Mapping and Visualizing Lake Level Changes for the U.S. Great Lakes

OSU Climate Change Webinar 05/19/2015

Doug Marcy¹ Brandon Krumwiede² ¹NOAA Office for Coastal Management

²The Baldwin Group at the NOAA Office for Coastal Management

Overview

- Overview of Great Lakes climate science and historical lake levels
- Need for visualizing potential impacts
- Lake Level Viewer for the U.S. Great Lakes
 - 1. Lake level viewer development
 - 2. Web mapping tool demonstration
 - 3. How to get the data and map services
 - 4. Future work

The Great Lakes Climate

OFFICE FOR COASTAL MANAGEMENT

Climate Influence

OFFICE FOR COASTAL MANAGEMENT

Climate Change in the Great Lakes Region: Projected Changes

Kenneth Kunkel, Cooperative Institute for Climate and Satellites, North Carolina

Many Climate Variables

OFFICE FOR COASTAL MANAGEMENT

Water In Water Out

The Hydrologic Cycle

Net Basin Supply (NBS)

NBS = Overlake precipitation - Overlake evaporation + runoff from land + groundwater from land

Evaporation Rates

Lake Levels?

They All Vary

National Climate Assessment

- The Second National Climate Assessment predicted <u>significant</u> <u>drops</u> in Great Lakes lake levels by 2100.
- Previous studies overestimated the amount of evapotransporation, and the Third National Climate Assessment predicts a <u>slight</u> <u>decrease or even a slight rise</u> in water levels.
- Recent climate studies, along with the large spread in existing modeling results, indicate that projections of Great Lakes water levels represent evolving research and are still <u>subject to</u> <u>considerable uncertainty</u>.

2013 Record Lows

2 Great Lakes Hit Record Low Water Levels

John Flesher | Associated Press Published: February 6, 2013

The sun rises over Chicago on the shores of Lake Michigan, which – along with Lake Huron – has hit its lowest water level ever recorded.

OFFICE FOR COASTAL MANAGEMENT

Low Water Impacts

- Impacts shipping, power generation, tourism, fishing, the ecology of the Great Lake ecosystem, shoreline property owners, and recreational boating.
- During low level periods, lake carriers transporting iron ore, coal, grain, and other commodities are forced to carry fewer goods.
- Also, as water levels recede, marinas have fewer slips to sell to boaters and often must dredge boat slips, channels, and harbor to accommodate boater needs, costing millions.

But lower water can be advantageous for expansion of wetland habitats

High Water Impacts

Enhanced seiche effect causing bluff, beach, and lake-bed erosion, coastal flooding, and sediment transport, which have cascading consequences for shoreline hazards, water quality, and habitats.

Understanding the nature and distribution of impacts associated with lake-level change is critical for targeting watersheds, habitats, and species for Great Lakes Restoration Initiative project funding.

OFFICE FOR COASTAL MANAGEMENT

Lake Level Viewer: U.S. Great Lakes

- Funded by President Obama's Great Lakes Restoration Initiative
- Fills a critical information data gap:
 - 40% of Coastal Storms Program survey respondents said current data on future lake level changes are inadequate
 - Only 26% said existing tools to work with or visualize these data are adequate

Source: 2013 Shoreline Change Workshop: Perspectives on the Great Lakes Survey

Great Lakes Coastlines

OFFICE FOR COASTAL MANAGEMENT

Lake Level Viewer Requirements

- Use best available, high accuracy topo/bathy Lidar data to build a seamless digital elevation model (DEM) for Great Lakes coastline
- Map lake levels below and above each lake's long-term average level to visualize the impacts of both flooding and low lake levels
- Develop photo simulations at local landmarks to see impacts
- Link visualizations to historical water levels (water level dashboard) for context
- Define elevation data gaps for future collection efforts
- Access map services
- Download elevation and lake level data

Use Best Available Topo/Bathy Lidar

www.coast.noaa.gov/inventory

OFFICE FOR COASTAL MANAGEMENT

Topo/Bathy Lidar Very Efficient vs. Ship-Based Methods

But Has Some Challenges

Digital Elevation Models From Topo/Bathy Lidar

OFFICE FOR COASTAL MANAGEMENT

Current Data Coverage

OFFICE FOR COASTAL MANAGEMENT

Gaps Within Coverage

Topography with No Bathymetry (much more common)

Bathymetry with No Topography (much less common)

OFFICE FOR COASTAL MANAGEMENT

Gaps in Harbors

Flooding Information, but missing water depth information in some harbors

Connection to Water Level Dashboard

Source: NOAA GLERL

OFFICE FOR COASTAL MANAGEMENT

Water Level Elevation Challenges

OFFICE FOR COASTAL MANAGEMENT

Demonstration

www.coast.noaa.gov/llv

Data Distribution

Lots of Layers

- Lake level change layers
- Uncertainty layers
- Socioeconomic layers
- Conditioned DEMs

Lots of Ways to Distribute

- Raster geodatabases via HTTP
- ESRI Representational State Transfer (REST) map services
- Web map services (WMS)

OFFICE FOR COASTAL MANAGEMENT

Four-Pronged Approach

- Visualize water level changes at a screening level (education/outreach, start the discussion)
- Use the web map services in other tools, with other data
- Get the data layers to use for hazards profile/vulnerability assessment
- Use the underlying DEMs for other purposes (storm water, hydrology, erosion etc.)

Future Work

- Bathymetric Data Inventory
- Update with new topo/bathy data and fill in data gaps
- Collect user feedback on version 1.0
- Enhancements for management applications based on user feedback

Updates Underway

Update Areas

Es.4, HERE, DeLorme, Mepmylindla, 🛛 OpenStreetMep contributors, and the GIS user community, Es.4, HERE, Mepmylindla, 🖉 OpenStreetMep contributors

Lansin

Kalamazoo Portage

OFFICE FOR COASTAL MANAGEMENT

Resources

NOAA Digital Coast

www.coast.noaa.gov/digitalcoast

Lake Level Viewer

www.coast.noaa.gov/digitalcoast/tools/llv

U.S. Interagency Elevation Inventory

www.coast.noaa.gov/inventory

Coastal Lidar Data

www.coast.noaa.gov/digitalcoast/data/coastallidar

CanVis

www.coast.noaa.gov/digitalcoast/tools/canvis

NOAA GLERL Water Level Dashboard

www.glerl.noaa.gov/data/dbportal

OFFICE FOR COASTAL MANAGEMENT

Thank You!

Contacts

Doug Marcy – Coastal Hazards Specialist, Lake Level Viewer Project Lead

doug.marcy@noaa.gov

Brandon Krumwiede – Great Lakes Geospatial Coordinator

brandon.krumwiede@noaa.gov

