2015 Update

Genetics Subgroup White Paper

The Genetics Subgroup of the Technical Expert Working Group (TEWG) has met several times over the course of the past year (2014-2015) to discuss data gaps and conservation needs for river herring in the area of genetics. The below table is a compilation of these discussions. It is a list of research topics, complete with the topics' relevance, time frame and relative cost, and relevant citations. The Genetics Subgroup has individually ranked these research needs according to priority, to be considered in the future as funding becomes available or as researchers develop projects.

Research topic Molecular marker developme	Relevance to restoration	Generality	Time Frame "E" = Exists already "S" = Short-term (1-3 yrs) "M" = Medium term (3-5 yrs) "L"= Long-term (5+yrs)	Rank (Use each value of 1 to 18 once, 1 being highest, 18 being lowest)	Relative cost \$=1-9K \$\$=10-99K \$\$\$=100-199K \$\$\$\$=200K+	Relevant Citations
Single Nucleotide Polymorphism (SNP) discovery	Highly relevant; useful in a variety of contexts	Very general; broad applications (bycatch, marine ecology, life history, etc.)	S	2	\$\$\$	Baetscher et al. (<i>in prep</i> .)
Restriction site Associated DNA (RAD) markers	Relevant; valuable for examining adaptive genetic variation	General; useful in designating Distinct Population Segments (DPSs) and understanding evolutionary potential, etc.	M	9	\$\$\$	
Integration of molecular markers with other data types (e.g., otolith microchemistry, morphology data, growth patterns) ; obtain baseline data from specific rivers (TBD)	Relevant; where molecular markers provide only coarse resolution for genetic stock identification, other data types may aid in assignment at finer spatial scales	General; valuable for hierarchical approach to stock/population assignment for individuals sampled in mixed stock assemblages	M	4	\$\$\$	Turner 2014 (PhD dissertation) Turner et al. 2015 Payne 2014 (MSc thesis)
Life History Rangewide population structure (Canada and US)	Highly relevant; invaluable baseline data	Very general; broad applications (bycatch, marine ecology, distribution of standing genetic variation, population structure)	S	1	\$\$\$	Palkovacs et al. 2013 (USA range, both species) McBride et al. 2014 (Canadian range, both species)

Created: March 17, 2015 (Updated March 9, 2016)

Straying rates	Highly relevant; crucial for connectivity, re- colonization, setting expectations for 'natural' recovery	Very general; broad applications (identify source of migrants, understand timelines for re-colonization after dam removal, resolve range expansion/shifts)	M	6	\$\$\$
Demography					
Effective population size (N _e)	Relevant; could provide important information about relative population abundance (several important caveats)	Specific; promotes integration with Stock Status subgroup	Μ	14	\$\$\$
Effective number of breeders (Nb)	Relevant; provides critical link between population size and juvenile production. Captures variation in reproductive success and aspects of juvenile survival	General; applies rangewide. However, the degree to which this can be estimated and the link to freshwater productivity need to be tested	M	12	\$\$\$
Incidental harm					
Impacts of bycatch in non-targeted ocean fisheries and mixed stock fisheries conducted by some states	Highly relevant; potentially important source of mortality	Very general; important for understanding which stocks/populations are most at risk to catch	M	3	\$\$\$
Additional sources of mortality	Highly relevant; could impact recovery efforts	Very general; important to determine the extent to which specific stocks and populations are impacted by dams, hydropower, etc.	M	11	\$\$\$
Marine Ecology					
Distribution, migration, mixing	Highly relevant; crucial information about spatiotemporal distributions,	Very general; broad applications because factors that influence population dynamics for	Μ	5	\$\$\$

Created: March 17, 2015 (Updated March 9, 2016)

	Bethoney 2013 (PhD dissertation)
	Bethoney et al. 2013
	Bethoney et al. 2014a
	Bethoney et al. 2014b
	Cournane et al. 2013
	Hasselman et al. 2016
5	
;	

	migratory routes, extent of intermixing among stocks and populations	the freshwater portion of their lives cannot be easily separated from marine factors			
Restoration	·				
Impacts of stocking activities	Relevant; important data about effects of stock transfers etc. on population structure and genetic diversity	General; important for understanding whether stocking activities undermine restoration objectives by homogenizing genetic variation	Μ	10	\$\$\$
Natural recolonization	Relevant; crucial information about timelines for recovery and sources of migrants	General; needed for understanding whether stocking activities are required for restoration following dam removal/fish passage modification	Μ	8	\$\$
Ecological and evolutionary implications of interactions between landlocked and anadromous populations following dam removal or provision of fish passage	Highly relevant; introgression between landlocked and anadromous forms could impact prospects for recovery/restoration	General; broad application to a variety of watersheds where dam removal/improved fish passage is underway or being considered	Μ	15	\$\$\$
Hybrids	1			1	
Selection against hybrids vs. hybrid vigor	Somewhat relevant; are hybrids at a disadvantage (or advantage) in the ocean? Need to know rate of hybridization.	Specific; need to understand the extent to anadromous hybrids reproduce with purebred river herring or other hybrids	Μ	18	\$\$\$
Archival collections (natural resource agencies, museums, etc.)	Relevant; archival collections could reveal whether the proportion of hybrids is increasing (decreasing) over time	General; hybrid proportions could be impacted by the extent of dam construction on various rivers, broader applications beyond hybrids (could reveal	Μ	13	\$\$

Created: March 17, 2015 (Updated March 9, 2016)

5	Labbe 2012 (MSc thesis)
	McBride 2013 (MSc thesis)
	McBride et al. 2015
	Hasselman et al. 2014

		temporal patterns/trends in genetic diversity, etc.)				
Miscellaneous						
Additional marking	Relevant; potentially	Somewhat specific; most	Μ	17	\$\$	
methods (e.g.,	useful in combination	applicable for				
oxytetracycline marking,	with genetic methods	determining and				
tagging)	and otolith techniques	quantifying impacts of				
		mixed stock fisheries				
Predation effects	Relevant; valuable for	Somewhat specific; most	S	16	\$\$	
(stomach contents)	understanding	applicable where				
	whether predation	predators are already				
	impacts recovery	suspected to have a				
		negative impact on				
		recovery				
Establish standardized	Highly relevant;	Very general; broad	S	7	\$\$	
rangewide sampling	developing	application for sampling				
protocols and dedicated	standardized (lethal	tissues and collecting				
monitoring for specific	and non-lethal)	data will generate				
populations to establish	sampling protocols	rangewide data that is				
long term data series	ensures consistency in	directly comparable and				
	data collection across	will provide meaningful				
	species ranges	insights on rangewide				
		patterns				

References

Baetscher DS, Hasselman DJ, Palkovacs EP, and Garza JC. Discovery and characterization of single nucleotide polymorphisms (SNPs) in two anadromous alosines: alewife (*Alosa pseudoharengus*) and blueback herring (*A. aestivalis*). Molecular Ecology Resources (*in prep*).

Bethoney ND. 2013. River herring and American shad at-sea distribution adnd bycatch in the U.S. Atlantic mid-water trawl fisheries. PhD dissertation, University of Massachusetts. Dartmouth, MA.

Bethoney ND, Schondelmeier BP, Stokesbury KDE, and Hoffman WS. 2013. Developing a fine scale system to address river herring (*Alosa pseudoharengus*, *A. aestivalis*) and American shad (*A. sapidissima*) bycatch in the U.S. Northwest Atlantic mid-water trawl fishery. Fisheries Research 141: 79–87. doi: 10.1016/j.fishres.2012.09.003.

Bethoney ND, Stokesbury KDE, and Cadrin SX. 2014a. Environmental links to alosine at -sea distribution and bycatch in the Northwest Atlantic midwater trawl fishery. ICES Journal of Marine Science. 71: 1246–1255.

Bethoney, ND, Stokesbury KDE, Schondelmeier BP, Hoffman WS, and Armstrong MP. 2014b. Characterization of river herring bycatch in the Northwest Atlantic midwater trawl fisheries. North American Journal of Fisheries Management 34(4): 828–838. doi: 10.1080/02755947.2014.920736.

Cournane JM, Kritzer JP, and Correia SJ. 2013. Spatial and temporal patterns of anadromous alosine bycatch in the US Atlantic herring fishery. Fisheries Research 141: 88–94. doi: 10.1016/j.fishres.2012.08.001.

Hasselman DJ, Argo EE, McBride MC, Bentzen P, Schultz TF, Perez-Umphrey AA, and Palkovacs EP. 2014. Human disturbance causes the formation of a hybrid swarm between two naturally sympatric fish species. Created: March 17, 2015 (Updated March 9, 2016) Molecular Ecology 23(5): 1137–1152. doi: 10.1111/mec.12674.

- Hasselman DJ, Anderson EC, Argo EE, Bethoney ND, Gephard GR, Post DM, Schondelmeier BP, Schultz TF, Willis TV, and Palkovacs EP. 2016. Genetic stock composition of marine bycatch reveals disproportional impacts on depleted river herring genetic stocks. Canadian Journal of Fisheries and Aquatic Sciences 73: XX-XX. doi: 10.1139/cjfas-2015-0402.
- Labbe EM. 2012 Influence of stocking history and geography on the population genetics of alewife (Alosa pseudoharengus) in Maine rivers. M.Sc. Thesis. University of Southern Maine. Portland, ME.
- McBride M. 2013 Population structure of river herring (alewife, Alosa pseudoharengus and blueback herring, A. aestivalis) examined using neutral genetic markers. M.Sc. Thesis, Dalhousie University, Halifax, Nova Scotia.
- McBride MC, Hasselman DJ, Willis TV, Palkovacs EP, and Bentzen P. 2015. Influence of stocking history on the population genetic structure of anadromous alewife (Alosa pseudoharengus) in Maine rivers. Conservation Genetics 16(5): 1209–1223. doi: 10.1007/s10592-015-0733-1.
- McBride MC, Willis TV, Bradford RG, and Bentzen P. 2014. Genetic diversity and structure of two hybridizing anadromous fishes (Alosa pseudoharengus, Alosa aestivalis) across the northern portion of their ranges. Conservation Genetics 15(6): 1281–1298. doi: 10.1007/s10592-014-0617-9.
- Palkovacs EP, Hasselman DJ, Argo EE, Gephard SR, Limburg KE, Post DM, Schultz TF, and Willis TV. 2014. Combining genetic and demographic information to prioritize conservation efforts for anadromous alewife and blueback herring. Evolutionary Applications 7(2): 212-226. doi: 10.1111/eva.12111.
- Payne Wynne ML. 2013. Using otolith mocrochemical analysis to determine marine and freshwater habitat use by juvenile blueback herring (Alosa aestivalis). M.Sc. thesis, University of Southern Maine. Portland, ME.
- Turner, SM. 2014. Understanding river herring movement patterns at small and large spatial scales through geochemical markers. PhD dissertation. State University of New York. Syracuse, NY.
- Turner SM, Limburg KE, and Palkovacs EP. 2015. Can different combinations of natural tags identify river herring natal origin at different levels of stock structure. Canadian Journal of Aquatic and Fishery Sciences 72(6): 845-854.