacomments_ad13_8_10_18_13.pdf

SDG&E comments to CAISO,

http://www.caiso.com/Documents/SDGEComments_EnergyStorageRoadmapWorkshop_Sep4_2014.pdf

AES paper on storage projects delivering synthetic inertia and low voltage ride through (LVRT) support, http://www.aesenergystorage.com/wp- content/uploads/2014/03/AES_Inverter_Capabilities_Version_1.0.pdf

ACRONYMS

FR, **Frequency Regulation**

FRR, **Frequency Responsive Reserves**

STATCOM, Static Compensator

Volt Ampere Reactive VAR,

UPFC, **Unified Power Flow Controller**

XMSN, **Transmission**

