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The Top Ten Exascale Research Challenges

1 Executive Summary

Exascale computing systems are essential for the scientific fields that will transform the 21st-
century global economy, including energy, biotechnology, nanotechnology, and materials science.
Progress in these fields is predicated on the ability to perform advanced scientific and engineering
simulations, and analyze the deluge of data. The Department of Energy’s 2011 strategic plan and
2012 addendum calls out a Priority Goal: Lead Computational Sciences and High-Performance
Computing and a Targeted Outcome: Continue to develop and deploy high-performance computing
hardware and software systems through exascale platforms.

On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office
of Science, to assemble a subcommittee. This subcommittee was directed to return “a list of no
more than ten technical approaches (hardware and software) that will enable the development
of a system that achieves the Department’s exascale goals, particularly the usability goals for
the Department’s mission-critical applications, as articulated in the attached presentation. That
is, given the known technical barriers that could prevent the development of a computer that
achieves the Department’s exascale goals, what are credible technical approaches for overcoming
these barriers? The subcommittee’s report should provide compelling justifications for including
each item in the list and describe the expected impact on overall system performance.” This report,
in response to DOE’s charge, details key technological barriers to achieving productive exascale
platforms, along with recommended approaches to overcome these barriers.

Numerous reports over the past five years have documented the technical challenges and the
non-viability of simply scaling existing computer designs to reach exascale. The technical chal-
lenges revolve around energy consumption, memory performance, resilience, extreme concurrency,
and big data. Drawing from these reports and more recent experience, this ASCAC subcommit-
tee has identified the top ten computing technology advancements that are critical to making a
productive, economically viable, exascale system. Note, the challenges are not rank-ordered by
importance, but rather grouped by the subcommittee into related categories.

1.1 The Top Ten Exascale System Research Challenges

1. Energy efficiency: Creating more energy-efficient circuit, power, and cooling technologies.

2. Interconnect technology: Increasing the performance and energy efficiency of data movement.

3. Memory Technology: Integrating advanced memory technologies to improve both capacity
and bandwidth.

4. Scalable System Software: Developing scalable system software that is power- and resilience-
aware.

5. Programming systems: Inventing new programming environments that express massive par-
allelism, data locality, and resilience

6. Data management: Creating data management software that can handle the volume, velocity
and diversity of data that is anticipated.

7. Exascale Algorithms: Reformulating science problems and redesigning, or reinventing, their
solution algorithms for exascale systems.



8. Algorithms for discovery, design, and decision: Facilitating mathematical optimization and
uncertainty quantification for exascale discovery, design, and decision making.

9. Resilience and correctness: Ensuring correct scientific computation in face of faults, repro-
ducibility, and algorithm verification challenges.

10. Scientific productivity: Increasing the productivity of computational scientists with new soft-
ware engineering tools and environments.

Innovative solutions to the challenges identified in these ten areas are on the critical path to de-
livering effective HPC systems for critical science and technology areas that underpin U.S. economic
competitiveness for the 21st century. For example, advances in near-threshold-voltage circuit tech-
nology hold the promise of improving energy efficiency of systems by nearly an order of magnitude,
but it will require a revolutionary change in programming environments and application design to
tap into this opportunity. Without dramatic reformulation of hardware together with software, ex-
ascale systems are projected to consume 100s of megawatts, and few existing HPC applications will
be able to scale beyond a tenth of an exaflop. Without the advances in programming models and
productivity described in this report, it will not be feasible to redesign algorithms and application
codes to provide efficient and correct answers. And without the tools to analyze the data from
experiment and simulation, scientists will be overwhelmed by the data volume generated by next
generation scientific instruments and advanced computing facilities. Each of the ten areas plays
an essential role in enabling a practical and effective HPC technology for the next decade, which
in turn impacts the DOE mission, and more broadly ensures U.S. leadership in these key science
and technology fields. Unlike past systems, the next generation of supercomputers needs to be
developed using co-design approaches where scientific problem requirements guide computer archi-
tecture and system software design. Doing so will require long-term partnerships among vendors,
government agencies, and academia.

In the course of conducting this study, the subcommittee considered a number of related issues
that add context to the top ten research challenges and the means to overcome them. To further
assist the DOE in planning its future research directions, these issues are addressed in a series of
findings and recommendations.

1.2 Summary of Findings

1.2.1 Exascale computing is critical for executing the DOE mission.

ASCAC reaffirms its findings from previous reports that leadership in high performance computing
(HPC) is critical to achieving the DOE mission of ensuring U.S. leadership in science, engineering,
and national security. In the last six years, this has been documented in many exascale reports
from Office of Science programs, the National Nuclear Security Administration, and other U.S.
government agencies.

1.2.2 U.S. national leadership is at risk.

Without aggressive investment and technical innovation in HPC, the U.S. risks falling behind
rapidly emerging international competitors, not all of whom are friendly to U.S. interests. This
in turn threatens to undermine the nation’s intellectual leadership in a broad range of science, its
economic position, and its security.



1.2.3 The U.S. has the technical foundation to create exascale systems.

The U.S. semiconductor and HPC systems industries are capable of developing the necessary tech-
nologies for an exascale computing capability by the early part of the next decade, based largely on
evolving commercially driven component fabrication, systems integration, and software engineering
capabilities. However, for a truly effective and productive exascale computing capability, the U.S.
government will need to focus investments on the research, development, and integration of HPC
technologies that will otherwise not be created solely by commercial drivers.

1.2.4 An evolutionary approach to achieving exascale will not be adequate.

The dramatic improvements essential to achieving effective exascale computing will not be satisfied
by incremental extensions to today’s conventional practices. Commercial market drivers do not
provide a viable general path to delivering necessary scalability, time and energy efficiency, and
user productivity including performance portability to future generation exascale class computers.

1.2.5 The U.S. government’s continuous leadership and investment are required to
create exascale systems.

The U.S. computing industry is unlikely to develop effective exascale computer systems without
U.S. government investment and focused mission goals. Innovation, sometimes of an incremental
nature, and in other areas revolutionary, will be required under DOE direction to enable U.S.
leadership in advanced HPC.

1.3 Summary of Recommendations

1.3.1 DOE should invest in a program of continuous advancement in HPC.

Exascale is only the next milepost in a half-century of continuous progress towards increasing
capability in computational science. The U.S. government requires a stable, long-term investment
strategy to ensure continuous U.S. leadership in HPC beyond today’s petascale performance regime,
extending to exascale and beyond. In the immediate future, much of that research investment should
be focused on the top ten challenges identified within this report.

1.3.2 DOE should invest in the U.S. industrial base to catalyze the foundation for
exascale systems.

DOE should invest in extending commercial semiconductor, communications, systems integration,
and software technologies to prepare the U.S. industrial base for its role and contributions in future
HPC scientific, engineering and national security missions. All of these exascale components must
be developed by and be available from U.S. sources, otherwise the supply chain is vulnerable to
interdiction by foreign powers, which in turn could threaten the nation’s security.

1.3.3 DOE should invest in exascale mathematics and system software responsive to
DOE missions and other U.S. government requirements.

The mathematical algorithms needed for many DOE missions are unique, and must be reinvented to
function at exascale. As with today’s Leadership-class systems, much of the software infrastructure
of an exascale system will be unique to its scale and the missions for which DOE will deploy it.
Therefore, DOE must invest in robust and scalable mathematical algorithms, operating systems,
runtime systems, and tools for the management of the data that will be generated and/or processed.



1.3.4 DOE should create an Open Exascale System Design Framework to enable
cooperative hardware and software advancement.

DOE’s understanding of government mission drivers provides a critical foundation to coordinate
requirements for and development of interoperable system components. Thus DOE should establish
a co-design framework for collaboration and system integration of crosscutting component layers.
Such a framework will serve as the conceptual scaffolding for the development of new programming
language and hardware architecture, runtime software and operating system, application algorithms
along with their data and workflows, and management policies for future exascale computing.

ASCAC Subcommittee for the Top Ten Exascale Research Challenges 4



2 Introduction

Scientific progress has been, and will continue to be, a notable source of American prosperity and
leadership in world affairs. High performance computing (HPC), has a fundamental role to play in
enabling scientific progress. The DOE mission elevates the importance of leadership in this space
for national security and economic reasons. This spans a broad range of DOE missions, including
new energy solutions, ecological sustainability, global climate change, next generation nuclear power
plants, scientific discovery, and global security. This is reflected in the Department of Energy’s 2011
strategic plan. The 2012 addendum calls out both a Priority Goal: Lead Computational Sciences
and High-Performance Computing, and a Targeted Outcome: Continue to develop and deploy high-
performance computing hardware and software systems through exascale platforms. Based on this
fact alone, one would expect continued and substantial investment in HPC.

It is remarkable to observe that computing is becoming central to progress even for the most
fundamental research in the sciences. Maintaining U.S. leadership in computational science requires
the best tools. This includes a succession of computer resources with world-class capability as well
as the data storage and analysis tools needed to effectively use the results. As is stated in the DOE
Office of Science (DOE SC) strategic plan, “Each of the [scientific] goals, and progress in many
other areas of science, depends critically on advances in computational modeling and simulation.
Crucial problems that we can only hope to address computationally require us to deliver effective
computing power orders-of-magnitude greater than we can deploy today.” That implies exascale,
1018 operations per second, the next major milestone in a process of exponential improvement
that has continued for over half a century. For the purposes of this report, the definition of
exascale is more than just a peak rate of sustained arithmetic operations, bytes of storage, or
the familiar High Performance Linpack (HPL) [117] Rmax floating-point operations per second
(Flop/s). Exascale is a relative term suggesting 1000-fold better capability than representative
from the petascale, which started circa 2009. This definition encompasses 1000-fold improvements
in the usable performance of systems at all scales relative to the 2009 baseline, not just the largest.
As such, exascale suggests a practical delivered capability within the scope of achievable power,
reliability, size, cost, programmability, and other constraints. Such a system cannot be produced
today, and identifying research required to achieve this capability is the purpose of this report.

While DOE is able to maintain its position of leadership today, that position is threatened
in the near future [93]. Underlying technology is changing dramatically now. The models of
scaling that formed the basis of ever increasing computer power are ending [73, 113]. Dennard
scaling [32] is over, and while Moore’s Law [84] continues, its demise is in sight too. Therefore, the
future of high performance computing (HPC) is unknown. This in turn threatens to compromise
DOE’s ability to perform the leadership aspect of its mission. This is not the first time this has
happened. Circa 1990, CMOS device technology overtook TTL (Transistor Transistor Logic) and
ECL (Emitter Coupled Logic). DOE led the way to a new stable point in HPC, communicating
sequential processes (CSP) [60] integrated from commercial, off-the-shelf technology (COTS). DOE
needs to do it again, as nobody else in U.S. is stepping up. The alternative is for the United States
to cede leadership in HPC to Europe, Japan, and/or China

2.1 Challenges

Given the importance of exascale computing to DOE, on July 29, 2013, ASCAC was charged by
Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee. This
subcommittee was directed to return “a list of no more than ten technical approaches (hardware
and software) that will enable the development of a system that achieves the Department’s ex-
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ascale goals, particularly the usability goals for the Department’s mission-critical applications, as
articulated in the attached letter. That is, given the known technical barriers that could prevent
the development of a computer that achieves the Department’s exascale goals, what are credible
technical approaches for overcoming these barriers? The subcommittee’s report should provide
compelling justifications for including each item in the list and describe the expected impact on
overall system performance.”

This report, written in response to the charge, describes ten key technical areas that need
substantial research and development in order create a productive, economically viable, broadly
useful, exascale system, and enable DOE to perform its mission. The report also discusses the
impact that advances in each of the ten areas will have on the exascale system’s performance and
its ability to solve the science problems critical to the nation. Numerous reports over the past five
years have documented the technical challenges and the non-viability of existing computer designs
to simply scale to exascale. The technical challenges revolve around energy consumption, memory
performance, resilience, and extreme concurrency. These challenges are the drivers for the research
that must be done.

To determine the top ten research and development areas, a group of 23 experts in high per-
formance computing hardware and software was assembled. These experts were from industry,
academia, and government-funded research laboratories. They met dozens of times, both in person
and by telephone, analyzed the state of the technology upon which an exascale system will be
developed, and came up with the following top ten challenges. The challenges are not rank-ordered
by importance, but rather grouped by the subcommittee into related categories.

1. Energy efficiency: The goal is to achieve exascale using 20 MW of power, yet existing circuits
consume an order of magnitude too much power to meet this goal. Without much more
energy-efficient circuits, architecture, power conversion, power delivery and cooling technolo-
gies, the total cost of ownership for exascale systems could be 10 times higher than today.

2. Interconnect technology: The performance of the interconnect is key to extracting the full com-
putational capability of a computing system. Without a high performance, energy-efficient
interconnect, an exascale system would be more like the millions of individual computers in
a data center, rather than a supercomputer.

3. Memory technology: Many new memory technologies are emerging, including stacked memory,
non-volatile memory, and processor-in-memory. All of these need to be evaluated for use in
an exascale system. Minimizing data movement to this memory and making it more energy
efficient are critical to developing a viable exascale system. Science requirements for the
amount of memory will be a significant driver of overall system cost.

4. Scalable system software: Present system software was not designed to handle the expo-
nentially growing scale of leadership-class systems. Overall management of the power and
resilience of the millions of nodes in an exascale system will be the responsibility of the system
software.

5. Programming systems: The present CSP model doesn’t include resilience and puts all the
burden of locality and parallelization on the application developers. Exascale systems will
have billion-way parallelism, and frequent faults. More expressive programming models are
needed that can deal with this behavior and simplify the developer’s efforts.

6. Data management: There is an explosion in both the amount and complexity of the data
being generated by experiments and simulations. Without significant improvements in data
management, the answers in the data will never be found.
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7. Exascale algorithms: There are many thousands of man-years invested in the scientific and
engineering codes now in use. Changing them to run with billion-way parallelism will require
redesigning, or even reinventing, the algorithms used in them, and potentially reformulating
the science problems. Understanding how to do these things efficiently and effectively will be
key to solving mission-critical science problems at exascale.

8. Algorithms for discovery, design, and decision: It is anticipated that the need for methods
and software to efficiently carry out uncertainty quantification and optimization on complex
multi-physics problems will be a key need at exascale.

9. Resilience and correctness: Getting the correct answer on exascale systems with frequent
faults, lack of reproducibility in collective communication, and new mathematical algorithms
with limited verification will be a critical area of investment. Getting the wrong answer really
fast is of little value to the scientist.

10. Scientific productivity: Programming tools, compilers, debuggers, and performance enhance-
ment tools will all play a big part in how productive a scientist is when working with an
exascale system. Without increasing programming productivity, an application may run in a
few hours or days at exascale, but it may take months for the scientist to get it ready to run.

2.2 Integrating the Results

For the last two decades, the HPC community has successfully used a strategy based on the large-
scale integration of commercial-off-the-shelf (COTS) microprocessors into massively parallel super-
computing systems. In recent years, issues with the level of performance realized at scale have led
to questions about the continued viability of this strategy, and the need for research to address
this problem. Addressing the top ten exscale research challenges should alleviate many of these
concerns, but it is not enough.

All exascale research activity will need to be organized, coordinated, and funded in the context
of, and in support of, an integrated system design that is focused on meeting the performance, pro-
ductivity, and energy requirements associated with the anticipated mission-driven exascale work-
flows of the institutions that will ultimately acquire these systems. The general principle must
be that one can’t design in isolation. A collection of separate, disjointed research activities, each
aimed at optimizing a single design aspect or technology, will likely result in a suboptimal overall
solution. The realization of an exascale system will involve a complex, multidimensional tradeoff
between hardware (processors, memory, energy efficiency, reliability, interconnectivity), software
(programming models, scalability, data management, productivity) and algorithms. Thus, a to-
tal systems approach is necessary, implying co-design of hardware and software, and such a total
systems approach must inform the research programs for exascale [33,34,114].

Advancing to exascale will require innovations in architecture to integrate the many research
results from diverse fields including silicon, memory, packaging, system software, interconnect,
signaling and optical technologies, mathematics, and programming models. Exascale architec-
ture requires finding the right balance of these technologies to achieve density, cost, performance
and power efficiency at the appropriate levels. Research in exascale architecture will leverage the
learning and experience gained in developing and using intermediate systems, and will result in
improvements to some of the key elements of architecture, programming models, and system soft-
ware. Exascale system design will be an optimization problem involving a set of constraints, a set
of metrics for evaluating those constraints, and a methodology for evaluating them.
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2.3 Overview

This report is focused on identifying and explaining the top ten research challenges that must be
overcome to create an effective exascale computing system. The next ten sections of the report
each address one of the challenges. They include why the challenge is thought to be in the top
ten, credible technical approaches for overcoming them, and the impact these results will have
on the overall exascale system. The structure of the sections varies a bit, reflecting the personal
styles of the experts who contributed them. While progress on the top ten research challenges may
initially proceed independently, an effective exascale system will require balance and integration of
the results. Issues related to a execution models, architecture, co-design methodology, modeling,
and system integration are discussed in section 13.

Finally, in the course of conducting this study, the subcommittee considered a number of related
issues that add context to the top ten research challenges and the means to overcome them. To
further assist the DOE in planning its future research directions, this report elaborates on these
additional findings and makes recommendations that, in the aggregate, contribute to advancing
U.S. capacity to develop and apply exascale computing.
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3 Energy Efficiency

The Tianhe-2 system in China, which is number one in the current TOP500 list, consumes 17.8
megawatts (MW) to deliver 33.86 PFlops (1015 floating point operations per second) on the HPL
benchmark [117]. The current top supercomputers typically have an energy efficiency of 2–4
GFlops/W [51]. Thus, an exascale computing system (∼ 1018 Flops) with a power budget of
20 MW will need at least an order-of-magnitude improvement in energy efficiency as compared to
today’s systems. To address this challenge, the energy efficiency of basic compute blocks, inter-
connections between the blocks, and the memory subsystem all need to be considered. Successful
energy management at exascale will require research that cuts across all aspects of the design and
must be integral to all design elements. Energy management will need to be practiced from the
very concept of the system, and driven into base technology elements. It impacts silicon technology,
circuit and chip design as well as design tools, power delivery subsystems throughout the design,
system interconnect, memory and storage design, system packaging and system control software.
As discussed in this section, research is needed to guide the evolution of power management from
the largely static and hardware-focused environments of today to a much more dynamic process,
requiring significant software support and interoperation with the underlying hardware.

3.1 Aggressive versus Revolutionary Technologies

An exascale program will accelerate the introduction of advanced technology for research and for
commercial use. Given the challenges in energy efficiency, aggressive use of existing (or evolution-
ary) low power technologies and design techniques will be required. However, some revolutionary
approaches are likely to be necessary as well.

A balanced approach is required between such “aggressive evolutionary” and any “revolution-
ary” technologies. Exotic technologies typically have the following properties:

• They almost always cost more and take longer to go from laboratory demonstrations to system
readiness than initially predicted;

• They require significant application and system software restructuring efforts and costs;

• They require significant efforts in new design tools, qualification processes, test methodology
and equipment, etc.;

• They take much longer to be commercially viable (vs building a single system) and hence can
be economically unviable.

A balanced approach will apply radically new technologies only where necessary, and with
strict management of the above risks. The long term exploration of such technologies should be
encouraged as part of advanced research programs, independent of important product or mission
critical systems development. When, at a future decision checkpoint, some revolutionary technolo-
gies look viable for exascale application, further investment would be required in hardware and
software tools, qualification, bring-up and test issues in preparation for the introduction of these
technologies. When organized this way, an exascale program should be flexible enough to introduce
radically new technologies, should they mature early.

As evolutionary device/chip technologies we can count, for example, the aggressive use of clock
gating, power gating, and dynamically adaptive voltage/frequency domains. Three-dimensional
(3D) stacking is promising for integrated power regulation and distribution, and is promising for
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memory density, energy efficiency, and processing-in-memory. The high device density may lead to
power delivery and cooling challenges. For applications that do not critically require the integration
advantages, 3D integration will initially be more costly than the same functionality on separate
components, and large-scale commercial viability is a concern.

CMOS and related field effect technologies (FETs) are fundamentally limited by the “Boltzmann
tail” of electrons tunneling through sub-threshold voltage barriers, which gives rise to sub-threshold
leakage power. The room temperature sub-threshold slope of 60 mV/decade of current FETs implies
that reliable CMOS operation, with high performance (i.e. high on-to-off current ratio), requires
operation at voltages above 0.55-0.6V. Low-temperature operation increases the sub-threshold slope
and enables lower voltage operation, but is costly to achieve, may not lead to overall energy savings
at the systems level, and does not have a commercially viable outlook. Very low (near threshold)
voltage operation is another such aggressive/evolutionary technology, that can be applied to current
CMOS technologies, and is the subject of the next subsection.

In contrast, revolutionary technologies are centered on exploratory devices. Some (e.g., carbon
nanotubes) are still subject to Boltzmann tail behavior and will help perhaps a generation of
device scaling, and may help with further voltage scaling to perhaps 0.3V. Other emerging “steep
slope” (non-Boltzmann) device technologies hold promise for true low voltage operation, (e.g.,
tunnel FETs, piezo FETs, and spin based devices). Different device characteristics may lead to
a hybrid approach, e.g. fast C-tube/tunnel/piezo FETs for logic and slow spin-based devices
for arrays. These new device technologies will face issues such as materials, device scalability,
performance, and reliability. Research on these post-CMOS devices is organized under the auspices
of the Nanoelectronics Research Initiative of the Semiconductor Research Corporation (NRI/SRC).

Moderate funding would be required to accelerate research and reach a decision checkpoint
for a few of the most promising exploratory device candidates. This would fund device research,
circuit/chip design tools to create test chips of appreciable complexity, and test chips. Then the
market (i.e., mobile, internet-of-things, power harvesting applications) will take over commercial
development. An exascale program should be ready to leverage such a development and provide
funding to accelerate design tools and system design.

3.2 Near Threshold Voltage (NTV)

The concept of operating near the threshold voltage (NTV) of a transistor is well established, and
can provide up to a 10-fold increase in energy efficiency especially for the basic compute blocks.
However, it poses numerous implementation challenges needing maturity, rethinking of system
architecture, and design technologies to successfully adopt it into future systems. Figure 1 shows
experimental results of NTV operation and energy efficiency in 65 nm technology, which were
subsequently confirmed on 45, 32, and 22 nm technologies [2, 63, 67, 68]. As the supply voltage is
reduced, energy efficiency increases by an order of magnitude. However, it also poses the following
system challenges:

1. Variability in the speed of operation of individual circuit blocks increases dramatically to
almost 50%,

2. As the frequency of operation is lowered, logic throughput is reduced, which increases the
demand for concurrency

3. Stability of small signal circuits such as SRAM reduces significantly, and

4. Sub-threshold leakage power becomes a substantial portion of the total power.
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Figure 1: Energy efficiency and variability in NTV operation.

The increased variability in circuit speed poses both a circuit design and a system challenge.
The gate-to-gate variability calls for the development of appropriate circuit design techniques and
corresponding design tools. From a system perspective, variability in core-to-core or thread-to-
thread speed will impact synchronization (barriers) in multi-threaded/multi-core processors, with
further possible impact on system software.

Reduction in the logic throughput is addressed by increased parallelism, replicating logic blocks
(cores) to maintain the throughput. However, this will compound an issue already encountered
in the current petascale era, with about a million processor cores per system. At current core
performance, the number of processor cores for exascale machines will grow to the order of a
billion. However, if the number of cores will have to be increased additionally also to restore the
logic throughput for a given workload running at very low frequency, then the software may need
to deal with another order-of-magnitude growth in the number of cores. This approach carries
the implied assumption that that any given exascale workload can be distributed over more cores
without adverse effects. This assumption is valid for only a few HPC workloads today (and even
in those cases, with limits to the scaling that can be achieved), and will severely limit applicability
of this idea for general HPC workloads.

Stability of SRAM arrays can be addressed by: (1) replacing traditional 6T designs by 8T or
10T SRAM designs, or (2) not employing NTV to the SRAM arrays. The disproportionate sub-
threshold leakage power issue is addressed by employing fine grain power and energy management
using power gating, and integrated power delivery subsystems, providing fine grain spatial (func-
tional block level) and temporal (10s of nanosecond) control. All of these techniques will need
careful optimization at the system level, especially with hardware/software co-design principles, to
ensure that the system software can indeed exercise control, and dynamically establish the optimum
operating point.

3.3 Energy Efficient Architecture

Much of the “energy efficiency gap” that needs to be bridged to reach exascale goals can be achieved
via more efficient architecture. Performing a double-precision floating point operation on a 28nm
CMOS chip requires about 12pJ (25pJ for a double-precision fused multiply accumulate opera-
tion). A 32-bit integer operation requires only 3pJ. Yet executing one floating point instruction
requires around 200pJ on a very simple, single-issue, in-order core, and upwards of 1nJ on a high-
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Figure 2: Compute and interconnect energy.

performance, multiple-issue, out-of-order core. Efficiency can be gained first by simplifying the
core, eliminating complex logic that performs run-time, hardware scheduling, branch prediction,
and other such functions that improve single-thread performance but do not affect throughput.
Such simplification results in a simple, in-order core with no speculation.

Further gains are possible by reducing the overhead of instruction supply and data supply.
Simply reading a 32-bit instruction from a typical 32KB instruction cache requires 20pJ - roughly
the same energy as that needed to perform a 64-bit floating-point operation. Similar overheads are
required by conventional data-supply mechanisms. New, streamlined instruction- and data-supply
mechanisms hold the potential to dramatically improve the efficiency of even simple, in-order cores.
Another promising approach is the use of compound operations, having a single instruction direct
the execution of several arithmetic operations with intermediate results passed over dedicated wiring
amortizes the instruction-supply overhead over many operations and eliminates the operand-supply
overhead for the intermediate results.

3.4 Energy Efficient Interconnects

As semiconductor process technology scales from 22 nm today towards 7 nm and beyond, one can
expect the compute (and local interconnect) energy to scale down, but as shown in Figure 2, the
energy associated with longer “on-die” interconnects across-chip will not scale as much. This is
because the size of the chip will remain constant across the generations, and the energy to move data
across the chip will not scale much. An NTV approach will reduce the energy of computation and
across-chip interconnects equally, but the energy disparity will continue to increase. We will need
to adopt advanced interconnect techniques for on-die interconnects, such as low-swing differential
signaling, twisted for noise immunity, and mature these technologies.

NTV, as described above, reduces compute energy, but requires more parallelism for a given
throughput, demanding even more energy for data movement across the logic and the cores. There-
fore, a critical balance of data movement and the extent of NTV will need to be established.

3.5 Memory and Register Files

Memory and register file arrays will likely use NTV modestly, and therefore their performance will
not drop as much as that of logic. As a result, to balance the performance of the compute and

ASCAC Subcommittee for the Top Ten Exascale Research Challenges 12



Core	  ™	  Processor	  	  	  	  	  	  	  	  Air-‐core	  Inductors	  
Voltage	  Regulator

70%

75%

80%

85%

90%

0 10 20 30 40 50 60 70 80
Load Current [A]

Ef
fic

ie
nc

y

100% activation
load adaptive

Voltage 
Regulator

&
Control

Vdd

Package
Inductor

Vout

Schematic Experiment	  with	  a	  commercial	  processor

Figure 3: Integrated voltage regulator.

the memory, arrays will become disproportionately larger. On the one hand this is good for data
locality, reducing the need for data movement and saving energy, but on the other hand, larger
arrays will consume disproportionately larger energy. Almost half of the power consumed in the
arrays is due to sub-threshold leakage and therefore application of leakage management techniques
will be important. This paradigm shift needs to be considered in devising the architecture of the
extreme scale system to exploit larger arrays, and also employ fine grain leakage power management
techniques.

3.6 Efficient On-Chip Power Delivery and Management

Electrically distant power delivery solutions, such as voltage regulators on boards, are not effective
in fine grain power management because (1) response time is large, due to inductive effects, (2)
regulators are limited in number, and (3) efficiency is not constant across a broad range of loads.
Figure 3 shows an experimental integrated voltage regulator which can be implemented on the
processor die itself to create multiple supply voltage rails needed for NTV operation [111]. Several
regulators can be ganged together, and even distributed across the die, to improve overall efficiency
across broad range of loads to allow fine grain power and energy management by bringing power
delivery closer to the load.

Local fine grain power and energy management can be accomplished by the well-known clock-
gating techniques for active power reduction, and power gating techniques for leakage power man-
agement, as shown in Figure 4. Although these techniques are well known, the challenge lies in
implementation at a fine grain level, as well as state preservation when power gating is used.

An effective exascale power distribution scheme will likely include integrated voltage regulators
distributed across the die with a small number of power rails. The power gates of individual cores
and logic blocks can be powered up using any of these rails to dynamically select the optimal voltage
and frequency controlled by the system software. Of course, at a system level, a balance will need
to be struck between the increased overhead for dynamic on-chip power regulation (both in terms
of control circuitry and in terms of the higher voltage that will need to be applied) and its benefit
in terms of reduction of leakage power, especially for temporarily inactive circuitry.

In implementing these on-module regulators, care must be taken to both remove the heat from
these devices in such a way as to not raise the temperature of the processor itself (and thus limit
its performance), and to find efficient means to provide the input power to these converters. Good
progress is being made in both of these directions, but more research is needed, particularly into
the efficiency of the local regulators.
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3.7 System-Scale Power Management

Power Distribution Typical servers today deliver power from wall plug to processor chip pins
at efficiencies of about 70%. With appropriate research an exascale machine could target 90%
efficiency on this path. Areas to investigate include:

• Integrated, highly reliable single stage converters

• On-chip power conversion technology

• Monolithic micro-buck converters

• Low-resistance, high-current connectors

• Lower resistance packages.

Although 20 MW is a very low total power target for an exascale system, to efficiently move
this power to the computer racks the datacenter will want to target at least 480 V AC or high
voltage ( 400 V) DC distribution. For safety reasons this voltage should be transformed down to
48 V DC for distribution in the rack, which is high enough to keep distribution losses low but low
enough to be safe for handling. Continued research on efficient AC rectification and DC isolation,
as well as exploitation of wide band-gap semiconductor technology, could make this stage upwards
of 98% efficient. Then DC-DC conversion from the 48 V to whatever voltage is required for the
on-module or on-chip power converters, plus any residual electronics being powered directly, should
be made with a single stage, highly reliable converter with at least 95% efficiency. Wide band-gap
semiconductor technology, coupled with better magnetic materials for the transformers and lower
resistance power connectors, will allow even higher efficiencies. These new power semiconductors
will require precisely tailored gate control and new very low- inductance, low-resistance packages,
requiring research in these areas. The switching speed should be considered in concert with the
on-module converters, so that the system can react as efficiently as possible, and allow processors to
be powered at the lowest possible voltage. In general higher-frequency, faster-response converters
are desirable (as they can react faster to transient loads and reduce the storage requirements of
downstream converters and local capacitors). This, in turn, will drive the need for research into
lower-inductance power connectors which will allow the converters to be placed inductively and
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resistively closer to the load. Finally the development of very compact and efficient monolithic
buck-converters will allow the current trend of very specialized voltages for system-on-chip design
to continue. All power converters should be made as reliable as possible, with the target of avoiding
the use of redundant power supplies, which ultimately cost efficiency both through the use of ORing
FETs for fault isolation and by causing the converter to operate in the less efficient low-current
part of its range.

Cooling Almost certainly exascale systems will be water cooled to minimize floor space and
reduce the cost (and energy) of cooling. A fault tolerant exascale system means nodes can be
replaced while the machine runs. Hence, each node must be independently pluggable.

Designs would profit from research in

• Ultra-low thermal resistance separable thermal connections

• Improved thermal interface materials

• Very low cost, highly reliable quick-connect

• Flexible, fire-safe, highly durable polymer hoses

• Micro-channel cooling and other means for heat extraction at the component level.

Ultimately the cooling reservoir for the 20 MW Exascale system is the atmosphere. The thermal
challenge can be thought of as the most energy efficient means to move the heat from the electrical
and optical components of the system to this final atmospheric heat sink with minimal thermal
loss along the way. Ambient water, in thermal equilibrium with the atmosphere but chemically
non-corrosive, biologically inert, and without particulates that could clog small cooling orifices, is
a excellent cooling fluid. However, connectors are needed to allow service of the hardware. Direct
water cooling technologies (cold heads, micro-channel coolers, spray coolers and the like) will need
quick-connects that allow the water hose to be disconnected and reconnected as connect circuit
cards are today - at low cost, blind mate, low resistance, etc. Such quick-connects do not exist
today and they impact all water cooled designs in a dramatic way. When using lower cost, but less
thermally efficient indirect cooling means, such as vapor chambers, heat-pipes, thermal spreaders
and the like, highly thermally conductive dry thermal interfaces are needed. Such technologies
have been used for years in military applications but are still very expensive and too thermally
insulating for broad use.

Finally local and national fire codes require use of fire-safe materials within the rack, even when
carrying cooling fluids. Today this results in either the use of very thick, unwieldy hoses which
detract from dense packaging, or very expensive formed and brazed tubing. Chemical research
in polymer hoses can overcome these limitations and clear the way to very efficient water cooling
direct to the thermal loads.

Packaging Large scale HPC systems benefit most from compact node designs indicating the
need for research in:

• 3D technology

• Optical connectors

Three-dimensional chip structures can be used to dramatically lower power by allowing many
more and electrically shorter connections between chips, but they carry with this even higher local
power densities that drive power delivery and cooling concerns, as well as increased fragility owing
to wafer thinning to expose chemically etched through-silicon vias (TSVs). Packaging research
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aimed at overcoming these new problems will be well received. As these 3D structures are grouped
into highly energy efficient, but still higher energy, enclosures, users must retain the ability to easily
service them, preferably while the rest of the equipment is still running. A the shift from 12 V to
48 V DC power will reduce distribution loss, but research which allows this higher voltage to be
safely accessed may be required.

Most importantly, the pervasive use of optics in the exascale machine will require several types
of optical connectors. It is entirely possible that the most difficult technical challenge to the
widespread use of optical technology is the development of the required connectors. For example,
optical transceivers, whether VCSEL or silicon photonic based, once integrated into the system-
on-chip processor require a very high I/O density optical connector to allow the processor to be
socketed and field replaceable. Such connectors are currently unavailable. A second connector
is required to allow optical connections to be made between servers. Alternatively, use of active
optical cables, plugged close to the source, require currently unavailable midboard connectors. Use
of high port count (48 ports or more) top-of-rack switches, or larger datacenter switches based on
collections of these switch chips, will require compact and closely packed optical connectors for
the passive cables that connect these components. Alternatively, new packaging approaches may
be developed that allow the use of anticipated dense active optical cables plugged immediately
adjacent the switch chips.

3.8 Impact

Following a business-as-usual approach in system design, an exascale machine is expected to con-
sume gigawatts of power. The circuit, memory, interconnect, and platform technologies described
above, both evolutionary as well as revolutionary, are expected to bring the power consumption
closer to the goal of 20 MW. With hardware/software co-design approach, these technologies have
potential to provide even further energy benefits to help meet the exascale power and energy goals.
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4 Interconnect Technology

Perhaps the most critical barrier toward realizing exascale computing is the fundamental challenge
of data movement. This is for both vertical data movement between processors and memory
as well as horizontal data movement between processing nodes. With the extraordinary growth
in parallelism, performance is increasingly determined by how data is communicated among the
numerous compute resources, rather than the arithmetic operations performed. At exascale, these
challenges are daunting, as energy consumption is increasingly dominated by the cost of data
movement, and is thereby the main constraint on ultimate performance.

4.1 Data Movement Energy and Bandwidth Challenges

The fundamental limitations imposed by increasing energy consumption associated with moving
vast data among the growing parallel compute resources has led to the so called “bandwidth ta-
per” prevalent in current system architectures. To illustrate these interwoven bandwidth-energy
challenges, Figure 5 shows the bandwidth taper (in blue) for conventional electronic interconnect
technology. The units are Gbps/mm of horizontal cross-section, and bandwidth decreases by orders
of magnitude as data propagates from on-chip, across the module, over the printed circuit boards,
and onto the racks and the whole system. The energetic consequences of this are illustrated in
Figure 6 which shows the relationship between the growing energy costs of data movement and
system distance. For scaled conventional electronic interconnect technology (in blue), off-chip and
inter-node communications face an order-of-magnitude energy wall associated with shrinking ag-
gregate bandwidth and overall energy efficiency. Clearly, revolutionary data movement technology
is required to create future exascale computing systems that are energy efficient and can truly
scale in performance on real applications, and as Figures 5 and 6 show, photonics offers a potential
solution.

Figure 5: Bandwidth vs system distance Figure 6: Energy vs system distance

The main challenge for interconnect technology has always been to provide high network band-
width and message rates, while minimizing latency. Equally important is how effectively applica-
tions are able to utilize the network. [66] Historically, many interconnects have been built to provide
these capabilities without regard to the communication mechanisms being used by the applications
running on the system, leading to a bad semantic match between the communication primitives
required by the applications and those provided by the network. The resulting poor utilization of
the interconnect is bad for both application performance and energy efficiency.
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4.2 On-Die Interconnect Fabric

An on-die interconnect fabric connects cores on the die to the memory subsystem on and off the
die and to the external interconnect fabric. The challenge is that the die size of the processor die
will remain constant across process technology generations, and therefore the on-die interconnect
energy will not scale as much (as described in section 3.4).

Investigation is needed into various on-die signaling technologies, such as repeated single-ended,
differential low-swing and twisted interconnects, to determine the best interconnect technology for
the processor chip. These techniques are well known, but need to be examined and methodologies
developed in the context of the extreme scale processor.

Several on-die network topologies and switches have been studied, [6, 58] such as a traditional
bus, 2D mesh or torus with routers, crossbar switches, butterfly networks, and fat-trees, as well
as circuit and packet switched networks. All of these show different characteristics, with each
having benefits if used appropriately by the underlying software. The hardware choices have deep
implications for the design of the communication libraries (e.g., MPI or Global Address Space), the
runtime systems (scheduling and active message dispatch to the correct thread) and ultimately the
applications and algorithms. The challenge is to develop network designs using these techniques
that are applicable to the exascale processor, evaluate them in the context of different candidate
software systems using simulations and emulations, and mature these for exascale systems.

We need to consider implementing a hierarchical network, with potentially different sub-networks
at each level in the hierarchy, using the technique most suited for that level in the hierarchy, con-
sidering energy efficiency and bandwidth. For example, connecting cores in a local block is best
achieved using a bus, since a bus is the most energy-efficient solution for short distances. Blocks
can be connected together using a wider bus or a packet-switched network such as a mesh, or a
crossbar, depending on the size and distance. It remains an open question as to whether current
computing applications and algorithms can be redesigned to exploit these different potential hard-
ware realizations. For this reason, hardware and software design must be closely coupled and not
deferred until the machine arrives.

Thus, it is likely that for a processor die with O(1000) cores we will have to evolve from the
conventional approach of a homogenous interconnect fabric across the chip with constant bisec-
tion bandwidth to a revolutionary approach of a hierarchical, heterogeneous, and tapered on-die
interconnect fabric.

4.3 Inter-chip Network Integration

The main function of the inter-chip interconnect is to provide the processors with access to remote
memory. As such, the mechanisms used to integrate the network with the rest of the node archi-
tecture (processor and memory) can have a dramatic impact on how and what type of features
can be effectively supported by the communication runtime. There are many available options for
integrating the network. Logically, the network can be connected as an I/O device, or as a peer
on the processor or memory network. Additionally, the network interface controller (NIC) can be
either coherent or non-coherent with the processor cache hierarchy. Physically, the network can be
integrated on-die, on-package, or on-board. Each integration choice comes with a set of tradeoffs.

As CMOS process technology continues to advance, it has already become feasible to integrate
portions of the network on the same die or package as the processor. This tighter integration can
provide significant energy savings, as well as opportunities for significantly enhanced functionality.
By moving significant packet processing functions from software into the networking hardware (i.e,
“processing-in-network”), this trend has also been contributing to reductions in network latency.
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A major challenge with integrating the network for high performance computing will be identi-
fying the proper function to include in the NIC, as well as identifying a suitable network protocol to
enable cross-vendor compatibility. Commodity computing will inevitably drive this market toward
integrated networks designed to work well for the general Internet. Such networks will provide no
advantage to high end scientific computing.

On the other hand, careful selection of advanced network capabilities, such as remote direct
memory access (RDMA), remote atomic memory operation support, virtual memory enhancements
to reduce overhead of memory registration, integration with complex memory hierarchies, advanced
message completion notification, communication protocol offload, in-network processing of collec-
tive operations, and active messaging support, could enable the extreme scalability required for
exascale computing. Making the best tradeoffs in enabling these capabilities will require a deep
understanding of the requirements of large scale scientific computing applications.

4.4 Photonics

Among the emerging technologies that could contribute to an energy-efficient interconnect, pho-
tonics is perhaps the most promising. Optical technologies can directly impact the critical commu-
nications challenges within computing systems through their remarkable capabilities to generate,
transmit, and receive ultra-high bandwidth signals with both fundamentally superior power effi-
ciencies as well as inherent immunity to noise and degradation. Unlike prior generations of photonic
technologies, recent results in silicon photonics offer the possibility of creating highly integrated
platforms with dimensions and fabrication processes compatible with electronic logic and memory
devices [78]. During the past decade, a series of breakthroughs in silicon photonic devices have
demonstrated that all the components that are necessary to build chip-scale photonic interconnect
components (e.g., modulators, filters, switches, detectors) can be fabricated using common CMOS
processes [14]. Figures 5 and 6 outline how photonic technologies can break through the bandwidth
and energy consumption tapers that impose severe limitations on conventional system scaling.

It is important to point out that the key aspect of chip-scale photonics is that it is not related
to the cross-chip communication-distance scale. With respect to optics, on-chip, board-scale, and
cluster-scale distances are all equivalent in throughput performance. This fundamental property
of photonics contrasts with electronic communications, which must adhere to highly constrained
bandwidth-distance product restrictions. Optical interconnection networks employing these silicon
photonic building blocks therefore present an unparalleled opportunity for transformative advances
capable of fundamentally altering the roadmap to creating truly scalable future computational
platforms.

Besides the well-known improvements that optical communication can offer in terms of transmis-
sion latency, energy-efficiency, and bandwidth density, the critical advantage enabled by chip-scale
silicon photonics is the close proximity of electronic driver circuitry integration. This allows for the
ultra-low energy transmission and reception of optically encoded data that is distance independent:
once the data is encoded in the optical domain, the propagation distance, whether it’s 1 cm, 10
cm, or even 100 m, is immaterial to the link performance [95].

The insertion of photonics into next-generation high performance systems is not a one-to-one
replacement. The potential impact of chip-scale photonics on exascale computing systems can
be realized only by re-evaluating the composition of computing systems and understanding how
data movement in the optical domain can be leveraged to create new architectural paradigms.
New network architectures include queuing structures and strategies that provide synergetic hard-
ware/software support for collectives, embedded communications and computation functions, and
reliability [120], [59].
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The advanced network capabilities mentioned in Section 4.3 further complicate the insertion of
photonics. Such capabilites are being introduced into current and near-future high performance
computers, which benefit from the enhanced density of CMOS integration, allowing more and
more function to be integrated in the NIC and/or the network switches. Many of these functions
will be deemed essential to exascale computing. The extent to which the development of on-chip
photonics will be able to implement or incorporate these functions, in a cost-effective and energy-
effective manner, will limit its initial photonics deployment in pre-exascale systems unless there is
substantial government investment to accelerate the insertion of this technology.

4.5 Impact

Data movement challenges impact the entire system stack: from the physical architecture and mem-
ory hierarchy to the algorithms and software development that must manage the immense growth
in parallelism. High performance interconnection networks that are intimately co-designed with the
hardware and software and take advantage of the transformational advantages of increased CMOS
processing capabilities and photonics will directly impact the execution performance and scalability
of exascale DOE applications. The co-integration of the network processing with the compute and
memory node as well as the insertion of inter-node optical data movement will enable the creation
of future classes of exascale systems with extreme system-wide bandwidth dense communications
and scalable energy efficiency.
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5 Memory Technology

Memory is crucial component in any computing system. To meet a variety of needs and uses,
several memory types have found their way into today’s systems: NOR Flash for boot storage,
SRAM cache for high speed code and data storage, DRAM for high density and high speed code
and data storage, NAND Flash for persistent, block-oriented read and write storage, and hard
drives for very high density, cost-effective, low speed block-oriented storage. Volatile memory loses
data when powered off; nonvolatile memory retains it, and can compete with disk for long-term
storage. This section addresses the challenges facing both the volatile and nonvolatile memory
technology needed for exascale systems.

Today, DRAM and NAND dominate in the two central roles: volatile, high-density, high-speed
code and data memory (DRAM), and nonvolatile, low-latency, high-density, block-oriented data
storage (NAND). Some new nonvolatile memory technologies, currently on the horizon, have the
potential to make a disruptive impact in the exascale timeframe. Examples include spin-transfer
torque (STT-RAM), phase-change (PCRAM), and metal-oxide resistive (ReRAM, or memristor).
While these memory technologies are not in volume production today, the issues of exascale are
sufficiently challenging that alternative technologies should be examined for their disruptive po-
tential. Notably, one cannot ignore the possibility that a change in memory technology may have
a profound effect on architecture and software, and may be the best path to a cost-effective, low
energy, high performance system.

A lot has changed since the original DARPA Exascale report [71], including the consolidation
of the memory industry and the emergence of NAND Flash as the predominant memory type. In
examining a post-2020 deployment, the pace of Moore’s Law will continue to slow as devices reach
their physical limits. Before those limits are reached, process complexity and cell interference may
impact memory scaling for economic reasons. The problem of cost-effective memory capacity is a
central concern that is discussed below.

5.1 The Challenges

Memory Capacity: Capacity is critical to applications. It allows numerous problems to be
solved in parallel, a powerful form of weak scaling; it allows in-memory checkpoints and message
logging/replay for resilience; and it enables algorithms that buy performance by using data struc-
tures that may not be minimal in their memory footprint. There are numerous examples of this
space/performance tradeoff. The primary challenge will be the continued scaling of memory density
on a per-compute-operation basis (bytes per Flop/s).

Figure 7 shows that the machines at the top of the TOP500 do not have sufficient memory
to match historical requirements, and the situation is getting worse. This is a big change from
the traditional one byte per flop that the NNSA labs prefer in support of their application base.
It places the burden increasingly on strong scaling of applications for performance, rather than
the weak-scaling model which dominated the terascale era. Interestingly, the “tipping point” in
the graph is in the 2003-04 timeframe, which coincided with the beginning of the end of Dennard
scaling and the start of the multicore era.

One reason is economic, with users often prioritizing arithmetic performance over memory
capability. This critical capacity challenge can be addressed by combining volatile and nonvolatile
memories into a single programmer-addressable device. However, there are numerous architectural
challenges that emerge from integrating the two. These include, but are not limited to, the relatively
poor latency, especially write latency, of some of the nonvolatile memories; a lack of abstracted
memory protocols which decouple timing and naming from the device interface; differences between
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Figure 7: Memory capacity (Bytes) per gigaflop/s, courtesy of Peter Kogge.

the block-oriented access typically favored (for reasons of chip architecture and error management)
in a Flash device and the word-oriented access typically favored by CPUs and volatile memory;
and differences in read latency, wearout, soft error vulnerability, and other differences between any
two classes of memory that are hybridized.

5.1.1 Energy

Energy is the primary technical challenge in supercomputing, but the least likely to be observed
directly by the programmer. Memory faces three primary energy challenges:

1. Processor/Memory Transport: DDR-style memories will have reached the end of their useful
lifespan by the exascale timeframe; more energy-efficient transport will be required.

2. Processor/Memory Protocol: Since the invention of DRAM, the interface between the CPU
and the memory system has been slaved in both naming and timing to the CPU. This pro-
duced the least expensive devices possible (from an acquisition cost perspective) at the expense
of centralizing a rigid memory-management model and limiting memory evolution. Memory
energy consumption, error mitigation, and data resiliency are removed by this model from the
memory, and are managed by non-memory vendors, a situation which is poorly considered in
the complexity of DDRx specifications. Instead, distributed control with decoupled naming
and timing must be enabled.

3. Memory Architecture: Typical commodity DRAMs are architected for the lowest possible
cost per bit, which requires significant “over-fetching” of data for any given memory request.
This refers to the granularity of access in the memory devices, in which a “row” of bits is
destructively read from a memory array into a row buffer, in each DRAM chip involved in a
cache line read or write. The data are fetched into these row buffers in chunks of 16 kilobits or
more. Usually, most of these bits are neither read nor written by the processor and must sim-
ply be written back to the memory array at some energy cost. Furthermore, these memories
often provide a weak banking structure for the same cost reasons. Enabling finer-grained ac-
cess of a larger number of banks provides significantly improved performance and potentially
lower energy profile [See, for example, Jung Ho Ahn, Norman P. Jouppi, Christos Kozyrakis,
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Jacob Leverich, and Robert S. Schreiber. 2009. Future scaling of processor-memory inter-
faces. In Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis (SC ’09). ACM, New York, NY, USA.]

The Hybrid Memory Cube (HMC) roadmap provides examples of how to address each of these
problems from a technology perspective, but it is not the complete answer. In particular, HMC
demonstrates a path to manufacturable technology with sufficiently low transport energy, an ab-
stracted, packet-based protocol, and a rearchitected DRAM structure designed for higher perfor-
mance. This is one example of a potential future direction.

5.1.2 Scaling

Manufacturing at commodity scales and low cost continues to be a problem. Wafer process cost
and fabrication capital cost are growing because of the slowing of Moore’s Law. This has resulted
in a significant slowdown in the building of new DRAM fabrication capacity. In fact, today there
are no new fabrication facilities on the horizon.

None of the emerging alternative nonvolatile memory technologies has yet achieved a near-term,
cost-effective, manufacturable path to replacing commodity memory. Further research in this area
could be highly disruptive, which is a desirable outcome for the long term health of the high
performance computing field.

5.1.3 Resilience

The increasing number of components required for an exascale system contributes to additional
complexity in resilience, which will be compounded if memory capacity trends are addressed by
a potential exascale program that would require increased memory density. In addition, today’s
slaved timing and naming require a centralized approach to failure recovery. This implies the
following issues:

1. It is becoming difficult for memory controllers designed by CPU vendors to map out bad or
problem rows. Recent “row hammer” disturb issues (in which repeated accesses to the same
row may alter the state of that row’s neighbors) demonstrate that an intimate understanding
of internal part topology may be required to address memory error conditions. These kinds
of issues will continue to present themselves as technology scales.

2. Just as NAND is a fundamentally lossy media, which requires significant error correction
performed transparently to the user, opportunities exist to enable more resilient memory
systems by performing distributed error recovery.

3. Variable Refresh Time (VRT) errors, in which some DRAM cells require unpredictable refresh
times, point towards the benefits of a more distributed approach to resilience and recovery,
as well as more intimate knowledge of individual DRAM parts and processes. Similar issues
arise in alternative memory technologies.

On the positive side, the deeply buried capacitor structure used in modern DRAMS makes each
generation of DRAM more immune to SEUs than prior generations. SRAM, on the other hand,
has increasing vulnerability as it scales. This dichotomy has a potentially profound effect on cache
architectures, which may be significantly less reliable (and require increased error correction) than
main memory. Alternative memory technologies may address some of these problems.
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Generous memory capacity can be a boon to system-level resilience through frequent check-
points. Checkpointing exascale state to disk via a storage network connection will become imprac-
tically slow; in-memory distributed checkpoints are a scalable alternative.

5.1.4 Systems Tradeoffs and Integration:

The government is uniquely positioned to enable a whole-system approach with multi-vendor teams,
academia, and the national laboratories to find the best solutions for entire classes of applications.
The exascale problem is sufficiently challenging that a business-as- usual approach is not likely to
work. Typical design patterns have forced a component-oriented approach to constructing systems,
which is a challenge to the proposed DOE methodology of hardware/software co-design. Examining
individual costs (e.g., “cost per bit of capacity”, “cost per bit per second of bandwidth”, etc.) rather
than system costs (e.g., “how to design the least expensive system for a given aggregate bandwidth
and capacity over the lifetime of the system”) often leads to per-subsystem or per-component
tradeoffs resulting in an overall inefficient design.

Device manufacturers are investing in the basic layer of new alternative memory and storage
technologies – devices and media controllers. A co-design approach in which the opportunities and
implications for the memory channel, cache hierarchy, processors, and algorithms is explored in
tandem with the DOE’s applications is required to best assess and then profit from this opportunity,
should any of these technologies “make it” as a commercially viable, low-cost alternative.

5.2 Research Directions

Given the technology challenges in the 2020 timeframe and the likelihood of these challenges to
intensify over the lifetime of exascale-class systems, it would be beneficial to invest in further
development of emerging memory technologies as well as possible process extensions to DRAM.
Several “DRAM replacement” candidates already exist in the laboratory. While the maturation of
these to mass production remains uncertain, the possibility of creating valuable alternatives makes
them a sound strategic research investment.

The new nonvolatile technologies offer an alternative attack on the capacity wall. The layering
of a crossbar memory array on top of physical addressing circuits can produce a highly dense
memory structure. Research directed at the optimization of this approach would be helpful.

It is important that several emerging nonvolatile memories will be byte-addressable, making
them desirable candidates for main memory usage. For use as main memory, considerable durability
is necessary. Research at the device and the circuit/media control levels is needed to achieve
simultaneously the density, durability, performance, and energy efficiency needed for use as a main
memory technology.

Compared to current memory systems, emerging technologies have some commonality, and some
important distinctions in how they relate to exascale computing. First, they share the trend of
abstracting the memory system from the CPU, with distributed control including media controllers
clustered with NVM physical resources. They also share the benefits of advanced physical packaging
such as through-silicon vias (TSVs) that result in increased volumetric density and intimate local
interconnect channels. As with DRAM, some emerging memories can be realized across a range
of access latencies and densities, depending on device technology and circuit architecture. Some
candidates also generally have asymmetric read and write performance or endurance limitations.

Research is also needed to understand overall system optimization accounting for capacity
(cost)/latency tradeoffs in order to guide direction in memory architecture. Within the memory
module, many low-level aspects of the media controller/ physical media interaction deserve atten-
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tion. Examples include coding, read/write scheduling, and wear-leveling or mitigation schemes
to minimize power consumption and maximize endurance. Research should address the low level
issues, such as manufacturability, and the overall system impacts of changes to the memory tech-
nology, which would have a significant ripple effect.

Given the importance of abstracted memory systems (with distributed control and decoupled
timing) as outlined above, groups of vendors (processor, memory, integrators) should work on the
potential of lowering overall system cost through memory systems that are abstracted, distributed,
and more resilient. This would also serve as a vehicle to explore unified memory systems of hetero-
geneous memory types.

Finally, enabling even limited processing capabilities near memory has been demonstrated to
significantly improve performance and lower energy by numerous industry, lab and academic re-
search efforts. Multi-vendor team exploration of processing-near-memory architectures (e.g., on the
logic base of a 3D stack) in the context of overall system performance for DOE applications has a
significant potential to yield early fruit.

5.3 Impact

Decisions on memory provisioning, interfacing and architecture will ultimately determine the capa-
bility, cost, and energy profile of future computing systems. The best of today’s memory interfaces
and density need to be further improved if exascale class systems are to deliver the promised
performance under real applications. This improvement must be done in an informed manner
which maximizes the potential of the machine while simultaneously embracing the capability of
new memory technology.
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6 Scalable System Software

System software plays a critical role in creating a unified computing resource from a collection of
hardware components and ensuring that applications are able to maximize the capabilities of the
underlying hardware. The ever-increasing core count of processors means that there is a massive
amount of on-node parallelism for the system software to manage. Operating system (OS) resource
management strategies have focused on accommodating a small number of threads of execution
within an address space. Most current HPC operating systems were optimized to allocate compute
and memory resources to a few, fixed number of threads and then be as non-intrusive as possi-
ble, and the role of the runtime system was very limited. As cores become plentiful and more
lightweight, applications are having to extract and expose as much on-node parallelism as possible.
This approach leads to a situation where applications will have more threads than cores, threads
will be created and destroyed much more often, and running threads will need to synchronize more
often. This dynamic behavior creates new challenges for the operating system and the runtime
system. Rather than trying to be as non-intrusive as possible and let the application implement
its own resource management policies, the system software must now play a more active role in
making decisions about how resources are allocated and managed, and the strategies for managing
these resources can be very different for different applications. Applications are now dependent on
the runtime system to achieve performance and scalability, and the runtime system is now depen-
dent on the underlying operating system to provide the appropriate interfaces and functionality to
support the needs of the runtime system.

In many ways, runtime systems are taking on tasks that humans perform today. Current
system software was designed and optimized so that application performance and scalability are
largely the responsibility of the application. Application developers identify performance issues by
using performance analysis tools and iterate over the possible solution space until an acceptable
approach is discovered. In order to achieve the goals of exascale, the runtime system will need to
take on more responsibility for delivering performance from an application. The runtime system
will need to inspect the state of the resources, analyze potential ways to use them more efficiently
and effectively, and then respond appropriately. This challenge is compounded by the fact that
hardware reliability is not improving. Hardware components may fail without warning, further
complicating the ability to manage resources. An additional challenge is to design and implement
a dynamic adaptive runtime system that is portable across multiple hardware platforms.

The other essential challenge for system software is that the fundamental cost model for re-
sources is changing. Processors and memory systems have spent several decades trying to provide
hardware support for determining how best to use memory resources including cache policies,
TLBs, virtual memory, pre-fetchers, etc. In most cases, these mechanisms have induced overhead
for HPC applications, but the costs could be mitigated. This is no longer the case. Architectures
are providing more support for explicit versus implicit management of memory resources because
the cost/benefits tradeoffs are changing. Minimizing data movement is increasingly important.

These changing costs have impacts throughout the system. For example, the usage model for
today’s HPC machines is evolving from sequences of simulation and analysis tasks, communicating
via long-term storage, toward a more dynamic, “compositional” approach, wherein applications
consist of complex combinations of coupled codes, data services, and tools. Projected limitations
in moving data motivate solutions that integrate simulation and analysis, couple complex physics
codes, and develop fully integrated application workflows. Expected power constraints motivate
the need to co-locate applications to avoid data movement wherever possible. New HPC use cases
for streaming and graph analytics require features of the OS/R such as global addressing, massive
multithreading, and event-based processing that are not well supported on existing HPC systems.
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6.1 Research Directions

The changing costs motivate a reexamination of the structure of operating systems and the hardware
mechanisms needed to support applications. The cost of virtualizing memory resources, through
mechanisms such as demand-paging and multiple levels of cache hierarchy, continues to increase
for HPC applications. Applications software and system software go to great lengths to avoid
the penalties associated with these mechanisms. Applications avoid using demand-paged virtual
memory. Caches, which were designed to be invisible to applications, have instead motivated entire
areas of research, such as autotuning. Other hardware mechanisms, such as interrupts and traps,
were designed when compute resources were scarce and asynchrony was an abnormal occurrence.
As cores become lightweight and plentiful, the operating system structure should evolve to embrace
asynchrony and alternative hardware mechanisms should be explored. This co-design of hardware
with system software will be critical to ensuring that operating systems and applications don’t
continue to focus on strategies that work around the capabilities of the hardware.

Researchers today are already exploring the interface between the operating system and the
runtime system to ensure that the capabilities needed by an introspective and adaptive runtime
system are supported by the operating system. As runtime systems become more dynamic, the
operating system needs to provide a richer set of interfaces and mechanisms, and enable the compo-
sition of multiple applications to create more complex workflows. Investigators are already taking
the first steps towards understanding the requirements of system services as different levels of the
system, both node-level and system-wide [3, 19, 43]. In the process, they are creating the infras-
tructure needed to support the exploration of more complex issues, such as resilience, scheduling,
and energy efficiency.

However, much work remains to explore and understand the hardware and software mechanisms
needed to meet these requirements. System software for extreme-scale computing will have to deal
with the challenges of billion-fold concurrency and associated locality, new architectural concepts,
and emerging workloads. This will support the creation and evolution of new programming models,
computational libraries and intelligent runtimes. A rich set of tools (interactive and visual) will also
be needed to enable more productive application development and to allow users to understand and
optimize the execution behavior of an application. Very low noise kernels and operating systems
need to be developed, as well as support for the hybrid memory structures described above. Finally,
research will be needed into robust system and resource management, and in monitoring and control
systems at extreme scale. Aspects of these are discussed in the next few subsections.

6.2 Lightweight OS

Exascale system nodes, containing hundreds or even thousands of cores, will challenge current
operating system practices. Many of the fundamental principles that underlie current OS technology
are based on assumptions that will no longer be valid for an exascale processor. In the context of
exascale system requirements, as machines grow in scale and complexity, techniques to make the
most effective use of network, memory, processor, and energy resources are becoming increasingly
important. In its role as gatekeeper to all these resources, the OS becomes a major obstacle in
allowing the application to view the hardware, or the hardware state. A baseline challenge for
the exascale software stack is how to get the OS out of the way without compromising the need
to protect hardware state from errant (or malicious) software. Execution models that support
more asynchrony will be necessary to hide latency. Such execution models will also require more
carefully coordinated scheduling to balance resource utilization and minimize work starvation or
resource contention. These execution models will also require extraordinarily low overhead fine-
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grained messaging. However, the attributes required by the execution model are nearly impossible
to achieve when the OS intervenes for every operation that touches its privileged domain. Today it
must intervene for inter-processor communication operations, has exclusive and privileged control
of scheduling policy, and exclusive ownership of resource management policies.

In its role as the gatekeeper to shared resources, the OS has traditionally been a major bottle-
neck in achieving scalability on SMPs. This is especially true for the open source Linux operating
system. Over time, OSs have evolved into multifaceted and hugely complex software implemen-
tations that have accreted a broad range of capabilities. The challenge of breaking the OS apart
based on separation of concerns is typically referred to as “deconstructing the OS.” Below is a
subset of leading issues that motivate the need to re-examine the underlying assumptions that are
encoded in current OS implementations and fodder to imagine a re-implementation of the minimum
necessary capabilities based around new realities of hardware design. High-end systems typically
use specialized operating systems for compute and I/O nodes, and standard operating systems for
service, front-end, and file-server nodes.

In the case of BlueGene, the specialized OS operates at the level of a processing set (pset)
which consists of one I/O node and a collection of compute nodes. The design of the compute
node kernel (CNK) was simplified by placing a number of restrictions on the application (e.g.,
absence of virtual paging, and support for only a handful of system calls in Linux). While this
design approach achieved the design goals of the BlueGene systems, scaling such OS services to
exascale systems with a thousand cores per chip, and dynamic, asynchronous, and irregular parallel
structures remains a grand challenge. A co-design approach is recommended to discern whether
the advantages associated with dynamic, asynchronous, and irregular parallelism balance against
the fundamental design choices for exascale operating systems.

6.3 Runtime Systems

When considering the challenge of supporting billion-way parallelism for an exascale system, it is
widely agreed that the bigger disruption will occur at the intra-node level rather than the inter-node
level. This is because the degree of intra-node parallelism needs to increase by about three orders
of magnitude relative to today’s high-end systems on the path to exascale, while the degree of
inter-node parallelism only needs to increase by at most one order of magnitude. Other challenges
at the intra-node level include vast degrees of performance and functional heterogeneity across cores
within a node, as well as severe memory and power constraints per core. Taken together, these
challenges point to the need for a clean sheet approach to intra-node runtime systems. They also
have a significant impact on inter-node runtime systems, because any successful inter-node runtime
system for exascale systems must be able to integrate well with new intra-node runtime systems
(hybridization).

Though there is a large variety of execution models under consideration for exascale computing,
there is also a growing consensus in the community on key abstractions that will need to be
present in an exascale execution model and that the runtime system (assisted by the compiler
and architecture) must provide first-class support for these abstractions. These abstractions are
expected to lead to research and development challenges in lightweight tasking, managing data
movement in memory hierarchies, coordination of dynamic task teams, managing heterogeneity
and in-situ runtime monitoring. These are discussed below.

It is widely accepted that the parallelism exposed by an exascale application must be over-
provisioned by 1-2 orders of magnitude relative to the available parallelism in hardware on an
exascale system. Even with lightweight OS kernels, it is unlikely to be practical to use OS threads
for this over-provisioning, especially due to the memory overheads imposed by standard OS threads.

ASCAC Subcommittee for the Top Ten Exascale Research Challenges 28



Thus, an exascale runtime system must support large numbers of lightweight tasks that are sched-
uled on a fixed number of “worker” OS threads (typically, one per core or hardware context).
A number of recent multicore programming models (e.g., OpenMP 3.0, Cilk, TBB, and a multi-
tude of DAG-parallelism schedulers) already assume the availability of lightweight task parallelism.
In an exascale runtime, there will be additional challenges in supporting lightweight tasks that
include support for heterogeneous processors and integration with asynchronous inter-node com-
munications. Support for end-to-end asynchrony across tasks and communications remains a major
challenge. Therefore, lightweight asynchronous tasks need to be developed as a fundamental prim-
itive for computation and communication across software and hardware; further, general support
for task preconditions can be used to include both computation and communication events (thereby
encompassing event-driven and message-driven execution models).

While memory hierarchy details will vary from platform to platform, there is agreement that
exascale software will have to deal with deep memory hierarchies combined with the need to min-
imize data movement due to energy limitations. Thus, the task scheduling runtime capabilities
discussed above will need to be locality-aware and be capable of supporting function shipping and
data shipping as interchangeable alternatives. In general, all data movement (memory accesses,
DMA transfers, inter-node messages) should be abstracted as asynchronous tasks whose completion
can trigger additional computation tasks and data movements.

Past approaches to coordinated parallelism such as thread groups and communicators involved
a fixed number of threads (e.g., the set of threads or processes synchronizing on a barrier does
not change after the first barrier operation is performed). However, dynamic task creation and
termination is expected to be a frequent and common operation in future exascale systems due to
large degrees of variability across processors and also due to resilience requirements. Thus, there’s
an urgent need for synchronization operations that can be performed on dynamically varying sets
of tasks. These synchronizations can sometimes be manifested as task termination operations
(e.g., sync, taskwait, finish, future), but additional synchronization (e.g., barriers, phasers, mutual
exclusion) may be needed in the midst of task execution. Mutual exclusion has received a lot of at-
tention recently with software and hardware approaches to transactional memory so as to avoid the
scalability and programmability limitations inherent in locks. Additional approaches to consider in-
clude the use of accumulators (lightweight embodiment of map-reduce, with better scalability than
locks) and the use of actors, both of which avoid data races in different ways (accumulators are well
suited for race-free deterministic parallelism, and actors are well suited for race-free nondeterminis-
tic parallelism). For all of the above, there is a general need to determine which task coordination
primitives will be best suited to supporting exascale applications on exascale hardware.

Exascale systems are anticipated to have an increased number of sources for non-uniform ex-
ecution rates that contribute to load-imbalances, which include adaptive algorithms, non-uniform
application of power management features, and recovery costs for software-based fault resilience
mechanisms. It will be useful to have an API that enables a runtime system or an application to
measure distances in a machine by comparing two memory addresses, or by comparing the physical
placement of two process ranks. Such information would provide useful cost information that can
be used by a runtime load-balancing algorithm to make rational decisions.

Finally, as discussed in section 7, monitoring tools will be critical for performance optimization
and correctness debugging. There is a need for research and development to determine how best to
use monitoring to provide performance and debugging feedback to users in a prompt and efficient
manner.
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6.4 Introspection

A self-optimizing adaptive control system requires a method for monitoring current operational
conditions, a model for predicting the response to a control decision, and further monitoring to
assess the results and apply corrections. Integrated performance monitoring and modeling will pro-
vide the intelligence necessary to control the behavior of the runtime. However, an exascale system
may flood users with a deluge of performance, timing, and resource measurement information from
all levels of the architecture. To make productive use of this data, it must be collected, distilled,
analyzed, and presented in an efficient and unobtrusive manner. Doing so enables runtime adaption
and decision making to be integrated into applications and directly into the software stack. An
effective dynamic control system for extreme scale systems requires both low-level information to
quantify detailed system characteristics, as well as high-level insights into expected behavior. The
instrumentation informs the adaptation policy for the runtime system, and is also available to the
application directly for application specific adaptations.

6.5 Energy Management

In the absence of energy management capabilities, thermal limits force compromises that may lead
to highly imbalanced computing systems (such as reduced global system bandwidth). The design
compromises required for power-limited logic will reduce system bandwidth and consequently reduce
delivered application performance. Scalable system software can help address these challenges if
appropriate interfaces are available for measurement and control of electrical energy and power use.

From an applications perspective, active power management techniques improve performance
on systems with a limited power budget by dynamically directing usage only to the portions of
the system that require it. For example, a system without power management would melt if it
operated memory interfaces at full performance while also operating the floating point unit at full
performance. This forces design compromises that limit the memory bandwidth to 0.01 bytes/flop
according to the recent projections [73]. However, in this thermally limited case, higher memory
bandwidth can be provided to the application for short periods of time by shifting power away from
other components. Whereas the projected bandwidth ratio for a machine would be limited to 0.01
bytes/flop without power management, the delivered bandwidth could be increased to 1 byte/flop
for a transient by shifting the power away from floating point (or other components that are under-
utilized in the bandwidth-limited phase of an algorithm). Therefore, power management is an
important part of enabling better delivered application performance through dynamic adjustment
of system balance to fit within a fixed power budget. Currently, changes between power modes
take many clock-cycles to take effect. For current application codes, power modes cannot switch
fast enough to be of use. While vendors have indicated that it is possible for power management
systems to switch to low-power modes within a single clock cycle, there is still a lot of work required
for scalable system software to coordinate switching across a large-scale HPC system.

Current power management features are primarily derived from consumer technology, where
the power savings decisions are all made locally. For a large parallel system, locally optimal
solutions can be tremendously non-optimal at the system scale. When nodes go into low-power
modes opportunistically based on local decisions, it creates a jitter that can substantially reduce
system-scale performance. For this reason, localized automatic power management features are
often turned off on production HPC systems. Moreover, the decision to change system balance
dynamically to conserve power requires advance notice because there is the latency for changing
between different power modes. So the control loop for such a capability requires a predictive
capability to make optimal control decisions. Therefore, new mechanisms that can coordinate
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these power savings technologies at system scale will be required to realize an energy-efficiency
benefit without a corresponding loss in delivered performance.

A complete adaptive control system requires a method for sensing real-time resource require-
ments, making a control decision based on an accurate model for how the system will respond to
the control decision, and then distributing that control decision in a coordinated fashion. Currently
the control loop to accomplish this kind of optimal control for power management does not exist.
Predictive models for response to control decisions are generally hand-crafted (a time-consuming
process) for the few examples that currently exist. There is no comprehensive monitoring or data
aggregation. More importantly, there is almost no tool support for integration of power manage-
ment into libraries and application codes. Without substantial investments to create system wide
control systems for power management, standards to enable vertical and horizontal integration of
these capabilities, and the tools to facilitate easier integration of power management features into
application codes, there is little chance that effective power management technologies will emerge.
The consequence will be systems that must compromise system balance (and hence delivered appli-
cation performance) to fit within fixed power constraints, or systems that have impractical power
requirements.

To address these significant challenges requires the capability to expose power, energy, tem-
perature, and performance data at many levels throughout the HPC system in a standard way
to the scalable system software and the application. Once obtained, acting on this data requires
that control capabilities be exposed that are appropriate for each varying interface need. As sys-
tems evolve each level will play a role in statically or dynamically adjusting system parameters to
application needs to maximize system efficiency. A widely scoped power API must be developed
that addresses and specifies both the measurement and control interfaces necessary to accomplish
these requirements. Finally, each system is part of a larger facility. Standard interfaces must be
developed to both expose accurate and timely system metrics to the facility, and to allow facil-
ity input into system scheduling policies to enable dynamic energy aware resource utilization of
multiple platforms within the larger facility.

6.6 Impact

Scalable system software provides DOE important options and opportunities to support the execu-
tion of mission applications on future hardware and system architectures. The critical component
of the scalable system software is the runtime system. In contrast to current runtimes, the exas-
cale runtime system will need the capability to manage asynchronous lightweight tasks, threads
and multicore processors, with a deep multi-layered memory hierarchy integrated into exascale sys-
tems. This adaptive runtime will be required to extract application performance while responding
to failures and managing power to control energy to solution. Co-design will play a key role in par-
titioning capabilities among the underlying hardware architecture, scalable system software stack,
and DOE applications.
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Figure 8: Notional programming system structure with programming, runtime, and machine envi-
ronments, and performance and resilience “stacks.”

7 Programming Systems

Programming systems encompass languages, compilers, runtime systems, and libraries, and serve as
a bridge from high-level algorithms to lower-level hardware and operating-system platforms. Given
the major changes underway on both algorithms and platforms, there is general agreement that
advances in programming systems are necessary for application enablement on exascale systems.
Further, advances in programming systems need to be coordinated with advances in hardware to
ensure that application developers can achieve both correctness and performance on a wide range
of exascale and post-exascale platforms without requiring heroic investments of skills and labor.

Figure 8 shows a notional structure of a programming system and its interfaces with algorithms
and exascale hardware. The center column shows that the programming system includes a pro-
gramming environment with DSLs (domain-specific languages), GPLs (general-purpose languages),
and compilers, a runtime environment with a runtime system and a global name space, and a
machine environment with a lightweight OS kernel, a machine abstraction, and real hardware that
implements the abstraction. This structure supports a separation of concerns across application
scientists, computational mathematicians, and computer scientists. Two important concerns for
exascale computing are performance1 and resilience, which are shown in the left and right columns
of the figure. Each includes goals, annotations, mechanisms, libraries, and monitoring tools.

At a high level, the primary research and development need for programming systems is to
provide a declarative goal-driven approach to application enablement on exascale systems, such as
the notional structure shown in Figure 8. Some of the details behind this need are elaborated on
in the following subsections2.

1“Performance” is used as a broad term that encompasses usage of any system resource such as wall clock time,
energy, memory, etc.

2Some of the text in this section was derived from the report on the Workshop on ASCR Programming Challenges
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7.1 Programming Models and Notations

It is useful to distinguish between a programming model, which refers to fundamental concepts,
and a programming notation, which refers to the actual syntax and semantics of the (general-
purpose or domain-specific) language used to express programs in a given model. In general, a
given programming model can be implemented in many programming notations.

There are significant research challenges that need to be addressed at both the programming
model and notation levels. Large-scale DOE codes are typically written in C++ or Fortran, with
heavy use of numerical frameworks and libraries that use MPI under the covers. However, recent
trends with many-core processors and accelerators have caused a major disruption in this model
due to their addition of significant new complexities at the intra-node level. These complexities
can be addressed at the programming model level through new abstractions that are better aligned
with the platform characteristics expected in exascale systems, and at the programming notation
level by choosing notations that are more amenable to automated transformation (as in tools such
as SPIRAL and FFTW) and that are more suitable for interoperability with C++ and Fortran.

New languages (notably Chapel and X10) can have a direct impact in the post-exascale era but
cannot be relied on as the primary vehicle for programming exascale applications, given the planned
schedule for achieving exascale capability. However, these languages are already having an indirect
impact on existing programming models (MPI and OpenMP) that are trying to evolve to exascale
by absorbing key ideas from these new languages, albeit without their notational benefits. Some
examples of this indirect impact can be found in recent extensions to OpenMP for task parallelism,
accelerators, and thread affinity.

Recently, there is growing interest in the use of embedded DSLs to achieve the research and
development needs for programming models. Embedded DSLs represent a compromise between
expressiveness and pragmatics by using an existing base-language (e.g., Fortran, C, and C++) as
the host language for the DSL extensions. Embedded DSLs are a pragmatic way to exploit the
sophisticated analysis and transformations capabilities of the compilers for standard languages.

7.2 Compilers

The challenge of automatic parallelization and optimization for today’s supercomputers, with dis-
tributed memories, multi-core processors, and accelerators, is already keeping compiler researchers
and developers very busy. Nevertheless, most application programmers today explicitly manage
parallelism, communications, multicore, and accelerators within program notations designed to
expose the hardware (e.g., MPI, OpenMP, CUDA, OpenCL, OpenACC). While they are not pro-
gramming in assembly, they are programming “to the metal” in the sense that the structure of
their code is strongly tied to the underlying system hardware and a particular execution model,
primarily bulk synchronous.

Such “to the metal” programming exacerbates the compilation challenge because it obscures
the underlying semantics of the application, making it impossible for a compiler to safely remap
or optimize to new machines or architectures. Such applications are practically “baked” to specific
machines, execution models and architectures. Taking applications forward to exascale requires a
rewrite.

Thus, the research imperative for compilers for exascale goes beyond expanding the repertoire
of optimizations and code generation techniques for new exascale hardware and execution models
(discussed below). It includes determining ways of expressing applications in the declarative, goal-
driven manner that maximizes the semantic content and minimizes the clutter of machine control.

for Exascale Computing held at the Information Sciences Institute in Marina del Rey. July 2011 [106].
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It must maximize the span of potential mappings that a compiler can reach in order to reach the
new levels of parallelism, locality, and explicit machine controls needed for exascale performance.
Without such reform of programming practice, the value of automatic optimization for exascale
architectures will be diminished.

7.3 Main Exascale Challenges for Compilers R&D Focus

The significant challenges posed to the compiler by exascale hardware and system software include:

• Additional concurrency (4-10X), to compensate for NTV-induced slowdown of individual
cores.

• Agility to NTV-induced increase variability of throughput from core to core.

• Deep Machine Hierarchy: exascale machines will have on the order of 10 levels of hardware
partitioning and memory hierarchy (core, tile, block, unit, socket, module, board, chassis,
rack, section, ...), compared today’s machines with 3-4. Mapped programs must specify data
layouts and execution schedules to conform to this hierarchy.

• Nimble DVFS: Voltage regulation on die will present finer-grained and more numerous op-
portunities for power savings in exploitation of slack in depowering windows. Mapped appli-
cations will need to explicitly manage DVFS through software APIs.

• Resilience, induced by system scale and NTV: Traditional bulk checkpointing will yield to fine-
grained local checkpointing. Mapped applications must somehow indicate local checkpointing
and restore points.

• Dynamic dataflow-oriented runtimes: The quest for greater concurrency and greater agility
(to both NTV induced variability and application imbalances) has revived macro dataflow
concepts foundationally for all proposed exascale runtimes. Mapped programs must indicate
explicit fine-grained synchronizations (inter-task dependences, continuations, etc.).

• Increased dispersion of “compute” resources through the machine: The relatively low cost
of transistors for “compute” (vs. communication and memory) is leading architects to plan
to sprinkle compute into non-traditional parts of the machine, specifically, in-network (e.g.
implementing versatile programmable units for collective operations) and in-memory (e.g.
Custom Memory Cube, and mass storage controllers for flash and HDD).

• Increased pressure to find more locality: Locality reduces communication, so directly attacks
the dominant cost of exascale computation. Note that the locality optimization imperative
(maximizing the grouping of data and computations) is in contention with the concurrency
imperative (which implies spreading things out).

• Explicit management of memory and communications: Explicit communications, RDMA,
scratchpad memories, software controlled caching, and collective memory operations will allow
more precise control of storage and communication to minimize wasted data storage and
motion.

Not only do compilers face challenges from below, from exascale hardware. They also face
challenges from above, from the applications.
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• New algorithms: In particular, communication avoiding linear algebra, multipole methods,
randomized numerical linear algebra, and combinatorial approaches to linear algebra (e.g.,
support preconditioners) have control and data flows that differ significantly from current
algorithms.

• Approximate algorithms: Applications and libraries will increasingly adopt the approach of
tuning precision to reduce energy; building on the success of mixed precision libraries. Recent
papers suggest vendors will be including variable precision floating point units to help support
this. There will also be a growth in approximate algorithms that can trade excess precision to
increase parallelism and/or reduce communication. This will challenge compilers to support
complex reasoning about numerical algorithms in the context of trading alternative mappings
in the optimization process.

Potential approaches to addressing these challenges are discussed below.

7.4 More Knobs for Programmers

These challenges raise the design question of whether to (1) simply design more features in the
programming abstractions (“at the metal”) to control the additional exascale system features,
or (2) to design ways for the compiler to automatically generate controls in the service of the
declarative goals.

The first approach, designing new controls within the programming abstraction, would have the
benefit of letting the programmers accomplish their programming goals without a compiler in the
way, but those programmers would face many more controls to manage, with potentially complex
interactions: an overwhelming manual programming challenge. The number of programmers who
could perform such optimization would be very limited. Also, such explicitly annotated programs
would be even more opaque than usual for automated optimization, and thus even more specialized
to specific machine instances. While the approach might yield some hard-won short-term successes
(a few applications coded by a few hero-programmers on a few machines), it will lead to much long-
term pain (trying to carry such specialized codes forward or broaden the base of programmers).

This is why the second approach, a declarative, goal-driven programming approach, is so at-
tractive. However, how, exactly, to achieve automatic optimization addressing these new exascale
challenges is a research challenge.

7.5 Compiler Research Directions

To achieve these exascale mapping objectives requires that the base of conventional automatic map-
ping technologies is solid. There are many gaps in current automatic optimization technology to fill.
These topics alone could fill a long research report. Research in general automatic parallelization,
auto-tuning, and machine modeling are all important.

Achieving additional concurrency requires a mix of explicit parallelism and implicit parallelism
to be mapped by the compiler. The notation must facilitate the programmer’s expression of max-
imal parallelism. This must be done in a way that supports mapping of the source to future
machines, minimizing the binding to any specific machine or execution model. The compiler’s job
is to extract and maximize the “right” parallelism. Intermediate representations that are “more
precise” in representing explicit and implicit parallelism are needed. Advanced code generation
techniques to macro-dataflow runtimes then will avoid introducing unnecessary constraints on par-
allelism (e.g., due to overly conservative reasoning about memory capacity) and overly conservative
synchronizations (e.g., barriers). Research should support declarative programming notations that
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encourage expression of true dependencies (data and control) in a program, but minimize extrane-
ous dependencies.

A side benefit of a dataflow programming model is that the “write once” logical abstraction is
coherent with a resilience approach since the compiler in mapping the applications has control over
the introduction of reused state and side effects that are needed for practical implementation. It
ought to be possible to combine it with the management of local storage for checkpoints, and the
creation of “roll-back” points in the code in the face of faults.

Research into the optimization of explicitly parallel declarative programs should also be sup-
ported. Most compiler optimizations and intermediate representations today are designed to rep-
resent and support optimization of sequential programs.

Supporting nimble DVFS requires introducing scheduling objectives that increase opportunities
for windows of time in which voltage can be decreased or units disabled for brief windows to save
leakage power. In essence this becomes an objective of “clumping” load in concentrated groups
to free up other resources to be powered down. This clumping is in tension with objectives for
concurrency (spreading things out), and so will likely need to be performed by the compiler in
a close trade-off among other optimization objectives. With the schedule determined, the code
generation section of compilation can emit calls to power control APIs.

With deep (e.g., 10 level ) hardware hierarchies, the traditional tiling and blocking of iterations
and data to achieve locality will become cumbersome. With one level of hardware hierarchy, a
3-deep nested loop (e.g., matrix multiply) becomes a 6-deep loop nest. With 10 levels, tiled, it
becomes a 30-deep nested loop. This presents various code image size and optimization complexity
problems. As an alternative to deep nesting, recursive program expressions have the benefit of
compactness in the face of hierarchy; they form the hierarchy dynamically at runtime with the
recursion. This suggests focusing on compiler techniques that favor generating recursive mappings,
with runtime exposition of the mapping.

Increasing locality will demand new approaches to program mapping. The traditional way to
increase locality is through loop fusion, which merges producers of data values closely in space
and time with their consumers. Ideally, the producer and consumer are so scheduled that the
communication occurs at the highest levels of the memory, even through the register file or the
bypass network in the datapath. Such fused schedules also have the benefit of reducing storage
requirements for intermediate values. Exascale will demand more aggressive fusion across the
application. For multi-physics, aggressively fusing distinct parts of the simulation, even when they
are written as separate program modules, presents itself as a source of significant potential locality.
In-situ UQ, visualization, and analysis, which are logically distinct parts of an exascale computation,
can also be closely fused. NTV architectures will have high ratios of register file capacity compared
to current architectures, supporting even greater fusion. Programming notations must be designed
so as to enable such global analysis and transformation, and compilers must be capable of taking
advantage of this locality.

The increased importance of such global analysis and transformations has implications for li-
braries. Libraries must shift from being opaque, stand-alone objects, toward being clear expressions
of their function, effects, and preconditions, that are optimized by the compiler along with applica-
tion codes. This presents opportunities for global optimizations such as aggressive fusion between
application and the library. Current practice is for library writers to develop silos of pseudo com-
piler and pseudo runtime functions (e.g., auto-tuning, task oriented runtimes) within libraries,
instead of exploiting compiler versions of these features. New optimization techniques, such as
communication-avoiding linear algebra (which are applicable to arbitrary loop nests), should not
be implemented as one-offs in a library, but implemented within the compiler so they can be per-
formed broadly across code bases and in concert with other compilation and optimization processes.
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7.6 Development Model

The mode of development and collaboration within the compiler community is the subject of much
conversation. Collaboration and integration of new techniques will increase the rate of success.
However, a single common “national compiler infrastructure” or an exclusive reliance on one model
of software exchange (strictly open source, or strictly commercial) will exclude important collabo-
rators and technology. Past experience with an open source national compiler infrastructure, SUIF,
is that useful research papers were produced, but not an adopted tool. Integration that brings the
best of the different technology sources together through open APIs and standard descriptions (e.g.,
source to source compilers, standard tuning languages, machine model description languages and
runtime APIs) will facilitate the integration of “best of breed” technologies from the many potential
contributors. Without question, the strongest compiler infrastructures to build on for exascale ca-
pabilities reside in U.S. commercial companies. Funding efforts to duplicate these existing available
technologies simply to have something open source is wasteful and should be discouraged. Strong
academic support is encouraged to achieve creative research and innovation; commercial software
companies can also provide innovation as well as product engineering and long-term support.

7.7 Impact

Exascale systems will be usable by very few scientists without advances in languages, compilers,
runtime systems, and libraries, all of which are encompassed in programming systems that serve as
the bridge from high-level algorithms to lower-level platforms. Addressing the programming system
research challenge is key to ensuring that application developers can achieve both correctness and
performance on a wide range of exascale and post-exascale platforms without requiring heroic
investments of skills and labor. These advances in programming systems will also be necessary for
application enablement on future departmental petascale systems.
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8 Data Management

Management of large volumes of data can be categorized into defensive I/O (i.e., the use of data
management systems to enable resilient calculation and operation) and offensive I/O (i.e., the use
of data management systems for other uses, including data analysis, visualization, and archiving
of results). Extracting scientific insight from simulations that run on large HPC supercomputing
facilities is of crucial importance. Scientific advances are made only once the data produced by the
simulations is processed into an output that is understandable by a scientist.

Data management is a foundational component of computational science today, serving as a
management mechanism for experimental and simulation results and providing the primary fault
tolerant component in HPC systems. Today’s data management systems, which provide the back-
bone of large-scale computational environments, have been stretched to the scalability limits of their
underlying architecture. Based on designs more suitable for today’s mid-range HPC environment,
leadership class systems across the DOE complex have struggled to achieve scalable performance
on these storage and data management systems.

Looking ahead, there is an expectation that system mean time to interrupt (MTTI) will decrease,
system scale will dramatically increase, while cost constraints and technology gaps mean that the
bandwidth of storage systems will decrease relative to our ability to generate data. These three
trends, together with an increased need to analyze the massive data produced by simulation, sensors,
and instruments, is outstripping conventional data management and analysis techniques. The lack
of credible solutions within the marketplace today cast a great deal of doubt on the success of a
“business as usual” approach to future extreme-scale data management systems.

The disruptive changes imposed by a progressive movement towards the exascale in HPC
threaten to derail the scientific discovery process. Today’s successes in extracting knowledge from
large HPC simulation output are not generally applicable to the exascale era, and simply scaling
techniques to higher concurrency is insufficient to meet the challenge. [Scientific Discovery at the
Exascale, p. 1, http://science.energy.gov/ /media/ascr/pdf/program-documents/docs/Exascale-
ASCR-Analysis.pdf.]

8.1 Exascale Data Management Challenges

Some challenges in data management are common to both offensive and defensive uses, while others
are specific to the usage mode. These are discussed below, the common ones first, then the those
specific to each mode of operation.

8.1.1 Challenges Common to both Offensive and Defensive I/O

Reliability, availability, and correctness of data management system and data transfer are vital
areas in need of improvement. Today’s data management systems are assumed to be completely
reliable as the data management system is the resilience mechanism for large supercomputers. In
the future, storage systems will become large enough that we must plan on failure and corruption
in these subsystems on a regular basis, so next generation solutions in this are in desperate need.
Recent work on the DOE Storage Fast Forward project is daring to explore how HPC storage
systems might be allowed to fail [9].

Affordability of data management, both procurement and operational, is a huge challenge. It
is clear that over the last twenty years of deploying supercomputing environments that we have
moved from low single digit percentages for infrastructure versus the cost of the supercomputer
itself. Today this percentage is easily above 20% percent, and growing. Some of this is due to the
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power/cooling of HPC environments but the growth in comparative costs for data management
systems has also risen dramatically. A recent study indicates that an all disk data management
solution will be too costly due to bandwidth growth and an all tape archive will similarly be too
costly for the same reason [55] [79].

Scalability of data management solutions in terms of compute, storage, and networking com-
ponent counts, as well as with respect to science workload needs, is a continuing issue, as scales
need to extend into the billion-way concurrence mapping to potentially millions of I/O devices
at multiple tiers. The realization that we need to utilize lesser semantics for I/O was called out
strongly by the HECFSIO community many years ago [7].

Scientific workflow management of data from memory to archive at next generation scales is
not well understood. An example of this is scientific parallel data archives, which employ parallel
tape striping today. If we stay on the path we are on in the archive area, we would need to stripe
data to hundreds of tape drives for tens of hours to move the data sizes we anticipate. Even with
erasure protection across these highly mechanically challenged devices, there is little chance this
type of solution will work, nevertheless be affordable [55]. In order to deal with the massive data
sets developed and processed by these new systems, most science areas have a need for end-to-end
solutions for data management and analysis.

8.1.2 Challenges Specific to Defensive I/O

Enrichment of application interfaces targeted at defensive I/O workloads is required. The ability
to deal with the eventuality that the data management system must be allowed to be in failure
mode frequently and the ability to map to billion-way task parallelism are two of many drivers for
the requirement for new data management interfaces.

Integration with other system management and resilience functionality is also necessary. There
is some hope that other resilience mechanisms, besides utilizing the data management systems for
checkpoint style resilience, may be achievable and it is necessary to coordinate the data management
system with these potential resilience mechanisms. Further, data movement will be expensive in
power and time and may need to be scheduled and avoided at all costs. It is important that
data management systems be integrated well into the exascale systems and applications to take
advantage of any efficiency possible. We must be careful to apply data locality where it makes
sense. This, however, does not mean that all functions must maximize locality, but truly expensive
data movement should be managed.

8.1.3 Challenges Specific to Offensive I/O

Data organizations and functions that cater to efficient output and also data analysis, visualiza-
tion, archiving, indexing, search, reduction, transformation, provenance, and representation are
necessary. It may not be possible to do analysis on data once it gets all the way to disk-based
mass storage due to the times involved in dealing with multi-petabyte objects [36]. It will become
vital that data are organized efficiently so that analysis and other downstream functions are even
possible given the volumes of data anticipated.

Improved support for application data models to facilitate the above organizations and functions
is necessary to allow applications to be able to take advantage of and more simply deal with the
data management tasks.

The entire workflow for data analysis and visualization must change in the context of the high
power cost of data movement and the worsening I/O bottleneck for exascale systems. Simply scaling
existing techniques to higher concurrency is insufficient to meet the challenge. To extract knowledge
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from exponentially increasing multi-scale, multi-physics data, focused research is required into
effective in situ processing frameworks, new I/O middleware systems, fine-grained visualization
and analysis algorithms to exploit future architectures, and co-scheduling analysis and simulation
on HPC platforms. Approaches to data triage and/or compression must also be developed that
preserve the capability for exploratory analysis to discover the unexpected.

8.2 Research Directions

In getting to terascale and on to petascale computing, the area of data management has had to
work hard to keep up under the challenges of lagging storage device bandwidths and reliability
compared to the meteoric growth in compute capability. This area of data management for HPC
has produced many commercial products through government-funded and/or led initiatives such
as most of the middleware for I/O, including MPI-IO and more recently Parallel Log Structured
File Systems (PLFS) [115] [12]. In the parallel file system area, products like Panasas, IBM’s
GPFS, and Lustre [86] [110] [112] were all supported or shaped in some way by government future
investment initiatives along with careful management to produce usable products. More recently
the introduction of the “Burst Buffer” concept to utilize in-system solid state storage like Flash is
all the rage, which is making its way into commercial products as well [79] [54].

It is clear that commercial products, with the help of government funding and guidance, have
made current scale processing viable and will play a huge role in the future. Of course, other non-
commercial efforts to fill in the gaps and research and development to lead the way for the HPC data
management community, are also crucial ingredients for managing this important area to success.
Looking towards exascale, five strategies are contemplated for managing the data management area
of HPC.

First, develop, hone, and disseminate an understanding of leadership computing data manage-
ment architectures, workloads, and issues both – current and future. Community understanding
of current architectures and workloads, as well as trends moving forward, is essential to effectively
analyzing gaps in research and development as well as the product space. This understanding
can be refined through measurement of current systems, modeling and simulation, and the use of
testbeds by researchers exploring new software capabilities. Needs in this area include support for
large supercomputing centers to collect, model, and disseminate information about current and
future-facing workloads, and deployment and management of large future-looking testbeds for the
data management research and development community. A strong community that understands
the problems we face is vital and must be nurtured [7].

Second, track ongoing research and development activities and identify areas where gaps create
risk in terms of future exascale deployments. The HECFSIO activity provided a useful view of
ongoing file systems and I/O research and development across multiple agencies, industry, and
academia that aided in identifying gaps. A similar activity would provide needed information on
current research and development activities of relevance to exascale data management.

Needs in this area include a rekindling of the HECFSIO concept, a multi-agency approach to
research and development portfolio management, funded activities in the gap areas via carefully
crafted and focused solicitations, and active management of the projects [7]. Of course, the gaps
lie in the challenges mentioned above in the areas of reliability, affordability, scale, workflow man-
agement, interfaces, integration, data organization, and application-centric data models. The gaps
span the I/O and data storage software stack from in-system solid state storage, through disk-based
parallel file systems, all the way to parallel archives. Fundamental changes to the design concepts
that storage systems are always available/reliable and minimizing data movement where necessary
need to be made to the data management subsystems to enable exascale-class computing.
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It is quite possible that the scientific HPC community can leverage technology used in the
the big data/analytics and cloud storage worlds in providing some portions of the overall data
management area, but the problems are not identical. For example, single scientific objects to
be stored might be petabytes in size in scientific HPC, but the typical size of a cloud storage
object might be a few megabytes. Another example is how tightly interconnected data analysis
might be in scientific workloads where the bulk of commercial data analytics today at least is
quite embarrassingly parallel. Investigation into how leverage of these industry trends might be
accomplished is also needed.

Third, facilitate commercialization of successful prototypes that provide necessary capabilities
for exascale data management systems. Commercialization provides a vehicle for long-term support
of software needed for exascale and beyond. Activities could include, for example, the commercial-
ization of prototypes developed under the DOE Storage Fast Forward activity, or the integration
of successful prototype software into commercial products under SBIR funding.

Needs in this area primarily include funding along the lines of the DOE Path Forward [35] style
investments to continue the successes of HPC pushing industry in the data management arena.
Different challenges exist economically in todays world of technology funding/management though.
For example the “Big Data Analytics” industry is creating technologies that might be leveraged
to provide some portions of the data management solution for Exascale class computing with the
proper investments to make some of those ideas useful to the HPC community. Further, it is quite
likely that investments by the HPC community will help the U.S. “Big Data Analytics” industry as
well. For reasons like this, it is important to engage top subject matter experts to carefully manage
investment portfolios for leverage and effect. It is vital that interim supercomputer procurements
on the road to exascale require the commercialized data management solutions to be provided and
supported to further solidify these solutions in the market place.

Fourth, support data management technologies that have not been commercialized but provide
needed solutions to exascale data management challenges. Not all critical technologies are on a
path to commercialization at this time: they may fill a niche particular to exascale systems, or they
may be disruptive technologies that do not fit well into the business models of current vendors.
While they remain on the critical path, these technologies must be supported until they are adopted
by vendors or commercial alternatives emerge. The need in this area is essentially some level of
funding commitment for niche-filling technologies that are required because of lack of commercial
appeal in the near term.

Fifth, communication/coordination with the data management community and with other HPC
related communities is needed. As has been mentioned before, the HECFSIO mechanism for com-
munity involvement, gap determination, research and development road-mapping, and research and
development/commercialization portfolio management that includes multiple government agencies,
universities, and industry was an excellent model for vertical management within the high perfor-
mance data management area [7]. A similar multi-agency effort needs to be spun up and maintained
with outcomes of better community involvement, excellent coordination, and portfolio management
assistance in the form of annual documentation. Additionally the data management community
needs to continue to be engaged in co-design activities with other areas of the exascale pursuit
such as OS, runtime/execution, architecture, applications, programming models, etc. via co-design
exchange and activities.

The needs in this area are some continuous funding opportunities for the universities in this
area and a respin of the HECFSIO concept, a multi-agency portfolio management/community
communications body.
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8.3 Impact

The HPC data management solutions deployed today were designed well over a decade ago. The
target for those solutions was a decade, which is approximately now. It is clear that those solu-
tions are running out of gas by looking at the evolution of I/O libraries to fill gaps in function
such as locking, name space scaling, correctness, and data movement minimization. In a decade,
when exascale systems present billion-way parallelism, severe power limitations, and mean time to
interrupts in the few hours range, the current solutions with I/O libraries filling gaps will have long
since run out of gas from the scalability, resilience, and power efficiency points of view. The impact
of the work laid out above will simply make possible computing at the exascale from the data point
of view. Without this important data management work, it is unclear that applications will be able
to run to completion to get a correct answer, systems can be fielded within power constraints, or
systems can even be afforded.
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9 Exascale Algorithms

Advancing science requires development of novel physical models to satisfy the accuracy and fidelity
needs for targeted simulations. The impact of the need to increase simulation fidelity on compu-
tational science is two-fold. First, more complex physical models must be developed to account
for additional aspects of the physical phenomena being modeled. Second, for the physical models
being used, increases in resolution for key system variables, such as numbers of spatial zones, time
steps or chemical species, are needed to improve simulation accuracy, which in turn places higher
demands on computational hardware and software.

Scientific models create the functional requirements that drive the need for numerical algorithms
and software implementations. The choice of model is in part motivated by the science objectives,
but it is also constrained by the computer hardware characteristics attainable in the relevant time
frame. The choice and specification of system attributes (e.g., peak speed or node memory capacity)
tend to constrain the functional attributes able to be employed in a given physical model on that
system. Models and associated algorithms are not selected in isolation but must be evaluated in
the context of the computer hardware environment. Furthermore, algorithms that perform well on
one type of computer hardware may become less effective on newer hardware, so selections must be
made carefully, and may change over time. As will be described below, it will be very challenging
to devise algorithms and software that can effectively exploit the exascale systems that are being
envisioned.

It is widely recognized that, to date, improved numerical algorithms have contributed as much
to increases in computational simulation capability as have improvements in hardware. These algo-
rithms are often provided to scientists in the form of numerical libraries, which isolate the users from
the details and allow optimization by system vendors. Future developments in computer systems
will throw even greater focus on algorithms as a means of increasing computational capability. En-
hancing the national capabilities in advanced computing algorithms and software will have a major
impact on the U.S.’s future scientific research capacity in the ever-increasing number of domains
in which high performance computing is, or is set to become, a core activity. In addition to the
domains within DOE’s areas of research, it is absolutely essential that the DOE make strategic
investments now in high performance computing algorithms and software to maintain the U.S.’s
international leadership in scientific computing.

Significant new model development, algorithm re-design, and science application code re-imple-
mentation, supported by exascale-appropriate programming models, will be required to exploit the
power of exascale architectures effectively. New algorithms will need to be designed to optimize not
only for floating-point performance and accuracy, but also to minimize associated data movement,
power, and energy costs. The transition from current sub-petascale and petascale computing to
exascale computing is expected to be at least as disruptive as the transition from vector to parallel
computing in the 1990s. An intensive co-design effort will be essential for success, where system
architects, application software designers, applied mathematicians, and computer scientists work
closely together to produce a computational science discovery environment that fully leverages the
significant advances in computational capability that will be available at the exascale.

Moving to exascale will put heavier demands on algorithms in at least two areas: (1) the
need for increasing amounts of data locality in order to perform computations efficiently; and (2)
the need to obtain much higher factors of fine-grained parallelism as high-end systems support
increasing numbers of compute threads. As a consequence, parallel algorithms must adapt to
this environment, and new algorithms and implementations must be developed to approach the
computational capabilities of the new hardware. Below is a discussion of several key research areas
in numerical algorithm development for exascale computing.
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9.1 Multicore-Friendly and Multicore-Aware Algorithms

Scalable multicore systems bring new computation/communication ratios. Within a node, data
transfers between cores are relatively inexpensive, but temporal affinity is still important for ef-
fective cache use. Across nodes, the relative cost of data transfer is growing very large. New
algorithms must be developed that take these issues into account, such as communication-avoiding
algorithms that increase the computation/communication ratio, algorithms that support simulta-
neous computation/communication, and algorithms that vectorize well and have a large volume of
functional parallelism.

9.2 Communication Avoiding Algorithms

Algorithmic complexity is usually expressed in terms of the number of operations performed rather
than the quantity of data movement to memory. This is antithetical to the expected costs of
computation at the exascale, where memory movement will be very expensive and operations will
be nearly free. When solving very large problems on parallel architectures, the most significant
concern becomes the cost per iteration of the method, typically because of communication and
synchronization overheads. This is especially the case for preconditioned Krylov methods, which
are the most popular class of iterative methods for large sparse systems.

To address the critical issue of communication costs, there is a need to investigate algorithms
that minimize communication. New lower bounds on bandwidth and latency must be derived for
various numerical algorithms on parallel and sequential machines, e.g., for dense and sparse linear
algebra algorithms where the well-known lower bounds for the usual O(n3) matrix multiplication
algorithm should be extended. In many cases, new algorithms that attain these lower bounds must
be invented. Another example of needed research is in Krylov subspace methods like GMRES,
CG, and Lanczos, where one should devise means to take k steps of these methods with the same
communication costs as a single step.

Scientists also need to consider a broader range of numerical algorithms. An example is the Fast
Multipole Method (FMM) [24, 52, 53, 104], which trades precision to achieve significant reductions
in both computation (asymptotically, from O(n2) to O(n)) and communication. This algorithm
has been named as one of the most important algorithms of the 20th [26] and 21st centuries [94],
yet strangely has seen little adoption (perhaps due to its initial perceived complexity?). However, a
growing community of algorithms experts (e.g., [8]) are finding that the future success of the exascale
era may go hand-in-hand with the ability for researchers to develop new fast direct solvers and
adaptations to the FMM. The route to this may involve using kernel-independent approaches [75,
76, 103, 119, 124, 125] that remove the need for FMM solvers to be hand crafted for particular
applications. The breadth of application of FMM is not limited to such solvers. One important
application will be its ability to reduce communication of large FFTs by close to three-fold [38,74].

9.3 Synchronization Reduction

It is often necessary in an algorithm to synchronize the computation. A good example is the
parallel computation of dot products. Synchronization is needed after such global reductions.
However, synchronizations can become bottlenecks. Thus, it is necessary to design algorithms that
synchronize as little as possible. Attempts have been made to restructure existing algorithms so that
the number of synchronizations is reduced. An example is the conjugate gradient algorithm. By
using some of the mathematical identities, it is possible to come up with alternative versions of the
conjugate gradient algorithm that have just one synchronization rather than two in the conventional
description of the algorithm. Parallel-in-time algorithms are a more extreme example, in which
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additional concurrency is obtained by decomposing the solution in time and using an iterative,
multi-level approach to enforce causality between the independently advanced time segments.

Restructuring algorithms to reduce the number of synchronizations, and in general the amount
of communication, will become more important in the exascale era. However, it should be noted
that it is not necessarily the case that all the variants of an algorithm have the same numerical
behavior. In the case of conjugate gradient, it is known that some variants may not be numerically
stable. Thus, in restructuring an algorithm to reduce synchronization and communication, it is
important to investigate the stability of the variants.

9.4 Multi-Physics Algorithms

Exascale resources will provide the opportunity to increase the physical fidelity of scientific simu-
lations, which presents several issues and opportunities that require more research. Many applica-
tions of interest to DOE involve coupled physical processes, e.g., nuclear reactors and magnetically
confined reacting fusion plasmas. Coupling can either be volumetric or interfacial, and various
algorithms exist to solve the resulting model, either as a fully-coupled or operator-split system.
The former case results in the solution of a large, nonlinear, algebraic system, and the development
of efficient preconditioners for such a system is critical. One approach may be to use split-physics
solvers as a form of pre-conditioning, but there may be other advantages to split physics approaches,
especially if the physical modules provide a level of coarse-grain concurrency. However, the math-
ematical properties of most operator-split codes in practice are not well understood. Research is
needed to define the strength of coupling and how it should affect algorithm choices, into how syn-
chronization could be weakened in split approaches, and into provably stable, high-order accurate
splitting schemes. Finally, exascale resources may encourage attempts to use models that were
previously considered infeasible, and this may require significant new algorithm development.

9.5 Multi-Scale Algorithms

As with multi-physics algorithms, the potential increase in available resources at the exascale will be
used to address ever more challenging multi-scale problems. Multi-scale algorithms include adap-
tive mesh refinement, asymptotic-preserving discretizations, and simulation with models at different
scales coupled through scaling-bridging techniques such as moment models, coarse-grained molecu-
lar dynamics, projection-based methods, homogenization, renormalization group methods, and the
Mori-Zwanzig formalism. The treatment of multiple scales can be global (multiple-scale models
are defined over the whole domain) or local (static or adaptive model refinement, often coupled
with adaptive mesh refinement in the latter case). Multi-scale algorithms should provide additional
opportunities for concurrency; often, the model results in a hierarchy of descriptions that should
map effectively onto the hierarchical structure of exascale architectures. Generally, coarse models
are also a reduction in the number of degrees of freedom of the finer models, and solutions at
the coarse scale can be used effectively to accelerate the solution at the fine scales, perhaps in an
asynchronous, iterative way. Adaptive multiscale algorithms are an important part of the DOE
portfolio because they apply computational power precisely where it is needed. However, these
algorithms also introduce challenging computational requirements because they introduce dynam-
ically changing computation that results in load imbalances. Finally, reduction processes like the
Mori-Zwanzig formalism produce, in general, stochastic PDEs, for which theoretical results and
numerical solution techniques are underdeveloped. Exascale computing will open up opportuni-
ties for additional research in multi-scale analysis and the development of multi-scale models and
algorithms suitable for exascale machines.
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9.6 Adaptive Response to Load Imbalance

As we move towards systems with billions of threads, even naturally load-balanced algorithms on
homogeneous hardware will present many of the same load balancing problems that are observed
in current adaptive codes. For example, software-based recovery mechanisms for fault-tolerance
or energy-management features will create substantial load-imbalances as tasks are delayed by
rollback to a previous state or correction of detected errors. Dynamic scheduling based on directed
acyclic graphs (DAGs) has been considered as a path forward, but this approach will require new
approaches to optimize for resource utilization without compromising spatial locality.

9.7 Scheduling and Memory Management for Heterogeneity and Scale

Extracting the desired performance from environments that offer massive parallelism, especially
where additional constraints (e.g., limits on memory bandwidth and energy) are in play, requires
more sophisticated scheduling and memory management techniques that have heretofore been ap-
plied to numerical algorithms. Confronting the limits of domain decomposition in the face of
massive, explicit parallelism introduces another form of heterogeneity. Feed-forward pipeline par-
allelism can be used to extract additional parallelism without forcing additional domain decompo-
sition, but exposes the user to dataflow hazards. Ideas relating to a data-flow-like model, where
parallelism is expressed explicitly in DAGs, allows for the scheduling of tasks dynamically, support
of massive parallelism, and application of common optimization techniques to increase throughput.
Approaches to isolating side effects include explicit approaches that annotate the input arguments
to explicitly identify their scope of reference and implicit methods, such as using language semantics
or strongly typed elements to render code easier to analyze for side effects by compiler technol-
ogy. New primitives for memory management techniques are needed that enable diverse memory
management systems to be managed efficiently and in coordination with the execution schedule.

9.8 Energy-Efficient Algorithms

It is widely recognized that emerging constraints on energy consumption will have pervasive effects
on HPC. Energy consumption must now be added to the traditional goals of algorithm design, i.e.,
correctness and performance. The emerging metric of merit is performance per watt. Consequently,
it is essential to build power and energy awareness, control and efficiency into the foundations
of exascale algorithms and the numerical libraries in which they are often realized. First and
foremost, this will require that standardized interfaces and APIs be developed for collecting energy
consumption data, just as PAPI [20] has done for hardware performance counter data. Accurate
and fine-grained measurement of power consumption underpins all tools that seek to improve such
metrics. Anything that cannot be measured cannot be improved. Secondly, these tools must be used
to better understand the effects that energy-saving hardware features have on the performance of
numerical algorithms. Finally, parameters and alternative execution strategies must be identified
for each numerical algorithm that can be tuned for energy-efficient executions, and to enhance
schedulers for better low-energy execution.

9.9 Automatic Adaptation of Algorithms

Numerical algorithms and libraries need to have the ability to adapt to the possibly heterogeneous
environment in which they operate. Such adaptation must deal with the complexity of discovering
and applying the best algorithm for diverse and rapidly evolving architectures. An automated
process would be best, both for the sake of productivity and for correctness. Here, productivity
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refers both to the development time of the implementation and to the user’s time to solution.
The objective is to provide a consistent library interface that, independent of scale and processor
heterogeneity, achieves good performance and efficiency by binding to different underlying code,
depending on the configuration. The diversity and rapid evolution of today’s platforms mean that
such automatic adaptation of libraries, such as BLAS, will be indispensable to achieving good
performance, energy efficiency, load balancing, etc., across the range of systems. In addition,
such adaptation has to be extended to frameworks that go beyond libraries, such as optimizing
data layout (e.g., blocking strategies for sparse matrix/SpMV kernels), stencil auto-tuners (since
stencils kernels are diverse and not amenable to library calls), and even tuning of the optimization
strategy for multigrid solvers (optimizing the transition between the multigrid coarsening cycle
and bottom-solver to minimize runtime). Adding heuristic search techniques and combining these
with traditional compiler techniques will enhance the ability to address generic problems extending
beyond linear algebra.

9.10 Required Action

ASCR has started to direct more attention to the development of numerical algorithms for exascale
computing. For several years, most funding opportunities from the ASCR Applied Math program,
including the Early Career Research Program and the recent “Exploratory Research for Extreme-
Scale Science” call, have required the proposed research to address future architectural challenges.
More explicitly, the projects funded under the “Resilient Extreme-Scale Solvers” initiative, the
three Exascale Co-Design Centers, and the FASTMath SciDAC Institute, are all directly addressing
some aspects of the algorithmic challenges. The Exascale Mathematics Working Group, chartered
by ASCR, will soon produce a detailed report on the needed research in applied mathematics for
exascale computing, and this should be acted on by DOE with funding above and beyond the
applied math base program3.

Beyond building a more coherent applied mathematics research program for exascale computing,
DOE must facilitate communication and co-ordination between numerical algorithms researchers
and other activities within the exascale computing enterprise. The move to extreme-scale computing
will require tools for understanding complex behavior and for performance optimization to be based
on a knowledge-oriented process. Performance models and expectations will required for algorithm
investigation and reasoning. The level at which tools interoperate and can be integrated with the
application development and execution environment must be raised. The challenges for performance
analysis and tuning will grow as performance interactions and factor analysis will involve a whole-
system perspective. The co-design methodology is iterative, requiring frequent interactions among
hardware architects, systems software experts, designers of programming models, and implementers
of the science applications that provide the rationale for building extreme-scale systems.

9.11 Impact

Numerical algorithms are the core of all physical simulation codes. To fulfill the promise of extreme-
scale science enabled by exascale computers, existing numerical algorithms must be redesigned and
new numerical algorithms must be developed so that a significant percentage of the potential
performance of these machines can be reached. An exascale effort without investment in advanced
numerical methods will produce machines that will fail to meet the science goals of the DOE.

3Exascale computing is just one area of applied mathematics research needed by DOE, so exascale algorithms
research must not consume a disproportionate amount of the available resources.
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10 Algorithms for Discovery, Design, and Decision

Future supercomputer architectures will provide unprecedented computing power, but it is impor-
tant to understand now how such capability will be used to the advantage of extreme-scale science.
What is clear is that one-off, “heroic” forward simulations on the scale of a full machine contribute
little, in isolation, to scientific knowledge. It is the aggregate of ensembles of simulations that
ultimately informs scientific theory and engineering design. Exascale computing holds the promise
of providing the resources necessary to determine not only solutions, but their sensitivity to inputs,
their uncertainties, and their optimality under a given set of design or decision constraints.

To make predictive simulation for design and decision a reality in the exascale computing con-
text, however, work must immediately begin to develop scalable, resilient methodologies for uncer-
tainty quantification (UQ) and mathematical optimization. The coming exascale era provides not
only an opportunity to build optimization and UQ capabilities into simulation codes, but these ad-
ditional capabilities, which ultimately reflect the true use cases for scientific simulation, may in fact
be key to achieving high utilization on exascale computers. In particular, techniques more tightly
coupled to the forward solution strategy could provide opportunities for re-use, communication-
hiding, and even vectorization across multiple solutions. To impact future codes, however, research
must be done now to develop, explore, and understand myriad algorithmic design tradeoffs.

10.1 Research Directions

Uncertainty quantification and mathematical optimization are extensive fields that have existed
for some time, but their application to multi-scale and multi-physics scientific simulation is a more
recent and evolving development. Uncertainties exist in all models, either due to intrinsic variability
or lack of knowledge, and sources of uncertainty include inaccurate physical measurements, bias in
mathematical descriptions, and numerical approximation errors in simulations. UQ is a broad term
for a collection of activities that includes uncertainty characterization, forward propagation, and the
inverse problem of parameter estimation/model calibration. As such, it is critical to organize and
design simulations and physical experiments that ensure that the right types and amount of data
are available not only to quantify uncertainties, but ultimately to reduce their effect on quantities
of interest (QoIs) – the desired outputs of simulations.

Mathematical optimization, on the other hand, involves finding the best value(s) of an objective
function, subject to constraint functions characterizing the feasible design/decision space. When
physical or simulated phenomena are involved, these constraints necessarily include the space of
realizable solutions from a simulation code. In one sense, both UQ and optimization can be seen as
outer loops around the traditional forward simulation, and so both represent a substantial increase
in needed computational resources. That need is amplified at the intersection of these two activities
in areas such as optimization under uncertainty, robust optimization, or optimization-based model
calibration. Exascale computing will begin to provide the necessary resources to facilitate UQ and
optimization for complex multi-physics codes, but there is much research to do to achieve this goal.

10.1.1 Uncertainty Quantification

It is widely expected that rigorous uncertainty quantification over high-dimensional input spaces
will play a crucial role in enabling extreme-scale science [34,90]. Indeed, a thousandfold increase in
computing power would facilitate orders-of-magnitude more simulation realizations. A fundamental
challenge in UQ is the curse of dimensionality, which is caused by the explosion in computational
effort required to approximate the high-dimensional response of QoIs to input uncertainties. In the
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last decade, this problem has gained considerable attention, and many intrusive and non-intrusive
methods have been developed to alleviate it [4, 5, 31,45,48,57,82,83,89,91,92,122,123].

Considering the forward problem, a standard non-intrusive UQ approach is to sample from
the probability distributions of input parameters, execute a simulation for each sample, and either
to compute statistics of the ensemble (e.g., classic Monte Carlo), or to construct a interpolated
response surface surrogate (e.g., stochastic collocation). On the other hand, similar to a stochas-
tic collocation approach, an intrusive method also constructs a stochastic polynomial approxima-
tion, typically orthogonal polynomials with respect to the probability density function, and uses a
Galerkin projection that couples both the deterministic and stochastic degrees of freedom. Both
approaches have been effective at producing software and algorithms relying on modest numbers of
simulations that scale well on existing petascale architectures. However, future exascale computers
will provide enough concurrency for a thousand-fold increase in petascale sample evaluations for
uncertainty propagation applied in this manner. The anticipated increase in node-level parallelism
will favor increasing concurrent sample evaluations either by executing each sample on a smaller
number of compute nodes or by executing multiple samples simultaneously on each compute node.

To leverage the increase in node performance, samples could be evaluated in parallel through
multi-level embedded propagation schemes, whereby collections of samples are executed asyn-
chronously and samples within each collection are propagated simultaneously at the node and
processor core levels. Embedding portions of the “uncertainty loop” at the lowest levels of the
simulation code requires replacing each scalar datum in a calculation with an array for the uncer-
tainty representation of that datum, such as samples in a stochastic collocation-type method or
polynomial coefficients in a stochastic Galerkin-type method. Operations on that datum can then
be translated to parallel operations on the uncertainty array, which improves locality and exposes
additional fine-grained parallelism. Since the messages for multiple realizations wil be incorporated
into a single message for the ensemble, total communication time will be reduced. Finally, this
approach will enable the design of new algorithms that reuse data and calculations across uncer-
tainty representations to reduce aggregate simulation cost, (e.g., reuse of mesh calculations that are
independent of uncertain input data) or of solvers and preconditioners across an ensemble [64,65].

While such approaches could enable more concurrency in aggregate uncertainty propagation,
there are considerable challenges that must be overcome to apply these ideas to practical scientific
problems. First, redesigning the inner loops of simulation codes will require both considerable
programming effort and knowledge of both simulation technologies and UQ methodologies. Code
transformation techniques based on automatic differentiation could alleviate much of this diffi-
culty [49,97,99]. Second, the concept of propagating multiple samples simultaneously at the scalar
level of the simulation is predicated on the assumption that the code paths for these samples do not
diverge greatly; otherwise, no benefit, or possibly even harm is achieved. However, many scientific
simulation codes exhibit some form of non-smooth behavior that drives the simulation into different
regimes depending on the values of the uncertain inputs. Careful research is needed to connect
these behaviors to high-level adaptive uncertainty propagation methods that decide when and how
to group samples for co-propagation. Finally, this form of uncertainty propagation generates lin-
ear and nonlinear problems with a special Kronecker-product structure. Little research has been
undertaken to exploit this structure in solution and preconditioning algorithms. Effective parallel
sparse partitioning, reordering, and balancing algorithms for the higher-order tensors generated by
these approaches are also required.

Finally, in any UQ approach for simulations, the dominant cost lies in the solution of the under-
lying deterministic model. High-fidelity, multi-scale, multi-physics models can exhaust the resources
on the largest machines with a single instantiation and, as such, are not practical for even the most
advanced UQ techniques. Future increases in computational resources will be accompanied by con-
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tinuing demands for increased resolution and physical fidelity. Consequently, new approaches are
needed to decrease simulation costs in the UQ context. To exploit hierarchal exascale architectures,
multi-level hierarchical sampling, interpolation, and polynomial approximations will enable the use
of existing preconditioners [39–41,47,50,96,98,101] at each level to inform solvers at the next level
of the hierarchy and the efficient generation of new preconditioners to accelerate the convergence
of additional sampling/collocation points or polynomial bases. Moreover, in contrast to principal
orthogonal decomposition (POD)-type reduced order models [21–23,56,121], moment methods and
variational techniques [77,81,109] could be used to develop multilevel formulations of the determin-
istic problem that would elucidate common solution structures across multiple UQ levels, including
structures induced by multi-scale dynamics and scale separation. However, to minimize the total
cost at a prescribed error level, a general strategy must be developed to balance the contributions
from approximation error in the stochastic space with model error in the deterministic space. Such
a strategy will require analysis of both the deterministic model errors and stochastic polynomial or
sampling errors.

This is not an exhaustive list of the research challenges facing UQ at the extreme scale. How-
ever, because of potential effects on simulation code structure and composition, these examples
demonstrate the immediate need to address the exascale challenges of UQ.

10.1.2 Optimization

The dramatic increase in computing capability at the exascale is expected to increase the role
that mathematical optimization plays across the science and engineering landscape [34]. However,
substantial barriers exist that prevent simple reuse of current optimization algorithms for appli-
cation at the exascale. In traditional mathematical optimization, the optimization algorithm is
represented by an outer loop around the forward evaluation of objective/constraint functions and
their respective derivative/adjoint functions. These loops tend to be inherently sequential: the
functions are evaluated at a single point in the design/decision space for each iteration. In such
single-point methods, research has focused on parallelizing the underlying linear algebraic opera-
tions within an optimization step and/or parallelizing the forward evaluations [15, 17, 28, 85, 102];
for many problems, exascale computing will bring to an end to savings based on such parallelism. A
fundamental challenge in optimization for the exascale is thus the reduction of the number of outer
loop iterations, but exascale computing will also enable the solution of broader classes of optimiza-
tion problems, such as optimization with integer decision variables [10,46], robust optimization and
optimization under uncertainty [13, 16], and global optimization [61, 88]. The structures of such
problems allow for algorithms that are less sequential, which will provide additional opportunities
for parallelism.

There are several possible approaches to reduce the number of optimization iterations. For
instance, higher-order information, such as higher-order derivatives of the simulation output with
respect to the design/decision parameters, could be exploited; current matrix-free algorithms tend
to focus solely on efficient Jacobian- and Hessian-vector products. Research is needed on scal-
able methods to compute and/or apply higher-order information to ensure that higher arithmetic-
intensity rates result. Efficient exploitation of sparsity structures, or more general partially sepa-
rable structures [27], will become increasingly critical as higher-order derivatives are considered.

A less traditional approach will be through the development of multi-point or concurrent-point
methods, which has been a long-standing challenge in optimization. Such methods determine
multiple, distinct (but possibly related) design/decision points for concurrent evaluation either
done asynchronously or at differing levels of fidelity. Current research has focused on derivative-
free methods [62] or decomposition-based approaches [18, 44], but more general, derivative-based
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concurrent-point methods need to be investigated as well; the s-step Krylov and related meth-
ods [25, 30], which solve a particular form of unconstrained optimization problem, also provide
direction for further research. Classes of problems where concurrent-point methods can produce
substantial savings will need to be established. Furthermore, as with UQ methods, the selection
process of multiple points will need to account for associated performance implications, perhaps
by grouping related forward simulations in order to exploit reuse and minimize data movement, in
addition to traditional optimization considerations.

As with hierarchical UQ methods, research is also necessary on optimization algorithms that
exploit multiple levels of fidelity. Such methods would embrace a strategy of avoiding expensive
evaluations, due perhaps to high-fidelity or resilience considerations, when sampling far from the
optimal solution. Such optimization algorithms will need to select point(s) for evaluation along with
corresponding fidelity levels, possibly informed by architecture-based and/or performance-model-
based knowledge of the expense associated with performing that set of evaluations. Applying
multi-level optimization techniques to a complex algorithmic hierarchy is an open challenge, but
preliminary work on simpler problems exists, e.g., when an underlying grid structure is present
[87,116]).

Finally, uncertainty can have deleterious effects on “optimal” solutions that fail to account for
such uncertainty. Stochastic optimization [16] and robust optimization [11, 13] are two modeling
paradigms that account for uncertainty in the optimization procedure; they differ in the way the
uncertainty is incorporated in the design/decision process. Methods for stochastic optimization
have natural tie-ins with scalable, ensemble-based UQ approaches. For example, evaluating many
scenarios concurrently can mitigate variance or uncertainty [29, 70, 80], but overall savings may
only result if such fidelity is truly useful and if the scenarios admit scalable, resource-constrained
evaluation. Robust optimization, on the other hand, leads to more complex optimization prob-
lems with conic constraints that have higher linear algebra complexity than standard optimization
problems. Provable convergence and error bounds for such methods are needed, as will general
strategies with looser dependence on and/or adaptive refinement of the number of scenarios needed
to enable scalable decision making/design under uncertainty.

As before, the possible research directions for mathematical optimization for exascale comput-
ing discussed here are meant to be illustrative and not exhaustive. The point is to demonstrate
that mathematical optimization at the exascale will need to be enabled not only by advances in
optimization techniques, but also through additional functionality in the inner loops – solvers,
adaptive meshing, UQ, etc. – such as the ability to be run at different levels of fidelity, to provide
information about their resource usage/contention for ensembles of related inputs, to propagate
errors/resilience-handling, and to obtain savings from reuse and concurrent evaluations.

10.2 Impact

Advances in algorithms for design and decision under uncertainty will directly impact the science to
be performed on exascale systems. The quantification of uncertainty in simulation results is just the
extension to computational science of the best practices of the experimental scientific community.
UQ for complex multi-scale, multi-physics models is a requirement for truly predictive simulation
capability. It will provide confidence in the extreme-scale science conducted on the future exascale
computers and aid in the validation and development of scientific models. Predictive simulation
capability enables decision making and the use of complex simulations in design optimization.
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11 Resilience and Correctness

Computing an incorrect answer quickly is of no use to a scientist. Yet computing with exascale
hardware poses several challenges in assessing the correctness of numerical simulation results. First,
both hard and soft faults are expected to occur with much greater frequency than on previous
hardware. Uncorrected soft faults have the potential to corrupt computed solutions. Hard faults
will need to be handled on the fly; halting and restarting an entire application due to the loss
of a node, for instance, will be prohibitively expensive at the exascale. Dynamically recovering
from either type of fault will introduce non-deterministic variability in resource usage, as will
dynamic scheduling of tasks. Due to the non-associativity of floating-point arithmetic, such non-
determinism will make bit-wise reproducibility difficult at best and will complicate code correctness
testing procedures, including code verification.

Nevertheless, DOE’s Office of Science and NNSA have several critical mission deliverables,
including annual stockpile certification and safety assurance for NNSA and future energy generation
technologies for Office of Science. Computer simulations are key to meeting these deliverables
and must be resilient enough to complete in time and correctly in order to meet the respective
critical mission need. Such mission-critical codes must undergo code verification tests to provide
confidence in the computed results, even before considering additional concerns such as validation
and uncertainty quantification. In many cases, these mission-critical simulations can take days,
weeks, or even months to compute, which increases the computation’s exposure to faults. Many
of these applications possess complex, nonlinear, multi-physics models, so silent faults, which do
not cause obvious failure, have the potential to alter results significantly. In some cases, such as in
climate and nuclear reactor design code, great effort has been expended to ensure bit-reproducibility
as a measure of code correctness, either by the scientific community or by regulatory agencies.

Therefore, resilience to faults has been identified as a critical need for future HPC systems [71].
The thousand-fold increase in computational capabilities expected over the next decade, along
with incorporation of techniques for reducing energy consumption, are predicted to increase the
error rate of the largest systems to a point where present checkpoint/restart methods will no
longer be viable. Without research into new fault management techniques and the development
of supporting resilience technologies in the hardware and system software, DOE’s mission-critical
applications may not be able to run to completion, or worse, will complete but get incorrect results
due to undetected errors. Without suitable verification techniques, it will be difficult to put faith
in computed results.

It will not be possible to eliminate all faults from exascale machines, and non-deterministic
execution is likewise unavoidable without potentially severe performance penalties. Fault manage-
ment will require developments in hardware, programming environments, runtime systems, and
programming models. The issue of code correctness is ultimately a mathematical one in this con-
text and will require mathematics-informed solutions. Research will be required to devise efficient
application-level fault-tolerance mechanisms and new procedures to verify code correctness at scale.

Developing scientific applications that are fault tolerant on exascale computers will require meth-
ods that go beyond traditional checkpointing. All aspects of exascale computing, from hardware
up to the application, can and must contribute to create viable resilience strategies. In addition,
research into new techniques and tools is required to develop confidence in results computed at the
exascale.

ASCAC Subcommittee for the Top Ten Exascale Research Challenges 52



11.1 Hardware Support and Performance Modeling

Industry trends indicate that it will become increasingly difficult to be confident in calculations.
The reasons for these trends are varied but effects from terrestrial neutrons, naturally occurring
alpha particles, electro-magnetic interference, temperature, and voltage fluctuations are seen today
and expected in greater levels in the future. Usually these faults are transient in nature but
permanent faults from these sources are not unheard of. Certainly, any cost-effective measures
that can increase the mean time between failures and that can detect, if not correct, errors at the
hardware level will be beneficial. Parallel file systems, in particular, need to become more reliable
and provide better performance. Research must be done into the use of alternative technologies,
such as memory and solid state disks, to enable fast, hierarchical checkpointing techniques.

In taking the next steps beyond checkpoint/restart, resilience techniques will require an under-
standing of the actual errors seen on HPC systems, the rate of these errors, and, ideally, the most
common causes. This knowledge is presently unknown, but is required to develop models that are
needed to reason about fault detection and recovery. Fault injection tools are needed to test fault
tolerance techniques, and these tools will also need accurate statistical models of faults.

11.2 Programming Models and Environment

New application resiliency and fault management techniques require resiliency features and support
to be provided by programming models and environments. All levels of the software stack should
be involved in the detection, notification, and recovery of faults, and holistic frameworks and
standardized APIs must be developed to allow a coordinated response to both hard and soft faults.
Such coordination will allow certain types of faults and recovery to be handled by the system
software while others are handled by application-specific methods. Interfaces and semantics must
be developed that allow programmers to identify critical computations within a code and to specify
application-specific recovery techniques beyond global checkpointing. Compiler support could also
insert fault-checking mechanisms, like redundancy, into programmer-specified critical code sections.

11.3 Algorithmic-Based Fault Tolerance

Applications, and the numerical engines that drive them, will need to take a more active role
in the detection and/or recovery from errors. Research is needed to determine those portions of
an algorithm requiring more reliability and those where less reliability is required. In this way,
unnecessary error correction can be avoided; lower-level correction mechanisms would be unable
to identify such savings. Skeptical programming techniques, using problem meta-knowledge such
as conservation or orthogonality properties, can be used to detect errors and force recovery. More
numerical algorithms need to be identified and designed that exhibit inherent resilience capability,
e.g., algebraic multigrid and row augmentation of dense linear algebra problems, which allow the
algorithm to obtain the correct answer even in the presence of faults. Algorithm properties, such
as domain of dependence, might be useful to define containment domains for local recovery, and
reconstruction techniques based on surrounding, compressed, or multi-level data (e.g., in an AMR
hierarchy) could be used to reconstruct local state to reduce synchronization in recovery or possible
to avoid local restart altogether. More analysis is needed to understand what errors can be tolerated
and the generality of these approaches.
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11.4 Correctness

Today, most DOE applications do not employ sophisticated ways of checking the integrity of their
results. Generally a subject matter expert is involved in verifying application outputs, but obviously
this is challenging and highly impractical. While modules and components are typically verified in
isolation, verification of integrated applications is less frequent. Often developers and scientists use
other surrogates, such as benchmarking (code-to-code comparison) and reproducibility, to develop
confidence in codes.

Reproducibility will be expensive if not impossible to achieve on exascale machines. Require-
ments for bit-wise reproducibility will need to be relaxed. This will necessitate research into char-
acterizations of acceptable variability in computed results both to enable debugging at scale and
to satisfy regulatory constraints.

Formal code verification should be done where possible, but this is in general not a tractable
approach for complex multi-physics codes. Code (order) verification is the preferred approach to
demonstrating correctness, but this requires a known solution and therefore often fails to test the
more complex interactions in the code. The method of manufactured solutions can generate more
complex, integrated tests, but tools are needed to automate its use and codes must be developed
with the necessary infrastructure to support this approach. Even once a suitable set of test problems
is established, the error still needs to be measured, and this is often done by mesh convergence
studies where all other code behavior is meant to be held fixed. The execution of such studies
at scale is difficult now, but at the exascale will be even worse because of dynamic scheduling,
dynamically changing multi-physics modules and models, fault handling, etc., and results will be
difficult to interpret. Tools to asses code coverage should be considered to understand dynamic
code behavior and the effectiveness of test problems. Certainly, studies can be done at smaller
scale and on individual components, but this will not necessarily characterize the behavior of the
full code with the many complexities meant to optimize exascale performance, in particular, the
effects of coupling errors.

New approaches to verification must be considered. Theoretically justifiable statistical ap-
proaches to convergence studies may be necessary. The exascale-motivated rewrite of applications
is an opportunity to build a posteriori error estimation techniques into application codes, but
these techniques need further research to be applicable to the anticipated multi-scale, multi-physics
models. The effects of possible faults in these error estimators must also be investigated.

11.5 Impact

Put simply, ensuring correctness and fault tolerance will be necessary to make exascale machines
useful. Without new fault-management techniques and methods to demonstrate code correctness, it
is unlikely that exascale machines will be useful for any significant science simulations; if simulations
run to completion, there will be little confidence in the validity of the solution. The strategic risk
is not meeting the DOE mission-critical needs. The specific risk is that insufficient resilience will
lead to application crashes, hangs, delays, or worst of all, wrong answers.
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12 Scientific Productivity

For the scientists who will utilize them, exascale systems will pose many challenges ranging from
multiple levels of concurrency to a highly dynamic environment with performance, power, and
reliability fluctuating across the system both in space and time. The challenge in accomplishing
exascale computations lies in enabling the scientist to use these systems productively. Just because
a system is capable of exascale calculations doesn’t necessarily mean that scientists will be able to
utilize it in a timely manner to perform transformative science. They have to be able to port existing
codes, develop new ones, prepare their inputs, and collect and analyze the outputs. Historically,
transitions in execution model, such as are anticipated for exascale, have been very disruptive to
computational scientists, and it is imperative that DOE endeavor to prevent a repeat of this.

Productivity can have a lot of different metrics when you are discussing HPC and exascale. A
common metric is time-to-solution. This relates to the speed at which the scientific calculation can
be performed on a given system. Another metric that is just as important is time-to-develop. This is
associated with the overall development time of a scientific application, as well as the architecture-
specific changes that are required to execute the application on a given system. Each metric is
important in the overall productivity of the scientist. Unfortunately, a solution that improves one
of them is often detrimental to the other. For example, the effort required to optimize a large-scale
application with architecture-specific modifications in order to improve the time-to-solution comes
at a great cost to the time-to-develop. Therefore, in scientific productivity we seek solutions to
each metric that don’t impose a burden on the other.

The initial exascale system’s users will likely come from amongst today’s cadre of computational
scientists. The science being pursued by these investigators addresses the mission of DOE labs and
makes up a significant portion of their current HPC workload. This workload comprises large-
scale HPC applications that have sometimes been developed over decades and some of their code
artifacts are over a million lines of source code. The development and support of these codes
equates to an investment of hundreds of full-time equivalent years of labor, often spanning decades
[100]. These existing application codes comprise a massive capital investment and this must not be
overlooked. To protect this investment we need to enable these large-scale applications to evolve
towards exascale in such a way that they can utilize the system effectively and efficiently in a timely
manner.

12.1 Research Directions

Improving time-to-solution in HPC tends to come in the form of hardware enhancements. Clearly
the importance of this is substantiated by the fact that three of the top ten exascale technology
research areas involve hardware (see Sections 5, 4, and 3). The remaining areas link to hardware
via the algorithms and software necessary to utilize it efficiently. The hardware solutions addressing
data movement improve scientific productivity by reducing the effort required by the scientist to
achieve the desired time-to-solution. In addition, these solutions begin to address another challenge
placed on the scientist, which is the power constraint for exascale computations.

While hardware advances can aid in the time-to-solution improvements, they often create their
own challenges for productivity via the time-to-develop metric. This is a result of the more spe-
cialized hardware solutions that historically tend to require the application to utilize architecture-
specific performance optimizations in order to compute within multiple constraints. Programming
models often try to address these performance challenges (e.g., latency, resource contention, and
overhead) and at the same time ease the burden on the scientist (e.g., programmability). A suit-
able programming model can assist large-scale applications in moving towards exascale systems
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in a manner that minimizes the time-to-develop. Programming models that incorporate features
about the application’s existing programming model (e.g., MPI) stand to accomplish this.

In addition, programming models need to allow easy expression of parallelism, data locality,
and resilience, something which is not possible in current models. They need to allow for new ab-
stractions that are better aligned with the platform characteristics (e.g., billion-way parallelism and
heterogeneity). Adding to these challenges in productivity is the fact that many of the application
codes targeted for exascale utilize existing libraries and software packages built to reflect today’s
primary execution model, communicating sequential processes [60]. In order to improve scientific
productivity, an exascale programming model must ease the transition of both existing application
codes and supporting libraries.

Exascale systems will have hardware that is constantly changing during execution due to tem-
perature fluctuations, component failure, and performance variability. This compounds the pro-
ductivity challenges for scientists because they will need to account for this environment in the
development of their applications, something they are not burdened with today. Runtime systems
can help address this issue of productivity by disentangling architecture-specific runtime optimiza-
tions/adjustments from the algorithmic implementation. For exascale, the objective to be optimized
is not only performance but also power, energy and reliability. Applications will need to compute
within a power budget and component failure rate, and performance will fluctuate among compo-
nents and throughout the execution. Enabling the application to make dynamic optimizations with
multiple objectives (power, performance, and reliability) will be crucial to scientific productivity.

Among the main productivity advantages offered by runtime systems is their ability to provide
resource management and task scheduling without user intervention. Such dynamic control can be
adaptive through introspective means, exploiting continuous system status and application demand
requirements to provide adaptive guidance of system operation for best behavior. This transition
from static to dynamic control increases execution efficiency, especially for highly dynamic and
irregular problems like adaptive mesh refinement algorithms. Runtime systems can provide active
response to growing asynchrony due to the varying latencies of remote access to data and services.
It also permits parallelism discovery such as from the meta-data of large irregular and time-varying
graph problems for informatics to deliver greater scalability.

Next-generation runtime systems are under development that support different mixes of several
classes of dynamic adaptive functionality. Lightweight multithreading exposes medium granularity
parallelism for greater scalability and adaptive scheduling to achieve greater utilization of resources.
Message-driven computation (e.g., active messages) provides adaptation to asynchrony and both
reduces and hides latency by moving work to the data when appropriate rather than always having
to move data to fixed work locations. Synchronization concepts such as dataflow and futures reduce
amortized overhead and deliver continuation migration as a new layer of parallelism state. These
runtime systems will be able to support legacy codes via conventional programming interfaces. For
new code development, they will deliver unprecedented performance and efficiency on future exas-
cale systems while enhancing user productivity, including superior programmability, performance
portability, and generality.

Exascale systems are going to provide many challenges to productivity, from disruptive new
technology to new programming environments, all of which pose difficulties in getting large scale
applications to execute efficiently on the system. The right set of tools to overcome these difficulties
is essential, and scalable tools are needed to help the scientists isolate issues with performance,
power, resiliency, and correctness within the application’s execution. This requires both static
and dynamic analysis where the tool can capture the interactions between the application, the
runtime, and the hardware to aid in the identification of the problem. There are many research
challenges in providing this level of scalable tool support. These tools will need to address some of
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the same challenges that the application will have as well, such as dealing with multiple levels of
concurrency, a dynamic environment, fault tolerance, awareness of thermal and power constraints,
data movement on and off the node, and heterogeneous processors. These tools must understand
the hardware of exascale systems to be able to capture their performance and power data in a way
that it can overcome data movement challenges and provide the information to the scientists in a
timely fashion. Some of this will need to be built into the runtime system to ensure self-awareness
to ease the burden of the productivity challenges faced by the scientists.

12.2 Impact

We need to correctly address scientific productivity by ensuring enough resources (e.g., both hard-
ware and software) to minimize both time-to-solution and time-to-develop for scientists needing
to perform extreme-scale science on these future exascale computers. Without this investment,
scientists will not be able to achieve their desired transformative science.
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13 Co-Design and Integration Framework

For the last two decades, the HPC community has successfully used a strategy based on the large-
scale integration of commercial-off-the-shelf (COTS) microprocessors into massively parallel super-
computing systems. In some cases, the HPC community has developed technologies to improve
the scalability of these systems, e.g., interconnection networks and lightweight kernel operating
systems. In recent years, issues with the performance realized at scale have led to questions about
the continued viability of this strategy, and the need for research to address this problem. This
section builds on the lessons DOE’s HPC community has learned in its efforts to influence future
commodity processors and other critical technologies such as memory and networking, to extend
the viability of the COTS strategy. These lessons inform any future exascale research and develop-
ment program. The ultimate goal is commercial delivery of a small number of extremely large-scale,
integrated systems, and a much, much larger number of smaller-scale commercial systems.

Foremost of these lessons is that all exascale research activity will need to be organized, co-
ordinated and funded in the context of, and in support of, an integrated system design that is
focused on meeting the performance, productivity, and energy requirements associated with the
anticipated mission-driven exascale workflows of the institutions that will ultimately acquire these
systems. The general principle must be that one can’t design in isolation. A collection of separate,
disjointed research activities, each aimed at optimizing a single design aspect or technology, will
likely result in a suboptimal overall solution. The realization of an exascale system will involve
a complex, multidimensional tradeoff between hardware (processors, memory, energy efficiency,
reliability, interconnectivity), software (programming models, scalability, data management, pro-
ductivity), and algorithms. Thus, a total systems approach is necessary, implying co-design of
hardware and software, and such a total systems approach must inform the research programs for
exascale.

Advancing to exascale will require innovations in architecture to integrate the many research
results from diverse fields including silicon, memory, packaging, system software, interconnect,
signaling and optical technologies, mathematics, and programming models. Exascale architec-
ture requires finding the right balance of these technologies to achieve density, cost, performance
and power efficiency at the appropriate levels. Research in exascale architecture will leverage the
learning and experience gained in developing and using intermediate systems, and will result in
improvements to some of the key elements of architecture, programming models, and system soft-
ware. Exascale system design will be an optimization problem involving a set of constraints, a set
of metrics for evaluating those constraints, and a methodology for evaluating them. The remainder
of this section will discuss the architectural constraints, performance metrics, co-design integration
framework, and modeling and simulation technology required to achieve a general purpose exascale
system by the end of the decade.

13.1 Execution Model

An execution model defines a strategy for performing computation. Also referred to as a “model of
computation,” an execution model is a crosscutting paradigm that specifies a system holistically,
determining the functionality of all system component layers, their interrelationships, and their
interoperability. A new execution model is devised to take advantage of advances in technology in
order to achieve superior operational properties (e.g., efficiency, scalability, power) while employing
methods to correct for potential limiting weaknesses. An execution model establishes the invariants
of the semantics and organization that are shared by all systems of its class. It nonetheless permits
great flexibility of the specifics of form, function, and scale of underlying implementations.
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High performance computing has evolved over seven decades through a succession of main-
stream execution models. Their transitions were driven by progress in underlying technologies and
the opportunities they enabled. Although differing, sometimes dramatically through successive
phase transitions, all HPC execution models address a common set of challenges imposed by the
physics of time, work, concurrency, and energy. Each provides different solutions depending on
the available enabling technologies (and concepts) at the time they were adopted. Examples of
historical execution models include the original von Neumann architecture, vector processors, data
parallel systems, shared memory multiprocessors, and communicating sequential processes.

Since 2005, increased device density, power limitations, and increasing relative latencies have
forced a transitional period of multicore, heterogeneity, and hybrid programming to sustain con-
tinued delivered performance beyond the effectiveness of previous execution models. From this will
emerge one or more new parallel execution models to guide future system development and usage
methodology. Whether derivatives of prior mainstream models or a distinct departure towards a
revolutionary paradigm will prevail is yet to be determined. As a consequence, there is a need
now for renewed exploration of innovative execution models to drive future architecture designs,
programming interfaces, and cooperating system software.

13.2 Architecture

The goal of delivering an exascale system around the turn of the decade that will provide world-class
computational capabilities for workflows requires the integration of modeling and simulation, large
datasets, and analytics. This will be a very challenging undertaking for computer architects, who
must realize any exascale execution model. Such an exascale system will need to balance desires
such as:

1. good sustained performance over a wide range of DOE workloads

2. a floating point capability of 1018 operations per second

3. power consumption in the neighborhood of 20 MW

4. mean time between service of at least 24 hours

5. less than 15,000 sq. ft. of floor space, implying that the number of cabinets be under 300,
and

6. an interconnect developed in accordance with DOE application requirements.

This balancing act must be performed at a time when the computational science paradigm is
shifting from a compute-centric model to a data-centric model expected to be necessary for future
scientific workflows. In a compute-centric model, data lives on disk and tape, moving to the CPU as
needed through a deep storage hierarchy. This model is sufficient when the computational aspects
of the workflow dominate the data movement aspects. In contrast, in the data-centric model, data
lives in persistent memory, with many CPUs surrounding it, and the data moves as little as possible
through a shallow/flat storage hierarchy.

A first-order constraint for exascale is that the system will have be designed to be commercially
viable. The system’s architecture and components will be designed to enable it to scale from small
commercially competitive solutions to specialized solutions at the exascale range and beyond. The
system will need to be of sufficient prominence in the HPC industry to drive independent software
vendors and ecosystems. However, as exascale requirements are more aggressive than commercial
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markets demand, additional research and development, i.e., additional investment, will be required
to implement the innovations which will enable an exascale-class system that meets DOE needs in
the next decade. Moreover, in order to make exascale systems economically feasible, and to truly
ensure U.S. leadership in this arena, any exascale development program must be carried out in the
context of a commercially viable systems roadmap. The criterion for an outlook on commercial
viability, which implies viability in a broader market than exascale computing, imposes a severe
constraint on the realizability of various technology directions, and curtails the prospects of narrow
research applicable to supercomputing only.

Each of the top ten exascale research challenges that we have identified address some subset
of these crucial design challenges that hold the key to future performance growth. At a high level
the architectural design challenges that must be overcome to achieve the required 1000x growth in
delivered application performance for mission-critical applications of all scales are as follows.

1. Execution models that enable dynamic adaptive methods in runtime system software to guide
computing resource management and task scheduling to achieve high efficiency, portability,
and programmability.

2. A data-centric paradigm to control and minimize data movement to overcome the extreme
cost of data movement relative to the cost of computation. The exascale solution will include
compute, network, storage, software and I/O components, and will be targeted to meet
important DOE and commercial workload requirements.

3. Introspection for active control of energy usage, fault responsiveness, and locality manage-
ment, and

4. Hardware mechanisms and structures to support finer-granularity parallelism and control of
data locality.

Together these approaches will provide a new approach to provide the required improvements in
performance and scalability to achieve exasclae within the context of current and future technology
trends.

13.3 Performance Metrics

Research into execution models, architectures that realize them, and the co-design process that
controls it need to be guided by a performance framework that enables investigators to understand
the implications of their design choices. Performance growth in the last two decades, the CSP or
MPI era, has been largely though scaling problem sizes, so called weak scaling. As discussed above
in section 5, the volume of memory will scale more slowly than computing power, and performance
growth in the next decade will require more attention to strong scaling in which processes interact
more frequently. An example of such a performance framework is provided here. There are others.

Fundamental properties of physics, structure, and order determine the performance and other
operational properties delivered by any HPC system. The basic measures of time, work, energy,
and concurrency define the base-level parameter space within which computation evolves and per-
formance is achieved. Execution models derived to guide the development of HPC systems have
differed, sometimes dramatically, in response to the changes of their respective enabling technolo-
gies. However, throughout the history of HPC, the execution models applied have shared the same
underlying physical challenges to realizing best performance within practical limitations of these
technologies. These physical challenges can be codified as a performance framework within the
definition of which the strategies of all parallel execution models can be assessed and compared.
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A performance framework is derived from a relationship among basic parameters as described
above. A formulation for (average) performance is given in the following expression:

P = S × e(L,O,W) × µ(E) × α(R)

Where:

P = performance
S = scaling

e = efficiency
L = latency

O = overhead
W = contention

µ = speed normalization
E = energy

α = availability
R = reliability

Implicit in this relationship and its factors are time and work from which performance is derived.
Efficiency and availability range between 0 and 1, exclusive. Speed is the sequential rate of operation
execution and is a function of the rate of energy consumed (more power allows for a higher clock
rate). Overhead is the amount of work required to manage parallel resources and concurrent tasks
(e.g., synchronization) that would not be required in a purely serial version of the computation.
Latency is the distance (often measured in time or clock cycles) of remote object access or distant
service request (e.g., main memory access, message passing). Reliability is a measure of mean time
to failure that contributes to the determination of a system’s effective availability.

The key properties that all HPC execution models must address are identified through this
expression. Cast as sources of performance degradation, this SLOWER framework exposes the set
of challenges to be overcome by execution models employed to guide the development and operation
future supercomputers. These are:

• Starvation: insufficiency of computational work to keep all functional resources utilized either
because the total work is less than all of the system resources or because the workload is
imbalanced, causing some elements to have to much to do while others have too little.

• Latency: the time it takes to move information between two points within a system such
as network latency or memory access latency usually measured in processor core cycles or
nano/micro/milliseconds.

• Overhead: the amount of additional work required to manage parallel resources and concur-
rent task scheduling among other functions not required for pure sequential execution.

• Waiting: for contention of shared logical (e.g., synchronization) and physical (e.g., network
links) resources.

• Energy: and the rate at which it is consumed (power) determine the amount of resources
used to perform computation and the rate at which they operate (e.g., clock rate).

• Reliability: determines the mean time to interrupt of system operation caused by hardware
and software system faults.
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13.4 Co-Design Integration Framework

Co-design is the over-arching framework used to evaluate the trade-space in the context of a per-
formance framework (e.g., SLOWER). Hardware/software co-design has long been a feature of
power-sensitive embedded system designs, but thus far has seen very little application in the HPC
space. Co-design refers to a design methodology to partition work in integrated processor/software
solutions that are optimized to minimize energy consumption to perform a given task. The em-
bedded processor market has refined co-design processes over the past twenty years to meet the
demanding cost and power efficiency requirements of battery-powered consumer electronics applica-
tions, as well as power-sensitive, high-performance embedded applications, like avionics systems in
aircraft. What has made it so successful is a continuing focus on developing tools that make hard-
ware/software co-design productive, cost-effective, and beneficial. Such tools inlcude automated
processor synthesis tools, cycle accurate simulators, and automated generation of software tools
(compilers and debuggers) from hardware specifications. Now that power has become the leading
design constraint of HPC systems, co-design and other application-driven design processes are ex-
pected to play a central role in the development of energy-efficient exascale computing systems that
serve a diverse range of applications.

Today’s DOE co-design efforts are investigating a diverse set of technical areas: architecture-
aware algorithms, programming models, system software, hardware architectures, resiliency, power
management, etc. The key tools applied for these investigations are:

• Proxy Applications

• HPC Architectural Simulators

• Experimental, advanced architecture testbeds

The naive projection of existing co-design processes onto the HPC design space exposes many
gaps in the methodology. There is no tool or methodology to extrapolate design requirements to
computing systems of unprecedented size that are yet to be built. Embedded co-design tools never
conceived of simulating interconnects with millions of interacting endpoints, where each endpoint
is itself a complex system. Furthermore, the programming model and software environment an-
ticipated for future extreme-scale systems is anticipated to be substantially different than current
practice. In order to make predictive modeling of large-scale systems tractable, we have moved to-
wards using both simplified proxy applications together with simplified (Proxy-Architecture) models
for the important aspects of future systems as shown in Figure 9.

Characteristics that impact performance should be understood as early as possible in the anal-
ysis and design of new computers. Furthermore, it is often the case that there are multiple ways
to design and implement the algorithms used in an application, and the choice can have a dra-
matic impact on the application’s performance. The proxy applications fill this gap, representing
critical algorithmic kernels, yet being small enough to be reengineered to experiment with different
execution models and their realizations, whether in modeling or system prototypes. Hardware ar-
chitectural choices, if properly exposed through the system software to the application developers,
can likewise have a tremendous impact on performance. Architectural simulations with enough
fidelity to illuminate the impact of algorithmic and implementation design decisions allow the co-
design process to advance concurrently with development of the exascale system’s hardware and
software.

A more application-centric view of the co-design cycle is provided by the Materials Co-Design
Center [1] in Figure 10. Accurate modeling and simulation tools enable quantification of the
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Figure 9: Simplified versions of the target hardware and target application enable rapid prototyping
and assessment of future hardware/software interactions. Accurate proxy models for the hardware
and software make the size and complexity of the modeling problem tractable. Accurate predictive
modeling and simulation tools for future hardware are essential for enabling crucial design decisions
for very expensive system designs before they are built (or written in the case of software).

performance impact on the applications when they are subjected to specific hardware constraints.
Analysis of the hardware constraints, in terms of cost, area, and power consumption, is fed back to
the application to motivate changes in the application design and algorithms to better fit within
hardware constraints. The application of this design cycle in the embedded space has enabled a
revolutionary advancement of the technology in that space, and the success in that space gives
us strong confidence that it will enable orders of magnitude improvement in energy efficiency and
usable performance in the HPC space.

It is also critical to have a diverse set of experimental architecture test beds to verify the
co-design process and guide technology investment decisions. As a community, access to and
experience with these experimental architecture testbeds will allow DOE to become more informed
collaborators in co-design processes, more adaptable to changes in hardware, and have a stronger
basis for making programming model changes. Perhaps more importantly, this experience will
provide a foundation for decision makers to determine the path to exascale while the program
continues to meet mission obligations.

Looking forward, it is likely that some revolutionary technologies will be required, particularly
if one considers the low fraction of peak performance achieved by many HPC applications today,
along with the need to avoid prohibitive power costs. It is also likely that many technologies for
HPC will continue on an evolutionary track. DOE has historically adopted revolutionary technology
changes, up to and including rewriting its applications, if that was required to meet mission needs.
Recall that the ASCI program made sustained, substantial investments to transform its application
code base from vectors to MPI, thus to creating the current NNSA application portfolio. In much
the same way, any DOE exascale program must undertake the challenge of transforming current
multi-scale, multi-physics applications to incorporate additional or different programming models.
Due to the DOE investment in its application code base, there is tremendous incentive to pursue
revolutionary hardware and system software technologies, if it enables application software to stay
on an evolutionary path.
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Figure 10: Typical co-design process for the design of co-tuned hardware and software systems.

13.5 Modeling and Simulation of Exascale Systems and Applications

In the co-design process discussed above, two or more factors are optimized in concert to achieve a
better solution. Exascale systems and applications create a multidimensional space for optimization.
To date, the DOE co-design process has not had the modeling and simulation tools to cover all of this
space in a comprehensive fashion. That is, given a performance framework such as the one described
above, investigators cannot yet evaluate alternative design choices, and rigorously identify the most
profitable ones. Hence, achieving exascale will require the development of suitable co-design tools,
including modeling and simulation, that address all aspects of the exascale design space. This spans
the algorithms chosen, the scientific and engineering applications, the programming models used
to create them, the runtime environment they execute in, and the architectures they run on.

Figure 11 illustrates the scale of the exascale design space. It shows a continuum of activi-
ties undertaken by the HPC community to connect the nation’s overall scientific and engineering
challenges to the computations that support them. Each box in the figure notionally represents a
different area of emphasis and a different scale of the HPC workflow. For exascale it is first nec-
essary to articulate key scientific goals such as energy independence or understanding combustion.
The goals are extraordinary complex computational problems that need be solved on an exascale
system. The computational problems need to be tackled via appropriate application, machine, and
programming model designs. The executing systems and applications will need to be continuously
monitored and optimized to ensure continued high performance in the face of changing application
requirements and system status.

Modeling and simulation research is a vital component of every aspect of computational planning
and execution as it enables community leaders and individual system and application developers to
predict the outcomes of various decisions undertaking during design, implementation, and mainte-
nance project phases. The widespread applicability of modeling and simulation is clearly shown by
the red asterisks in Figure 11, indicating the specific areas in which modeling and simulation are
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applied, makes this point amply clear. This capability is instrumental for enabling the computa-
tional science and HPC communities to design computing strategies as well as concrete systems and
applications that provide a balance of the above productivity metrics and enable new breakthrough
science that will provide high value in a cost-effective manner [69].

Figure 11: Notional HPC workflow. The * represent domains for modeling and simulation

The current state-of-the-art in modeling methodologies has developed in response to the archi-
tectures and application structures typically found in today’s HPC landscape. For some time now,
the complexities inherent in HPC architectures have meant that increases in peak performance
have not always translated into improvements in application performance. Models have served as
an ideal tool for quantifying the performance impact expected from changes in application and
system architectures. As we move towards exascale, however, many of the assumptions built into
these methods will no longer hold true.

Models and modeling methodologies will need to adapt to an increasingly complex landscape.
Models will be key tools in the area of application/system co-design. As applications and systems
both evolve simultaneously, models must be able to track ongoing complex changes and predict
the impact of developments in both software and hardware design. While today’s methods tend to
focus on application performance as the metric of concern, exascale modeling methods must evolve
to consider performance, power consumption, and reliability in concert. Construction of models
needs to be further automated, both to reduce the cost of labor involved as well as to make it
feasible to dynamically adapt them as application requirements or system status changes. Ideally,
they become actionable tools, available at runtime, that enable an introspective exascale system
to reason about how to best full manage its resource to maximize scientific throughput. While
such objectives represent a significant step forward beyond today’s techniques, achieving them is
important for future large-scale design as power becomes a primary concern and system complexity
continues to increase.

There are significant technical challenges facing the modeling and simulation of the performance,
power consumption and reliability of both exascale applications and systems. Given the centrality
of modeling and simulation in the co-design process, and its time criticality, new resources need to
be made available for this activity in an overall exascale effort. Such resources need to materialize
through funded projects in methodology and modeling and simulation tool development, which are
tightly integrated with similar activities in architecture, applications, and system software. There
is also the need for specialized testbeds to enable testing, verification and validation, and scale-up
of the modeling and simulation tools-of-the-trade.
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14 Findings and Recommendations

On July 29, 2013, ASCAC was charged with developing a list of the top ten principal research chal-
lenges that must be overcome to develop a practical exascale computing system. These have been
enumerated in the introduction and described in ten sections of this report. In the course of con-
ducting this study, the subcommittee considered a number of related issues that add context to the
top ten research challenges and the means to overcome them. The findings and recommendations
that arose from this are presented here.

14.1 Findings

14.1.1 Exascale computing is critical for executing the DOE mission.

ASCAC reaffirms its findings from previous reports that leadership in high performance computing
is critical to achieving the DOE mission of ensuring U.S. leadership in science, engineering, and
national security. Not only a DOE mission, leadership in the broad spectrum of HPC technologies
and applications is also a foundation supporting American economic competitiveness. In the last
six years, this has been documented in many exascale reports from Office of Science programs, the
National Nuclear Security Administration, and other U.S. government agencies [33, 34, 42, 72, 90,
105,107,108,118].

14.1.2 U.S. national leadership is at risk.

Without aggressive investment and technical innovation in HPC, the U.S. risks falling behind
rapidly emerging international competitors, not all of whom are friendly to U.S. interests [93]. This
in turn threatens to undermine the nation’s intellectual leadership in a broad range of science, its
economic position, and its security. As was true during the height of the nuclear arms race, the
U.S. cannot slow down its competitors, but DOE can invest to stay ahead of them.

14.1.3 The U.S. has the technical foundation to create exascale systems.

The U.S. semiconductor and HPC systems industries are capable of developing the necessary tech-
nologies for an exascale computing capability by the early part of the next decade, based largely on
evolving commercially driven component fabrication, systems integration, and software engineering
capabilities. However, for a truly effective and productive exascale computing capability, the U.S.
government will need to focus investments on the research, development, and integration of HPC
technologies that otherwise will not be created solely for commercial ends. Furthermore, a focused
exascale research program will mobilize mathematicians, scientists, and engineers in national lab-
oratories and academia who are capable of creating the necessary algorithms and software, critical
to DOEs mission among others, to augment those furnished by industry, and make a truly effective
and productive exascale system.

14.1.4 An evolutionary approach to achieving exscale will not be adequate.

The dramatic improvements essential to achieving effective exascale computing will not be satisfied
by incremental extensions to today’s conventional practices. In the five years since Roadrunner
first exceeded a PFlop/s of performance at Los Alamos National Laboratory, significant progress in
pushing peak capability has continued with China’s Tianhe-2 recently achieving a HPL throughput
of 33.86 PFlop/s. However, this has not been accomplished without encountering the concerns
that motivate the DOE exascale initiative. Tianhe-2 draws 17.8 MW, and simply following today’s
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technology trends to exascale would require hundreds of megawatts – enough to power a small city.
Memory per core is dropping. Bandwidth, whether to memory or across the interconnect, is not
keeping up with increasing processor performance. Furthermore, heterogeneous machines such as
Tianhe-2 are difficult to program and serve a small subset of the applications needed to support
DOE’s broad mission. Therefore, we find that commercial market drivers do not provide a viable
general path to delivering necessary scalability, time and energy efficiency, and user productivity,
including performance portability for future exascale-class computers.

14.1.5 The U.S. government’s continuous leadership and investment are required to
create exascale systems.

The U.S. computing industry is unlikely to develop effective exascale computer systems without U.S.
government investment and focused mission goals. This is due to disparities between commercial
roadmaps targeted at emerging markets and the necessary revolutionary innovations needed for
exascale computing. An evolutionary exascale system, built through incremental changes to today’s
conventional practices, will be of limited utility to DOE computational scientists. We find that
innovation, sometimes of an incremental nature and in other areas revolutionary, will be required
under DOE direction to continue U.S. leadership in advanced HPC.

14.2 Recommendations

14.2.1 DOE should initiate a program of continuous advancement in HPC.

Exascale is only the next milepost in a half-century of continuous progress towards increasing
capability in computational science. The U.S. government requires a stable, long-term investment
strategy to ensure continuous U.S. leadership in HPC beyond today’s petascale performance regime,
extending across exascale to zetascale and beyond. In the immediate future, much of that research
investment should be focused on the top ten challenges identified within this report. That focus
will change with time as those challenges recognized today are overcome, and new ones emerge.

Establishing consistency of direction and commitment will engage industry partners, ensure
government resources, and encourage laboratory and academic researchers to conduct sustained
research in achieving critical capabilities over the coming decades. Towards that end, DOE must
derive and establish minimum enabling technology requirements for the U.S. trans-exascale per-
formance regime and devise a plan of partnership and commitment with industry and academic
researchers to address these needs over sufficient duration to be achievable and timely.

This U.S. government research investment in exascale technology needs to be relatively large
now, as the end of Dennard scaling and the looming end of Moore’s Law portend a significant
change in HPC architectures. Change of this magnitude has not been seen in two decades, since
CMOS technology eclipsed ECL. Once a new execution model suitable for trans-exascale systems
has been derived, then we anticipate that a smaller, sustained investment will enable DOE to
effectively and efficiently use its HPC applications on multiple generations of exascale systems.

14.2.2 DOE should invest in its industrial base to catalyze the foundation for exascale
systems.

DOE should invest in extending commercial semiconductor, communications, systems integration,
and software technologies to prepare the U.S. industrial base for its role and contributions in future
HPC scientific, engineering and national security missions. As discussed in this report, of particular
concern is the energy consumption (section 3) and resilience (section 11) of anticipated exascale

ASCAC Subcommittee for the Top Ten Exascale Research Challenges 67



systems, due to their size and complexity. There are also both opportunity and concern regarding
the memory capacity and capability that will be affordable (section 5), as well as the means of
the integration of these new technologies. Finally, suitable networks and communication protocols
(section 4) must exist to enable effective exascale computing for new modalities of information
exchange and distributed control. All of these exascale components must be developed by and
be available from U.S. sources, otherwise the supply chain is vulnerable to interdiction by foreign
powers, which in turn could threaten the nation’s security [37]. Such investments would be natural
successors to DOE’s investment in the DARPA High Productivity Computing Systems Program,
and DOE’s PathForward, FastForward, and DesignForward initiatives.

14.2.3 DOE should invest in exascale mathematics and system software responsive
to DOE missions and other U.S. government requirements

The mathematical algorithms needed for many DOE missions are unique and must be revised or
re-designed to function at exascale. As discussed in this report (sections 9,10,11), these challenges
include exposing billion-fold concurrency, overcoming challenges due to asynchrony, multi-tiered
memory, increasing fault rates, and quantifying the uncertainty of the computations being per-
formed.

As with today’s leadership-class systems, much of the software infrastructure of an exascale
system will be unique to its scale and the missions for which DOE will deploy it. Therefore, as
discussed in this report, DOE must invest in scalable operating systems (section 6), runtime systems,
and tools for the management of the data that will be generated and/or processed (section 8).

New programming constructs, perhaps even a new language, will likely be required for exascale
computation and applications. As discussed in this report (section 7), this parallel programming
system must expose and exploit billion-way concurrency, support application performance porta-
bility across different hardware platforms, and interface to dynamic adaptive mechanisms from
runtime system software and hardware architecture for high efficiency and parallelism discovery.
DOE should oversee and sponsor the community-wide process for the development of such a parallel
program capability.

The productivity of DOE computational scientists must be significantly improved relative to
current practices in order for exascale HPC to prove an effective means of achieving strategic DOE
mission goals. Productivity demands that applications realize most of the potential performance
opportunity without undue programmer effort. Furthermore, performance portability must be at-
tained such that effective performance is gained as applications move across system classes and
scales without program redefinition in each case. As discussed in this report (section 12), new
methods of runtime introspection and programming semantics will have to be developed. Further-
more, to ensure that the next generation of these computational scientists is available, DOE should
adjust investments in programs such as fellowships, career awards, and funding grants, to increase
the pool of computational scientists trained in both exascale and applied mathematics. Opportu-
nities should also be provided for the next generation computational scientists to work closely with
domain scientists in the development of scientific applications for exascale platforms.

We also note that the mathematics and software developed for exascale should be useful on
systems of all scale, from workstations, to departmental servers, to leadership class supercomputers.
It is important that DOE make its research investments with an eye to delivering portability and
performance to scientists and engineers regardless of the scale of the computing infrastructure
available to them.
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14.2.4 DOE should create an Open Exascale System Design Framework to enable
cooperative hardware and software advancement

To guide U.S. investments in exascale research, DOE should assume a leadership role in fostering
innovative strategies to establish a new discipline capable of exploiting billion-way parallelism, in
the context of asynchrony and to support of a new generation of parallel algorithms that will be
derived for the new architectures being developed. DOE’s understanding of mission drivers pro-
vides a critical foundation to coordinate requirements for and development of interoperable system
components, establish a co-design framework for collaboration and system integration of crosscut-
ting component layers. Such a context will serve as the conceptual scaffolding for the development
of new programming language and hardware architecture, runtime software and operating system,
and application algorithms and management policies for future exascale computing. The principles
underlying such a framework were discussed in section 13 of this report.

DOE should conduct one or more point design studies, based on co-design principles, to establish
the opportunity and challenges of the design space prior to committing to either an incremental
or revolutionary path forward. Such studies should be concepts-driven, addressing fundamental
technology challenges and application requirements. Other government agencies and HPC stake-
holders should be invited to participate in these studies. The quantitative results produced will
provide confidence in future directions, permit open evaluation and comparative analysis, and de-
liver engineering specifications for detailed designs. Such studies must be crosscutting from device
technology foundations to applications with high-level programming interfaces, and include sys-
tem architecture and software layers. They should complement and benefit from on-going U.S.
government-sponsored research programs in programming models, system software, applications
along with their data and workflows, component technologies, and architecture.
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A Charge Letter

The next page contains the charge letter from Dr. Dehmer to ASCAC, which prompted the for-
mation of this subcommittee, and the writing of this report.
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Department of Energy 
Office of Science 

Washington, DC 20585 

July 29, 2013 

Professor Roscoe Giles, ASCAC Chair 
Department of Electrical & Computer Engineering 
Boston University 
8 St. Mary's Street 
Boston, MA 02215 

Dear Professor Giles: 

Thank you for the recent Advanced Scientific Computing Advisory Committee (ASCAC) report 
on the synergistic challenges in data-intensive science and exascale computing. The report was 
both informative and timely. 

As we move forward with exascale computing during a time of significant budget restrictions, it 
is important that we focus our efforts on the principal research challenges required to develop a 
practical exascale computing system. We are at a point in our planning where input from the 
community would be enormously useful, but only if gathered quickly. 

By this letter, I am charging the ASCAC to assemble a subcommittee to gather this information 
from the community. Specifically, we request a list of no more than ten technical approaches 
(hardware and software) that will enable the development of a system that achieves the 
Department's exascale goals, particularly the usability goals for the Department's mission
critical applications, as articulated in the attached presentation. That is, given the known 
technical barriers that could prevent the development of a computer that achieves the 
Department's exascale goals, what are credible technical approaches for overcoming these 
barriers? The subcommittee's report should provide compelling justifications for including each 
item in the list and describe the expected impact on overall system performance. 

To inform our budget process, I would appreciate receiving the committee's preliminary 
comments by October 15, 2013 and a final report by November 30, 2013. I appreciate ASCAC's 
willingness to undertake this important assignment. 

If you have any questions regarding this request, please contact either Barbara Helland, the 
acting Associate Director of the Office of Science for Advance Scientific Computing Research 
or Christine Chalk, the Designated Federal Official for the ASCAC. 

Sincerely, 

{J~,~ 
Patricia M. Dehmer 
Acting Director, Office of Science 

@ Printed with soy ink on recycled paper 
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