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ABSTRACT 

 

This Algorithm Theoretical Basis Document (ATBD) provides a high-level description of the 

physical/mathematical basis and operational implementation of the sea surface temperature 

(SST) product derived from the Advanced Baseline Imager (ABI), which will be flown onboard 

the NOAA Geostationary Operational Environmental Satellite R series (GOES-R).  

 

Currently, prior to launch of GOES-R, the SST algorithms have been prototyped with available 

satellite data, including AVHRR onboard NOAA 16-19 and METOP-A (similar spectral 

characteristics), and SEVIRI onboard MSG 1-2 (similar geostationary measurements). The 

retrieval system is the Advanced Clear-Sky Processor for Oceans (ACSPO), built upon heritage 

Clouds from the AVHRR Extended (CLAVR-x) system. ACSPO generates a suite of products 

including top-of-atmosphere (TOA) clear-sky brightness temperatures (BTs) and SSTs. The suite 

of products is accompanied by an external cloud mask (CM) and internally generated quality 

control (QC).  

 

Three versions of SST algorithms have been implemented: (1) the regression algorithm, based on 

split-window nonlinear SST (NLSSST) and/or multi-channel SST (MCSST); (2) the radiative 

transfer model (RTM) inversion  algorithm, based on the optimal estimation (OE) technique; and 

(3) the hybrid algorithm, based on a combination of the above two approaches. The ACSPO 

system requires as its input optical and thermal infrared channels, navigation and 

observational/illumination geometry. Two of its major ancillary data sources are the global daily 

0.25º and weekly 1º reference Reynolds SST (OISST) fields, and 6-hour 1º National Centers for 

Environmental Prediction Global Forecast System (NCEP/GFS) atmospheric profiles. Ancillary 

GFS and OISST data are used as input to the fast Community Radiative Transfer Model (CRTM) 

to simulate clear-sky channel BTs. CRTM BTs are utilized for inversion and hybrid SST 

retrievals and QC of SST and BT. Web-based tools are being developed for near-real time (NRT) 

operational monitoring of the quality of SST and BT products and for calibration/validation 

(Cal/Val) of SST products. Currently, these tools are employed routinely with multiple AVHRR 

(NOAA 16-19) and METOP-A sensor data.  

 

The SST Quality Monitor (SQUAM) tool allows monitoring of statistics of SST biases with 

respect to multiple reference SST fields, including OISST, Operational Sea Surface Temperature 

and Sea Ice Analysis (OSTIA), and Real-Time, Global SST (RTG). The Monitoring of IR Clear-

sky Radiances over Oceans for SST (MICROS) tool allows monitoring of statistics of channel 

BT biases with respect to CRTM predictions. Finally, the Cal/Val tool provides calibration and 

validation of the SST product with respect to in situ (buoy) data. Drifting and tropical moored 

buoy data collected by the NCEP Global Telecommunication System (GTS) were selected for 

SST validation. Another NRT tool, in situ Quality Monitor (iQuam) is being set up to routinely 

conduct quality control of GTS in situ data. The results of prototyping and validation of the ABI 

SST product show that its accuracy and precision are close to those of other world-class SST 

products and well within existing GOES-R ABI specifications. 
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1 INTRODUCTION 

The purpose, users, scope, related documents and revision history of this document are briefly 

described in this Section. Section 2 gives an overview of the sea surface temperature (SST) 

retrieval algorithm, including objectives and characteristics of the Advanced Baseline Imager 

(ABI) instrument. Section 3 describes the baseline algorithm and input and output data. Section 4 

provides theoretical backgrounds of the SST retrieval problem and retrieval algorithms. 

Validation is described in Section 5, practical considerations in Section 6, assumptions and 

limitations associated with the algorithm in Section 7, and references are listed in Section 8. 

1.1 Purpose of This Document 

This Algorithm Theoretical Basis Document (ATBD) provides a high-level description of the 

physical basis and related mathematical formalism for an algorithm to derive the sea surface 

temperature (SST) product as a part of the requirements for the ABI. The ABI is the primary 

visible and infrared instrument to be flown onboard the platform of the Geostationary 

Operational Environmental Satellite (GOES) R series (GOES-R) of NOAA meteorological 

satellites. In addition, this document provides an overview of the required input data, product 

output, predicted performance, practical considerations, and assumptions and limitations.  

1.2 Who Should Use This Document 

The intended users of this document are those interested in understanding the physical basis of 

the SST algorithm and how to use the output of this algorithm for a particular application. This 

document also provides information useful to anyone maintaining or modifying the original 

algorithm. 

1.3 Inside Each Section 

This document covers the theoretical basis for the derivation of the SST product from ABI data. 

It is broken down into the following main sections: 

 System Overview: Provides objectives of the SST algorithm, relevant details of the ABI 

instrument, and a brief description of the product requirements. 

 Algorithm Description: Provides the general flow chart of the SST algorithm and detailed 

description of its inputs and its outputs. 

 Theoretical Description: Provides a physical and mathematical background for the SST 

retrieval problem and algorithms. 

 

 Validation of SST Algorithms: Provides a description of the methodology and the results 

of the validation of SST algorithms with the test data sets.  

 

 Practical Considerations: Provides an overview of the issues involving numerical 

computation, programming and procedures, quality assessment and diagnostics, and 

exception handling.  
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 Assumptions and Limitations: Provides an overview of the current limitations of the 

approach and a plan for overcoming these limitations with further algorithm development. 

1.4 Related Documents 

This document may contain information listed in some other GOES-R documents available from 

the website maintained by the GOES-R Algorithm Working Group (AWG): 

www.star.nesdis.noaa.gov/star/goesr/index.php 

 

The reader might want to refer to the following documents in conjunction with the current 

ATBD: 

o GOES-R Series Ground Segment Functional and Performance Specification 

o GOES-R Series Mission Requirements Document  

o GOES-R SST Team Critical Design Review  

o GOES-R SST Team Annual Reports to AWG in July 2008 and July 2009 

o GOES-R Algorithm Theoretical Base Document for ABI Cloud Mask  

 

Other related references are listed in the Reference Section. 

1.5 Revision History 

Version 0.0 of this document was created by Dr. Alexander Ignatov of NOAA/NESDIS in 

August 2008 and its intent was to accompany the delivery of the version 1.0 SST algorithm to the 

GOES-R Algorithm Integration Team (AIT).  

 

Version 1.0 was created by A. Ignatov in July 2009 to update the ATBD document to 80% 

readiness and to accompany two subsequent deliveries (versions 2 and 3) of the SST code that 

occurred between August 2008 and July 2009.  

 

Version 2.0 was created by A. Ignatov, B. Petrenko, N. Shabanov, and Y. Kihai in May 2010 to 

comply with 100% ATBD readiness and to support final GOES-R SST code delivery to AWG. 

 

2 OBSERVING SYSTEM OVERVIEW 

SST is needed for many applications including monitoring climate variability, seasonal 

forecasting, operational weather and ocean forecasting, military and defense operations, 

validating or forcing ocean and atmospheric models, ecosystem assessment, tourism, and 

fisheries (e.g., Donlon et al., 2007). Satellite retrievals of SST can be assimilated into climate, 

mesoscale atmospheric, and sea surface numerical models, which form the cornerstone of the 

operational ocean forecasting systems.  

The SST requirements and qualifiers for GOES-R SST are listed in Table 2.1 as defined by the 

mission requirement document (MRD) and the Ground Segment Functional and Performance 

Specification (GS-F&PS) document. The mission requirements and qualifiers are identical for 

the four major ABI scanning modes (including full disk, hemisphere, CONUS, and mesoscale). 

http://www.star.nesdis.noaa.gov/star/goesr/index.php
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Table 2.1 GOES-R mission requirements and qualifiers for SST (GS-F&PS). 
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This section describes objectives of the SST algorithm, details of the ABI instrument related to 

the SST algorithm, and the product requirements. 

2.1 Products Generated 

SST will be produced for each clear-sky pixel observed by the ABI sensor using a state-of-the-art 

SST algorithm, which meets the GOES-R mission requirement. Algorithm accuracy, simplicity, 

computational efficiency and robustness, and consistency with polar SST algorithms are 

priorities of the GOES-R SST development. Physics of radiative transfer within the “sea surface 

– atmosphere” system is set forth in section 4.1. SST, derived from satellite radiances, is 

sensitive to the temperature of the skin layer, but, as discussed in more detail in Section 4.1.1, 

using “bulk” in situ measurements for calculation of regression coefficients can introduce a bias 

of satellite SST towards “bulk” SST. 

Satellite retrievals have become the major source of highly accurate and globally consistent SST 

data since the 1970s (e.g., McMillin, 1975; McMillin and Crosby, 1984; Llewellyn-Jones et al, 

1984; McClain et al, 1985; Barton et al., 1995; Brisson et al., 2002; Brown and Minnett, 1998; 

Merchant and Harris, 1999; Kilpatrick et al, 2001; Merchant et al, 2008, 2009). In the thermal 

infrared (IR), SST can be retrieved only under clear skies. Accuracy of the satellite SST 

measurement is limited by the accuracy of sensor radiances, quality of cloud screening, and 

correction for the effects of atmospheric absorption and scattering and surface reflection in the 

retrieval algorithms. Section 4.2 contains detailed description of SST retrieval algorithms. 

2.2 Instrument Characteristics 

The ABI will be a mission-critical payload on GOES-R, providing over 65% of all the mission 

data products currently defined. Similar to the current GOES imager, ABI will be used for a wide 
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range of qualitative and quantitative weather, oceanographic, climate, and environmental 

applications. ABI will offer higher spatial resolution and a faster imaging rate than the current 

GOES imager. Its spatial resolution will be nominally 2 km for the infrared bands and 0.5 km for 

the 0.64 μm visible band. While the instrument will allow a flexible scanning scenario, two basic 

modes are anticipated. The first is a flexible scanning scenario that will provide one scan of the 

Full Disk (FD), three scans (5 minutes apart) of the Continental United States (CONUS), and 60 

scans (30 seconds apart) over a selectable 1000 km ×1000 km area every 15 minutes. The second 

mode is continuous FD scanning in which FD coverage is obtained every 5 minutes. In practice, 

some combination of both modes may be used. For example, three sequential FD images that are 

5 minutes apart may be taken every hour for the generation of SST. The flexible scanning mode 

would then be used for the rest of the hour. For comparison, it takes approximately 25 minutes 

for the current GOES imager to scan the FD; GOES-R will thus provide a fivefold increase in the 

coverage frequency (Schmit et al., 2005).  

ABI has 16 spectral bands. Figure 2.1 shows the spectral distribution of the ABI long-wave 

infrared channels, compared to the corresponding GOES-12 imager channels. Five ABI bands are 

similar to the 0.6-, 4-, 11-, and 12-μm windows and the 6.5-μm water vapor band on the current 

GOES-8/-9/-10/-11 imagers (Menzel and Purdom, 1994; Ellrod et al., 1998), and another is 

similar to the 13.3 μm on the GOES-12/-N/-O/-P imagers and the GOES-8/-P sounders (Schmit 

et al., 2005). Additional bands on ABI are 0.47 μm for aerosol detection and visibility estimation; 

0.865 μm for aerosol detection and estimation of vegetation index and health; 1.378 μm to detect 

very thin cirrus clouds; 1.6 μm for snow/cloud discrimination; 2.25 μm for aerosol and cloud 

particle size estimation, vegetation, cloud properties/screening, hot-spot detection, moisture 

determination, and snow detection; 7.0 and 7.34 μm for mid-tropospheric water vapor detection 

and tracking and upper-level sulfur dioxide (SO2) detection; 8.5 μm for detection of volcanic 

dust clouds containing sulfuric acid aerosols and estimation of cloud phase; 9.6 μm for 

monitoring atmospheric total column ozone and upper-level dynamics; and 10.35 μm for 

deriving low-level moisture and cloud particle size.  

Each of these bands is often used in conjunction with other bands in a multiple spectral approach 

for product generation. For SST estimation, window bands centered at 3.7, 11, and 12 μm are 

used on the heritage sensors AVHRR and SEVIRI (Llewellyn-Jones et al., 2004; McClain et al., 

1985; Schmetz et al., 2002). The 3.7-μm band is very transparent and may be used at night, while 

during daytime it is contaminated by solar reflectance. The ABI split-window configuration 

features three bands instead of the two found in heritage sensors. This offers additional potential 

but also may present a challenge if the two end bands centered at 10.35 and 12.3 μm are pushed 

too far in the absorption lines. The 8.5-μm is another window band that may be used in 

conjunction with the 10.35-μm and 11.2-μm bands for improved thin cirrus detection as well as 

for better atmospheric moisture correction in relatively dry atmospheres (Schmit et al., 2005). In 

summary, the SST retrieval will thus rely on channels 7 (3.9), 11 (8.5), 13 (10.35), 14 (11.2), and 

15 (12.3 µm) of the ABI.  

Channel specification of the ABI is given in Table 2.2. The advanced design of ABI will provide 

SST users with twice the spatial resolution, five times the scan rate, more spectral channels, and 

improved radiometric performance compared to the current GOES imager and SEVIRI. These 

improvements should allow significant improvements in the accuracy of SST. 

 



 

 16 

 

Figure 2.1 Spectral distribution of the ABI channels, compared to GOES-12 Imager channels 

(after Schmit et al., 2005). 

 

Table 2.2 Spectral and radiometric characteristics for the ABI channels. Green color highlights 

the channels, which are used in SST retrieval. Blue color highlights the channels, potentially 

useful for SST. For SEVIRI, only channels 14 and 15 are currently used because of problems 

with CRTM. 

Channel 

Number 
Usage 

Wavelength 

(μm) 

Bandwidth 

(μm) 
NEDT/SNR 

Upper Limit of 

Dynamic Range 

Spatial 

Resolution 
1 No 0.47 0.45 – 0.49 300:1

[1]
 652 W/m

2
/sr/μm 1 km 

2 No 0.64 0.59 – 0.69 300:1
[1]

 515 W/m
2
/sr/μm 0.5 km  

3 No 0.86 0.8455 – 0.8845 300:1
[1]

 305 W/m
2
/sr/μm 1 km 

4 No 1.38 1.3705 – 1.3855 300:1
[1]

 114 W/m
2
/sr/μm 2 km 

5 No 1.61 1.58 – 1.64 300:1
[1]

 77 W/m
2
/sr/μm 1 km 

6 No 2.26 2.225 – 2.275 300:1
[1]

 24 W/m
2
/sr/μm 2 km 

7 Yes 3.9 3.8 – 4.0 0.1K
[2]

 400K 2 km 

8 No 6.15 5.77 – 6.60 0.1K
[2]

 300K 2 km 

9 No 7.0 6.75 – 7.15 0.1K
[2]

 300K 2 km 

10 No 7.4 7.24 – 7.44 0.1K
[2]

 320K 2 km 

11 Potentially 8.5 8.30 – 8.70 0.1K
[2]

 330K 2 km 

12 No 9.7 9.42 – 9.80 0.1K
[2]

 300K 2 km 

13 Potentially 10.35 10.10 – 10.60 0.1K
[2]

 330K 2 km 

14 Yes 11.2 10.80 – 11.60 0.1K
[2]

 330K 2 km 

15 Yes 12.3 11.80 – 12.80 0.1K
[2]

 330K 2 km 

16 No 13.3 13.0 – 13.6 0.3K
[2]

 305K 2 km 

[1]100% albedo, [2]300K scene.  
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3 ALGORITHM DESCRIPTION 

A complete description of the algorithm at the current level of maturity is given in this Section. 

The algorithm and this ATBD are expected to mature as time goes on and algorithm development 

progresses.  

3.1 Algorithm Overview 

For detailed description of the algorithm see sections 4.2 - 4.3. The FD image processing within 

the SST module includes:  

- calculation of regression, hybrid and inversion SSTs (note that currently inversion SST is 

not recorded in the output file but is used in the SST QC; this may be subject to change) 

- SST quality control (SST QC)  

- accumulation of BT and SST anomaly histograms over ocean pixels and updated bias file. 

3.2 Processing Outline 

The flow chart of the SST algorithm is shown in Fig. 3.1. SST retrieval will be performed with 

the special SST module within the Algorithm Integration Team (AIT) framework. The 

preparational procedures for SST, which should be executed within the AIT framework and the 

SST specific procedures, executed by the SST module, are shown in Fig. 3.1 in different colors.  

The SST module processes the full disk (FD) images sequentially. The sequence of image 

processing is important because the SST module tracks variable global biases in SST and BT and 

recursively averages them over several sequential images. In the beginning of every FD image 

processing, the SST module reads previously estimated biases from the special bias file and 

updates this file at the end of FD image processing. If the bias file is not available when the first 

FD image is processed, the biases are initialized within the SST module.  

The data needed for SST and prepared within the AIT framework include:  

- satellite FD information 

- configuration file 

- ABI cloud mask and ice mask 

- static and dynamic ancillary data 

- Clear-sky BT and BT Jacobian, simulated with the Community Radiative Transfer Model 

(CRTM) on the GFS grid and bilinearly interpolated to the sensor‟s pixels 

- Reynolds SST bilinearly interpolated to the sensor‟s pixels. 

SST retrievals in each scanning mode will be performed during day and night, for cloud-free (i.e., 

“clear” and “probably clear” indicated by the ABI cloud mask) sea surface pixels only. The ABI 

cloud mask (ACM) will be used for preliminary cloud detection. 

The SST algorithms, used in a split- or triple-window formulation (that is, using two or three 

channels), will be applied to correct for atmospheric absorption.  
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Figure 3.1 The flow chart of GOES-R ABI data processing for SST within the AIT framework. 
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Based on the validation results of the three SST algorithms, the hybrid algorithm has been chosen 

as the baseline ABI SST algorithm. The regression algorithm is used as a back-up algorithm 

because it is more simple and robust and won‟t fail if the GFS or Reynolds SST data are not 

available. The inversion algorithm is also kept in the code and is used in the SST QC because of 

its ability to effectively minimize BT residuals under clear-sky conditions.  

The SST QC estimates SST retrieval quality, which is captured using a set of flags and 

indicators. Cloud flags are passed from the input data, whereas SST quality flags are generated 

within the SST module. Currently, the quality flags and indicators are only assigned to the hybrid 

SST product, but they may be also used for estimation of the quality of the regression and 

inversion products.  

SST development is closely coordinated with the cloud AT (Shabanov et al., 2010). The major 

objective of SST/cloud collaboration is ensure that the ABI cloud mask reliably identifies 

“confidently cloudy” and “probably cloudy” pixels, which are therefore not considered by the 

SST algorithm. SST QC marks these pixels as “cloudy” by the CM. Since the ABI cloud mask 

was designed to be conservative and minimize the discarding of potentially good data, the “clear” 

and “probably clear” pixels might still have significant cloud contamination which has a 

measurable effect on the SST product. This contamination is further quantified by SST QC and 

annotated by the SST Quality Flags (QF) and Quality Indicators (QI). 

3.3 Algorithm Input 

This section describes the input needed to compute the SST product. While the SST is derived 

for each pixel, the QC requires calculation of SST variability in the n×n sliding window around 

the central pixel, where n is a TBD number (currently, n=11). 

3.3.1 Primary Sensor Data 

Table 3.1 lists the primary sensor data (i.e., information derived solely from the ABI observations 

and geolocation information), which is used by the SST algorithm. 

The specific approach to convert satellite channel data stored as counts to radiances and 

radiances to BTs is specified by sensor calibration team. In the case of SEVIRI, BTs are derived 

according to the following parametric equations: 

 

)(Leff  = gain(λ) count(λ) + offset(λ),         (3.1a) 

)(L

c
1ln

)()(c
)()(T)(

eff

13

2
eff .        (3.1b) 

Here, Leff and Teff are effective radiance and BT, quantities averaged over sensor bandwidth 

(EUMETSAT-1); λ and ν are wavelength and frequency. EUMETSAT implemented 

operationally effective quantities for data starting May 05, 2008, at 08:00 UTM. Values of 

parameters (gain, offset, count, α, β, c1, c2, c3) are listed in Tables 3.2 and 3.3 for MSG-1 and 
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MSG-2 respectively and can also be found in the L1B data header. Alternatively, Look-Up 

Tables can be used to convert radiances to BTs with improved accuracy.  

3.3.2 ABI-Based Ancillary Data 

Table 3.4 describes the ancillary data, obtained from ABI data processing required for SST. 

3.3.3 Non-ABI Ancillary Static Data 

Table 3.5 lists and describes the static ancillary data (information not included in the ABI 

observations or geolocation data) required to run the SST algorithm. 

3.3.4 Non-ABI Ancillary Dynamic Data 

Table 3.6 describes the dynamic ancillary data required to run the SST algorithm. By ancillary 

data, we mean data that requires information not included in the ABI observations or geolocation 

data. The only data of this type needed by the SST module is Reynolds (weekly or daily) OISST 

analysis, bilinearly interpolated from the analysis grid to the sensor‟s pixels. 

3.3.5 Algorithm Coefficients and Control Values (ABI-specific static) 

Algorithm coefficients, look-up tables and some criterion values for algorithm selection and for 

quality control flags which will be ingested as input data are shown in Table 3.7. Tables 3.8 and 

3.9 list the contents of configuration and parameters files.  

 

Table 3.1 Input list of sensor data. 

Name Type Description Dimension 

Ch07 ABI BT  input Calibrated ABI level 1b BT in channel 07 grid (xsize, ysize)* 

Ch11 ABI BT  input Calibrated ABI level 1b BT in channel 11 grid (xsize, ysize) 

Ch13 ABI BT input Calibrated ABI level 1b BT in channel 13 grid (xsize, ysize) 

Ch14 ABI BT  input Calibrated ABI level 1b BT in channel 14 grid (xsize, ysize) 

Ch15 ABI BT input Calibrated ABI level 1b BT in channel 15 grid (xsize, ysize) 

Latitude input Pixel latitude grid (xsize, ysize) 

Longitude input Pixel longitude grid (xsize, ysize) 

Solar zenith input ABI solar zenith angles grid (xsize, ysize) 

Solar azimuth input ABI solar azimuth angles grid (xsize, ysize) 

View zenith input ABI local zenith angle grid (xsize, ysize) 

View azimuth input ABI view azimuth angle grid (xsize, ysize) 

External ABI QC Flags  input ABI quality control flags available from L1b data grid (xsize, ysize) 
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Table 3.2 Calibration parameters for SEVIRI MSG-1. 

 λc, [µm] νc, [cm
-1

] gain offset C1 C2 α β 

Ch 01 0.60  2.3128100E-02 -1.179533     

Ch 02 0.80  2.9726600E-02 -1.516057     

Ch 03 1.60  2.3621900E-02 -1.204717     

Ch 04 3.92 2567.33 3.6586667E-03 -0.186592 201960.5 3696.35 0.9959 3.471 

Ch 09 10.80 930.68 0.2050344 -10.45676 9600.593 1339.004 0.9983 0.627 

Ch 10 12.00 839.66 0.2223114 -11.33788 7050.798 1208.079 0.9988 0.397 

Table 3.3 Calibration parameters for SEVIRI MSG-2. 

 λc, [µm] νc, [cm
-1

] gain offset C1 C2 α β 

Ch 01 0.60  2.0135500E-02 -1.0269100     

Ch 02 0.80  2.5922000E-02 -1.3220220     

Ch 03 1.60  2.2258500E-02 -1.1351830     

Ch 04 3.92 2567.33 3.6586667E-03 -0.1865920 201898.7 3695.958 0.9954 3.438 

Ch 09 10.80 930.68 0.2050344 -10.45676 9632.847 1340.502 0.9983 0.640 

Ch 10 12.00 839.66 0.2223114 -11.33788 6970.092 1203.452 0.9988 0.408 

Table 3.4 ABI-based input to SST algorithm. 

Name Type Description Dimension 

ABI cloud mask input ABI Level 2 cloud mask data grid (xsize, ysize) 

Snow/ice mask input ABI Level 2 snow/ice mask data grid (xsize, ysize) 

Table 3.5 Non-ABI based static input ancillary data to SST algorithm. 

Name Type Description Dimension 

Land/sea mask input A land/sea and coast mask grid (xsize, ysize) 

Table 3.6 Non-ABI based dynamic input ancillary data to SST algorithm. 

Name Type Description Dimension 

SST Reference field input Reynolds SST** grid (xsize, ysize) 

Ch 07 ABI BT and Jacobian input CRTM*** Clear sky BT and Jacobian in ABI Ch07 grid (xsize, ysize) 

Ch 11 ABI BT and Jacobian input CRTM Clear sky BT and Jacobian in ABI Ch11 grid (xsize, ysize) 

Ch 13 ABI BT and Jacobian input CRTM Clear sky BT and Jacobian in ABI Ch13 grid (xsize, ysize) 

Ch 14 ABI BT and Jacobian input CRTM Clear sky BT and Jacobian in ABI Ch14 grid (xsize, ysize) 

Ch 15 ABI BT and Jacobian input CRTM Clear sky BT and Jacobian in ABI Ch15 grid (xsize, ysize) 

 

* grid(xsize,ysize) is a 2-D data array at Satellite grid (i.e., SEVIRI grid), ysize is the number of scan lines and 

xsize is the number elements in each line. 

**   CRTM data (1
o
 x 3-, 6-, 9- and 12- h, corresponding to input GFS data resolution) interpolated to Satellite grid. 

***  Reynolds SST data (1° × weekly or 0.25° × daily) interpolated to Satellite grid. 
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3.3.6 CRTM Simulations and Dynamic Ancillary Fields Used for SST 

Reynolds SST is used as direct input for the SST retrieval module, as shown in Table 3.6. In 

addition, the SST module requires clear-sky BTs and BT Jacobian (the matrix of BT derivatives 

with respect to SST and Optical Depth Scaling Factor (ODSF); see Section 4.2.2). The CRTM 

simulates these variables on the GFS grid using Reynolds SST, GFS vertical profiles of 

atmospheric temperature and humidity, and local zenith angle as inputs. The CRTM simulation 

also uses the interpolated Reynolds SST and local angle for the pixels nearest to the GFS grid 

nodes. The output CRTM parameters – clear-sky BTs and Jacobian – are also bilinearly 

interpolated from the GFS grid to the sensor‟s pixels.  

The weekly (or daily) Reynolds SST fields are available once a week (or day), and the SST 

module and CRTM use the latest available data for the Reynolds field, without interpolation in 

time. The GFS atmospheric fields are more variable than the SST field and are linearly 

interpolated in time to the sequential FD image times.  

When doing bilinear interpolation of the Reynolds SST and CRTM fields, it is possible that for 

some sensor‟s pixels there will be less than four neighboring grid nodes with valid field values. 

This may occur, for example, in the vicinity of the coast lines, if some of the nearest nodes fall on 

the land. This also can happen if some grid nodes contain invalid data, marked with NaNs. In this 

case, the pixel will be assigned and average value over those nodes with valid parameter values. 

Table 3.7 ABI-specific algorithm coefficients and input values to SST algorithm. 

Name Type Description Dimension 

Config input 

 Input/Output parameters (layers names, pathes, 

compression types, formatting types),   

 Ancillary data parameters (pathes, version 

switches, control flags),  

 Retrievals modes (use/not external CM, SST 

algorithm type) 

 Single ASCII file 

CRTM LUTs input 

Parameters/settings  used for CRTM calculations  

(including transmittance, sensor-specific, aerosols 

emissivity and cloud coefficients) 

 Multiple ASCII and 

Binary files 

SST and SST QC LUTs input 

Parameters/settings used in SST and SST QC 

calculations (including regression coefficients, test 

thershoulds and parameters) 

Single ASCII file 
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Table 3.8 Selected entries of the „Config‟ file (ancillary data parameters and retrievals modes). 

Name Meaning Value 

SST_FG_Swch First Guess SST type switch 

1 0 –  weekly Reynolds 

2 1 –  daily SST (AVHRR v1) 

3 2 –  daily SST (AVHRR+AMSR, v1) 

4 3 –  daily SST (AVHRR, v2) 

5 4 –  daily SST (AVHRR+AMSR, v2) 

6 5 –  daily SST (OSTIA) 

Fcst_Interval_Swch GFS Forecast interval switch 

 3 – 3-hour forecast  

 6 – 6-hour forecast  

 9 – 9-hour forecast  

12 – 12-hour forecast 

Extrn_CM_Swch 
External Cloud Mask (CM) 

switch 

0 – Not read, not used;  

1 – Read and used to minimize QC calculation; 

2 – Read, but not used (pass-through)  

SST_algorithm_Swch Selection of the SST algorithm 
0 – Hybrid (primary) 

1 – Regression (back-up) 

Table 3.9 Parameters of the SST and SST QC „Parameters‟ file. 

Name Meaning Value 
a1_Regr 

a2_Regr 

a3_Regr 

a4_Regr 

Coefficients of the Regression SST 

0.963999 

0.0711657 

0.820187 

11.8430 

a1_Hybr 

a2_Hybr 

a3_Hybr 

a4_Hybr 

Coefficients of the Hybrid SST 

0.743279 

1.07488 

0.0589083 

0.734534 

Unif_Thresh, 

Radius_Value 
SST Uniformity filter parameters 

0.09 

1 

TA_Lower_Thresh, 

TA_Upper_Thresh, 

TA_Scale, 

Rad_Value 

SST filter parameters 

-6. 

-2. 

3. 

15 

BT_Resi_Lower_Thresh 

BT_Resi_Upper_Thresh 
Radiance filter parameters 

1. 

1. 

Slope 

Intercept_1 

Intercept_2 
Optical Depth filter parameters 

0.05 

1.1 

1. 

BT_Noise 

FG_SST_Noise 

FG_OD_Noise 
Parameters of OE methods for SST and OD calculation 

0.2 

1.5 

0.2 
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3.4 Theoretical description 

3.4.1 Physics of the Problem 

3.4.1.1 Skin and Bulk SST 

Surface IR emission is formed in the top ~10 μm of water and is sensitive to the so-called “skin 

SST” (e.g., Saunders, 1967a; Robinson et al., 1984; Donlon and Robinson, 1997; Donlon et al., 

2002; Minnett, 2003). In situ sensors, on the other hand, typically measure bulk SST, which 

differs from skin SST due to the skin effect (cold skin-layer, due to heat exchange at the surface), 

and diurnal thermocline (e.g., Gentemann et al., 2003; Horrocks et al., 2003; Gentemann, 2007; 

Gentemann and Minnett, 2008). The difference between skin and bulk SSTs may reach several 

degrees, especially during the daytime under clear-sky and low wind conditions, when the mixing 

in the upper layer is suppressed and therefore strong diurnal warming may develop (Fairall, 1996; 

Murray et al., 2000; Wick et al., 2002; Castro et al., 2002; Stuart-Menteth et al., 2003; Tanashi et 

al., 2003; Nardielli et al., 2005). Figure 3.2 shows typical vertical distributions of SST during day 

and night, and gives definitions of SSTs. Using in situ bulk SSTs for validation of the ABI skin 

SST product has limitations. Existing approaches to nighttime skin-to-bulk SST conversion may 

use a constant offset of ~0.17 K. If surface wind speed, w, is available, then the following 

relationship between skin and bulk SST was proposed by Donlon et al (2002): 

 

SSTbulk=SSTskin – [0.14 + 0.30exp(-w/3.7)]           (3.2) 

 

During daytime, the relationship between skin and bulk SSTs is more complex, due to the effect 

of the diurnal thermocline. Its modeling requires knowledge of fluxes at the surface, including 

their history. In this ATBD, correction of in situ data and retrieved SST for skin/bulk difference 

was not applied. The coefficients for regression and hybrid algorithm were calculated from 

matchups of BTs and in situ bulk SSTs. The BT bias correction for the inversion algorithm is 

based on Reynolds SST, which is anchored to in situ SST (Reynolds et al., 1994, 2007). Also, 

Reynolds SST is used as the first-guess SST input for CRTM to model first-guess BTs. On the 

other hand, the observed BTs, from which the SST products are derived, are sensitive to skin 

SST. As a result, SST, retrieved with all three algorithms in this ATBD, reflects variations in 

skin SST, but on average represents bulk SST. Recently, Castro et al. (2010) have found that the 

accuracy of regression, produced from matchups of bulk SST and AVHRR BTs, is not worse 

(and often is better) than the accuracy of regression, produced from matchups of skin SST and 

AVHRR BTs. Nevertheless, we plan to explore the performance of skin-bulk conversion 

algorithms outside this ATBD, at the Cal/Val stage of the project. If these conversions are found 

to be efficient, they will be incorporated into the SST retrieval algorithms.  

3.4.1.2 Surface Emissivity 

Ocean surface is not a black body. Overall, emissivity of sea water is well constrained (compared 

to, e.g., land emissivity). It is less than unity and depends upon spectral interval and local zenith 

angle (e.g., Smith et al., 1996; Watts et al., 1996). Spectral and angular structure of emissivity is 

defined by Fresnel‟s laws and sea surface roughness. Typical emissivities of a flat surface in the 

thermal IR windows representative of AVHRR, SEVIRI, and ABI bands are shown in Fig. 3.3. 
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They were calculated with spectral refractive indexes (Friedman, 1969; Hale and Querry, 1973; 

Downing and Williams, 1975; Pinkley et al., 1977; Segelstein, 1981).  

 

 

Figure 3.2 Definitions of different SSTs (after Donlon et al., 2007): 

- Interface SST is a temperature at exact air-sea interface 

- Skin SST is a temperature measured by IR radiometer at ~10-20µm depth 

- Subskin SST is a temperature at the base of a conductive laminar sub-layer 

- Depth/bulk SST is a temperature measured by drifting buoys at ~1  m depth 

- Foundation SST is a temperature of the water column free from diurnal variability 

 

 

Figure 3.3 Typical spectral and angular dependence of sea water emissivity in the AVHRR 

bands (Dash and Ignatov, 2008).  
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Emissivity is also a function of wind speed (e.g., Wu and Smith, 1997; Minnett et al., 2001; 

Masuda et al., 2006; Nalli et al., 2008ab), water temperature, and salinity (e.g., Newman et al., 

2005). These corrections are relatively small but can introduce errors in SST retrievals up to 

several tenths of a degree Kelvin (e.g., Hanafin and Minnett, 2005; Niclos et al., 2005; Donlon et 

al., 1998, 2002).  

3.4.1.3 Atmospheric Transmittance 

Assuming clear sky conditions and neglecting atmospheric scattering, the top of atmosphere 

(TOA) radiance (I(ν)) is customarily described by (e.g., Deschamps and Phulpin, 1980; Chedin et 

al., 1985; Berk et al, 1998, 2002; Han et al., 2006; Dash and Ignatov, 2008) 

 

)(I)(I)(I)(I atmatms            (3.3) 

 

Here, Is(ν), Iatm(ν)
↑
 and Iatm(ν)

↓
 represent the surface emission, atmospheric upwelling, and 

reflected downwelling radiance, respectively, and ν is frequency. The radiance components are 

illustrated in Fig. 3.4. 

 

 

  

Figure 3.4 Schematic of TOA radiation at satellite sensor level.  

Satellite SST retrievals are performed in infrared (IR) bands where the surface emission reaches 

its maximum, yet atmospheric absorption is small (c.f. Fig.3.5). Atmospheric transmittance 

varies depending upon atmospheric conditions and in the atmospheric windows is mostly defined 

by water vapor and temperature profiles (e.g., Saunders, 1967; Prabhakara et al., 1974; McMillin, 

1975; Phulpin and Deschamps, 1980; Llewellyn-Jones et al., 1984). Typically, atmospheric 

correction algorithms are aimed at minimizing the water-vapor-induced error in retrieved SST 

(e.g., Minnett, 1990; Sobrino et al., 1993; Emery et al., 1994; Francois and Ottle, 1996; Steyn-

Ross et al., 1997, 1999; Kumar et al., 2003; Merchant et al., 2006, 2008, 2009). Minor gases also 

affect transmission in the window bands, but their effect is typically small and much less variable 

in space and time (e.g., Dash and Ignatov, 2008).  
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Under typical maritime conditions, aerosol effects on atmospheric transmission in the window 

regions are smaller than the water vapor effects (e.g., Dash and Ignatov, 2008). These effects are 

much more complex and less explored (e.g., Walton, 1985; Walton et al, 1998; Merchant and 

Harris, 1999; Highwood et al., 2003; Vazquez et al., 2004; Hollweg et al., 2006; Nalli and 

Reynolds, 2006; Castro et al., 2008). Empirical correction for the effects of aerosols have been 

explored in the past (e.g., Nalli and Stowe, 2002; Merchant et al., 2006b) but they remain limited 

in scope. A more appropriate way to perform aerosol correction is based on an approach 

consistent with physical SST retrievals, i.e., using RTM with a global first-guess aerosol field 

(e.g., the Goddard Chemistry Aerosol radiation and Transport, or GOCART, Chin et al., 2000; 

the Navy Aerosol Analysis and Prediction System, or NAAPS, found at 

www.nrlmry.navy.mil/aerosol/). This approach appears relatively straightforward, at least in 

principle. However, it requires substantial investment in CRTM improvement and GOCART 

data exploration and may be explored later beyond the 100% ATBD.  

 

Figure 3.5 During daytime, shortwave IR band 3.9 µm is subject to solar scattering in the 

atmosphere and reflection form the surface. Unless these effects are corrected for, the shortwave 

window cannot be used during daytime for SST retrievals. However, it can be used at night when 

there is no solar contamination. 

Another factor that affects the top-of-atmosphere radiances is residual and ambient cloud. Effect 

of this factor on SST may be significant but it is even less explored than aerosols (e.g., Vazquez 

et al., 2004; Dash and Ignatov, 2008; Liang et al., 2009). The empirical approach considered in 

Xu and Ignatov (2008) may be explored, but these analyses are beyond the scope of this 100% 

ATBD.  

During daytime, the shortwave IR window is subject to solar reflection and scattering as shown 

in Fig. 3.5. Unless these signals are corrected for, the shortwave band cannot be used during the 

day. Solar reflectance and scattering is also present in the longwave bands too, but the 

corresponding signals are much smaller there. However, the effect may reach from several tenths 

to several degrees of Kelvin in the glint areas (e.g., Khattak et al., 1991; Nath et al, 1993). 
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Correcting for this effect or screening data in the glint area is thus needed for accurate SST 

retrievals during daytime.  

In IR bands, each of the components in Eq. (3.3) can be expressed mathematically as follows: 
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(Note that each term in Eq. (3.4) is local zenith angle dependent but this dependence was omitted 

here for simplicity.) Here, ε is the surface emissivity, τ is the atmospheric transmittance, τo is the 

atmospheric transmittance from the surface to the top of the atmosphere, z is the height, Ts is the 

surface temperature;, B(ν,Ts) is the Planck function, and TP(z) is a temperature profile in the 

atmosphere. Equation (3.3) describes radiative transfer in the atmosphere in the absence of 

scattering. Atmospheric scattering should be taken into account in the 3.9-μm band during 

daytime, and the scattering term should be added to Eq. (3.4b). However, the CRTM v1.1 

currently employed does not take into account scattering. Hence, at this writing, shortwave bands 

are not used for SST in the daytime, and the scattering term in Eq. (3.4b) is neglected. 

The major problem of SST retrieval is atmospheric correction, i.e., decoupling the contribution 

of SST variations in the measured radiances from the effects of atmospheric absorption and 

scattering, taking into account the effect of surface emissivity. (e.g., Zavody et al., 1995; Smith et 

al., 1996; Berk et al., 1998, 2000; Garand, 2003; Merchant and LeBorgne, 2004; Merchant et al, 

2008, 2009; Liang et al., 2009; Liang and Ignatov, 2010). The regression, inversion and hybrid 

SST algorithms considered in this ATBD approach this problem differently. The regression SST 

algorithms (split-window NLSST or triple-window MCSST) effectively account for the above 

effects by producing an average dependency of SST on BTs over all atmospheric and sea surface 

states within the matchup data set. The inversion algorithm fully relies on the RTM, adopts the 

first guess BTs from RTM simulations, and solves the set of RTM equations simultaneously for 

SST and certain atmospheric variables. The hybrid algorithm uses the first guess similarly to the 

inversion algorithm and establishes an average relationship between SST and BTs over all 

atmospheric and sea surface states within the matchup data set regression to relate deviations of 

SST and BT from the corresponding first guesses. These three approaches are discussed in more 

detail below. 

3.4.2 Mathematical Description of the SST Algorithms 

As a first approximation, TOA radiance in the TIR windows is a function of SST, atmospheric 

absorption, and a geometric factor. It was shown that when two measurements in two spectral 

bands are used, the two equations can be solved and SST can be estimated as a linear 

combination of several BTs (e.g., Prabhakara et al., 1974; McMillin, 1975). This technique is 

known as the multi-channel SST (MCSST). Nonlinear modifications to MCSST were also 

explored (Walton et al., 1998). The respective family of algorithms is termed the nonlinear SST 

(NLSST). The regression techniques introduced in the early 1970s, still continue to be used in 

NOAA operations with AVHRR (McClain et al., 1985; May et al., 1998) and NASA MODIS 
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(Brown and Minnett, 1999) processing, and they will continue to be employed in the NPOESS 

era with VIIRS data (Sikorski et al., 2002).  

However, the regression techniques may not always be accurate enough to achieve the desirable 

accuracy or optimize SST retrievals. Due to suboptimal approximation of the inverse relationship 

between SST and observed BTs, regression SST estimates may include local biases of several 

tenths Kelvin, depending on observational conditions (e.g., Merchant et al., 2008; 2009). For 

example, the accuracy of regression SST is likely to degrade at extreme local zenith angles and 

total precipitable water vapor contents in the atmosphere.  

The further improvement in accuracy of SST retrieval, in our opinion, can explore two recent 

developments. First, the global analysis fields of SST, such as Reynolds Weekly SST (WSST) 

Daily High-Resolution Blended SST (DSST) (Reynolds et al., 2007), and Operational SST and 

Sea Ice Analysis (OSTIA - Stark et al., 2007, 2008), as well as atmospheric variables from the 

numerical weather prediction (NWP) models, e.g., National Center for Environmental Prediction 

Global Forecast System, or NCEP GFS (http://nomad3.ncep.noaa.gov/pub/gfs/rotating/) are 

currently synthesized from satellite observations and in situ data on a regular basis. Interpolation 

of analyses of SST fields to the sensor‟s pixels provides first-guess SST estimates (TFG), whose 

accuracy and precision (~0.5K) are comparable with that of satellite retrievals. Second, fast 

RTMs, such as the CRTM (e.g., Han et al., 2006) now enable NRT simulations of clear-sky BTs 

(TCS) using the analysis SST and upper air fields as input. Given TFG and TCS, the SST retrieval 

problem can be posed in the incremental formulation, i.e., as restoring increments ΔTS =TS – TFG 

from increments ΔTB =TB – TCS (rather than TS from TB, as in the classical regression 

formulation). Throughout this document, the term “SST increment” refers to deviations of 

retrieved (or in situ) SST from TFG, and the term “BT increment” refers to deviations of TB from 

TCS. With TCS simulated from real-time analysis fields, the incremental approach has the potential 

to more comprehensively account for atmospheric transmission than is possible with the 

conventional regression. In addition, the incremental formulation is more favorable to linear 

retrieval algorithms.  

The difficulty of the incremental approach compared to conventional regression is that the signal-

to-noise ratio (SNR) in ΔTB is much lower than in TB. The range of TB variations is ~30K, 

whereas the range of variations in ΔTB, is on the order of RMS error of modeling BTs with 

CRTM ( ~ 0.5 K - Liang et al., 2009; Petrenko et al., 2010). This is only a factor of ~4 larger than 

the upper estimate of RMS thermal noise in the AVHRR channels (RMSD<0.12 K – Robel et al., 

2009) and ~5 times greater than the expected RMS thermal noise for ABI (Table 2.2). In addition 

to thermal noise, ΔTB is contaminated with that part of TCS modeling error, which is due to 

inaccuracy of simulated atmospheric transmission (the part of ΔTB, caused by ΔTS itself, is a 

useful signal). While the systematic part of the ΔTB error (bias) can be corrected prior to ΔTS 

retrieval, the retrieval algorithm still has to handle its random part. 

For example, the OE technique (e.g., Rodgers, 1976) has been recently applied to SST retrieval 

from AVHRR (Gemmill et al., 2007; Merchant et al, 2008) and MSG SEVIRI (Merchant et al, 

2009) data. In all implementations, correction of ΔTB biases preceded application of the OE 

technique. Random variations in the atmospheric transmission were accounted for by solving a 

set of RTM equations simultaneously for TS and atmospheric variables such as average 

temperature and average water vapor mixing ratio (Gemmill et al., 2007) or TPW (Merchant et 

al, 2008, 2009). Merchant et al. (2009) have found that, at least in the case of TS retrieval from 

http://nomad3.ncep.noaa.gov/pub/gfs/rotating/
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observations in two bands, 11 and 12μm, the OE underestimates spatial and temporal TS 

variations. This is because the OE constructs the solution of the ill-conditioned set of RTM 

equations as a combination of observational and a priori information, which biases the solution 

towards the first guess. As shown in this ATBD, underestimation of SST variations can be in 

general mitigated by adjustment of the weights, with which observational and a priori 

information are combined in the OE solution. This adjustment does not follow from the OE 

theory, but rather should be made empirically, based on additional information. This information, 

for example, can be obtained from matchups of satellite BTs and in situ SST.  This reduces the 

value of the pure physical (OE) approach, based solely on RTM inversion.   

As an alternative to the inversion approach, we have developed another incremental RTM-based 

algorithm – the hybrid -- which avoids inversion of ill-conditioned sets of RTM equations using 

regression, which relates deviations of SST from the first guess with deviations of observed BTs 

from simulated BTs. 

3.4.2.1 Regression Algorithms 

The selected regression algorithms used for day and night are shown in Eqs (3.5) and (3.6). These 

equations were initially derived for AVHRR, are also currently used for MODIS, and are planned 

to be used for VIIRS. The nonlinear SST algorithm (NLSST) does not use the 3.9 μm band, 

which makes it applicable during both day and night: 

TR = a0 + a1 T11 + a2 (TFG– 273.15) (T11 – T12) + a3 (T11 – T12)(secθ – 1).       (3.5) 

The multi-channel SST algorithm (MCSST) uses the 3.9-μm band and is applicable only in the 

nighttime, when this band is not contaminated by sunlight scattering and reflection: 

TR = a0 + a1 T4 + a2 T11 + a3 T12 + a4 (T4 – T12)(secθ – 1) + a5 (secθ – 1).       (3.6) 

In (3.5, 3.6), TR is regression SST estimate, T4, T11 and T12 are brightness temperatures (BT) in 

3.9, 10.8 and 12 μm bands, TFG is first guess (a priori) SST (climate or analyses/forecast SST, 

e.g., Reynolds), θ is local zenith angle at the surface, and a‟s are regression coefficients 

computed from matchups of in situ SST TIS with observed BTs. All temperature values are K 

degrees. Customarily, coefficients (a‟s) are calculated early in each satellite‟s mission 

empirically against in situ SST, using 1–3 months of match-ups. Alternatively, they can also be 

calculated using RTM simulations. In this case, bias correction against in-situ is still needed.  

As was mentioned earlier, inaccuracy of approximating the inverse SST/BT relationship with 

(3.5) and (3.6) causes local biases in regression SST estimate TR. Using RTM simulations, the 

bias component can be extracted from TR. The regression equation can be written as follows:  

TR = a0 + a
T
Y.               (3.7) 

Here, a is a vector of regression coefficients and Y is a vector of regressors. In NLSST 

formulation, for example, a is three-dimensional vector, a=[a1,a2,a3]
T
 and Y is a three-

dimensional vector function of observed BTs, T11 and T12, TFG, and θ: 

Y(T11, T12, TFG, θ) = Φ(T11, T12, TFG, θ),           (3.8) 

Φ(T11, T12, TFG, θ)
T 

= [T11, (T11 – T12)(TFG– 273.15),(T11 – T12)(secθ – 1)].        (3.9) 
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Customarily, regression coefficients are calculated from a set of matchups between the in situ 

SSTs (TIS) and observed BTs TB using a least squares method: 

a = SYY
-1

SYT,              (3.10) 

a0 = ‹TIS› - a
T
‹Y›.            (3.11) 

SYY is a covariance matrix of Y over the matchup data set and SYT is a covariance of Y and TIS. 

The angle brackets <> denote averaging over the matchup data set. The expression (3.11) ensures 

that TR is unbiased with respect to TIS within the matchup data set.  Typically, the global bias of 

regression SST increment ΔTR=TR – TFG is small as the first-guess field TFG is anchored to TIS. 

The formalism of conventional regression, however, does not prevent local bias in ΔTR from 

being a function of observational conditions. The local bias term can be extracted from ΔTR, 

using the following expansion of Y: 

Y = YCS+ ΔY,             (3.12) 

YCS is approximation of Y with simulated clear-sky BTs TCS11 and TCS12: 

YCS = Φ[TCS11(TFG, x, θ), TCS12(TFG, x, θ), TFG, θ],        (3.13) 

x is a vector of GFS atmospheric variables and ΔY= Y - YCS:  

ΔY = Φ[ΔTB11(TFG, x, θ), ΔTB12 (TFG, x, θ), TFG, θ],        (3.14) 

ΔTB11 and ΔTB12 are BT increments: ΔTB11 =TB11 - TCS11 and ΔTB12 =TB12 - TCS12. Substituting 

(3.12) into (3.7), we decompose ΔTR into a “local bias” component ΔTL and an “information” 

component ΔTI: 

ΔTR = ΔTI + ΔTL,            (3.15) 

ΔTI = a
T
 ΔY,             (3.16) 

ΔTL = a0 + a
T
YCS – TFG.           (3.17) 

According to (3.14, 3.16), ΔTI = 0 when T11 = TCS11 and T12 = TCS12, and, in this sense, ΔTI is the 

unbiased response of ΔTR to variations in ΔTB11 and ΔTB12. In contrast, according to (3.13, 3.17), 

ΔTL represents local bias of ΔTR, which does not depend on observations but is a function of θ 

and RTM input variables.  

3.4.2.2 Inversion Algorithm 

The inversion algorithm is intended to improve the atmospheric correction for SST in two ways. 

First, if the approximation of TB with TCS simulated from first-guess analysis SST and GFS 

atmospheric variables is accurate enough, it can reduce local SST biases compared to the case of 

the regression algorithm. Second, the inversion algorithm accounts for random deviations of the 

atmospheric transmission from the first guess by simultaneous retrieval of SST and one or two 

atmospheric variables, depending on the number of used sensor bands. In the implementation of 

the RTM inversion algorithm for SEVIRI, we used two unknowns, SST and the Optical Depth 

Scaling Factor (ODSF) , defined as the ratio of the optical depth of water vapor absorption τ to 

its value, computed from GFS data τFG: 

 = τ / τFG ,             (3.18) 
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The corresponding set of RTM equations can be written as follows:  

F(TS, )=TB+η              (3.19) 

Here, F(TS, ) is a vector RTM function, TB is a vector of observed brightness temperatures, η is 

instrumental noise.  

To solve (3.19), the unknown variables are represented in the incremental form:  

TINV = TFG + ΔTINV,          (3.20a) 

 = 1+Δ ,           (3.20b) 

TB = TCS + ΔTB.          (3.20c) 

Here, ΔTINV, Δ  and ΔTB are the increments, i.e., deviations of the corresponding variables from 

the first guess. Using (3.20), (3.19) can be linearized and brought to the incremental form: 

KZ = ΔTB + η,            (3.21) 

where Z
T 

= [ΔTS, Δ ]
T
, K is the Jacobian of F(TS, ) at TS = TFG and  = 1. In general, set of Eqs 

(3.21) is ill-conditioned, i.e., its solution is not stable with respect to noise and other disturbing 

factors and requires stabilization with a priori information on ΔZ. The OE technique assumes 

that Z is a random vector with known Gaussian statistical distribution and produces the Bayesian 

estimate of the vector Z as 

Z = (K
T
Δ

-1
K + S

-1
)
-1

K
T
Δ

-1
 ΔTB,          (3.22) 

Here Δ is a covariance matrix of measurement errors and S is a priori covariance matrix of ΔZ. 

The drawback of OE is that as discussed above, the solution (3.22) is biased towards the first 

guess (Merchant et al, 2008), suppressing spatial and temporal variations in the retrieved SST 

(Merchant et al., 2009). In general, this artificial bias in TINV can be reduced (but not removed 

completely) by empirical adjustment of diagonal elements of S in (3.22). This adjustment, 

however, cannot be derived from RTM or a priori information and requires additional 

knowledge of the magnitude of expected SST variations. 

3.4.2.3 Hybrid Algorithm 

The objective of GOES-R SST algorithm development is to combine the strong points of the 

regression and inversion approaches into a hybrid algorithm, as shown in Fig. 3.6. Similarly to 

the expression (3.20a) for the inversion algorithm, the hybrid SST estimate TH is a sum of the 

first guess and the increment: 

TH = TFG + ΔTH            (3.23) 

The difference with the inversion algorithm is that the hybrid algorithm increment ΔTH is 

calculated from regression between in situ SST increments ΔTIS = TIS - TFG and the vector of 

incremental regressors ΔY: 

ΔTH = b0 + b
T
ΔY(TFG, x, θ)           (3.24) 

Here b0 is the offset and b is the vector of hybrid regression coefficients. Considering the hybrid 

algorithm in NLSST formulation, b has three components, b
T 

= [b1,b2,b3.] and ΔY is defined by 

(3.14). Compared to the conventional regression, calculation of regression coefficients from 
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matches of ΔTIS with ΔTB rather than from matches of TIS with TB has two advantages. First, since 

the equation (3.24) does not include the “bias” term, unlike (3.15), the local bias of TH with 

respect to TFG is expected to be small. Second, the vector of hybrid coefficients b can be selected 

in such a way as to maximize correlation between ΔTH and ΔTIS, which additionally improves the 

accuracy of fitting ΔTIS with ΔTB.  

 

 

Figure 3.6 Merging regression and inversion methodologies: the hybrid SST algorithm. 

Compared to the inversion algorithm, the hybrid approach also has two advantages. First, with 

properly chosen coefficients (see below), TH is not biased towards TFG. Second, if the estimate of 

the RTM Jacobian K in (3.21) is not accurate enough, the equation (3.24) with coefficients, 

derived from matches of BT and in situ SST increments can provide more accurate SST 

estimates than the equation (3.22).  

On the other hand, computing hybrid coefficients is a more complicated task than computing 

conventional regression coefficients. The straightforward way to estimate the hybrid coefficients 

would be to use least-squares estimates bLS and b0LS: 

bLS = SΔYΔY
-1

SΔYΔT,             (3.25) 

b0LS = ‹ΔTIS› - bLS
T
‹ΔY›,           (3.26) 

Here SΔYΔY is a covariance matrix of ΔY over the matchup data set and SΔYΔT is a covariance of 

ΔY and ΔTIS. The coefficients bLS and b0LS minimize RMS error between the left-hand and right-

hand parts of (3.24) and maximize correlation between ΔTH and ΔTIS. However, the estimates 

(3.25, 3.26) may not be accurate. As it is known from regression analysis (e.g., Seber, 1977), the 

least square method guarantees that regression coefficients are unbiased only if values of the 

regressors are accurate. In the case of regression between ΔY and ΔTIS, the ranges of regressors‟ 

variations are much smaller compared to errors in regressors and compared to the conventional 

regression. As a result, the SST estimate (3.24) with coefficients bLS and b0LS underestimates 

temporal and spatial SST variations. To avoid this undesirable effect, we modify bLS by 

“inflating” it in such a way as to equalize variance of ΔTH with variance of the “information” 

component of regression SST ΔTI. The corresponding algorithm is described below. 
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1. The conventional regression coefficients a is calculated from (4.8, 4.9) 

2. The least square estimate of hybrid coefficients is calculated from (4.23) and (4.24) 

3. The variances of ΔTI and ΔTHLS, D1 and DHLS are estimated as  

D1 = <( a
T
(ΔY-< ΔY>))

2
>           (3.27) 

DHLS = <( bLS
T
(ΔY-< ΔY>))

2
>          (3.28) 

4. The final estimates of hybrid coefficients are found as  

b = (D1/DHLS)
0.5

 bLS,            (3.29) 

b0 = ‹TIS› - b
T
‹ΔY›,            (3.30) 

By construction, the variance of the hybrid SST increment ΔTH, calculated with the coefficients 

(3.10) and (3.11), is equal to DI and the correlation of ΔTH and ΔTIS is the same as in the case of 

using the least-squares coefficients bLS and b0LS.  

As it follows from descriptions of inversion and hybrid algorithms, the problem of 

underestimation of SST variations does exist with both incremental algorithms. In the case of the 

hybrid algorithm, this problem is solved by estimating the variance of regression SST from the 

data set of matchups by equalizing the variances of regression and hybrid SST. The pure 

inversion methodology does not use in situ matchups and, hence, it does not allow adjustment of 

retrieved SST variance. 

3.4.3 SST Quality Control 

3.4.3.1 The Concept and the Structure of SST Quality Control 

Typically, only about 15% of ocean pixels are cloud-free to the extent that they are usable for 

SST retrieval from thermal IR measurements. The task of SST quality control (QC) is to separate 

the usable and unusable pixels for SST. Within the GOES-R ABI processing system, preliminary 

cloud masking will be done with a special module, ABI cloud mask (ABI CM). ABI CM will be 

run upstream of other product modules and provide them with preliminary information on 

presence/absence of clouds. Since the product modules may define “pixel usability” differently, 

ABI CM is anticipated to perform cloud screening judiciously in order to preserve any pixels 

which might be useful for any surface-oriented ABI application. This strategy suggests that 

individual product modules may include their own product-specific QC. 

The SST QC module classifies ocean pixels into three categories: “Optimal,” “Sub-Optimal”, 

and “Poor” in terms of using them for SST. The basic concept of the SST QC is testing observed 

BTs for consistency with CRTM (Petrenko et al., 2010). The model is adequate to observations 

if, first, it fits the observations with the predefined accuracy and, second, the values of model 

variables, at which this accuracy is achieved, are within the predefined range (e.g., Y. Bard, 

1973). In the context of cloud masking, this means that in clear-sky areas over ocean CRTM is 

expected to fit the observed BTs at realistic values of the model‟s input variables. A priori 

information, needed for the adequacy check, includes NWP expectations of those atmospheric 

and surface variables, which are the input for CRTM, and the limits on realistic variations in 

those variables which participate in fitting observations.  
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The methods by which this concept is implemented for AVHRR and SEVIRI are somewhat 

different. Initially, the SST QC was developed for regression SST, operationally produced from 

AVHRR measurements. Since the regression algorithm involves retrieval of only one variable, 

SST, and the regression fits the inverse SST/BT relationship only approximately, the accuracy of 

approximation of observed BTs with regression SST was limited. For SEVIRI, the inversion SST 

algorithm has been implemented. As described in Section 4.2.2, the inversion algorithm 

simultaneously retrieves two variables, SST and ODSF ( ), which allows more accurate fitting of 

observed BTs with CRTM in clear-sky pixels. Here we describe the implementation of SST QC 

for SEVIRI. 

The pixel is classified “Poor” by QC if it fails at least one of the following tests: 

 RTM test, in which the accuracy of fitting observed BTs with CRTM and regression SST is 

evaluated. 

 Static SST test, which rejects the pixel if retrieved SST is lower than the liberal physically 

realistic limit. 

 Adaptive SST test, which refines the classification by the static SST test based on analysis of 

statistics of “optimal” and “poor” pixels in the neighborhood of a given pixel. 

 Optical depth test, which verifies if the retrieved  value is realistic for clear-sky conditions.  

 SST uniformity test, which tests the pixels passing the consistency check and detects residual 

subpixel clouds by elevated spatial variability of SST in the immediate neighborhood of a 

given pixel.  

3.4.3.2 SST QC Tests 

a. RTM test 

The RTM test verifies accuracy of fitting the vector of observed BTs, TB, with the clear-sky 

vector of simulated BTs TCS(y, x, θ). Here y is a vector of retrieved variables and x is a vector of 

GFS atmospheric variables, which are not retrieved but used as input for CRTM. The tested 

condition for the pixel being “Optimal” is:  

[TB – BBT – TCS(y,x,θ)]
T
Δ

-1
[TB – BBT – TCS(y,x,θ)]/N < DBT      (3.31) 

If the above condition is met, the pixel is set to “Optimal;” otherwise it is set to “Poor.” Here, 

BBT is the vector of BT biases estimated as discussed in Section 4.4, N is the number of channels 

used in SST retrieval; for SEVIRI, N=2 (Ch10 and Ch11). The vector y includes two variables, 

inversion SST TINV and ODSF. Δ is a covariance matrix of errors, which accounts for 

measurement noise and errors of fitting TB with TCS. Δ is diagonal, with all diagonal elements 

equal to 25 K
-2

, assuming that the RMS noise level in SEVIRI channels is 0.2 K.  The threshold 

DBT is set to1. 
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b. Static SST test 

The predictor for the static SST test is hybrid SST increment ΔTH, corrected for the bias BSST. 

BSST is estimated as described in Section 4.4. The hybrid SST is used as input in the static and 

adaptive SST tests because the hybrid algorithm is considered as the baseline SST algorithm. 

However, the results of these tests are applicable with a good accuracy to regression SST TR and 

inversion SST TINV. The test cuts off obviously unrealistic negative ΔTH with the following 

condition: 

ΔTH- BSST > D SST?               (3.32) 

If yes, then the pixel is set to “Optimal;” otherwise, it is set to “Poor.” The threshold DSST is 

location and time specific and depends on the estimate of RMS accuracy of the reference SST for 

this pixel, σSST. The SST reference field can be either Weekly Reynolds OISST (WSST - 

Reynolds et al., 2002) or Daily High-Resolution Reynolds Blended SST (DSST - Reynolds et al., 

2007). The DSST data set includes the σSST estimate on the same 0.25
o
 grid as for SST itself. For 

WSST, the estimate of σSST deemed proportional to the maximum spatial SST difference within 

the window of 3×3 nodes (2
o
×2

o
). DSST is defined as follows:  

DSST  = min(-3σSST,-2K)            (3.33) 

The values of σSST typically vary from 0.1 K to 0.7 K, depending on location; hence, DSST is close 

to -2 K for most of the world‟s ocean. The liberal setting of the threshold reduces the chance of 

false cloud detections. On the other hand, it may cause misclassifications of cloudy pixels as 

“Optimal,” especially at the boundaries of cloudy systems, often surrounded with relatively warm 

ambient cloudiness.  

c. Adaptive SST test 

The adaptive SST test further refines the initial classification by the static SST test. It detects 

ambient cloudiness at the boundaries of cloudy systems, initially determined with condition 

(3.32). The test analyzes local statistics of ΔTH in “Optimal” and “Poor” clusters within a sliding 

window, surrounding the tested pixel. The size of the sliding window for SEVIRI was 

empirically chosen to be 11×11 pixels. All “Optimal” pixels within the window are tested with 

the following condition: 

ρCLD ≥ ρCLR        (3.34) 

If yes, then the pixel is set to “Optimal;” otherwise it is set to “Poor.” ρCLD in (3.34) is the 

difference between ΔTH in a given pixel and mean ΔTCLD averaged over “Poor” pixels within the 

sliding window, normalized to STD σCLD of ΔTS over “Poor” pixels within the same window: 

ρCLD = |ΔTH – ΔTCLD|/σCLD,         (3.35a) 

and ρCLR is ΔTH normalized to σCLR = DSST/3: 

ρCLR = |ΔTH|/ σCLR.          (3.35b) 

Parameters ΔTCLD and σCLD are subject to change on each iteration if new pixels are classified as 

“Poor” according to condition (3.33). The procedure repeats itself until either the classification of 

the pixels within the window stabilizes or the tested (central) pixel in the window becomes 

“Poor.” 
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d. Optical depth test  

The optical depth test compares the retrieved value of ODSF β against the predetermined 

threshold Dβ: 

β>Dβ?              (3.36) 

If yes, than the pixel is marked as “Poor”. Considering that the probability of clouds increases 

with negative SST deviations from the reference SST, the threshold Dβ is dependent on the 

retrieved hybrid SST increment:  

ΔTH > 0:   Dβ = 1.0        (3.37a) 

-2K ≤ ΔTH ≤ 0:  Dβ = 1.1 + 0.05 ΔTH,       (3.37b) 

ΔTH< -2K:   Dβ = 1.1        (3.37c) 

 

e. The SST spatial uniformity test 

 

Figure 3.7 SST images of a part of the Gulf of Mexico, produced from Metop-A nighttime 

AVHRR Full Resolution Area Coverage Mode (FRAC) measurements on 7 July 2009 with 

ACSPO (left) and by the EUMETSAT Ocean & Sea Ice Satellite Application Facility (OSI SAF – 

right). 

Residual subpixel clouds, missed by other cloud tests, can be detected by higher spatial 

variability in BT and retrieved SST. This concept forms the foundation of the texture, or spatial 

uniformity, tests used in many cloud masking algorithms. Usually, the predictor for the texture 

test is spatial RMS variation in BT in the immediate neighborhood of a given pixel. The potential 

risk of using this predictor is possible false detection of clouds in clear-sky ocean areas with high 

thermal gradients.  

In SST QC, the implementation of the uniformity test has the following features. First, it analyzes 

the field of retrieved SST (TH for SEVIRI) rather than observed BTs, i.e., residual cloud 

contaminations are screened out directly from the SST product. Second, the predictor for the SST 
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uniformity test is STD of the difference TS – median(TS) rather than STD of TS. Median(TS) is the 

TS field, passed through the 2D median filter. The window size in the median filter is set to 3×3 

pixels to avoid an excessive loss of “Optimal” pixels. The threshold for the uniformity test is 

selected to be somewhat above the RMS level of random noise in SST. The median filter is 

known to preserve regular contrasts but suppress random noise (e.g., Gonzalez and Woods, 

2003). As a result, the difference TS – median(TS) is more sensitive to random variations in TS, 

typical for sub-pixel cloud effects, than to more regular surface contrasts caused by ocean 

thermal fronts. This reduces the risk of misclassification of ocean fronts as cloudy pixels.  

As an example, Fig. 3.7 shows the SST images of a part of the Gulf of Mexico, produced from 

Metop-A nighttime Full Resolution Area Coverage measurements on 7 July 2009 at NOAA with 

the ACSPO, using the median uniformity test, and at the EUMETSAT Ocean and Sea Ice 

Satellite Application Facility (OSI SAF – LEO SST User Manual, 2009). The pixels classified as 

“Sub-Optimal” with the SST QC uniformity test are marked gray on the left image. The pixels 

classified as “Poor” by ACSPO (left image) and those classified “Poor” by O&SI SAF (right 

image) are marked black. The comparison of the two images shows that ACSPO, using the 

median-based SST uniformity test, better preserves thin spatial structure of SST. 

3.4.4 Estimation of Global Biases 

 

Figure 3.8 Model minus Observation biases in AVHRR Ch4 (10.8 μm). Model does not include 

aerosol, uses bulk Reynolds SST (instead of skin), and does not account for effect of SST diurnal 

cycle. Warm bias of several tenths of a degree Kelvin is consistent for 5 AVHRRs. Causes: 

CRTM (no aerosol; bulk SST instead of skin; no diurnal correction) and AVHRR (residual 

cloud). Data are from the MICROS web-based tool, www.star.nesdis.noaa.gov/sod/sst/micros/   

 

Both inversion and hybrid algorithms require correction of biases between observed and 

simulated BTs, at least in a global average sense, otherwise these biases will be translated to 

biases in retrieved SST. Figures 3.8-3.9 show model minus observation (M-O) global mean 
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biases for AVHRR channel 4 (10.8 μm), and for SEVIRI channels 4 (3.9 µm), 9 (10.8 µm) and 

10 (12.0 µm). In the longwave AVHRR Channel 4 and SEVIRI Channels 9 and 10, M-O biases 

are positive and within several tenths K. The warm bias is due to the facts that the current CRTM 

v1.1 does not account for the effects of aerosols, and that the bulk Reynolds SST used as input to 

CRTM was not converted to skin, and was not corrected for the effect of the diurnal cycle. 

Additionally, AVHRR and SEVIRI BTs may be biased cold due to residual or ambient clouds 

(e.g., Dash and Ignatov, 2008; Liang et al., 2009). All these factors lead to positive M-O biases. 

Figure 3.9 additionally shows that bias in shortwave SEVIRI Channel 4 is unrealistic and 

inconsistent with AVHRR bias. As of this writing, this anomaly was not resolved. As a result, all 

algorithms considered in this ATBD for SEVIRI are two-channel split-window formulation and 

do not employ the 3.9-μm band. The two-band formulation provides consistency between 

daytime and nighttime retrievals but gives a “worst case” estimate of SST performance at night. 

Based on AVHRR analyses, adding the shortwave band is expected to improve SST accuracy. 

The global BT bias evaluation algorithms were developed and preceded inversion SST retrieval. 

Correction of biases in simulated BTs and retrieved SST is also performed within QC, as 

discussed in Section 4.3. 

 

Figure 3.9 Model minus Observation biases in SEVIRI BTs in June 2008 (left) and January 2009 

(right). In longwave bands, SEVIRI M-O biases are +0.5K and consistent with AVHRR. In 

shortwave bands, the M-O biases are negative and inconsistent with AVHRR. During daytime, 

M-O biases are large and highly variable, due to inaccurate modeling of solar reflectance. 

 

The SST and BT biases may vary in time because of sensor calibration trends and orbital drift. 

Therefore, the biases are estimated on-line and accounted for in the corresponding QC tests and 
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in the inversion SST algorithm. The most common method of clear-sky bias estimation is to 

average the deviations (increments) of TS from TFG and TB from TCS over “clear” pixels, 

determined with a clear-sky mask (e.g., Merchant et al., 2006; Liang et al., 2009). However, this 

method may create undesirable cross-talk between the classification of pixels by QC and the bias 

estimates. To avoid this crosstalk, the biases are estimated within ACSPO independently from 

and prior to QC as positions of peaks of incremental histograms, accumulated over all ocean 

pixels, before separation the pixels into “optimal,” “sub-optimal,” and “poor”. Though the 

percentage of “optimal” ocean pixels is typically only about 15%, the increments, corresponding 

to “optimal” pixels, are concentrated in a relatively narrow range and form the peaks of all-sea-

pixels histograms.  

The SEVIRI-ACSPO code includes estimation of global biases in simulated clear-sky BTs and 

hybrid SST. The estimates of BBT and BSST are used in the QC tests and the estimates of BBT are 

also accounted for in the inversion SST algorithm. It is important to note that the estimates of 

biases for QC and for the inversion algorithm are produced by averaging over different time 

periods. In general, variations of instant global biases in observed BTs and retrieved SST for 

SEVIRI include three components with different time scales: 

 The high-frequency component includes short-term variations of biases between sequential 

images.  

 The diurnal component is due to the diurnal warming cycle and has a time period of 24 

hours and the peak-to-peak magnitude of about 0.3 K.  

 The low-frequency component of BT and SST bias is caused by calibration trends on the 

time scale of several months.  

One of the goals of SST retrieval from geostationary satellites is monitoring diurnal SST 

variability. To preserve the diurnal component in retrieved SST, the bias correction for the 

inversion SST algorithm should account for bias, averaged over the period of several days. In the 

ACSPO-SEVIRI code, the global biases for SST retrieval are averaged over 3 to 6 days, 

depending on the time interval between sequentially processed images (15 or 30 min). The RTM 

and SST tests of the SST QC are based on comparison of observed BT and retrieved SST with 

reference values, which do not track diurnal variations. Consequently, the diurnal component 

should also be removed from observed BTs and retrieved SST before using them in the SST QC 

tests. As a result, the integration time for averaging biases for QC purposes is 2 to 4 hours. For 

every sequentially processed image, the instant values of BBT and BSST are estimated from all-

ocean-pixel histograms of BT and hybrid SST increments and the averaged bias values are 

updated: 

B1 = V1            (3.38a) 

Bi = kVi-1 + Vi, i>0          (3.38b) 

Here, Vi is the global BT or SST bias for the i
th

 processed image, i=1,2,….; Bi is a recursively 

updated bias for the i
th

 image k = 0.992 if the biases are averaged for inversion SST and k = 0.75 

if the biases are averaged for SST QC tests. 
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3.5 Algorithm Output 

 

Table 3.10 SST algorithm output product and QC data. 

Field Name Type Category Description Dimension 

Retrieved SST output Product 
Hybrid (primary) or Regression 

(back up) SST 
grid (xsize, ysize) 

Observation 

Conditions 
output QC 

Observation Conditions mask  

(cf. Table 3.12) 
grid (xsize, ysize) 

SST QC 

Individual Tests 
output QC 

Individual SST QC tests mask 

(cf. Table 3.12) 
grid (xsize, ysize) 

SST QC output QC 
Overall Quality Control mask 

(cf. Table 3.12) 
 

Table 3.11 SEVIRI SST product output metadata. 

Field Description 
1 -Date time of swath begin and end  

-Bounding box information (resolution, num rows/columns,  bytes per pixel) 

-Instrument info (satellite, instrument, altitude, nadir, latitude/longitude, projection)  

 -Citation to documents 
2 Product name and units 
3 Algorithm type (Hybrid or Regression) 
4 Number of Day, Night and Twilight „Optimal‟ Retrievals 
5 Number (and % from total) of  ocean pixel with Optimal/Sub-Optimal/Poor/Unprocessed retrievals 
6 Mean, Min, Max and STD of  (SEVIRI – CRTM) BT for  Ch 7, 11, 13, 14, 15 over „Optimal 

retrievals‟ 
7 Mean, Min, Max and STD of  (SEVIRI – Reynolds) for the utilized algorithm type (Hybrid (or 

Regression SST) 

Table 3.12 QC of the SST product specification (three 8-bits fields). 

Bit(s) Description 

   Field 1: Observation conditions (packed 8-bit word) 

1 Channel value Valid(0) / Invalid(1) 

2 External CM Used (0) /Not used(1)  

3 Night (0) /Day (1) 

4 Ocean (0) /Land or Outer space (1) 

5 No-glint (0) /Glint (1) 

6 No ice (0) /Ice (1) 

7-8 N/A 

   Field 2: SST QC Individual tests (packed 8-bit word) 

1 Radiance Test 

2 Adaptive SST Anomaly test 

3 Static SST Test 

4 N/A 

5 Optical Depth Test 

6 N/A 

7 Spatial Uniformity Test 

8 N/A 

   Field 3: SST QC (single variable 8-bit word) 
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1-8 SST QC Optimal (0) /Sub-Optimal (1) /Poor (2) /Not processed (3) 

4 TEST DATA SETS AND OUTPUT 

4.1 Input Data Sets and Status of SST Retrieval Algorithms 

The algorithms are verified and validated using ABI proxy data listed in Table 4.1.  

 

Table 4.1 ABI, AVHRR, and SEVIRI (and possibly MODIS) sensors used as its proxy. 

Sensor Band # FOV, km Band Center, μm Bandwidth, μm NEdT @300K 

ABI 

7 2 3.9 0.2 0.10 

11 2 8.5 0.4 0.10 

13 2 10.4 0.5 0.10 

14 2 11.2 0.8 0.10 

15 2 12.3 1.0 0.10 

SEVIRI 

4 5 3.9 0.9 0.35(0.17) 

9 5 10.8 2.0 0.25(0.11) 

10 5 12.0 2.0 0.37(0.15) 

AVHRR 

3B 4 (1)* 3.75 0.4 <0.12 

4 4 (1)* 10.8 1.0 <0.12 

5 4 (1)* 12.0 1.0 <0.12 

MODIS 

20 1 3.75 0.18 0.05 

22 1 3.96 0.06 0.07 

31 1 11.0 0.50 0.05 

32 1 12.0 0.50 0.05 

* AVHRR Global Area Coverage (GAC) data have 4km global resolution and the Local Area 

Coverage (LAC) have1km resolution. NB: AVHRR onboard MetOp-A provides global 1km data 

in the Full Resolution Area Coverage (FRAC) format. 

The primary proxy sensor used in the GOES-R development is the Spinning Enhanced Visible 

and Infra-red Imager (SEVIRI) onboard the European Meteosat Second Generation (MSG-1 and 

MSG-2) satellites. This sensor was selected because it is flown in a geostationary orbit and has 

spectral bands similar to the ABI. In this ATBD, two months of MSG-2 SEVIRI data (June 2008 

and January 2009) are used to cross-evaluate SST retrievals.  

However, SEVIRI radiometric and spectral characteristics and spatial resolution are not fully 

representative of ABI. To that end, AVHRR flown in a polar orbit is a better proxy for the ABI. 

Global Area Coverage (GAC) 4-km resolution global data of five AVHRR instruments (flown 

onboard NOAA-16, -17, -18, -19 and Metop-A) from 2001 to the present are used in this ATBD.  

Combining analyses from MSG SEVIRI and AVHRR data provides sufficient insight into 

performance of the SST algorithms with ABI data. MODIS may be used later (beyond the 100% 

ATBD timeframe).  
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The development strategy is based on setting up and evaluating outputs of the two end-to-end 

systems, including near-real time acquisition of AVHRR Level 1b, and 15(30)-minute FD 

SEVIRI Level 1 data and processing them into Level 2 SST and associated TOA clear-sky 

brightness temperatures (BT) products. The continuous inflow for the AVHRR L1b data is 

available from the STAR Collaborative Environment Data Repository (CEDR), and for SEVIRI 

FD images has been established in close collaboration with the AWG Land Team. McIDAS area 

files are being downloaded from NOAA operational servers in near-real time, reformatted into 

HDF4.2 files (similar in structure to the EUMETSAT L1.5 product), and saved on STAR SAN 

storage provided by the AWG for shared use between different teams within the AWG. Near-real 

time processing is done on SST Team Linux computers.  

As of this writing, only the regression SST algorithm is being used for operational AVHRR data 

processing with the Advanced Clear-Sky Processor for Oceans (ACSPO). The inversion and 

hybrid algorithms have been implemented within AVHRR-ACSPO for validation purposes. 

Since validation of SST algorithms for MSG SEVIRI has shown that the performance of the 

hybrid algorithm is better than the performance of the inversion algorithm, the emphasis with 

AVHRR has been put on comparison of conventional regression and hybrid algorithms. The 

results of this comparison are presented in Section 5.4.  

4.2 Quality Control and Monitoring of in situ SST for Satellite Applications 

In situ sea surface temperatures (SST) are used for calibration and validation (Cal/Val) of 

satellite retrievals. Quality of in situ SSTs is suboptimal and very non-uniform in space and time. 

The algorithm for QC of in situ SST has been developed and implemented. In addition to basic 

screenings (duplicate removal, plausibility, platform track and SST spike checks), the algorithm 

also includes two advanced checks for consistency with the external reference field, and cross-

platform consistency, based on Bayesian theory. The efficacy of the QC algorithm was tested by 

adding simulated errors and climate signals on the top of “error-free” (QCed) in situ data, and 

estimating whether the QC algorithm can capture errors and preserve the climate signals. An 

online in situ quality monitor (iQuam; www.star.nesdis.noaa.gov/sod/sst/iquam/ ) was set up to 

serve the QCed in situ SSTs to external users for the use in satellite Cal/Val. The iQuam also 

displays in near real time maps and basic “in situ minus reference” SST statistics stratified by 

four in situ platform types (drifters, ships, tropical and coastal moorings). The user also has a 

choice to monitor individual in situ platforms. 

4.3 Implementation and Validation of SST Algorithms for MSG SEVIRI 

In this ATBD, analyses of precision and accuracy of SST products is performed against two 

reference SSTs, including in situ (e.g., Ignatov et al., 2010) and global reference SSTs (Dash et 

al., 2008). The satellite SST is a skin product and both reference SSTs are bulk products. Some 

of the observed differences are due to this disparity.  

 

Coefficients of the regression and hybrid algorithms, derived using one month (January 2009) of 

SEVIRI - in situ match-ups, are listed in Table 4.2. Note that indexation of the coefficients 

corresponds to the NLSST regression and hybrid equations: 

 

 

http://www.star.nesdis.noaa.gov/sod/sst/iquam/
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TR = a0 + a1 T11 + a2 (TFG– 273.15) (T11 – T12) + a3 (T11 – T12)(secθ – 1),   (4.1) 

 

TH = b0 + b1( T11 - TCS11)+ b2 (TFG – 273.15)((T11 - TCS11) –( T12 - TCS12)) +  

+ b3 ((T11 - TCS11) –( T12 - TCS12)) (secθ – 1).  (4.2) 

 

Table 4.2 NLSST regression and hybrid coefficients for MSG SEVIRI 

Algorithm a0, b0 a1, b1 a2, b2 a3, b3 

Regression (a) 11.8430 0.963999 0.0711657 0.820187 

Hybrid (b) 0.743279 1.07488 0.0589083 0.734534 

 

According to the theory of OE (e.g., Rodgers, 1976), optimal weights of observations and a 

priori information in (4.20) are determined by the noise covariance matrix Δ and by the 

covariance matrix of a priori estimates of unknown variables S. In the initial implementation of  

the Inversion algorithm for SEVIRI, the covariance matrix Δ of measurement errors and in the 

SEVIRI channels 9 and 10 was assumed to be diagonal, with both diagonal elements being equal 

to 0.04 K
2
, which corresponds to uncorrelated noise with RMS level of 0.2K. The covariance 

matrix S of a priori parameter variations was also assumed diagonal, and a priori SST RMS 

error was set to 0.5K which corresponds to the mean RMS accuracy of the Reynolds Weekly 

OISST (e.g., Reynolds et al., 2002); RMS error in the optical depth scaling factor was set to 0.2. 

However, as described in the 80% GOES-R ATBD, the inversion SST estimate, produced with 

these parameters, has turned out to be biased to the first guess (Reynolds) and therefore 

underestimates real spatial and temporal SST variations, including global diurnal cycle. This 

result is consistent with Merchant et al., 2009. In order to make inversion SST variations 

consistent with ones for regression and hybrid SST, the assumed RMS error for a priori SST has 

been increased to 1.5K.  

An example of three SST products derived from one sample FD image on June 2, 2008 is shown 

in Fig. 4.1 (left panels). The three products look very similar, largely due to the large SST 

variations from the polar areas to equator of ~30°C. To further emphasize the similarities and 

differences between the three products, the same images are shown in right panels of Fig. 4.1 

after subtracting the global Weekly Reynolds OISST (Reynolds et al., 1994) available for that 

day. Out of the three algorithms, the regression SST shows maximum variability; in particular, it 

is more sensitive to ambient cloud and less stable at slant geometries (e.g., note a warm bias in 

the Western Atlantic, and a cold bias in the Indian Ocean). hybrid SST anomaly shows more 

uniform and smooth distributions. The empirically adjusted inversion SST has become closer to 

the hybrid SST.  
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Inversion 

  

Figure 4.1 SST (left) and SST anomalies, retrieved SST minus Reynolds SST (right) on 2 June 

2008 @ 12:30 UTM. Note a cold bias in regression SST at slant views, e.g., in the Indian Ocean. 

For quantitative comparisons, histograms of “retrieved minus Reynolds” SSTs are shown in 

Fig.4.2 for two days of data, one in June 2008 and one in January 2009. Although using Reynolds 

SST as “ground truth” may not be appropriate for ultimate evaluation of product precision, this 

approach can be used to evaluate the relative performance of the three products. The regression 

SST shows the greatest STD due to the contribution of variable local SST bias, as shown in 

Section 4.2.1. The inversion SST shows the smallest STD. This, however, cannot be considered 

as the advantage of the inversion algorithm because the weights of a priori information in (4.20) 

were set without full justification, and therefore there is no guarantee that this algorithm does 

adequately reproduce SST variations in space and time. The value of STD for the hybrid SST is 

in between ones for regression and inversion. As described in Section 4.2.3, the hybrid SST 

estimate has been set up to be free from local SST biases, and its variance is adjusted to match 

the variance of the information component of regression SST.  

Figure 4.3 shows sample diurnal cycles of the bias and STD of regression, hybrid, and inversion 

SST (as functions of Universal Time Coordinated (UTC), for 10 June 2008 and 4 January 2009. 

The value of 0.3-0.4 K for a globally average diurnal range is consistent with published data 

(e.g., Stuart-Menteth et al., 2005; Kennedy et al., 2002; Gentemann and Minnett, 2008). All three 

products show diurnal cycle in retrieved SST (recall that Reynolds SST, used to normalize all 

three products, does not resolve the diurnal cycle). The inversion algorithm shows a smaller SST 

diurnal range than ones measured by the regression and hybrid algorithms. To put SEVIRI 

observation in context, Fig.4.4 shows an expected shape of the diurnal cycle (as a function of 

local time). The proximity of their shapes suggests that SEVIRI and ABI can potentially derive 

information about SST diurnal cycle. The relative precision of the SST products measured by 

their respective STDs is stable during the course of the day. 

Figure 4.5 shows time series of global bias and STD with respect to Reynolds SST in the three 

SEVIRI SST products for June 2008 and January 2009. All three SST products are 

approximately centered at Reynolds SST and show diurnal cycle (recall that Reynolds SST does 

not resolve a diurnal cycle). STD of the hybrid algorithm lies in between regression and 

inversion. Except diurnal variations, the STD of SST in all three products show long-term 
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variations likely caused by variable accuracy of the Reynolds OISST field. As an example, Fig. 

4.6 shows the FD SST, determined with regression and hybrid algorithms from the SEVIRI 

image on June 21 2008, 14:00 UTC. All images show strong warm SST anomalies in the North 

Atlantic and in the Mediterranean Sea, which are not captured by the Reynolds OISST. These 

anomalies cause the increase in global SST STD, clearly seen in the end of June 2008 on the left 

bottom panel in Fig. 4.5. Figure 4.7 shows time series of bias and STD of retrieved SST - in situ 

SSTs for the same months (June 2008 and January 2009). The STDs of retrieved SST with 

respect to in situ SST are smaller than with respect to Reynolds OISST for all three algorithms. 

 

 

Figure 4.2 Histograms of SST anomalies from two sample days of SEVIRI data. 
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Figure 4.3 Time series of SST biases and STDs for June 10, 2008 (left) and January 04, 2009 

(right). Each data point represents corresponding statistics derived from all clear-sky pixels 

within one FD image.  

 

 

 
 

Figure 4.4 Expected diurnal cycle in SST (courtesy of www.ghrsst-pp.org/). 

../../Local%20Settings/Temp/www.ghrsst-pp.org/
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Figure 4.5 Time series of global bias and STD of retrieved SST minus Reynolds SST in three 

SEVIRI SST products in June 2008 (left) and January 2009 (right). The numbers on each panel 

characterize average values of bias or STD over the month.  

 

  

Figure 4.6 FD distributions of regression and hybrid SST anomalies on June 21 2008, 14:00 

UTC. 
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Figure 4.7 Time series of global bias and STD with respect to in situ SST in the three SEVIRI 

SST products in June 2008 and January 2009. Match-up window was set to 5km in space and 30 

min in time. 50 match-ups per FD in June 2008 and 40 in Jan 2009 per FD; global mean bias is 

0± 0.5K. Diurnal cycle is caused by skin (SEVIRI) – bulk (in situ) differences; for all 3 

algorithms, global STD 0.6±0.2K. Hybrid STD is in between STDs for regression and inversion 

SST. 
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4.4 Validation of Regression SST Algorithm for AVHRR 

Additional evaluation of the regression algorithm was performed using the heritage AVHRR SST 

product. Figure 4.8 illustrates the principles of how the match-up data set with in situ data is 

created. In the AVHRR processing, the match-up window was set up to 1 hr in time and 20 km in 

space. Analyses are currently underway to optimize the match-up windows (Minnett, 1990; 

Ignatov et al., 2009) and quality control procedures (Emery et al, 1991; Xu and Ignatov, 2009).  

Next, validation statistics (satellite minus in-situ SST) are generated on a monthly basis, 

separately by day and night. Figure 4.9 gives examples of monthly validation statistics for one 

NOAA platform. Time series of the mean and STD are shown in Fig. 4.10. Typically, there are 

~7,000 match-ups per month for day and ~15,000 match-ups for night in the case of AVHRR.  

Parameters of the Gaussian distribution are subsequently monitored in time (Fig. 4.10). 

Typically, bias is within ~±0.1K and STD is within 0.5K. Note that these validation statistics are 

only achieved if outliers are removed from in-situ data. Figure 4.10 compares side-by-side bias 

and STD for the case if outliers were removed (left column) and retained (right column) in the in 

situ data. Satellite data also have outliers, but their magnitude and their fraction are much 

smaller. Recall that in-situ SST data come from many different sources (countries, agencies) and 

their quality is non-uniform in space and time and often suboptimal. Careful quality control of in 

situ SST is needed before they can be used in satellite Cal/Val (Emery et al, 2001; Xu and 

Ignatov, 2009). 

 

 
 

Figure 4.8 Match-up methodology with global in-situ data. 
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Figure 4.9 Sample monthly validation statistics for NOAA-16 in June 2001. Statistics are 

generated on a monthly basis and stratified by Day and Night. Typically for AVHRR, number of 

match-ups is 10,000 per month. Global Bias (accuracy) is ~0.1K and Global RMSD (Precision) 

~0.5K.
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Figure 4.10 Time series of validation accuracy (global bias) and precision (global STD) for 5 

NOAA platforms: NOAA-16, -17, -18, -19, and MetOp-A. Outliers excluded from in situ data 

(left) and outliers retained (right). Comparison with QC‟ed Buoy SST: Bias +/-0.1K; STD 0.4-

0.5K. Data are from SQUAM web-based tool, http://www.star.nesdis.noaa.gov/sod/sst/calval/ . 
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4.5 Comparison of Regression and Hybrid NLSST Algorithms for AVHRR 

Two AVHRR and matchup data sets were used in the comparison of regression and hybrid SST 

algorithms. The first data set contained nighttime observations from five AVHRR-carrying 

platforms, NOAA 16, 17, 18, 19 and Metop-A and matchups of drifting buoy in situ 

measurements within the time period August 18 - September 17 2009 (2009 data set). Daytime 

observations were not used to avoid distortions of angular dependencies by sun glint and non-

uniform heating of the ocean surface along the AVHRR scan. Another reason to ignore daytime 

observations is that the difference between skin SST, which the AVHRR observations are 

sensitive to, and in situ measured bulk SST is largest in the daytime. The majority of the analysis, 

including estimation of local BT biases, calculation of regression and hybrid coefficients, and 

evaluation of accuracy and precision of SST retrievals was performed with this data set. The 

second, 2010 data set, contained nighttime data from the same platforms and drifting buoy 

matchups for January 1-7 2010 and was used to ensure stability of the results obtained with the 

2009 data set. Here we present the comparative performance of regression and hybrid SST 

algorithms in the NLSST formulation only. The analysis of nighttime AVHRR MCSST retrievals 

has shown that adding the more transparent channel 3.7μm (Ch3b) to the split-window channels 

11 μm (Ch4) and 12 μm (Ch5) improves the regression, hybrid, and inversion SST estimates and 

minimizes the differences between them. These results are consistent with Merchant et al. 

(2008).  

For AVHRR, correction of Ch4 and Ch5 local biases as two-dimensional functions of |θ| and 

total precipitable water content in the atmosphere was implemented. Because of essential 

nonlinearities of the dependencies of ΔTB biases from θ and W, these functions were represented 

with two-dimensional lookup tables (LUT). The biases were estimated by averaging over “clear” 

pixels during nighttime AVHRR observations from August 18 to September 17, 2009 within 

4
o
×0.5 g/cm

2 
cells in the (θ, W) space. The exact value of bias for any combination of θ and W 

was found by bilinear interpolation between the nearest LUT nodes.  

The regression and hybrid coefficients, calculated from the 2009 data set for five AVHRR-

carrying platforms are presented in Table 4.3. Table 4.4 compares the precisions of fitting in situ 

SST TIS with regression SST TR and hybrid SST TH within the 2009 data set (the biases of TR - TIS 

and TH - TIS are not shown in the Table 4.4 because they are zero by construction). For all 

platforms, STDs of TH - TIS are smaller than STDs of TR - TIS and correlations between TH and TIS 

are higher than between TR and TIS. Table 4.4 also shows correlation between retrieved SST 

increments, ΔTH = TH – TFG and ΔTR = TR – TFG, and in situ SST increments ΔTIS = TIS – TFG. The 

incremental correlations are also higher for ΔTH than for ΔTR.  
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Table 4.3 Regression and hybrid regression coefficients for five AVHRR carrying platforms. 

Coefficient Metop-A NOAA-16 NOAA-17 NOAA-18 NOAA-19 

Regression 
a0 11.8215 19.2345 16.9407 16.1066 18.0330 

a1 0.963037 0.935558 0.944471 0.947016 0.940330 

a2 0.0731346 0.0720969 0.0735208 0.0708459 0.0628712 

a3 1.14645 0.837695 1.06111 0.878284 0.783647 

Hybrid 
b0 -0.0286684 -0.0398945 -0.0561765 -0.0157083 -0.0372663 

b1 0.985580 0.949439 0.949757 0.924738 0.917020 

b2 0.1032640 0.0848259 0.0984409 0.0925503 0.0884904 

b3 -0.717516 -0.0398945 -0.103969 -0.166228 -0.401969 

 

Table 4.4 Statistics of deviations of regression SST TR and hybrid SST TH from in situ SST TIS. 

2009 data set. 

Parameter MetOp-A NOAA-16 NOAA-17 NOAA-18 NOAA-19 

STD, TR - TIS 0.531 0.486 0.527 0.528 0.559 

STD, TH- TIS 0.475 0.451 0.475 0.461 0.493 

Correlation, 

ΔTR and ΔTIS 
0.312 0.313 0.309 0.284 0.239 

Correlation, 

ΔTH and ΔTIS 
0.344 0.345 0.328 0.335 0.303 

 

Table 4.5 Statistics of regression and hybrid SST increments over the 2010 matchup data set. 

Statistics Metop-A NOAA 16 NOAA 17 NOAA 18 NOAA 19 
Bias, TR - TIS -0.051 0.065 -0.103 0.049 0.095 

Bias, TH- TIS 0.035 -0.018 -0.022 0.095 0.104 

STD, TR - TIS 0.565 0.528 0.515 0.536 0.540 

STD, TH- TIS 0.465 0.449 0.418 0.414 0.404 

Correlation, ΔTR 
and ΔTIS 

0.236 0.270 0.284 0.238 0.220 

Correlation, ΔTH 
and ΔTIS 

0.324 0.377 0.404 0.399 0.397 

Correlation, TR 
and ΔTIS 

0.994 0.996 0.995 0.995 0.999 

Correlation, ΔTH 
and ΔTIS 

0.997 0.998 0.996 0.998 1.000 
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Figure 4.11 Statistics of retrieved SST increments as functions of local zenith angle (LZA): Bias 

(a) and STD (b) of regression SST increment ΔTR = TR – T0; bias (c) and STD (d) of hybrid SST 

increment ΔTH = TH – T0. The statistics accumulated over 2009 data set. 

 

 

Figure 4.12 Statistics of retrieved SST increments as functions of GFS total precipitable water 

vapor content (TPW): Bias (a) and STD (b) of regression SST increment ΔTR = TR – T0; bias (c) 

and STD (d) of hybrid SST increment ΔTH = TH – T0. The statistics accumulated over 2009 data 

set. 
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Figure 4.11 compares the dependencies of local biases and STD of ΔTR and ΔTH on local zenith 

angle. Inaccuracy of approximation of the inverse relationship between SST and BTs with 

NLSST conventional regression equation at big local zenith angles causes increase of both bias 

and STD of ΔTR. The same dependencies for bias and STD of ΔTH are flattened. Figure 4.12 

compares these statistics as functions of GFS total precipitable water content in the atmosphere 

(TPW). The dependency of ΔTR bias on TPW in Fig. 4.12a is more pronounced than the same 

dependency for ΔTH bias in Fig. 4.12c.  

Table 4.5 compares the accuracies and the precisions of fitting in situ SST TIS with regression 

SST TR and hybrid SST TH within the 2010 data set. For all platforms, both for Regression and 

Hybrid algorithms, the absolute values of biases of TH - TIS are within or close to 0.1K, which 

indicates that there were no significant calibration trends between August –September 2009 and 

January 2010. STDs of TH - TIS are smaller than STDs of TR - TIS and correlations between ΔTH 

and ΔTIS are higher than between ΔTR - ΔTIS. Table 4.5 also shows correlations between absolute 

temperatures TR vs. TIS and TH vs. TIS. These correlations are also higher for TH than for TR. 

Overall, the Hybrid algorithm improves SST retrieval accuracy over the conventional Regression 

algorithm. The improvement shows itself in more accurate fitting with in situ SST 

measurements, significant reduction in local SST biases with respect to the reference SST field, 

more uniform dependencies of SST retrieval error on local zenith angle and in better temporal 

stability of global SST biases. 

4.6 Stability of the Hybrid SST Estimates wrt the First Guess SST 

At present, several SST analysis fields are available, such as Reynolds Daily High-Resolution 

Blended SST (DSST - Reynolds et al., 2007), Weekly Optimal interpolation SST (WSST - 

Reynolds et al., 2002), Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA - 

Stark et al., 2007, 2008) and Pathfinder SST 

(www.nodc.noaa.gov/sog/pathfinder4km/userguide.html). A possible scenario in operational ose 

of the hybrid SST algorithm is one in which the analysis field initially used for calculation of 

hybrid coefficients becomes unavailable. Since different SST analysis fields are not identical, it 

is important that switching from one SST analysis to another would not degrade the SST retrieval 

accuracy nor require recalculation of hybrid regression coefficients.  

The following equation represents incremental formulations of NLSST algorithm: 

TH = TFG + b0 + b1 [T11 - TCS11(TFG, x, θ)]+ 

+ b2 Q{[T11 – - TCS11(TFG, x, θ)] –[T12- TCS12(TFG, x, θ)]} +  

+ b3 {[T11 – - TCS11(TFG, x, θ)] –[T12- TCS12(TFG, x, θ)]} (secθ – 1)      (4.3) 

Here, TFG is the first guess SST, and simulated clear-sky BTs TCS11, TCS12 at 11 and 12 µm are the 

functions of TFG, θ and the vector of GFS atmospheric variables x. Q in (4.3) is the “atmospheric 

term,” which accounts for global variations in the atmospheric absorption. The conventional 

NLSST formulation, which is considered in this ATBD, assumes that water vapor absorption in 

the atmosphere is roughly proportional to SST in Celsius, and  

Q = TFG – 273.15,              (4.4) 

../../Local%20Settings/Temp/www.nodc.noaa.gov/sog/pathfinder4km/userguide.html
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Since the estimate of atmospheric water vapor content W is currently available from GFS data, 

we are planning to replace Q with the term depending directly on W rather than on TFG. After this 

replacement, the dependency of TH from TFG will manifestate itself only through variations in 

TFG, TCS11 and TCS12. In this Section, we analyze sensitivity of TH to variations in TFG, TCS11 and 

TCS12 assuming that Q does not depend on TFG. 

We generated the NLSST Hybrid SST estimates from Metop-A observations for the 2010 data 

set using several analysis fields as the first guess: Daily Reynolds SST (DSST, TDSST), Weekly 

Reynolds SST (WSST, TWSST), OSTIA (TOSTIA) and Pathfinder (TPATHF): 

TH(TFG)=TFG + b0 + bΔY[TCS11(TFG, x, θ), TCS12(TFG, x, θ), TFG, θ,Q],       (4.5) 

The vector of regressors‟ increments ΔY is defined in (4.12), and TFG can be equal to TDSST, 

TWSST, TOSTIA or TPATHF. In all cases, Q was calculated as Q = TDSST – 273.15. As DSST is the SST 

field that is used as a reference field in ACSPO for AVHRR, the clear-sky BTs, TCS11(TDSST, x, θ), 

and TCS12(TDSST, x, θ) were simulated directly with CRTM. Along with TCS11 and TCS12, their 

derivatives with respect to TFG D11(TDSST) and D12(TDSST), were calculated numerically. For other 

reference fields TFG, TCS11 and TCS12 were calculated using the Taylor expansion as follows: 

TCS11(TFG, x, θ) = TCS11(TDSST, x, θ) + D11(TDSST) (TFG – TDSST),      (4.6a) 

TCS12(TFG, x, θ) = TCS12(TDSST, x, θ) + D12(TDSST) (TFG - TDSST),      (4.6b) 

In (3.14), TFG is equal to TWSST, TOSTIA or TPATHF. Table 4.6 compares global statistics of hybrid 

SST, produced with different first guess SST fields. Global bias and STD of TFG - TDSST 

characterize the initial differences between a given field and DSST. The values of biases and 

STDs of TFG - TDSST vary respectively from -0.09 and 0.051 for WSST to -0.475 and 0.954 for 

Pathfinder. Biases and STDs of TH(TFG) - TDSST characterize the statistics of deviations of 

TH(TFG) from TDSST. If these statistics are averaged over the whole scan (-68
o
 < θ < +68

o
), the 

biases of TH(TFG) - TDSST with different TFG vary from 0.047K to 0.056K, i.e., within 0.01K, and 

STDs vary from 0.462 K to 0.505K. The STDs are noticeably reduced in the central part of the 

scan (-40
o
 < θ < +40

o
). The Table also shows the statistics of global differences between TH, 

produced with the first guess TFG, and TH, produced with the first guess DSST. The biases of 

TH(TFG) - TH(TDSST) are well within 0.01K for all TFG, which means that TH(TFG), produced with 

different TFG, are practically unbiased with respect to each other. The STDs of TH(TFG) - 

TH(TDSST) are within 0.16K over the whole scan and within 0.09 K in the central part of the scan. 

Therefore, we conclude that the fields of TH, produced with different TFG, converge to the same 

retrieved SST field with a good accuracy. However, the accuracy of convergence degrades 

toward scan edges.  
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Table 4.6 Statistics of hybrid SST estimates, produced with different first guess SST fields, 

averaged over nighttime Metop-A clear-sky pixels within 2010 data set (January 1-7 2010). 

Statistics DSST WSST OSTIA Pathfinder 

TFG - TDSST 

Bias, K 0 -0.009 -0.045 -.475 

STD, K 0 0.051 0.394 0.954 

TH(TFG) - TDSST, -68
o
 < θ < +68

o
 

Bias, K 0.035 0.056 0.056 0.047 

STD, K 0.475 0.499 0.505 0.505 

TH(TFG) - TDSST, -40
o
 < θ < +40

o
 

Bias, K 0.054 0.060 0.060 0.055 

STD, K 0.459 0.475 0.480 0.478 

TH(TFG) - TH(TDSST), -68
o
 < θ < +68

o
 

Bias, K 0 0.003 0.003 -0.006 

STD, K 0 0.139 0.146 0.159 

TH(TFG) - TH(TDSST), -40
o
 < θ < +40

o
 

Bias, K 0 0.006 0.006 0.001 

STD, K 0 0.065 0.072 0.088 

 

 

Figure 4.13 The bias and STDs of TH(TFG) - TDSST for different analysis fields as functions of 

local  zenith angle θ and total precipitable water content (TPW). Metop-A, 2010 data set. 
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Figure 4.13 shows the bias and STDs of TH(TFG) - TDSST as functions of local zenith angle θ and 

TPW. While for TH(TDSST) - TDSST these functions are only slightly dependent on θ, the 

dependencies for other analysis fields are more pronounced and similar to each other. The reason 

for this difference between DSST and other fields is that in the case of DSST, clear-sky BTs are 

calculated with CRTM, whereas for other analysis fields the Taylor expansions of the CRTM 

function (5.5) are used. The increase in STD of TH(TFG) - TDSST toward the scan edges for WSST, 

OSTIA and Pathfinder points to degradation in accuracy of numerically calculated derivatives of 

TCS11 and TCS12 with respect to TFG. The fact that the accuracy of BT derivatives degrades 

towards scan edges can serve as an additional argument for using the hybrid SST retrieval rather 

than the inversion algorithm. 

4.7 ABI Cloud Mask and SST Quality Control 

In GOES-R suite of geophysical products, generic ABI cloud mask (ABI CM) will be evaluated 

for all sensor pixels and made available to all downstream products. Prior experience with 

AVHRR and MODIS suggests that a generic CM may not be optimal for all downstream 

products, and product-specific quality control may still be needed (Martins et al., 2002; Minnett 

and Evans, 2008; OS&I SAF SST, 2009). The approach adopted in the ABI CM is to provide a 

somewhat „liberal‟ (attempting to minimize false cloudy) cloud screening, leaving product-

specific QC up to individual retrieval algorithms (Heidinger, 2009). Following this approach, 

SST Team has implemented SST quality control (SST QC). The algorithm for SST QC has been 

described in Section 4.3. In this section we inter-compare performance of ABI CM and SST QC. 

4.7.1 Description of the ABI CM and SST QC 

The objective of ABI cloud mask is clear-sky identification for accurate retrievals of clear-sky 

product. The ABI CM builds upon heritage approaches employed for AVHRR, MODIS and 

SEVIRI (Heidinger, 2009). It includes up to 30 different tests, with 10 tests being relevant to 

ocean applications (cf. Table 4.7). Thresholds in the individual ABI CM tests have been tuned 

against CALIPSO Lidar measurements. Online RTM (PFAAST) simulations are employed in 

several ABI CM tests (12, 13, 21, and 22, cf. Table 4.7). Target misclassification rate („False 

Clear‟ + „False Cloudy‟) is 13%. The latest tests over ocean demonstrated a misclassification rate 

of 8.8% wrt CALIPSO data. The ABI CM output contains results of the individual cloud tests, 

which are further aggregated into the overall ABI CM with four states: “Confidently Clear,” 

“Probably Clear,” “Probably Cloudy,” and “Confidently Cloudy.”  

For the ABI SST application we applied the following modifications to the original ABI CM 

mask: (1) to avoid day-night discontinuity, we eliminated all reflectance-bases and MIR tests, 

and constructed mask from TIR-based tests; (2) to facilitate comparison of ABI CM and SST QC 

we aggregated two “Probably” categories, resulting in ABI CM mask with three states: “Clear,” 

“Probably,” and “Cloudy” (cf. Table 4.9).  

The objective of the SST quality control is assessment of the SST retrieval‟s accuracy, degraded 

by various environmental factors (possible contamination due to residual cloud, aerosols, sun 

glint, radiometric noise, extreme observation geometry, proximity to coast, etc). While ABI CM 

is relatively liberal to avoid misclassification of clear pixels as cloudy (false alarms), the QC is 

more conservative to avoid cloud leakage in the SST product. Thus, the implementation of the 

SST QC is different from ABI CM. It currently utilizes 5 tests (cf. Table 4.8). All tests (except 
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„Spatial Uniformity‟) rely on the CRTM simulations driven by a priori information (Reynolds 

SST and GFS atmospheric fields) (Liang et al., 2009). Significant reliance on a priori 

information is essential to meet high accuracy SST requirements, without significant reduction in 

the amount of clear-sky pixels. The SST QC output contains results of the individual QC tests, 

which are further aggregated into an overall SST QC with three states: “Optimal,” “Sub-

Optimal,” and “Poor” (cf. Table. 4.9). 

The schematic plot illustrating the relationship between ABI CM and SST QC as implemented in 

the AIT framework is shown in Fig. 4.14. Upstream other L2 products, ABI CM will be executed 

for all ABI pixels, while SST QC will pass-through „Cloudy‟ and further inspect „Clear‟ and 

„Probably‟ categories. The advantages of this scheme for the ABI SST product are: (1) save time 

by executing SST QC only over small portion of potentially non-contaminated pixels identified 

by ABI CM; (2) periodically check the performance of the reference-based SST QC with 

independent physically-based ABI CM.  

4.7.2 Intercomparison of ABI CM and SST QC Performance 

The performance of the ABI CM and SST QC was intercompared and their impact on the SST 

product was assessed using: (1) side-by-side comparison of ABI CM and SST QC; (2) ABI CM 

vs. SST QC Confusion Matrix analysis. Further details, including analysis of performance of 

individual ABI CM and SST QC tests are given in Shabanov et al. (2010).  

Time series of the components of ABI CM („Clear‟, „Probably‟ and „Cloudy‟) and SST QC 

(„Optimal‟, „Suboptimal‟, and „Poor‟) are shown in Figure 4.15 (left column). Although the 

fractions of top category pixels identified by the ABI CM and SST QC are different, they both 

exhibit diurnal cycle with a minimum found at 04:00 UTC and maximum at 14:00 UTC. Overall, 

the fraction of „Clear‟ CM pixels (17-23%) is larger than the fraction of „Optimal‟ QC pixels (16-

19%). Furthermore, the fraction of „Probably‟ ABI CM pixels (~18%) is much larger than that of 

“Sub-Optimal” SST QC pixels (~6%). Additional analysis (not shown) suggests that the pattern 

of ABI CM exhibits temporal discontinuities between day - night, and glint - no glint areas and 

artifacts in the areas contaminated by aerosols, while SST QC is more regular and continuous in 

time. For this reason we modified ABI CM mask to retain only thermal-channels based tests. 

Time series of data screening rate by individual ABI CM and SST QC tests are shown in Fig. 

4.15 (right column). The unique feature of the SST QC tests is that their triggering rates are 

clustered together around 70-80%, suggesting that all QC tests are consistently tuned and work 

for SST screening. However, some tests may be performing a redundant job. This redundancy 

mainly comes from the fact that majority of tests (except „Spatial Uniformity‟) are derived from 

the common concept of comparing retrievals and references (SSTs or BTs).  

In contrast, ABI CM individual tests have a wide distribution of triggering rates. Triggering rates 

of thermal channel based tests are flat through the diurnal cycle with rates ranging from 75% 

(“Thermal Uniformity”) to below 1% (“Uniform Low Stratus”). Reflectance based tests 

(“Reflectance Uniformity”, “Reflectance Gross Contrast”, “Relative Visible Contrast”, “4-

micron emissivity”, and “Uniform Low Stratus”) have a wide variation (0-60%) of triggering 

rates. Thus, ABI CM tests are uniquely tailored to filter particular cloud types. One major 

disadvantage of ABI CM (from SST applications point of view) is that reflectance-based tests 
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contribute to day-night, glint-no-glint discontinuities and sometimes confusion of clouds and 

aerosols. As mentioned earlier those tests were excluded from the mask.  

Figures 4.16 and 4.17 quantify the impact of ABI CM and SST QC screening on SST anomalies, 

ΔTS = Hybrid SST – Reynolds SST. According to Fig. 4.16, spatial patterns of ABI CM and SST 

QC ΔTS are generally similar. Namely, both capture “hot spots” along the African coast and in 

the Mediterranean Sea, which are not captured by coarse resolution 1° weekly Reynolds SST. 

However, residual clouds are more pronounced in the ABI CM (e.g., cold anomalies in the NW 

part of the Atlantic Ocean and in the Mediterranean Sea). 

Figure 4.17 shows statistics for ΔTS screened with ABI CM and SST QC. In the case of ABI CM, 

the cold tail of the ΔTS histogram is more pronounced, while in the case of SST QC, the 

histogram is skewed on the right, suggesting a slight “over-screening.” However, right shoulders 

of both histograms match very closely. Instantaneous values of mean and STD of ΔTS statistics 

are indicated in the histograms and their respective diurnal cycles are shown separately. Mean 

ΔTS is biased negative and shows a more pronounced diurnal cycle compared to SST QC, 

suggesting more residual cloud contamination in the ABI CM. This observation is further 

confirmed by the time series of standard deviations, which show that STDs for the ABI CM are a 

factor of ~3 larger than for SST QC. Figure 4.17 clearly indicates that the ABI CM alone is not 

sufficient to provide highly accurate SST retrievals, and additional SST QC is required. 

A confusion matrix analysis complements the side-by-side comparison of ABI CM and SST QC. 

We will use SST QC as a “Reference” as a matter of convention (as opposed to a true reference, 

in view that SST QC has its own uncertainties). The main rationale behind this convention is: (1) 

convenience of commonly accepted nomenclature; (2) by construction SST QC should be 

intrinsically more accurate than ABI CM as former relies on SST references. We trace the 

following key components of the confusion matrix: 

Both Clear ≡ [QC=‟Optimal‟] ∩ [CM=‟Clear‟], 

False Cloudy ≡ [QC=‟Optimal‟] ∩ [CM=‟Cloudy‟], 

False Clear ≡ [QC=‟Poor‟] ∩ [CM=‟Clear‟]. 

Figure 4.18 shows time series of the above three components. The majority of ABI CM “Clear” 

and SST QC “Optimal” pixels are consistent. As a result, the “Both Clear” component comprises 

9-15% of all ocean pixels. The „False Clear‟ rate of ~5-7% highlights liberal setting of ABI CM. 

Overestimation of „Clear‟ pixels is acceptable, as SST QC will be applied on the top of the ABI 

CM, and will catch the residual clouds missed by the ABI CM. From other side, very low rate of 

„Cloudy‟ overestimation („False Cloudy‟ rate of ~0.5%) allows SST QC to pass-through 

„Cloudy‟ pixels and focus on refining „Clear‟ and „Probably‟ categories. The diurnal cycle of the 

corresponding ΔTS statistics are shown in Fig. 4.19. Note that the statistics of the „Both Clear‟ 

and „False Cloudy‟ categories are close. On the other hand, the „False Clear‟ ABI CM pixels 

form a distinct cluster with negative ΔTS and large STD.  

Overall, ABI CM performance evaluated wrt SST QC taken as reference meets the ABI cloud 

mask ATBD specs (Heidinger, 2009). Total misclassification error wrt SST QC („False Cloudy‟ 

+ „False Clear‟) is ~5-7% of all ocean pixels. Further, confusion matrix analysis confirms 

feasibility of sequential execution of ABI CM and SST QC in the AIT framework, such that SST 

QC improves on initial data screening of ABI CM. 
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Table 4.7 ABI Cloud Mask tests relevant to Ocean applications. Reflectance and MIR-channel 

based tests were further excluded from ABI CM to ensure temporal continuity (shaded boxes), 

and only TIR-channels based tests were retained (solid boxes).  

Test ID Test Name Description 
09 RUT- Reflectance 

Uniformity Test  

STD of the observed 0.6 μm reflectance within a 3x3 box surrounding each 

pixel checked against a globally fixed threshold (Reflectance analog of 

TUT). 
10 TUT- Thermal 

Uniformity Test  

STD of the observed 11 μm BT within a 3x3 box surrounding each pixel 

checked against a globally fixed threshold (Thermal analog of RUT). 
11 RTCT- Relative 

Thermal Contrast 

Test  

BT difference @ the 11 μm (Pixel minus Nearest Warm Center in 5x5 box) 

checked against a globally fixed threshold. 

12 ENTROP- Emissivity 

at Tropopause. 

Effective emissivity of a pixel is compared against a fixed threshold. For 

cloud at the tropopause, emissivity is elevated, while for clear sky it 

approaches 0. 
13 PFMFT- Positive 4-5 

Test 

Split window test for semi-transparent cloud ΔBT=BT(11 μm)-BT(12 μm) is 

checked against the pre-calculated ΔBT as a function of BT(11 μm). 
16 RFMFT - Relative 4-

5 Test  

Split-window test. Significant deviations of pixel‟s ΔBT in 5x5 box from that 

at the NWC (positive or negative) are indicative of cloud. 
17 RGCT - Reflectance 

Gross Contrast Test  

Clouds exhibit large values of the visible reflectance compared to clear sky. 

18 RVCT - Relative VIS 

Contrast Test 

Relative VIS Contrast Test - over small region (3x3 box, cloud edge), cloudy 

pixels have largest contrast in VIS reflectance. Unlike RGCT, the RVCT test 

dynamically calculates its thresholds. 
21 EMS4 – 3.9 μm 

Emissivity Test  

3.9 μm emissivity for clouds is augmented, and near zero for clear sky. 

 
22 ULST - Uniform Low 

Stratus Test  

Low uniform stratus clouds are more reflective (less emissive) than the 

surface in the 3.9 μm. Test compares pixel emissivity with clear sky 

prediction @ Night. 

Table 4.8 SST Quality Control tests. 

Test ID Test Name Description 
01 Radiance Test  Checks for consistency between the observed BT @ 11μm and 12μm BT and 

those generated by CRTM for clear sky conditions. 
03 Static SST Test Detects unrealistically cold SST anomalies. 
02 Adaptive SST 

Anomaly Test  

Refines results of Static SST test, by analyzing statistics of clear/cloudy 

pixels within the neighborhood of the tested pixel.  
05 Optical Depth Test Checks optical depth generated by SST physical retrieval algorithm (high for 

clouds). 
07 Spatial Uniformity 

Test  

Detects fractional sub-pixel cloudiness by the presence of increased spatial 

variability in the retrieved SST. 

Table 4.9 Correspondence between ABI CM and SST QC categories. 

ABI CM SST QC 

Clear 3 0 Optimal 

Probably Clear 2 1 Sub-Optimal 

Probably Cloudy 1 2  Poor 

Cloudy 0 2 Poor 

----- / --------  3 Unprocessed 
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Figure 4.14 Schematic plot of sequential implementation of ABI CM and SST QC masks in the 

AIT framework. 

 

  

Figure 4.15 Time series of the ABI CM (top row) and SST QC (bottom row) portion of retrieval 

states (on the left) and triggering rates of individual tests (on the right) over whole diurnal cycle. 

Each portion is defined as the amount of pixels falling in the state normalized by total amount of 

ocean pixels. Solid lines indicate TIR-channels based tests, while dashed lines correspond to 

optical- and MIR- channels based tests. MSG-2 SEVIRI 15-min FD data on June 03, 2008. 
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a)  Hybrid SST Anomalies & ABI CM b) Hybrid SST Anomalies & SST QC 

  

Figure 4.16 Spatial distribution of SST anomalies (ΔTS = Hybrid SST – Reynolds SST) screened 

with ABI CM (a) and SST QC (b) masks. MSG-2 SEVIRI 15-min Full Disk (FD) data on June 03, 

2008 at 16:00 UTC. 

  

Figure 4.17 Statistics for the SST anomalies (ΔTS) screened with ABI CM (in red) and SST QC 

(in blue) masks. MSG-2 SEVIRI 15-min FD data on June 03, 2008. 
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12:00 

UTC 
SST QC Optimal 

Sub-

Optimal 
Poor 

 

ABI CM 100%= 18.1% + 5.3% + 76.6%  

Clear 24.1% + 14.4% 2.6% 7.1% 

Probably 15.4% + 3.2% 2.2% 10.0% 

Cloudy 60.5%  0.5% 0.5% 59.5% 

Figure 4.18 Confusion matrix between ABI CM and SST QC. Components of the matrix are 

calculated as the amount of pixels falling in each category normalized by the total amount of 

ocean pixels. Color-coded are the three components of interest of the confusion matrix: „False 

Clear‟ (red), „False Cloudy‟ (blue), „Both Clear‟ (green); complementary category ‟Both 

Cloudy‟ (yellow) is also shown. MSG-2 SEVIRI data on June 03, 2008. 

 

  

Figure 4.19 Statistics of the SST anomalies (ΔTS) screened with „False Clear‟ (in red), „False 

Cloudy‟ (in blue) and „Both Clear‟ (in green) components of the confusion matrix. MSG-2 

SEVIRI 15-min FD data on June 03, 2008. 
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4.8  Output Compositing 

ABI will take FD images with the rate from 5 to 15 minutes while SST is required to be reported 

once an hour. This allows improving the coverage of the ocean surface and reduction of noise on 

SST images by compositing SST retrievals from several sequential SST images. One possible 

solution to this problem is to implement a Principal Component Analysis (PCA) technique on the 

time series of geostationary images (Richards and Xiuping, 2006).  

 

 

Figure 4.20 Global bias (a), global STD (b) and percentage of “Optimal” pixels for 

instantaneous and composited SST images on June 18 2008. 

 

The implementation of this method is beyond the scope of this ATBD. To get the initial insight 

to the problem, we suggest for SEVIRI a simpler compositing algorithm: For each (x,y) pixel 

over the ocean and for 4 sequential 15 min FD SST images : 

 

1. Select the pixels with “Optimal” quality flag value. 

2. If at least one “Optimal” pixel found, average SST over “Optimal” pixels and set the 

quality flag for the (x,y) composite pixel to “Optimal.” 

3. Otherwise, select the pixels with “Suboptimal” quality flag value. 
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4. If at least one “Suboptimal” pixel found, average SST over “Suboptimal” pixels and set the 

quality flag for the (x,y) composite pixel to “Suboptimal.” 

5. If neither “Optimal”, nor “Suboptimal pixels found, average SST over “Poor” pixels and set 

the quality flag for the (x,y) composite pixel to “Poor.” 

 

The resulted composite image consists of ocean pixels with the same three categories of quality 

flags, which are used for the instantaneous images: “Optimal.” “Suboptimal.” and “Poor”. The 

effect of compositing shows itself in the increase of the amount of Optimal and in decrease of 

amount of Poor pixels. As an example, Fig. 4.20 shows statistics of SST anomalies over Optimal 

pixels for instant and composite SST images for June 18, 2008. The composite images were 

produced from 4 sequential SST images taken within one hour. The compositing only slightly 

changes global bias and STD of SST but spatial coverage with Optimal pixels increases from 15-

20% to 20-27%.  

4.9 Error Budget 

Table 4.10 lists summary of SEVIRI and AVHRR validation statistics. Overall, all three SST 

algorithms meet the F&PS requirements. Regression SST includes the local bias component, 

which increases its STD over the hybrid SST. The adjusted inversion SST algorithm produces 

STD somewhat smaller than that for hybrid SST. The problem with the inversion algorithm is 

that it requires empirical adjustment because selection of the algorithm‟s parameters according to 

theoretical recommendations causes over-smoothing of spatial and temporal SST variations 

within the inversion SST product. In particular, it strongly underestimates the diurnal cycle. A 

reasonable tradeoff between the regression and inversion SST algorithms is provided by the 

hybrid SST algorithm because unlike the regression, the hybrid algorithm does not include the 

local bias SST component and, unlike the inversion algorithm, it includes a mechanism to adjust 

the variance of the hybrid SST to the level of the bias-free component of regression SST. Based 

on the validation results for SEVIRI and AVHRR, the hybrid algorithm has been recommended 

as the primary algorithm for the ABI. The regression algorithm is a simple and robust approach, 

which can run in the absence of CRTM or its inputs (first-guess SST and atmospheric fields). It 

is therefore recommended as a fall-back (graceful degradation) algorithm. 

 

The main components of the error budget for the ABI SST algorithm are: sensor BT calibration 

errors, CRTM BT modeling errors, ancillary GFS and reference SST field uncertainties, 

limitations of SST algorithms (regression, inversion, or hybrid), and CM/QC uncertainties.  
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Table 4.10 Summary of SEVIRI and AVHRR validation statistics. SST target accuracy (0.4K) 

and precision (0.8K) is met both for AVHRR & SEVIRI. 

AVHRR 
Time 

Interval 

Global Bias 

(K) 

Global STD 

(K) 

Diurnal 

Range (K) 

BT, Ch3B (3.7 μm) / Day 

Jan 2001 
- 

Present 

CRTM inaccurate during daytime  

BT, Ch3B (3.7 μm) / Night +0.3 <0.5 N/A 

BT, Ch4 (11 μm) +0.5 0.55 N/A 

BT, Ch5 (12 μm) +0.5 0.65 N/A 

SST (Regression) ±0.1 0.55 ~0.3±0.1 

SST (Hybrid) ±0.1 0.45 ~0.3±0.1 

SEVIRI 
Time 

Interval 

Global Bias 

(K) 

Global STD 

(K) 

Global Diurnal 

Range (K) 

BT, Ch04 (3.9 μm) / Day 

 
Jun 2008 

& 
Jan 2009 

CRTM is inaccurate during daytime 

BT, Ch04 (3.9 μm) / Night -1.0 N/A N/A 

BT, Ch09 (10.8 μm) +0.5 0.55 N/A 

BT, Ch10 (12.0 μm) +0.4 0.65 N/A 

SST (Regression) ±0.4 0.55 0.3 

SST (Inversion) ±0.2 0.46 0.23 

SST (Hybrid) ±0.2 0.50 0.25 

 

Below we briefly discuss each component and propose mitigation strategies where applicable. 

 Sensor BT calibration errors. Impact of the change in the sensor channel calibration on SST 

was investigated with SEVIRI data. On May 05, 2008 08:00AM EUMETSAT changed the 

calibration of SEVIRI MSG-1 (and 2) data to resolve an internal inconsistency in calibration 

methodology. This resulted in an average 0.5 [K] shift in channel BTs and translated to an 

increase in SST bias wrt reference fields of a similar magnitude. To mitigate these types of 

problems, the on-line bias correction algorithm has been implemented within ACSPO, as 

described in Section 4.4. This algorithm dynamically tracks Model minus Observation BT 

bias, retrieved minus NWP SST biases, and some other variables. The bias estimates are 

further taken into account in QC and OE SST algorithms. Nevertheless, according to 

contractual specifications, SST developers may assume that sensor data are properly 

calibrated (i.e., calibration risk is external). 

 CRTM BT modeling errors is the second component of the problem of Model minus 

Observation BT biases for clear-sky conditions. Currently, the global “Model minus 

Observation” bias is +0.3 ~ +0.5 [K] for SEVIRI Channels 9-10 and AVHRR Channels 4-5. 

AVHRR Channel 3B has a mismatch of similar magnitude. However, the corresponding 

SEVIRI Channel 4 has an abnormal bias (cf. Fig. 3.9). This was investigated and attributed to 

the extended bandwidth of SEVIRI Channel 4 and associated large absorption, which CRTM 

fails to simulate with the currently provided number of vertical layers. Overall, CRTM will 

improve over time and global biases are expected to decrease by including AOD, surface 

emissivity, glint, etc. in the CRTM simulations. While biases exist, the mitigation strategy 

(implemented both for AVHRR and SEVIRI) is to perform bias corrections according to the 
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methods described above or perform retrievals based on bands where the biases are within a 

certain tolerance. 

 Ancillary GFS and reference SST field uncertainties. Retrievals from temporally high-

frequency geostationary data require timely and accurate CRTM input. SST retrievals 

(including OE and hybrid SST and QC) are highly sensitive to GFS corruption, as test cases 

with SEVIRI demonstrate. The mitigation strategy is to use multiple GFS forecast periods. 

We have enabled input of 6-, 9- and 12- hours GFS forecasts for SEVIRI retrievals. 

 Limitations of SST models. The regression algorithm is sensitive to calibration trends and 

retrievals can be biased at some combinations of input variables, for example large local 

zenith angles and high water vapor content in the atmosphere. The optimal estimation 

algorithm is sensitive to the errors in CRTM and input NWP fields. In addition, uncertainties 

in OE SST depend on the difference between the retrieved and first guess SST. In order to 

provide the optimal retrieval stability in the wide range of observational conditions, the 

hybrid algorithm has been developed, as described in Section 4.2.3. 

 CM/QC uncertainties. The quality of the SST product strongly depends on the quality of 

screening out SST pixels with atmospheric contamination. According to the ABI AIT 

strategy, this screening will be performed by the external cloud mask upstream to SST 

production. The additional and final screening will be done by the SST QC, as decribed in 

Section 4.3. Our analysis and intercomparison of current ABI external CM and internal QC 

(Section 5.6) indicates that while CM captures the majority of clouds, significant False Cloud 

and False Clear misclassification exist. The mitigation strategy is to combine the external CM 

and the internal QC in such a way as to provide optimal and efficient detection of cloudy 

pixels while maintaining a low false alarm rate. 

 

Finally note that product uncertainties should match that of the validation data sets. Currently the 

most accurate data set available is GTS buoy measurements, which have measurements 

uncertainties of about 0.3 [K] (O‟Carrol et al., 2008). 

 

5 PRACTICAL CONSIDERATIONS 

5.1 Numerical Computation Considerations 

1. SST inversion/hybrid algorithm is computationally more expensive than the regression 

algorithm, but provides a more accurate SST product. 

2. Both algorithms will meet the algorithm latency requirement (< 15 minutes, goal) on the 

current STAR computers.  

3. Coarser resolution ancillary input files (Reynolds SST data and etc) will be interpolated to 

satellite pixel scale. 

4. Retrieved SST‟s will be used to support additional quality control of the ABI cloud mask. 

 

5.2 Programming and Procedural Considerations 

1. Hybrid and regression SST will be the primary and the fall-back SST products, 

respectively. 
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2. If NCEP/GFS global fields are not available, the fall-back regression product may be used 

and the SST product will be degraded.  

3. Both SST algorithms require initial training against in-situ SST, followed by periodic 

check-ups and potential adjustments. The corresponding procedures will be incorporated 

into the SST processing system. 

4. Frequent temporal sampling (15 min for SEVIRI) will be used to mitigate data issues 

(noise, cloud), fill in data gaps, and extend product coverage and accuracy/precision. 

5. The SST algorithms are purely pixel-by-pixel algorithms, implemented in a sequential 

mode. However, such QC tests as Adaptive SST and Spatial Uniformity will require 

analysis of the pixels in each pixel‟s immediate neighborhood.  

6. Generating L3 and 4 SST products tailored to customers needs may require further 

processing of pixel-level retrievals (not discussed in this ATBD). 

The primary adjustable parameters for the SST retrieval are the coefficients of the regression 

algorithm that may be stratified by day and night. The source of ancillary data sets should be 

configurable for the best available data set. Metadata used in this product may be modified, 

reduced and added later, at the stage of the product generation. 

5.3 Quality Assessment and Diagnostics  

The quality of SST retrieval will be assessed and monitored for diagnostics purposes. A set of 

quality control flags will be generated on a per pixel basis and stored as separate data layers 

including SST QC and Individual SST QC Tests (Tables 3.12-3.13). QC maps generated per 

pixel will be accompanied by image-wide QC statistics stored as part of the metadata (cf. Table 

3.11). 

5.4 Exception Handling 

The SST processing takes into account the quality of input channel data as well as ancillary data 

(upper air GFS input to CRTM and Reynolds First Guess SST). To handle situations with 

missing/corrupted data we have implemented a graceful degradation approach. That is, an 

attempt is made to continue retrievals based on best available analogous inputs (climatology, 

adjacent in time data, etc). Table 5.1 summarizes different cases of exception handling. The 

results are reflected in the output SST QC. 

Table 5.1 Exception handling summary. 

Algorithm 

Type of missing data 

Measurements 

(11 or 12 μm channels)  
NCEP GFS fields Reynolds SST 

Hybrid Fails 

Graceful degradation: 

Replaced with prior 

field or climatology 

Graceful degradation: 

Replaced with prior field or 

static SST climatology. 

Regression Fails 

 

Graceful degradation: 

CRTM based QC tests 

will be switched off 

Graceful degradation: 

Replaced with prior field or 

static SST climatology. 
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5.5  Algorithm Online Validation 

5.5.1 Pre-launch Validation 

Near-real time validation for the AVHRR and SEVIRI SST products is currently being 

established, and its results will be reported on the web.  

Monitoring of AVHRR SST in near-real time for long-term stability and cross-platform 

consistency is currently performed against global reference fields using the web-based SST 

Quality Monitor (SQUAM), www.star.nesdis.noaa.gov/sod/sst/squam/. More information about 

the SQUAM tool, including monitoring results and relevant references are found online (Dash et 

al., 2009).  

An automatic web-based Cal/Val system against in situ SSTs is currently being established for 

AVHRR, www.star.nesdis.noaa.gov/sod/sst/calval/. As of this writing, the tool continues to be 

under development and is password protected. More information about the tool, monitoring 

results, and relevant references are found online (Ignatov et al., 2009).  

Monitoring of IR Clear-sky Radiances over Oceans for SST (MICROS) is another web-based 

near-real time tool, www.star.nesdis.noaa.gov/sod/sst/micros/, employed to monitor radiances 

associated with SSTs. It validates SST radiances against the CRTM radiances calculated using 

NCEP GFS and Reynolds SST as input. More information about the tool, monitoring results, and 

relevant references are found online and in (Liang and Ignatov, 2009). 

5.5.2 Post-launch Validation 

Work is underway to add SEVIRI retrievals to the SQUAM, CALVAL, and MICROS pages. 

One specific requirement of the SEVIRI analyses is that they will need to resolve diurnal cycle. 

Establishing a NRT monitoring system for SEVIRI will allow a quick evaluation of the ABI 

SSTs and associated clear-sky radiances, once GOES-R is in orbit.  

During the initial intensive Cal/Val period (during the first several months in orbit), field 

measurements such as M-AERI would be instrumental in evaluating the SST product. This 

validation would be particularly helpful in light of the fact that the major SST product derived 

from ABI is the skin SST, also measured by the M-AERI (Minnett et al., 2001; Minnett, 2003). 

6 ASSUMPTIONS AND LIMITATIONS 

6.1 Performance 

The following assumptions have been made in developing and estimating performance of ABI 

SST retrievals. 

1) The ABI cloud mask is available. 

2) Community Radiative Transfer Model (CRTM) is available. 

3) NCEP/GFS and Reynolds SST are available. 

4) ABI sensor performance is as specified in the MRD and GS F&PS. 

5) SST regression and hybrid algorithms will be available pre-launch but their coefficients 

will be trained post-launch using match-up data with in-situ SSTs. 

../../Local%20Settings/Temp/www.star.nesdis.noaa.gov/sod/sst/squam/
../../Local%20Settings/Temp/www.star.nesdis.noaa.gov/sod/sst/calval/
../../Local%20Settings/Temp/www.star.nesdis.noaa.gov/sod/sst/micros/
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6) Static data sets (navigation, geometry, land/water mask) are available and within accuracy 

limits. 

6.2 Assumed Sensor Performance 

It‟s assumed that the ABI sensor will meet its current specifications. However, SST will be 

degraded under the following unfavorable observational conditions (degree of degradation is 

TBD) 

a. Under degraded sensor performance (calibration, stability, NEdT, band-to-band co-

registration, navigation) 

b. Under heavy ambient or persistent cloud 

c. Under unfavorable Illumination/Observation conditions (twilight zone, limb of disk, glint) 

d. Under heavy aerosol conditions 

e. In coastal waters 

6.3 Pre-Planned Product Improvements 

Experience accumulated during prototyping of the ABI SST algorithm with proxy data (AVHRR, 

SEVIRI, and others) will guide further optimization of the SST algorithm especially when 

applied to actual ABI data:  

 Optimization of existing SST algorithm parameters. Testing different techniques, for multi-

channel SST retrievals.  Optimizing retrievals in proximity to special cases (twilight zone, 

glint, etc). 

 Continue designing a robust hybrid algorithm to improve retrieval of spatial and temporal 

SST variations. 

 Refining CRTM simulations (inclusion of aerosols, etc) to minimize “Model-Observation” 

bias in BT Channel data. 

 Optimization of the QC tests. 

 Enhancement of the ABI external cloud mask with screening provided by SST internal QC. 

 Substitute hourly compositing algorithm with the robust PCA-based system which provides 

data compression and gap filling.  
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APPENDIX 1: COMMON ANCILLARY DATA SETS 

 

1. LAND_MASK_NASA_1KM 

a. Data description 

 

Description: Global 1km land/water used for MODIS collection 5 

Filename: lw_geo_2001001_v03m.nc 

Origin: Created by SSEC/CIMSS based on NASA MODIS collection 5 

Size: 890 MB. 

Static/Dynamic: Static  

b. Interpolation description 

 

The closest point is used for each satellite pixel: 

 

1) Given ancillary grid of large size than satellite grid 

2) In Latitude / Longitude space, use the ancillary data closest to the satellite 

pixel. 

 

2. SNOW_MASK_IMS_SSMI 

a. Data description 

 

 Description: Snow/Ice mask, IMS – Northern Hemisphere, SSM/I – Southern 

Hemisphere 

 4km resolution – the 25 km SSM/I has been oversampled to 4km 

 Filename: snow_map_4km_YYMMDD.nc 

Origin: CIMSS/SSEC 

Size: 39 MB. 

Static/Dynamic: Dynamic  

b. Interpolation description 

 

The closest point is used for each satellite pixel: 

 

1) Given ancillary grid of large size than satellite grid 

2) In Latitude / Longitude space, use the ancillary data closest to the satellite 

pixel. 



 

 86 

 

3. OISST_WEEKLY_1DEGREE 

a. Data description 

 

 Description: NCEP EMC Reynolds OISST weekly analysis, 1 degree resolution. 

 Filename:  oisst.YYYYMMDD.nc 

Where, 

YYYYMMDD – 4 digit year plus 2 digit month plus 2 digit day 

Origin: NCEP/EMC  

Size: 0.761 MB 

Static/Dynamic: Dynamic 

b. Interpolation description 

 

A double linear interpolation is applied using four nearest neighbor OISST grid 

points and the weight of the four points are defined by the Latitude / Longitude 

difference between the satellite observation point and the four nearest neighbor 

OISST grid points. The interpolation is realized in routine BLINT, which is called 

by routine GET_PIXEL_SST_ANALYSIS. There is no curvature effect. 

 

Input OISST  data is in a regular grid. 

 

 Suppose: 

 

Latitude and Longitude of the four points are: 

(Lat1, Lon1), (Lat1, Lon2), (Lat2, Lon1), (Lat2, Lon2) 

Satllite observation point is 

(Lat, Lon) 

 

Define 

aLat = (Lat – Lat1) / (Lat2 – Lat1) 

alon = (Lon – Lon1) / (Lon2 – Lon1) 

 

Then the weights at four points are: 

w11 = aLat * aLon 

w12 = aLat * (1 – aLon) 

w21 = (1 – aLat) * aLon 

w22 = (1-aLat) * (1 – aLon) 

 

Also define any variable at the four points have values:  

a11, a12, a21, a22  
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Then the corresponding interpolated value at satellite observation point (Lat, Lon) 

should be: 

 

a(Lat, Lon) = ( a11*w11 + a12*w12 + a21*w21 + a22*w22 ) / u 

 

Where, 

 

u = w11 + w12 + w21 + w22 

 

4. CRTM 

a.  Data description 

 

Description: Community radiative transfer model  

Filename:  N/A 

Origin: NOAA / NESDIS  

Size: N/A 

Static/Dynamic: N/A 

b. Interpolation description 

 

A double linear interpolation is applied in the interpolation of the transmissitance 

and radiance profile, as well as in the surface emissivity, from four nearest 

neighbor NWP grid points to the satellite observation point. There is no curvature 

effect. The weights of the four points are defined by the Latitude / Longitude 

difference between neighbor NWP grid points and the satellite observation point.  

The weight is defined with subroutine ValueToGrid_Coord: 

 

NWP forecast data is in a regular grid. 

 

 Suppose: 

Latitude and Longitude of the four points are: 

(Lat1, Lon1), (Lat1, Lon2), (Lat2, Lon1), (Lat2, Lon2) 

Satellite observation point is: 

(Lat, Lon) 

 

Define  

aLat = (Lat – Lat1) / (Lat2 – Lat1) 

alon = (Lon – Lon1) / (Lon2 – Lon1) 

 

Then the weights at four points are: 

w11 = aLat * aLon 
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w12 = aLat * (1 – aLon) 

w21 = (1 – aLat) * aLon 

w22 = (1-aLat) * (1 – aLon) 

 

Also define variable at the four points are:  

a11, a12, a21, a22  

 

Then the corresponding interpolated result at satellite observation point (Lat, Lon) 

should be: 

 

a(Lat, Lon) = ( a11*w11 + a12*w12 + a21*w21 + a22*w22 ) / u 

 

Where, 

 

                                    u = w11 + w12 + w21 + w22 

 

c. CRTM calling procedure in the AIT framework 

The NWP GFS pressure, temperature, moisture and ozone profiles start on 101 

pressure levels.  

They are converted to 100 layers in subroutine Compute_Layer_Properties. The 

layer temperature between two levels is simply the average of the temperature on 

the two levels. 

layer_temperature(i) = (level_temperature(i) + level_temperature(i+1))/2 

While pressure, moisture and ozone are assume to be exponential with height. 

hp = (log(p1)-log(p2))/(z1-z2) 

p = p1* exp(z*hp) 

Where p is layer pressure, moisture or ozone. p1,p2 represent level pressure, 

moisture or ozone. z is the height of the layer. 

 

CRTM needs to be initialized before calling. This is done in subroutine 

Initialize_OPTRAN. In this call, you tell CRTM which satellite you will run the 

model. The sensor name is passed through function call CRTM_Init.  The sensor 

name is used to construct the sensor specific SpcCoeff and TauCoeff filenames 

containing the necessary coefficient data, i.e. seviri_m08.SpcCoeff.bin and 

seviri_m08.TauCoeff.bin. The sensor names have to match the coefficient file 

names.  You will allocate the output array, which is RTSolution, for the number 

of channels of the satellite and the number of profiles. You also allocate memory 

for the CRTM Options, Atmosphere and RTSoluiton structure. Here we allocate 

the second RTSolution array for the second CRTM call to calculate derivatives for 

SST algorithm. 

 

Before you call CRTM forward model, load the 100-layer pressure, temperature, 

Moisture and ozone profiles and the 101 level pressure profile into the 

Atmosphere Structure. Set the units for the two absorbers (H2O and O3) to be 
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MASS_MIXING_RATIO_UNITS and VOLUME_MIXING_RATIO_UNITS 

respectively.  Set the Water_Coverage in Surface structure to be 100% in order to 

get surface emissivity over water. Land surface emissivity will be using SEEBOR.  

Also set other variables in Surface data structure, such as wind speed/direction 

and surface temperature.  Use NWP surface temperature for land and coastline, 

and OISST sea surface temperature for water. Set Sensor_Zenith_Angle and 

Source_Zenith_Angle in Geometry structure.  Call CRTM_Forward with normal 

NWP profiles to fill RTSolution, then call CRTM_Forward again with moisture 

profile multiplied by 1.05 to fill  RTSolution_SST. The subroutine for this step is 

Call_OPTRAN. 

 

After calling CRTM forward model, loop through each channel to calculate 

transmittance from each level to Top of Atmosphere (TOA).  What you get from 

RTSolution is layer optical depth, to get transmittance 

 Trans_Atm_Clr(1) = 1.0 

 

 Do Level =  2 , TotalLevels 

    Layer_OD = RTSolution(ChnCounter, 1)%Layer_Optical_Depth(Level -1) 

    Layer_OD = Layer_OD / COS(CRTM%Grid%RTM(LonIndex,LatIndex) & 

                          %d(Virtual_ZenAngle_Index)%SatZenAng * DTOR) 

    Trans_Atm_Clr(Level) = EXP(-1 * Layer_OD) & 

                         * Trans_Atm_Clr(Level - 1) 

 ENDDO 

DTOR is degree to radius PI/180. 

Radiance and cloud profiles are calculated in Clear_Radiance_Prof 

 SUBROUTINE Clear_Radiance_Prof(ChnIndex, TempProf, TauProf, RadProf, 

& 

                               CloudProf) 

 B1 = Planck_Rad_Fast(ChnIndex, TempProf(1)) 

 RadProf(1) = 0.0_SINGLE 

 CloudProf(1) = B1*TauProf(1) 

 

 DO LevelIndex=2, NumLevels 

    B2 = Planck_Rad_Fast(ChnIndex, TempProf(LevelIndex)) 

    dtrn = -(TauProf(LevelIndex) - TauProf(LevelIndex-1)) 

    RadProf(LevelIndex) = RadProf(LevelIndex-1) + (B1+B2)/2.0_SINGLE * dtrn 

 

          

    CloudProf(LevelIndex) = RadProf(LevelIndex) + B2*TauProf(LevelIndex) 

    B1 = B2 

 END DO 

Transmittance, radiance and cloud profiles are calculated for both normal CRTM 

structure and the 2
nd

 CRTM structure for SST. 
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Call Clear_Radiance_TOA to get TOA clear-sky radiance and brightness 

temperature. 

SUBROUTINE Clear_Radiance_TOA(Option, ChnIndex, RadAtm, TauAtm, 

SfcTemp, & 

                                 SfcEmiss, RadClr, BrTemp_Clr, Rad_Down) 

IF(Option == 1) THEN 

   IF(PRESENT(Rad_Down))THEN 

      RadClr = RadAtm + (SfcEmiss * Planck_Rad_Fast(ChnIndex, SfcTemp) & 

             + (1. - SfcEmiss) * Rad_Down) * TauAtm 

   ELSE 

      RadClr = RadAtm + SfcEmiss * Planck_Rad_Fast(ChnIndex, SfcTemp) & 

                   * TauAtm 

   ENDIF 

          

   CALL Planck_Temp(ChnIndex, RadClr, BrTemp_Clr) 

 

 ELSE 

    RadClr = 0.0 

    BrTemp_Clr = 0.0 

ENDIF 

In this subroutine, Rad_Down is optional, depending on if you want to have a 

reflection part from downward radiance when you calculate the clear-sky 

radiance.  Notice that clear-sky radiance and brightness temperature on NWP grid 

only calculated for normal CRTM structure not the SST CRTM structure. 

  

Also save the downward radiances from RTSolution and RTSolution_SST to 

CRTM_RadDown and CRTM_RadDown_SST. Save CRTM calculated surface 

emissivity to CRTM_SfcEmiss. The above steps are done in subroutine 

CRTM_OPTRAN 

 


