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ABSTRACT

This Derived Motion Winds (DMW) Algorithm Theore#it Basis Document (ATBD)
contains a description (including the physical $asf an algorithm for estimating
atmospheric winds from images taken by the AdvarRaskline Imager (ABI) flown on
the Geostationary Operational Environmental S#teSieries R (GOES-R) series of
National Oceanic and Atmospheric Administration @& geostationary
meteorological satellites. A brief overview of tB®©ES-R observing system is followed

by a more specific description of the Derived MotWinds algorithm, validation efforts,
and planned improvements.
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INTRODUCTION

1.1 Purpose of This Document

The derived motion wind Algorithm Theoretical Bagi@cument (ATBD) provides a
description of and the physical basis for the edfiiom of atmospheric wind from
observations from the Advanced Baseline Imager JABIvn on the GOES-R series of
NOAA geostationary meteorological satellites. Tbherived Motion Wind Algorithm
(DMWA) estimates not only the speed and directibidentified tracers (clouds and/or
moisture gradients), but also their height in thraasphere. This document also provides
details on the evaluation of the DMWA performanceing the development phase.

The central purpose of this ATBD is to facilitatevelopment of operational Product

Generation (PG) software for the derived motion dviproduct which is to be
implemented within the GOES-R Ground Segment progeceration subsystem.

1.2 Who Should Use This Document

The intended users of this document are thoseestin in understanding the physical
basis of the algorithms and how to use the outpthis algorithm to optimize the use of
the derived motion wind output for a particular Bgation. This document also provides
information useful to anyone maintaining or modifyithe original algorithm.

1.3 Inside Each Section

This document is broken down into the followingimsections.

» System Overview Provides relevant details of the ABI DMWA systamd gives
a brief description of the products generated leyaligorithm.

» Algorithm Description: Provides a detailed description of the DMWA altfon
including its physical basis, its input and itspouit

* Assumptions and Limitations Provides an overview of the current limitatioris o
the approach and gives the plan for overcomingethigsitations with further
algorithm development.

1.4 Related Documents

This document currently does not relate to any rotdecument outside of the
specifications of the GOES-R Ground Segment Mis8leguirements Document (MRD)
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and Functional and Performance Specification (F&RB) to the references given
throughout.

1.5 Revision History

Version 0.1 of this document was created by membktee GOES-R winds algorithm
development team and its intent to accompany thigedy of the version 1.0 derived
motion winds algorithm to the GOES-R AWG Algoritintegration Team (AIT). (May
2008)

Version 0.2 of this document was created by membkthe GOES-R winds algorithm
development team and its intent is to accompanyéiigery of the version 3.0 derived
motion winds algorithm to the GOES-R AWG Algoritintegration Team (AIT). (June
2009)

Version 1.0 of this document was created by Jairari€ls, Wayne Bresky, and Steve
Wanzong in response to internal AWG review itemBisTversion of the ATBD still
accompanies the version 3.0 of the derived motimasvalgorithm to the GOES-R AWG
AIT. (September 30, 2009)

Version 1.1 of this document was created by Jairari€ls, Wayne Bresky, and Steve
Wanzong and its intent is to accompany the delivdrthe version 4.0 derived motion
winds algorithm to the GOES-R AWG Algorithm Intetiom Team (AIT). (June 2010)

Version 1.2 of this document was created by Jairari€ls, Wayne Bresky, and Steve
Wanzong and its intent is to accompany the deliwdrthe version 5.0 derived motion
winds algorithm to the GOES-R AWG Algorithm Integgom Team (AIT). (August 2010)

Version 2.0 of this document was created by Jairaridé)s, Wayne Bresky, and Steve
Wanzong in response to internal AWG and STAR reviemns. This version of the

ATBD still accompanies the version 5.0 of the dedvmotion winds algorithm to the

GOES-R AWG AIT. (September 2010)
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OBSERVING SYSTEM OVERVIEW

This section will describe the products generatgdhle GOES-R ABI Derived Motion
Winds Algorithm (DMWA) and the requirements it pdscon the sensor.

1.6 Products Generated
The GOES-R ABI DMWA employs a sequence of imagesrtive at an estimate of

atmospheric motion for a set of targeted tracezsved in selected spectral bands. These

targets include well defined cloud edges or mosstgradients. Table 1 outlines the
specifications for the GOES-R derived motion wirmgisduct as defined in the latest
version of the GOES-R Ground Segment Project Fonati and Performance
Specification (F&PS)equirements document.

Table 1: F&PS Requirements for the Derived Motiomd¥ product

Derived Motion Winds

Specification

Geographic Coverage

Full Disk, CONUS, Mesoscale

Vertical Resolution

Cloud Motion Vector winds: Abad tops; Clear-Sky
Water Vapor winds: 200 mb

Horizontal Resolution

10 krifChanges pending:
FD: 38km
CONUS: 38km
Mesoscale: 38km

Mapping Accuracy

5 km

Measurement Range

Speed: 0-300 kts (0 to 155 mBiyektion: 0 to 360
degreegChange pending: Spe&iB3-300 kts (3-155 m/g)

Measurement Accuracy

Mean Vector Difference:
7.5 m/s

Refresh Rate/Coverage
Time (Mode 3)

FD: “60 mins (based on a single set of 3 sequential
images 5 or more minutes apatrt);

CONUS: 15 minutes;

Mesoscale: 5 minutes )

Refresh Rate (Mode 4)

FD: “15 mins (based on dsiset of 3 sequential
images 5 or more minutes apatfhange pending:60ming
CONUS: 15 minutes;
Mesoscale: 5 minutes )

N—r

VAGL (Mode 3 or 4)

806s

Measurement Precision

3.8 m/sec
(Change pending to “4.2 m/s”)

Product Qualifiers

Temporal Coverage

Day and night

Product Extent

Quantitative out to at least 62 degiLZA and
qualitative beyond

Cloud Cover Conditions

Clear conditions down tddea of interest associated
with threshold accuracy

Product Statistics

Over specified geographic area

13



The DMW products will be produced for each of thBlAands designated in Table 3
over the various ABI Full Disk (FD), Continental ited States (CONUS), and
Mesoscale scan domains.

1.7 Instrument Characteristics

The GOES-R ABI has been designed to address this méenany users of geostationary
data and products (Schmit, et al, 2005) It willeofmore spectral bands (to enable new
and improved products), higher spatial resolutionbgtter monitor small-scale features),

and faster imaging (to improve temporal samplind &m scan additional regions) than

the current GOES imager.

Table 2. Channel numbers and associated wavekefgtithe GOES-R ABI, as well as
those channels that will be employed operatiortaliyhe DMWA in “Dayl” applications

Channel | Wavelength RangeCentral Nominal Used in DMWA
Number | (um) Wavelength subsatellite

(um) IGFOV (km)
1 0.45-0.49 0.47 1
2 0.59-0.69 0.64 0.5 v
3 0.846-0.885 0.86 1
4 1.371-1.386 1.38 2
5 1.58-1.64 1.61 1
6 2.225-2.275 2.26 2
7 3.80-4.00 3.9 2 v
8 5.77-6.6 6.15 2 v
9 6.75-7.15 7.0 2 v
10 7.24-7.44 7.4 2 v
11 8.3-8.7 8.5 2
12 9.42-9.8 9.7 2
13 10.1-10.6 10.35 2
14 10.8-11.6 11.2 2 v
15 11.8-12.8 12.3 2
16 13.0-13.6 13.3 2

The spatial resolution of the ABI data will be nowadly 2 km for the infrared bands and
0.5 km for the 0.644m visible band. Table 2 provides a summary of tBesfectral
bands that will be available on the ABI. Those cleds that are expected to be used in
DMW feature tracking, at least initially for “Day-bperational production, include the
0.64um, 3.90um, 6.15um, 7.0um, 7.4um, and 11.2und$aThese are the so-called
heritage channels that are used operationally toaldgrive atmospheric motion vectors.
Derived motion winds will be generated separatedynfeach of these six ABI bands.
Collectively, the derived motion winds from eachtloé six runs are the derived motion
winds product.

14



The ABI will scan approximately 5 times faster thidwe current GOES imagers. This
brings opportunities and flexibility for the collemn of more observations that will

enable user needs to be better met. At the préseef there are two anticipated scan
modes for the ABI. The first is a flexible scanngaenario that will provide one scan of
the Full Disk (FD), three scans (5 minutes apaftith® Continental United States
(CONUS), and 60 scans (30 seconds apart) overeatable 1000 km x1000 km area
every 15 minutes. The second mode is continuousdfsk scanning where full disk

coverage is obtained every 5 minutes. In practoaje combination of both modes may
be used. For example, three sequential FD imaggsate 5 minutes apart may be taken

every hour for the generation of DMWs. The flexisanning mode would then be used
for the rest of the hour.

Table 3. Image navigation and registration prewtduspecifications (3 for day
and night (in black) for the GOES-8-12, GOES-13/GdRd GOES-R series of
satellites. In red are actual computed image n&eigaand registration
performance statistics (in km) for GOES-12 and GABS(Computed values
courtesy of G. Jedlovek; NASA/MSFC)

GOES

GOES 8-12 13.0.P

eI Day/Night
Absolute 40/6.0 53
Navigation (km) (4.5/5.0) :
\Within Image (km) 16/1.6 2.0
Image-to-Image (km)
S-7 min (2.3/2.3) || (0:6/0.6)
15 min 15/25 1.3

(2.8/3.2) (1.0/1.3)
90 min 3.0/3.8 1.8
24 hr 6.0/6.0 4.0

Significant improvements in the performance ofithage navigation and registration are
expected with GOES-R. This is expected to transiatenore accurate DMWs. The
stability of the frame-to-frame navigation, in peutar, is a key factor for deriving
accurate atmospheric motion vectors. Table 3 shtwes image navigation and
registration pre-launch specificationss)3n black for the GOES-8-12, GOES-13/0O/P,
and GOES-R series of satellites. In red are actoahputed image navigation and
registration performance statistics for GOES-12n@dour 1-week periods of residual
data from 2005 and 2006) and for GOES-13 (using dags from special collection
period in December 2006) based on the standardati@viof the residual differences
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calculated from satellite image navigation andstgtion (INR) data. It is clear from this
table that the image navigation and registratiafopemance has improved with each new
series of GOES satellites. The GOES-13 image-t@@émeegistration accuracy, for
example, is substantially improved over its predsoes and approaches the GOES-R
specifications, which represent even a further oupment. Higher spatial, spectral, and
temporal resolution, together with increased radivim performance and improved
navigation/registration performance of the GOES-BI #s expected to result in better
target selection, improved feature tracking, amgeheight assignment. In addition, new
opportunities for applications of very high-res@ut (spatial & temporal) winds in
severe storm environments and feature trackinglziawic ash and dust are expected.

The performance of the DMWA is sensitive to any gery artifacts, instrument noise,
and image registration accuracy. The GOES-R ABhobk&specifications are given in
the MRD section 3.4.2.1.4.0 and it is assumedtti@GOES-R ABI will perform within
these specifications.
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ALGORITHM DESCRIPTION

A complete description of the DMWA algorithm at tberrent level of maturity (which
will improve with each revision) is provided in shsection.

1.8 Algorithm Overview

The DMWA developed for the GOES-R ABI instrumens lita heritage with the DMWA
being used operationally today at NOAA/NESDIS fbe tcurrent GOES series of
satellites (Merrill et al, 1991; Nieman et al, 19¥2lden et al, 2005). There are a number
of basic steps involved in the process of genegddN\Ws:

» Obtain a set of at least three precisely calibratevigated and co-registered
images in a selected spectral channel

» Locate and select a set of suitable targets imildelle image domain

* For each image pair in the image triplet, use aetation algorithm to derive the
motion most representative for the target scene

When tracking cloudy target scenes using ABI chenrg (0.64um), 7
(3.9um), 8 (6.15um), or 14 (11.2um) the correlatadgorithm is used in
conjunction with a nested tracking algorithm whére following steps are
performed:

» Apply the correlation algorithm to smaller sub-etggwithin each target
scene in order to derive a set of local motion mector each target scene

* Analyze the local motion field with a cluster argdyalgorithm in order to
extract the dominant motion within the target scene

» Assign a height to the derived winds using pixeklenformation from
the dominant cluster.

When tracking moisture gradients in clear targenhses using ABI channels 8
(6.15um), 9 (7.0um), or 10 (7.4um), the nestedkiraralgorithm is disabled
and the following steps performed:

» Assign a height to the tracer using a cold sampfexals.

» Apply the correlation algorithm to the entire tetrgn order to arrive at a
motion vector

» Average the vectors derived from each of the imzages to arrive at the final set
of DMWs

» Perform quality control on the DMWs and assign fuahdicators to each of the
DMWs

17



A target scene is represented by an NxN array>dlpithat defines a suitable feature in
the image whose movement can be tracked in time.size of this array is a function of
the spatial and temporal resolution of the imagery the scale of the intended feature to
be tracked. One of the challenges of deriving aphesc motion winds operationally
from satellites is to determine and utilize imagtalen at frequencies appropriate to the
scales resolvable by operational numerical wegthediction systems while at the same
time meeting production demands that require reuiiti disk coverage.

1.9 Processing Outline

In order to estimate motion, one must have a semueh images separated by some,
preferably fixed and relatively short, time intecv@he DMW algorithm described here
uses a sequence of three images to compute afpadctor displacements (one for an
earlier time step and one for a later time step) #ne averaged to obtain the final motion
estimate. The current version of the algorithm nexguthat the three images be equal in
size. The DMWA uses the middle image to perform ithigal feature targeting, then
searches the before and after images for tracdableerent) features to derive motion
estimates.

The basic processing outline for the DMWA is sumget in Figure 1. The algorithm is
designed to run on segments of data provided byfridmmework and consisting of
multiple scan lines. Processing begins after a datffer containing the brightness
temperature values from three consecutive imagéked. The data buffer also contains
output from the cloud mask and cloud height al¢pong which must execute before the
DMWA. It should be noted that the cloud data isyaielquired for the middle image time
because this is the image that is processed fget&ar On the other hand, brightness
temperature values are required for all three imiges because this is the quantity
being tracked. In practice, the buffer is a datacture holding the 2-dimensional arrays
of brightness temperatures for three image timesstha cloud information for a single
image time.

Once the data buffer is full, the middle portiontleé¢ buffer is divided into small “target”
scenes NxN pixels and each scene is analyzed ¢ontiek if it is a suitable tracer. Only
the brightness temperature field from the middlagentime is processed for targets and
it is these targets that will be tracked over timelerive the motion. Processing only the
middle portion of the buffer allows for the featsiro drift over time but still remain
within the domain of the buffer. Within each targstene, the algorithm locates the
strongest 2-D gradient in the brightness tempegdietd and re-centers the NxN target
scene at this location. A brightness temperatueglignt threshold is used to prevent
target selection on very weak gradients.

After the target scene is re-centered on the maxinguadient, tests are performed to
determine whether or not the scene would be aldaiteacer. These tests eliminate target
scenes that lack the gradients necessary to tediekly while also removing scenes that
are suspected to contain multiple cloud layers.
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If a potential tracer makes it through the targealiy control, a search region, much
larger in size than the target scene, is definedach of the tracking images. At this
point, depending on the channel being processed, antwo tracking strategies is
employed. Both strategies use the Sum of SquarBdr@&ices (SSD) similarity measure
to locate the target scene in the preceding ancksding images.
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When processing cloud-top features from the 0.8, 8.2 or 11.2 micron channels, a
tracking strategy called nested tracking is useésiimate motion. In this approach, a
small 5x5 pixel box is “nested” within the outergat scene and a local motion vector is
derived at each interior pixel. A 2-pixel offsetused near the boundary of the outer
target scene. The field of local motion vectord tlegults is then analyzed with a cluster
analysis algorithm to find the dominant motion. Td@minant motion is computed by
averaging the displacements associated with tlyedamotion cluster found by using a
cluster analysis algorithm. The wind vector isntlassigned a representative height after
examining the cloud top pressure or brightness ¢éeatpres associated with the pixels in
the largest cluster. When processing the visiBM/JIR or LWIR channels, a median
cloud top pressure is found by examining the cltaplpressure values of all pixels in the
largest cluster. When processing one of the thraéemvapor channels the height
assignment process is slightly different. Heres thater vapor channel brightness
temperature values are examined and a median tatapeiis found from the pixels in
the largest cluster. The median brightness temperé then compared to a GFS forecast
temperature profile to find the pressure where tthe values agree. The pressure at
which these two values agree serves as the repaéisenheight of the derived motion
wind.

When processing the clear sky portions of a waapov (6.2um, 7.0um or 7.3um) image,
the strategy for tracking features is more conwsati. For these cases, the target is
assigned a height before it is tracked. The hemgltbomputed using a sample of pixels
from the coldest portion of the scene. After thgeéda is assigned a height, a search is
performed to find the closest match of the targehe preceding and succeeding images
in the image triplet. This conventional approacloduces a single motion vector
associated with the motion of the entire targehece

Both tracking approaches use a forecast wind (ftbencenter of the target scene) to
locate and place the center of the search regidthneimext image. This practice of using
the forecast to “guide” the search serves two mepoFirst, it reduces the number of
“false positives” in the tracking step. Secondtyminimizes the computational expense
of the search.

During the tracking process, correlation threshodde applied to screen out false
positives. When nested tracking is employed, onlgtamng scenes possessing a
correlation score of 0.8 or higher (1.0 is perfeatg allowed to influence the final

solution. For conventional tracking, where nestedking is not invoked and the larger
target scene is tracked, the correlation thresisaldduced to 0.6.

Two sub-vectors are generated in the tracking mjoene vector for the backward time
step and one vector for the forward time step. efarations between sub-vectors
exceeding a user defined threshold (10 m/s) are@anitted (vectors are discarded). In
addition, gross errors in the height assignment taacking estimates are removed by
comparing the satellite-derived motion wind to anewical forecast wind and discarding
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those satellite-derived wind vectors which diffegngficantly from the forecast wind.
These gross error thresholds are band-dependent.

Once the last line segment is processed, the esdiref derived winds undergoes a more
rigorous quality control process. Two related alipons will make up the Automatic
Quality Control (AQC) of the GOES-R DMW processind.he first one is the
quality indicator (QI), based on work done at EUMEAIT (Holmlund, 1998). The
second is the Expected Error (EE) principles degyedoat the Bureau of Meteorology,
Australia (LeMarshall et al. 2004).

1.10Algorithm Input

This section describes the input needed to protes®MWSs. While the DMWA uses
information at the pixel level (e.g., cloud maskud height), the derived motion is
representative of a group of pixels (i.e., a sositkin a target box of size NxN pixels).
The DMWA is currently designed to process windsyaater a data buffer has been
filled with brightness temperature data from alletthimages in the tracking sequence.
Cloud height and cloud mask information for the dhédimage time is also required. The
buffer must be large enough to capture the motioleatures up or down in the image.
Consequently, the DMWA processes only a portiothefbuffer (a middle strip the same
width as the target box size) for suitable tracBr&cessing proceeds from west to east
until the earth edge is encountered or no more eésnexist in the line segment. The
process is repeated until the number of lines remm@iin the line segment is smaller than
the number of lines that make up the target sc&nh¢his point the extra lines are saved
in the buffer and control is returned to the frargkwwuntil the next line segment is read
into memory. The following sections describe theiakinput needed to run the DMWA.

1.10.1Primary Sensor Data

The list below contains the primary sensor dathgaised by the DMWA. By primary
sensor data, we mean information that will be dstigolely from the ABI observations
and geolocation information. The sensor dataesl @ it original resolution.

» Calibrated and navigated radiances for ABI chardde(11.2um) for the middle
image time of the loop sequence.

» Calibrated and navigated reflectances (percentpA®Ir channel 2 (0.64um) and
brightness temperatures for ABI channels 7 (3.9@8n)6.15um), 9 (7.0um), 10
(7.4um), and 14 (11.2um) for three consecutive Esag

1.10.2Ancillary Data

The following list briefly describes the ancilladata required to run the DMWA. By
ancillary data, we mean data that will require infation not included in the ABI
observations or geolocation data.
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* Land mask/ Surface type

A land mask file is needed such that each ABI pbaat be classified as being
over land or water. The details of the datasetd¢batains this information and the
procedure for spatially mapping it to the ABI aresdribed in detail in the
Algorithm Interface and Data Description (AIADD) Bament.

DMWA configuration file

A configuration file is needed to set six variableighin the DMWA processing
algorithm:

GOES-R ABI channel number — Channel number to aséehture tracking
Time step between images

Target box size — In pixel space

Nested tracking flag — to enable or disable nestarking.

Expected Error (EE) filter flag

Clear-sky WV flag — to enable or disable clear pkycessing.

ogkwnE

* Numerical Weather Prediction (NWP) Forecast Data

1. Short-term forecast temperature and wind data @sspre surfaces from
National Centers for Environmental Prediction’'s @&®) Global Forecast
System (GFS) model are used to calculate targghteeand for calculating
model shear and model temperature gradients usebeirExpected Error
algorithm described in Section 3.4.2.4.2. Detailsaerning the preprocessing
of NWP forecast data can be found in the AIADD Doeunt.

2. Short-term GFS forecast wind profiles are also usecenter the search box
on the predicted locations of targeted featureagéiacked in the first and
last images of the loop sequence

» Expected Error Coefficients File
1. A set of regression coefficients corresponding tamber of predictors used
to compute the Expected Error quality flag thagpgpended to each DMW

that is computed. The details of this approach described in Section
3.4.2.4.2.

1.10.Perived Data

This section lists the input data that must bevéerbefore the DMWA is executed. The
output of several upstream cloud product algoritros the GOES-R AWG cloud team
are used in the DMWA derivation process and inclingefollowing:

e Cloud Mask
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The cloud mask is used by the DMWA as part of tleeicc amount test when
selecting which target scenes to process. It &w@ded to screen out pixels that do
not have a cloud top pressure associated with them.

» Cloud top pressure, cloud top pressure quality, andloud top temperature

This information is used by the DMWA to assign aresentative height to the
target scene being tracked.

* Low level inversion flag

This information is used by the DMWA to assign aresentative height to the
scene being tracked within a GFS model designateddvel inversion.

» Solar zenith angle

This information is used by the DMWA to determiragybhight pixels.

1.11 Theoretical Description

1.11.1Physics of the Problem — Estimation of atmospheriflow from
motions in sequential satellite imagery

This section discusses the theory behind the cigdleof estimating atmospheric flow
from motions in sequential satellite imagery. Atpiosric motion is determined through
the tracking of features in time. Identifying fes to be tracked is the first step in the
process. These features can be clouds, or in e @aclear-sky conditions, moisture
gradients.

The DMWA uses the ABI visible and infrared obseiwa$ shown in Table 3 to extract
atmospheric motion. The choice of spectral band determine the intended target
(cloud or moisture gradient) to be tracked, itsghtiin the atmosphere, as well as the
scale of its motion. Historically, the coverageopierational GOES DMWs is diurnally
consistent in the mid- to upper tropospheric ley&B0-600 hPa) through the use of the
mid-wave (6.7um — 7.3um) water vapor channels ambwave (10.7um) infrared
(LWIR) channel for deriving vectors. In the lowevels (600-950 hPa), DMWs are
provided by a combination of the visible (VIS) daRdchannels, depending on the time of
day. During daylight imaging periods, the VIS chahasually provides superior low-
level tracer detection than the LWIR channel duets$ofiner spatial resolution and
decreased susceptibility to attenuation by lowdleneisture. During night-time imaging
periods, the shortwave (3.9um) infrared (SWIR) ctehrompliments the LWIR channel
to derive DMWSs. The SWIR channel is a slightly ‘abter” window channel than the
LWIR (less WV attenuation), making it more sengtito warmer (lower tropospheric)
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temperature features (Dunion and Velden, 2002). MR channel is also not as
sensitive as the LWIR channel to cirrus clouds thay obscure low-level cloud tracers.
These two characteristics make it a superior cHaflongroducing low level DMWs at
night.

As described previously, each target is an NxNyaofaABI pixel measurements (scene)
that encapsulate a suitable feature whose moveimérdacked in time. The size of this
array is a function of both the spatial and tempi@solution of the imagery and the scale
of the intended feature to be tracked. GeneralBakimg, a small target box yields a
noisier motion field than one generated with adargrget box. Conversely, if the target
scene is too large, the algorithm will tend to nuieaghe mean flow of the pixels in the
target scene (i.e. a spatial average of severalion®t rather than the intended
instantaneous wind at a single point. These coretidas need to be kept in mind when
choosing the optimal target box size.

1.11.1.1 Target Selection

The objectives of the target selection procesd@mselect high quality target scenes that:
i) capture the intended target (i.e., clouds oamrckky water vapor gradient), ii) contain

sufficient contrast, and iii) do not contain a nak multi-layered clouds. Target scenes
that posses these characteristics are more ametalgescision tracking and height

assignment that result in more accurate atmosphanit estimates.

Target scenes are centered at pixel locations wtieremagnitude of the brightness
temperature gradient is large. In other words,dhasget scenes are centered over cloud
edges or tight moisture gradients in clear-sky damts. To assure that only high quality
targets are selected, all potential target scemst Undergo a spatial coherence and
cluster analysis (Coakley & Bretherton, 1982) chetke primary goal of this analysis is
to identify the presence of a coherent signal entirget scene that indicates a dominant
single layer cloud in the target scene. The spatihkrence method attempts to identify
the presence of cloud layers in each target scemgentifying the portions of the region
that exhibit a high degree of local uniformity metpixel-level emitted radiances. A high
degree of uniformity will exist for regions thateacloud-free or for regions completely
covered by cloud at a uniform height. For targést tare not completely covered by
clouds, the emitted radiances can vary signifigaindm one pixel to the next.

1.11.1.1.1  Spatial Coherence and Cluster Analysis
Methods

The starting point for spatial-coherence and cluatealysis methods is the model of a
well-defined, single-layered system of clouds g&daover a relatively uniform
background. What is meant by the term “well-defihadd “relatively uniform” will be
explained below. The emitted radiance observed tadeometer viewing such a system
is given by
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| = (1 — C)bs + Clecialcia + toialcs) 1)

where | is the emitted radiance, C is the fracti@haud cover for the field of viewdis

the radiance associated with the cloud-free ponibthe field of view, i.e. the radiance
observed when C = @4 is the mean effective emissivity associated withdloud layer,
taq IS the mean transmissivity, ang s the radiance that would be observed for ovércas
regions, i.e. C = 1, if the clouds were black &t Wavelength of observation. The emitted
radiance, I, is assumed to be at an infrared (IRdew wavelength so that downward
emission above the cloud can be neglected. Likewhsesurface is assumed to be black
at the wavelength of observation so that all raataincident on the surface is absorbed,
especially that emitted downward by the clouds la$sumed that no radiation is reflected
by the surface. Over a relatively small region ¢hneission of the clear-sky background,
less and the height of the cloud layer, and therefigig are assumed to have little
variance. That is, the effects of variations in thermal emissions associated with the
clear-sky background and the height of the cloyerdare small when compared with the
effects caused by variations in the fractional dleover and the cloud optical properties.
If these conditions are met, the background is &aige relatively uniform and the layer
is said to be well-defined. From (1), the variant¢he radiances under such conditions
is given by:

(-1)?=[(C~C) kst (Cecia— Cecia)leia(Cloia — Cig)led? )

The variances of emitted radiances over small aspasning several image pixels is the
key to identifying the portions of a region thaé aloud-free or overcast by clouds in a
well-defined layer. The variance approaches zerenathe mean cloud cover in a region
approaches zero. If the mean cloud cover is zham the fractional cover in every pixel

is also zero (i.e. Cé:O). Where the clouds become sufficiently extensivéhat several
image pixels are overcast, then for analogous rsasihie variance approaches zero

because CE=1. Often when cloud systems become sufficientliemsive that they
cover several image pixels, they also become opagumetable exception can be cirrus.
For opaque, overcast clouds the variance againnbezaero becausgd = tq = 0 and
€old = Ecid= Ecldmax., Where, §iq is the cloud transmissivity amgamaxis the emissivity that
the clouds obtain when they become opaque (i.eerevhiimax is the reflectivity). When
pixels become overcast with opaque clouds, theamee in emitted radiances also
becomes zero. When pixels become overcast by semmgarent clouds, like cirrus, pixel-
to-pixel variations in the cloud optical propertie®. ecig and tg, prevent the variance
from dropping to zero. Because clouds appear tp wmaoherently on the ~1 km x 1 km
scale available to current satellite imagers, (R)idates that variances in the emitted
radiances for regions that are covered by severafjeé pixels will be nonzero when the
region contains broken cloud. The variability viak caused partly by differences in the
fractional cloud cover from pixel to pixel and pgarby variations in the average cloud
optical properties from pixel to pixel. The spattaherence method identifies pixels that
are overcast by layered clouds where the cloudsrbecopaque, and pixels that are
cloud-free by relying on the near-zero variancesemitted radiances for localized
collections, or clusters, of the pixels. Collecgoof pixels that are partly covered by
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clouds or are overcast by clouds that are sempgerst invariably exhibit relatively

larger variances. The application of a simple thoés on the variance of emitted
radiances over local sub-regions within each tasgeine is performed as part of the
target selection process in order to identify ceherpixels representative of cloud
features and the surface.

The cluster analysis method is designed to filtetr lvard to track multi-layered cloud
scenes. It is related to the spatial coherenceodéththat it starts with the same radiance
information (mean and standard deviation valuesioall sub-regions of the target box),
but takes the analysis further to determine if ntbie:n one cloud layer is present in the
target scene. This analysis involves constructingisitogram of pixel level radiance
values within the target scene and then identifyirggclusters of warm and cold samples
that are assumed to correspond to the surfacehanelévated cloud layer, respectively.
A second cloud layer is assumed to exist in thgetascene if more than a pre-determined
percentage (20%) of the radiance values fall oatsidhe two clusters of warm and cold
samples. If a second cloud layer is determinedxist,ethe target scene is rejected as a
suitable target for feature tracking.

Further details about how both of these tests jgjpéesl are provided in Section 3.4.2.1.1

1.11.1.2 Feature Tracking

If a target scene survives the selection critgéhan attempts to track this target in the
image sequence can commence. Feature trackingves/obherent tracking of clouds or
water vapor features over a specified time intervalkey assumption made in this

process is that cloud or water vapor features assipe tracers that move with the
ambient wind flow. Of course, it is understood thettud tracers (in particular) are not
always passive. There may be growth, decay, orgehancloud top height over the time
interval being assessed. Further complicating msaitethe fact that some clouds do not
move with the wind (i.e. wave clouds) while oth&meck with the wind at a level lower

than cloud top (i.e. marine cumulus). Thereforés itmportant to apply robust quality

control to remove retrieved DMWs that are in erasra result of these complicating
factors (discussed in Section 3.4.2.4).

Clouds grow and decay with lifetimes that vary witteir size and location (i.e., land
versus ocean). To be effectively tracked, theififetof the tracer must be at least as long
as the time interval of the image sequence useel.r@$olution of the imagery is also an
important consideration when tracking features atellite imagery. Merill (1989) and
Schmetz et al. (1993) discuss this at length. ifhjgortant that the size of the target scene
(spatial resolution) is consistent with the tempoesolution of the imagery in order to
capture the scale of the intended feature beirakéh For example, estimation of low
level winds over land is improved by using smatkaget scenes and higher temporal
resolution imagery. Early work by Hamada (1983)gasged that the temporal resolution
of images should be less than 15 minutes in omectommodate the short lifetime and
rapid deformation of cloudy tracers over land. $h€i991) suggested that the temporal
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resolution needed to properly track low level cumsubver land was in the range of 10
minutes to less than a minute. More recently, felde al. (2000) experimented with
special GOES-10 rapid scan imagery to determinephienal temporal resolution to use
for different spectral channels. A general finditigat was not unexpected, was that a
higher number of high quality winds can be derivath decreasing time intervals and
increasing spatial resolution.

A critical factor that has a significant impact d¢ime quality of the derived winds,
especially at higher temporal resolutions, is thage registration; that is, the stability of
the image-to-image navigation. If the stabilitytbé image-to-image navigation is poor
for an image sequence, the result will be addedentn the tracking process and poor
quality DMWs. Furthermore, use of imagery with higtmporal resolution, but coarse
spatial resolution, can result in poor quality DMW#his is especially true for small
tracer displacements (i.e., low wind speeds) wimage registration uncertainties will
dominate the resulting true displacements.

Jedlovek and Atkinson (1998) discuss the developroka Tracking Error Lower Limit
(TELL) parameter ], that provides guidance for understanding theeti@ifs between
spatial and temporal resolution for varying imaggistration performances. The TELL
parameter is given by:

O=(0+ pl2)/t 3)
where: [] is the image registration accuragg, is the image spatial resolution, ainis

the image separation interval. Figure 2 shows thgmtude of the TELL parameter for
various values of the image registration accuraxyimage separation.
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Figure 2. Tracking Error Lower Limit (TELL) is a riation of image registratio
accuracy and image separation timedlovek and Atkinson, 1998)

Small values of TELL (small wind errors) are acl@éwith good image registratic
high resolution data, and relatively large imageasation times. However, fi
atmospheric applications where trackable featutemnge consierably over a sho
period of time, large separation intervals are desirable, making values of ima
resolution and registration accuracy critical pagtars in DMW accurac

1.11.1.3 Target Height Assignmen

Assigning a representative height to each clctarget is achieved by processing p-
level cloud heights, derived via the GC-R ABI cloud height algorithm, within th
target scene. A detailed description of the G-R ABI cloud height algorithm can t
found in the GOE$RR ABI Cloud Height Algorithm Teoretical Basis Document. F
clearsky water vapor targets, NCEP GFS forecast tempergbrofiles are used
ancillary data and compared to brightness temperatoalculated from the clesky
water vapor channel brightness temperatures. Tagspre eight is determined as tl
level where the brightness temperature fits thedast temperatui

Target height assignment is considered to be thernsaurce of error for DMWs.
perfectly tracked feature can be rendered usdidsis iassigned to thwrong level in the
atmosphere. There is also the consideration ofwelithe final wind actually represer
the local wind field at a singular location, heidlgvel) and time. Some clouds do |



move with the wind while others follow the wind atlevel lower than the cloud top.
Additionally, DMWs tend to represent the movemehtadayer of the atmosphere, as
opposed to the movement of the atmosphere at &ylartlevel (Velden and Bedka
2009).

1.11.2Vlathematical Description

The GOES-R DMWA approach to derive an individuattee consists of the following
general steps, each of which is described in dietélile following sections.

» Locate and select a suitable target in second inigidle image; timesj of a
prescribed image triplet

» Assign an estimated representative height to tlyeta

* Use a pattern matching algorithm to locate theetarg the earlier and later
image. Track the target backward in time (to fils&ge; time=tAt) and forward
in time (to third image; time=t#t) and compute corresponding displacement
vectors. Compute the mean vector displacement ftoen two displacement
vectors and assign this final DMW to timeg= t

* Perform quality control procedures on the DMW tat emlt or flag suspect
vectors. Compute and append quality indicatorath ©MW.

1.11.2.1 Target Selection

Targets are selected from the middle image of dogience. The size of each target scene
will depend on the channel being processed anddake of the motion being estimated.
The target scene is traditionally a square witlesidf equal length (in pixels). Table 4
summarizes the target scene size and image tinseagem interval to be employed for
each ABI channel used to derive DMWs. It shoulchbted that the horizontal resolution
of the DMW product is driven by the size of thegitr scene used. Consequently, the
horizontal resolution of the wind products derivieaim the ABI 0.64um band, will be
7.5km, the resolution of the wind products genetdtem the water vapor bands will be
30km and the resolution of the winds generated Whi¢ghlong wave infrared band will be
38km.

Table 4. Summary of target scene sizes and image intervals that should be used to
derive DMWs for pertinent ABI channels.

Channel | Center Frequency (um Target Scene Size Image Time
Number (Image lines x elements) Interval (mins)
2 0.64 15x15 5
7 3.90 15x15 5
8 6.15 15x15 30
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9 7.0 15x15 30

10 7.4 15x15 30

14 11.2 19x19 5

Before the target selection process begins, tightimess temperature gradient magnitude
for each pixel location is computed from equatidn (

Gradient,,gunen= | Y {WHETee: kinel + ) {()(BTewoe- )} @)

where: W, =1 -1/12, 8/12, 0-8/12, 1112 : for k=210 2

BT is the pixel level cimel brightness temperature
Ele refers to an imagkiom
Line refers to an imagevr

Figure 3 shows an example of a brightness temperatadient image (right side)
derived from brightness temperatures (left sideXtie GOES-12 imager. The dark areas
on the right side of Figure 3 indicate locationsevéhthe magnitudes of the brightness
temperature gradients are large. These locatiois$ ex the edges of clouds and in the
interior of cloud systems where cloud structuresesilt is in these locations where
potential acceptable targets are expected to bedfoLhe white boxes shown on the left-
side of Figure 3 show the original target scenatioas and the yellow dots show the
location of the maximum gradient magnitude in eafcthese target scenes. The center of
every target scene is then repositioned at thel giaetaining the maximum gradient
magnitude. If the same gradient value occurs irtiplalpixels within a target scene, then
the first occurrence of the maximum gradient vakighe one chosen. The repositioned
target scenes are shown in green. The intent afsigépning the target scene at the
maximum gradient is twofold. First, it focuses theget scene on a strong feature that is
expected to be effectively tracked over time. Sdbgnit establishes a link between
pixels containing the feature being tracked and phels contributing to its height
assignment (discussed later). Repositioning otdhget scenes can result in an irregular
spatial distribution of target scenes, and henaoeirr@gular spatial distribution of the
DMW product. The white arrows indicate the direstiof the image processing, which
begins at the top left of the image and moves teftight along the image and then
downwards.




Figure 3. Image of 1lum brightne
temperature (left) and the 11um brightn
temperature gradientight) from the GOE-

12 imager instrument. The white bo»
show the target scenes at there orig
locations. The green boxes show the ta
scenes which have been repositioned ai
pixel location containing the maximu
brightness temperature gradias indicated
by the yellow dot.

111211 Target

Selection Tests

All of the potential target scenes undergo a sefaguality control tests to determine
the target is a suitable tracer. These ‘targettel€ tests are described below. If a tar
fails anyone of these tests, the target is determined ta bher-suitable tracer and

flagged. Each failure is associated with a unidiag” value which is saved in ttDMW
output file. These values are shown in T&5.

Table 5. GOESRR ABI Derived MotionWinds Failure Codes.

GOESR Derived Motion Wind Quality Control Codes

QC_Flag Definition

0 Good winc

1 Maximum gradient below acceptable thresl

2 Target located on earth ec

3 Cloud amount failure (less than 10% cloud covercfoud track wind:or greater than
0% cloud cover for water vapor cl-sky winds)

4 Median pressure failu

5 Bad or missing brightness temperature in targeate

6 Multiple cloud layers prese

7 Target scene too coherent (not enough structunefiable tracking

8 Tracking correlation below 0.6 (not used for negtadking

9 u-component acceleration greater than 10 m/s (5 on/gisible’

10 v-component acceleration greater than 10 m/s (5on/gidible’

11 u- and veomponent accelerations greater tharm/s (5 m/s for visible

12 Derived wind slower than 3 n

13 Target scene too close to day/night terminatoilfidsand SWIR only

14 Median pressure used for height assignment ouggideptable pressure rar
(channel dependel

15 Match found orboundary of search region

16 Gross difference from forecast wind (channel depeatj
Median pressure (used for height assignment) gekrcluster for first image pair

17 too different from median pressure of largest dugir second image pe only
valid for nested trackin

18 Search region extends beyond domain of data t
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19 Expected Error (EE) too high

20 Missing data in search region

21 No winds are available for the clustering altoni
22 No clusters were found

Catastrophic Failures

Invalid time interval

Temporal data not available

Line segment swath too small (must contain at ldessame number of lines as target box size, lyslil
lines)

Search region must be larger than target scene

Contrast Test

Each target scene is required to contain suffictentrast, which is computed from the
range of channel measurements (brightness tempe@tueflectance percent) within the
target scene. The contrast threshold used is chdapendent and is summarized in
Table 6.

Table 6. Contrast thresholds used for target setec

Channel
Number Wavelength Range (um Contrast Threshold
2 0.59-0.69 12% (reflectance)
7 3.80-4.00 3K
8 (clear-sky) 5.77-6.6 1K
8 (cloud-top) 5.77-6.6 2K
9 6.75-7.15 1K
10 7.24-7.44 1K
14 10.8-11.6 4K

Earth Edge Test
The earth edge test is applied under the follovemgditions:

* When channel 2 (0.65um), 7 (3.9um), 8 (6.15um)7.9ym), 10 (7.3um), or
14 (11.2um) is used.

All pixels within the target scene must have vaatth navigation associated with it. If
any pixel within the target scene is determinetbédocated in space (i.e., off the earth
edge) the target scene fails, and is flagged. Pheesmask provided by the framework is
used for this purpose. It is assumed that a spaask will be passed down by the
framework to the L2 product algorithm level for usethe various algorithms.
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Fractional Cover Cloud Test
The fractional cover cloud test is applied underftiilowing conditions:

* When channel 2 (0.65um), 7 (3.9um), 8 (6.15um)7.9um), 10 (7.3um), or
14 (11.2um) is used.

The clear-sky mask product associated with eachl Bxused to classify the target scene
as cloudy or clear. When the intent is to trackudky a minimum threshold of 10% is

used to make a determination as to whether thettaxaene is cloudy or clear. In other
words, if at least 10% of the pixels in a targetrsr are deemed as being cloudy or
probably cloudy, then the target scene is claskidie cloudy. When the intent is to track
clear-sky water vapor features, then a minimumstinoll of 0% is used to make a

determination as to whether the target scene isdglmr clear. In other words, every

pixel in the target scene must be deemed cleathiertarget scene to be deemed a
suitable clear-sky water vapor target. An except®omade, however, when the upper-
level water vapor band (6.15 um) is used to trdelaresky moisture gradient features.

Because this band senses radiation only from thddlmiand upper layers of the

atmosphere, any pixel which is clear above a lowelleloud is considered clear instead
of cloudy. In practice, a pressure threshold of BP@ is used to identify the low cloud.

In other words, a cloudy pixel assigned a cloud{popssure greater than 600 hPa is
considered to be clear instead of cloudy. This ptioe is made to increase the coverage
of these winds.

The cloudy or clear designation given to the tasgene has implications on the target
selection tests (described in sections 3.4.2.14123..3) and/or thresholds used as well as
which algorithm is used to assign a height to #ngdt (described in section 3.4.2.2).

Channel Validity Test
The channel validity test is applied under thediwihg conditions:

*  When channel 2 (0.65um), 7 (3.9um), 8 (6.15um)7.9um), 10 (7.3um), or
14 (11.2um) is used.

The channel brightness temperature or reflectaroeept of each pixel in a target scene
is checked to ensure its value falls within a vaidge. The valid range of reflectance
percent for a visible channel is 1-200. For thechHannels, the valid range of brightness
temperature is 150-340K. If the channel brightriesgperature or percent of any pixel in
the target scene falls outside the valid rangedtget fails and is flagged.

Spatial Coherence Test

The spatial coherence test is applied under thewoig conditions:

*  When channel 2 (0.64um), 7 (3.9um), or 14 (11.2ismed
» Target scene has been classified as cloudy
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Originally proposed by Coakley and Bretherton (1)98Be spatial coherence method
utilizes the local spatial structure (local mead atandard deviation) of the IR-window
radiance field to determine the radiances assatiaté¢h cloud-free and completely
cloud-covered fields of view and to infer the ramias associated with partially filled
fields of view. In the context of the DMW algorithiine method is first used to filter out
target scenes that are too uniform to track refiabhd second, to filter out scenes that
may contain multiple cloud layers. For both purmoges necessary to compute the local
mean and standard deviation of the radiance fieliveld from 3x3 sub-regions within
the larger target box. The mean and standard dewvigalues are computed for the entire
line segment (with data surrounding the target bdgar the edges these values are
computed with however many pixels are available.

After computing the mean and standard deviatiomarex® values for all possible 3x3
pixel sub-regions in the target box, a standardadien threshold (1.0 Wisr! um?) is
applied that results in a “filtered” or coherentrgde. The standard deviation threshold
value is chosen arbitrarily with consideration give the range of possible data values
expected in the imagery. The resulting “filterem” coherent sample represents either
cloud-free or completely cloud-covered pixels frira less-coherent sample that is likely
to include patrtially filled fields of view. If merthan 80% of the total number of 3x3
pixel sub-regions within the target scene haveaadsrd deviation below the defined
threshold, the scene is deemed to be too cohenehitdails to be a viable target for
subsequent feature tracking. Target scenes thé&iooa mixture of cloud-free and cloud-
covered pixels exhibit a characteristic arch stegpshown in Figure 4.

Multi-Layer Cloud Test
The multi-layer cloud test is applied under thédwing conditions:

* When channel 2 (0.64um), 7 (3.9um), or 14 (11.2ismised
» Target scene has been classified as cloudy

Target scenes that contain multiple cloud layerthem can be difficult to track since
clouds at different levels of the atmosphere maynbging in different directions and/or
speeds. Furthermore, the assignment of a repréisentboud height in these situations is
difficult given the existence of clouds at diffetéevels of the atmosphere.

In order to avoid these troublesome target scahesfiltered sample from the spatial
coherence approach described above is used insterclanalysis approach in order to
identify the possible existence of multiple cloagédrs. The basic idea behind the method
is to use the local mean and standard deviatiarnmdtion to identify clusters of points
sharing common characteristics (such as mean regliamd low variance). If more than
two clusters (one of which is implicitly assumedothe surface in clear sky conditions)
is found in a target box then the scene is rejedibd key concept of this approach is that
peaks in the frequency histogram can be descrilye@dussian distribution functions
(Simmer et al., 1982; Rossow et al., 1985; Nientaal.e1993).
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Using the filtered sample, the method starts bptifieng the peak in the-D histogram
of local mean IR radiance values. A Gaussian cusvthen fitted to the peak of tl
histogram and all points falling within - 3 standard deviationsf the peak value ai
added to the dominant cluster sample. Likewisescarsd Gaussian is fitted to the “c«
peak” of the histogram and the cold cluster is idiead. Lastly, the total number «
points falling within the dominant and cold clustés ummed and compared to the tc
number of points in the filtered sample. If theatatumber of points from both clusters
less than 80% of the original filtered sample itassumed that a third, unidentifi¢
cluster exists (in theory representing der cloud layer) and the target is rejected.
example shown in Figure 5 is for a target scenewitaa partly filled by a single clot
layer.

tandard Uevintion

Local kde=an Radianoce

Figure 4. Scatter diagram of window channel IR locgean radiance and stand
deviationvalues for a single target scene. Each point irfithee represents a 3x3 arr
of pixels constructed from-km GOES IR radiance data. The cluster of points B86as
associated with clear sky while the cluster neais3fssociated with a single clolayer.
The points in the arch represent partly filleddsebf view

Day/Night Terminator Test

The Day/Night terminator test is applied underftiilwing conditions
* When channel 2 (0.65um) or channel 7 (3.9um) isl

When the VIS or SWIR band is ing used, a test is invoked in order to avoid
day/night terminator. If the VIS channel is beirged, then the solar zenith angle of
center pixel of the target scene must be less thaequal to 8° for the target to b
deemed a suitable targef the SWIR channel is being used, then the solaitlzangle of
the center of the target scene must exce¢ (but less than 20) for the target to b
deemed a suitable target.
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Figure 5. Histogram plots of local mean infrarediaace values for a single target scene:
(Left) For the entire target scene, (Right) Filtesample with Gaussian curves fitted to
the peaks. The peak on the left is associatedamihgle cloud layer.

1.11.2.2  Feature Tracking

Correlation-based methods are commonly used t& tiaeid and clear-sky water vapor
features in image sequences. A widely used coivelapproach to feature tracking is the
Sum of Squared Differences (SSD). This correlatiwethod, like all others, aims to
locate a target scene, at some time t, in a lag@rch scene at some earlier or later time.
A similarity criterion is computed that measures tlorrelation between the target and
search area pixel scenes in the two images. D&/ algorithm a feature or target is
selected from the middle of three images and ké@d backwards and forwards in time,
thus generating two displacements. These two displants are then averaged to
generate an average wind vector that is takenpesent the motion of the target over
the time interval spanned by the image triplet.sTaverage vector is assigned to the
middle image target location. This approach is wiatwill refer to as the conventional
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feature tracking approach. This approach is usednwthacking clear-sky water vapor
features when using the ABI water vapor channel&.85um), 9 (7.0um), and 10

(7.4um). When tracking cloud features involving ABands 2 (0.64um), 7 (3.9um),

8(6.15um), and 14 (11.2um), however, an approadbrresl to as nested tracking

(Daniels and Bresky, 2010) is used. Nested trackises the SSD method to compute
local motions nested within a larger target scagether with a clustering algorithm, to

arrive at a superior motion solution for the lardarget scene. The details of this
approach are described below in Section 3.4.2.2.2.

A short term GFS model forecast wind is used infdsure tracking step to center the
location of the search area in the other imagess Bhdone for two reasons. First, it
minimizes computational time required for trackengd secondly, minimizes the number
of false solutions generated by the SSD methoghduld be emphasized that the search
region must be sufficiently large to allow for stddial departures from the forecast. It
has been shown by Merrill (1989) that the deriveddws inherently constrained to the
forecast wind by the following relationship:

(L-2)x
X (5)

where u (m/s) is the east-west component of thalgatwind, y (m/s) is the east-west

component of the forecast wind, L is referred totlas lag size and is the max
displacement of a target scene within a given $ebiax, t is the time interval (in

seconds) between images and x is the resolutiotheoimagery in meters. A similar
relationship holds for the north-south componeant,ib omitted for brevity. For a given

image sequence time interval and pixel resolutibe,ratio given by the right hand side
of equation (5) yields a value that represents rtteximum departure of the feature
tracking wind solution from the forecast wind. B important that this ratio be
sufficiently large to minimize the dependency o# florecast wind in the tracking step.
Furthermore, the magnitude of this ratio must beswtered when different size target
scenes and/or sequence time intervals are used.e¥ample, for a given image
resolution, if smaller image time intervals areids then a corresponding reduction in
the lag size must be made in order to keep the itagnof the ratio constant. By
specifying a maximum forecast departure of 30 m/€quation (5), the equation for
keeping the lag size constant is given by:

u-y)<

60
t+2=1L
» ©)

By specifying the desired time interval betweenge®smto use and the resolution of the
imagery in Equation (6), the lag size can be comghuOnce the lag size is known, the
size of the search scene can be computed from:

S=T+L+1 7)
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Where: S is the search scene size in pixels
T is the target scene size in pixels
L is the lag size in pixels

So, if a time interval of 300 seconds and a nomimalge resolution of 2000m are used in
Equation (6), the lag size is computed to be 1&lpiX¥Xrrom Equation (7), the size of the
search scene to use in this case is 27 x 27 pixels.

1.11.2.2.1 Sum-of-Squared Difference (Euclidean
Distance) Method

The sum-of-squared-differences method (SSD) iscibreelation routine used by the
DMW algorithm. In the SSD routine the following susnminimized:

(8)

where: | is the brightness temperature at pixel (x,y) of target scene, lis the
brightness temperature at pixel (x,y) of the seamthdow, and the summation is
performed over two dimensions. In practice, theia®gover which the search is
conducted is substantially larger than the sizethsf target scene and the above
summation is carried out for all target box posiawithin the search region. The array
of positions that the target box can assume irséaech region is often referred to as the
“lag coefficient” or “lag” array and the field ofalues is referred to as the correlation
surface. The size of the search and lag arraygiaem by Equations (6) and (7) in the
previous section.

D106 y) =1, )12
X,y

A typical correlation surface for the SSD method tte GOES-12 imager is shown in
Figure 6. Each pixel in this figure represents ® $8lue for a potential matching scene
in the search region. The cool colors (blues) iagianinimum values while the warm
colors (yellows) indicate relative maxima. The moim SSD solution value results in a
discrete, pixel displacement being identified gmasible DMW tracer. Unaltered, these
integer displacements would cause an artificialnioig of the satellite derived wind

estimates. To avoid this effect, the SSD valueshef four points surrounding the

minimum SSD are used to linearly interpolate to-pixel accuracy.
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Correlaticn surface

Tracking method: Least Square Error

Figure 6. Example of a typical correlation surfémethe Sum-of-Squared Difference
(SSD) tracking method for the GOES-12 imager. To@ ¢(hblue) colors indicate
minimum values while the warm (yellows) colors icate relative maxima.

111222 Nested Tracking

When tracking cloudy target scenes using ABI chinrZ (0.64um), 7 (3.9um), 8
(6.15um), or 14 (11.2um), a technique referredston@sted tracking” is employed. This
approach involves nesting smaller (5x5 pixels)@asgenes within a larger target scene
(ie., whose size is specified in Table 5) so thdiel of local motion vectors can be
derived over the interior pixels.

A schematic of this approach is shown in Figurdongside one example of the vector
field produced by the approach. Differences in miagon and magnitude can arise
between the local motion vectors if more than olwaict layer is being tracked or if
multiple scales of motion are being detected. @rglvectors — those vectors that differ
greatly from most of the sample — can result if¢lmud is evolving or if the smaller box
is insufficiently large to resolve the true motidihe second contributor to vector outliers
is often referred to as the aperture effect andissussed at length in the field of
computer vision (Trucco and Verri, 1998). The rexttor shown in Figure 7 makes it
clear that averaging conflicting motions withinaaget scene can produce a slow motion
estimate. The challenge is to derive a dominantianovector from a subset of all
possible solutions that best represents the flowheflarger target scene. This can be
accomplished by analyzing all of the local disptaeats within the larger target scene
with a cluster analysis program.
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[ larger 15x15 box
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Figure 7. Schematic of the nested tracking approBicé white vectors show the local
motion vectors successfully derived for each pds$k5 box within a larger 15 x 15
target scene. The red vector on the right is teeltieg motion vector if one were to take
an average of all the successfully derived locaionovectors.

The justification for using a cluster analysis aitfon to analyze the local motion field is
twofold. First, as was discussed above, the loaatian field can be quite noisy. The
field of vectors often reveals motion associatethvitvo or more cloud layers and/or
spatial scales. Removing noise and separatingahmple into coherent motion clusters
can prevent the excessive averaging of motion oicguat multiple levels or for different

scales that can lead to a slow speed bias. Sem®rdifying clusters in the local motion

field provides a means for directly linking thedkang step with the height assignment
step. In other words, the pixels belonging to tbherent clusters allow us to limit the
sample of pixels used for height assignment.

For the DMW algorithm we selected a cluster analysbgram called DBSCAN (Ester
et. al., 1996), a density based algorithm for idgng clusters in spatial databases with
noise. It was selected because it is very effe@hidentifying clusters of varying shapes
and, unlike other methods such as K-means (Laksamagt al., 2009a, 2009b, 2003),
does not require the user to specify apriori thalmer of clusters to find. One example of
output from DBSCAN is shown in Figure 8. This figushows that noisy motions have
been removed from the scene leaving two distindiancclusters. The DMW algorithm
selects the largest cluster to represent the dorhmation and computes a final derived
motion vector by averaging the displacements bahgntp the largest cluster. Figure 9
shows the vector field that remains after the asialig complete.
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Figure 8. Motion clusters identified by DBSCAN dieisng routine. Green dots
indicate line and element displacements belongirthée largest cluster. Red dots
indicate line and element displacements belongirtge second largest cluster.
Blue dots represent incorrect or noisy line andnelet displacements.

Motion of
whole box

SPD: 25.0

Average of
largest cluster

SPD: 393

Forecast
SPD: 33.9

Figure 9. Example of the vector field produced widsted tracking before (left) and after
(right) DBSCAN is applied to find the largest clesstThe forecast vector (blue) is shown
for comparison.
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111221 Feature Tracking Gross Error Tests

All retrieved wind values undergo a series of gyationtrol tests to determine if the
derived wind is valid. This series of tests arecdbsd below. If a retrieved wind fails
any one of these tests, it is deemed to be anithwahd and is flagged appropriately.
Each failure is associated with a unique “flag”uealvhich is saved in the DMW output
file. These unique flag values are listed in Tdble

Correlation Test

As mentioned in Section 3.2, one of two correlatiests is applied when matching the
feature of interest to the original target scenéaeWnested tracking is employed, each
matching 5x5 sub-scene must have a correlatioresapf.8 or higher. Otherwise, the

displacement associated with the match is discastet will not be analyzed by the

cluster analysis routine. When conventional tragkshused instead of nested tracking, a
lower threshold of 0.6 is applied. In this cases tlorrelation scores of each of the
intermediate (i.e., the reverse and forward) magghscenes (derived from the SSD
method described in Section 3.4.2.3.1) are chetlexke if they exceed the minimum

threshold value of 0.60. If either scene fails tbagrelation test, the DMW product is

flagged as unacceptable in the output file.

A higher correlation threshold is used for nestetking because the scene being
matched is much smaller and this increases théhdad of finding a false positive. The

higher threshold is a way of accounting for thehkigvariance in the estimated
displacement and is used to remove gross errams the matching process.

u/v-acceleration Test

If the DMWA is performing as intended, it is reaabte to expect that the wind estimates
derived from each image pair of the image triplét lae similar to one another. While
real accelerations are certainly plausible, esfigdia certain weather regimes (near jet
streams, for example) testing for unrealistic as@ions is prudent, especially given the
time and space scales we are concerned with. Tieeeege of an unrealistic acceleration
in either the u-component or v-component of the DidWkely to be the result of a false
positive in the tracking step. Large, unrealisticon v-accelerations are dealt with by
imposing an upper limit of 10 m/s on the differe@tween the two individual u and v-
components of DMWs derived for any of the speathainnels except the visible channel,
where a 5 m/s limit is imposed. Any DMW that fdite u/v acceleration test is flagged.

Slow Wind Speed Test

The speed of every DMW is checked against a minirapaed threshold of 3 m/s. If any
DMW is slower than this speed threshold, then tM/Dis flagged.
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Correlation Boundary Test

If either of the intermediate matching scenes @efifrom the SSD method described in
Section 3.4.2.3.1 are found on the boundary olstach scene, then the match scene is
flagged. This condition may indicate the true matghsolution is located beyond the
domain of the search scene. In terms of the lagyamhis implies that the tracer is
rejected if the minimum SSD value is found along #uges of the lag array. Likewise,
when nested tracking is used, any matches founth@rboundary of the lag array are
discarded from influencing the dominant motion a&dton.

It should be noted that when tracking the entinget scene with the conventional
approach, the correlation boundary test resulta failed tracer. This is not true when
nested tracking is employed. In this case, the m&tecejected, and the algorithm moves
to the next pixel where it attempts to compute heotocal motion vector.

NWP Wind Speed and Direction Comparison Tests

Several empirical gross error tests that compageDIW speeds and directions to the
corresponding wind speeds and directions obtaired & short-term NWP forecast have
been developed over the years and incorporatedhetourrent operational DMWA used
for GOES, Moderate Resolution Imaging Spectroraeiem (MODIS), and AVHRR
winds. These various tests have been adopted ®rGOES-R DMWA and are
summarized in Table 7.

These gross error tests serve as a defense adalifdls that have been assigned
incorrect heights. As noted previously, the heigbsignment process itself may, from
time to time, introduce substantial errors. Forregke, tracers in very thin cirrus are
often assigned too low in the atmosphere resultm@ large fast bias. One way to
identify such winds is to use a short-term foredasn a global model and look for large
differences between the two wind estimates. If aWNails any of these tests, then the
DMW is flagged. The test thresholds are intentilynaét to broad values so that only
gross differences from the first guess will be oegd and flagged, in case the forecast
itself is erroneous. More elaborate QC schemesieatify the likely quality of each
DMV are imposed following these gross error cheeks] are described in detail in the
next sections.

Table 7. Summary of the DMW gross error qualitytoointests performed.

Satellite DMW | Speed Criteria Test
Channel Height for Applying
Criteria Test

Directional Departure
from forecast >= 70
2 (0.64um) All Forecast speed OR
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>0.5m/s Speed difference
between DMW and
forecast wind >= 15 m/
Directional departure
All DMW >=15 | from forecast >= 50
7 (3.9um) m/s OR
Speed difference
between DMW and
forecast wind > 12 m/s
DMW < 15 m/s| Directional departure
AND from forecast >= 50
Forecast speed OR
>0.5m/s Speed difference
between DMW and
forecast wind > 6 m/s
8 (6.15um)
9 (7.0um) 300-700 All DMW DMW speed — forecas
10 (7.4um) hPa Speeds speed <= -5m/s
Forecast speed Directional departure
14 (11.2um)| >=500 > 0.5 m/s from forecast >= 50
hPa
AMYV speed >= Speed difference
11 m/s between DMW and
forecast wind > 8 m/s
1.11.2.3 Target Height Assignment

Each suitable target (ie., those passing all otdhget selection tests described in Section
3.4.2.1.1) is assigned a height using informatimmf the middle image of the loop

sequence. The cloudy or clear designation for ¢aget scene (per the fractional cloud
cover test described in Section 3.4.2.1.1) hasigagpbns on how a representative height

assignment is computed for each target scene.

The process of assigning a representative heighet® MW tracer involves selecting the
appropriate sample of pixels from the target scame using these pixels to compute a
representative height for the target scene beioggssed. The following factors drive the
selection of the appropriate sample of pixels #®, as well as the approach, to compute a

representative height for each target:

» Target is deemed clear or cloudy
* Channel used to derive the wind
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* Whether or not the nested tracking methodologysediu
Cloudy Target Scenes

When ABI channels 3 (0.64um), 7 (3.9um), or 14.Zufn) are used to track cloudy
target scenes, pixel-level cloud-top pressuresviged by the GOES-R cloud height
algorithm (see GOES-R ABI Cloud Height ATBD for dit) are used to arrive to
compute a representative height for the targetescBince the nested tracking approach
is used when using these channels, only cloud-t@sspres associated with pixels
belonging to the largest cluster (as defined inrthsted tracking discussion in Section
3.4.2.2) are used to derive a representative hefgdause two unique large clusters are
identified — one for the reverse time step and fonghe forward time step — the cloud-
top pressure samples from both of these clusters@nbined and the median cloud-top
pressure value is assigned as the representainyat ier this target.

A key benefit of this approach is that the assighe@yht is inherently linked to the
tracking solution since the same sample of pixelstributes to each of these derived
guantities. Figure 10 highlights the fact that thpproach will usually produce a lower
height assignment in the atmosphere (higher presghan the traditional method of
assigning the height based on an arbitrary coldp&aftypically 20%) of pixels.

(=]
- T

Black histogram
- shows cloud-top
pressure of
entire target
scene

30

&reen histogram
shows cloud-top
pressure of
largest cluster

300 ; 350 400 450 500
Cloud Top Presaurs

Figure 10. Cloud-top pressure distribution forregke target scene. The values associated
with the largest cluster are shown in green.

10

In situations where a low level cloudy target scewer ocean is partially or totally
located in an area experiencing a low level tentpeganversion, the DMWA must apply
a different approach to compute a representatiighhassignment to the target scene.

Low-level temperature inversions occur frequenthgrothe ocean in the vicinity of the
subtropical high where large-scale subsidence ibatés to their formation. These
regions are often covered by extensive sheets oheatratocumulus cloud located at
the base of the temperature inversion (see Figtije @loud height algorithms often
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overestimate the height of these cloud layers by BPa or greater (Gustafsson and
Lindberg, 1999). The problem arises when theretaceelevations in the temperature
profile at which the cloud temperature is reachedhis scenario the actual cloud layer is
found at the bottom of the inversion.

The DMWA uses the low-level temperature inversitag foutput by the cloud height
algorithm to identify those pixels in a target seewhere a low level temperature
inversion is present. In these situations, the DMW&eps track of pixels within the
largest nested tracking clusters, whose heightsddareed at the base of the inversion
versus those derived radiometrically via the cldwight algorithm. The DMWA uses
only the cloud heights (pressures) belonging tdahger of these two samples to assign a
height to the derived wind. The representative teggsigned to the derived motion wind
is the median pressure of the larger sample.

When the ABI water vapor channel 8 (6.15um) is usettack cloudy target scenes, the
same approach just described above is used, ette@ppixel-level channel 8 brightness
temperatures associated with the largest cluseeused instead of the pixel level cloud-
top pressures to compute a representative cloughhédror these cases, the median
channel 8 brightness temperature value from thge#rcluster is converted to a height
(in pressure) value through linear interpolation thie associated GFS forecast
temperatures that bound this brightness temperature

Clear Target Scenes

When ABI channels 8 (6.15um), 9 (7.0um), or 10 (M are used for targeting clear-sky
target scenes (i.e. elevated moisture gradientbeing tracked), only clear pixels in the
target scene are used. Specifically, a histogratheofarget scene brightness temperature
values is constructed from all of the clear pixelthe target scene. Next, the 20% coldest
pixels of this histogram are identified and the rmrdbrightness temperature is
calculated. This median brightness temperaturieeis tonverted to a height (in pressure)
value through linear interpolation of the assodd®dS forecast temperatures that bound
this brightness temperature.

Altitude

Temperature
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Figure 11. Idealized temperature profile highlightithe cloud height assignment
problem posed by low-level temperature inversions.

111231 Derived Motion Wind Height Assignment Quality
Tests

All retrieved wind height (in pressure) values umea couple of quality control tests to

determine if the derived heights are valid. Theststare described below. If a retrieved
height fails any one of these tests, it is deerndoktinvalid and is flagged appropriately.
Each failure is associated with a unique “flag”uealvhich is saved in the DMW output

file. These unique flag values are also listedabl& 5.

Acceptable Height Assignment Check

An acceptable height assignment check is done doh elerived motion wind that is
attempted. The derived height is checked to detegnifi it falls within an acceptable
height (in pressure) range. The minimum and maximpuessures belonging to this range
are a function of which channel is being used tivdehe wind and shown in Table 8.

Table 8. Acceptable height range to use as a fuamcti channel used and tracer type

Channel
Number Tracer Type Central Frequency (um) Acceptable Height
Range (hPa)
2 Cloud-top 0.64 700 - 1000
7 Cloud-top 3.9 700 - 1000
8 Cloud-top 6.15 100 — 400
8 Clear-sky water vapor 6.15 100 - 1000
9 Clear-sky water vapor| 7.0 100 - 1000
10 Clear-sky water vapor 7.4 450 - 700
14 Cloud-top 11.2 100 - 1000
Height Consistency Check

When nested tracking is performed, a height comstst checked is performed between
the median pressure computed from the largesterlbsionging to the first and second
image pairs, respectively. If the difference insthéwo pressures exceeds 100 hPa, then
the derived motion wind is flagged as bad.

1.11.2.4  Product Quality Control

Quality control of the retrieved DMWs is performiadwo ways. The first is through the
application of target selection, feature trackiagd height assignment error checks as
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described in the previous sections. The second wagives the calculation of two
quality indicators for each of the DMWs using twiffetent, but related, algorithms: the
Quality Indicator (QI) (Holmlund, 1998; Holmlund at., 2001) and the Expected Error
(EE) (LeMarshall et al., 2004; Berger et al. 2008).

111241 Quality Indicator (QI) Method

The statistically-based quality indicator (Ql) dieyed at EUMETSAT estimates the
reliability of each derived DMW based on severadlgy control tests (Holmlund, 1998,
Holmlund et. al 2001). These tests not only anathizeconsistency in space and time of
each of the intermediate DMW vector components alsd the height and temperature of
the tracers used in the vector determination, yinensetry of vector pairs achieved from
tracking tracers between consecutive images, diffees with surrounding vectors, and
differences from a forecast field (optional). Theaxee a total of seven individual
components that contribute to the final QI scorat tis appended to each DMW. A
weighted average value is computed for the finaliutest function value () for each
vector. In order to combine the results of théedént test functions, each result must be
normalized into a specific range. This is don@gsi tanh-based function:

@(x)=1-tan{[ (x)]}ai 9)

After normalization of all of the tests, QI valuesll be distributed from zero (poor
quality) to one (perfect quality).

Direction Consistency Check
This calculation is a measure of the direction tsieacy of the DMW. A quality tracer
should provide sub-vectors that are similar inaimn. In function space it is calculated
as:

Direction:  |D,(X,y) = D,(X,y) | /A*exp V20*h0/BIC) (10)
Di(x, y), Vi(x, y) are the direction (degrees) and speed (m/s) dkfroen the first image
(i=1) pair (image 1 and image 2) or the second imager2( pair (image 2 and image
3) of an image triplet at location,(}).
The normalized component used in the softwarenstcocted as such:

Ql = 1 — (tanh(|&Xx, Y)-Da(x, Y|/(A*exp(-vel/B)+C)))**D (11)

Where:

vel = (Va(x, y) + Va(x, Y))/2
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The values of the constants are:

A |20

B |10

C |10

D |4

Speed Consistency Check

This calculation is a measure of the speed comgigtef the DMW. Intermediate DMWs
should show agreement in speed. In function spasealculated as:

Speed: XX, )-Va(x, YAV 20x, Y+(Va(x, Y)+B) (12)

Vi(X, y)is the speed (m/s) derived from the first image X) pair (image 1 and image 2)
or the second image £i2) pair (image 2 and image 3) of an image tripldbaation §,

y)-
The normalized component used in the softwarenstcocted as such:
Q=1 — (tanh(|¥(X, Y)-Va(x, Y|/ (A*vel+B)))**C (13)
Where:
vel = (Vi(x, y) + Va(x, Y)/2

The values of the constants are:

A 0.2

B|1.0

C|3.0

Vector Consistency Check
This calculation is a measure of the vector coesist of the DMW. This test looks at
the vector pairs that make up the final DMW. lbshl reject acceleration errors, but

allow for real acceleration changes (jet entrama exit regions). In function space it is
calculated as:

Vector: %%, Y)-S1(x, YI/(A*(V 20x, Y+(Va(x, ¥))+B) (14)
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S(x, y)is the vector (m/s) derived from the first image () pair (image 1 and image 2)
or the second image £ 2) pair (image 2 and image 3) of an image tripldbaation §,

y)-
The normalized component used in the softwarenstcocted as such:
Qéc= 1 — (tanh(|&x, Y)-Su(x, YI/(A*vel+B)))*C &)
Where:
vel = (Vi(x, y) + Va(X, Y)/2

The values of the constants are:

A 0.2

B|1.0

C|3.0

Spatial Consistency Check (i.e. Best Buddy Check)
This calculation is a measure of the spatial windststency of the DMW with its best
neighbor. To do this, the DMW values are compar&th the DMWs computed at the
neighboring grid points.
In function space it is calculated as:

Spatial:  [$(y)-Sk-i, y-)I/(A*(ISX, Y+(Sk-i, y-)I)+B) (16)
Here, SK, y) = Si(X, ) + S(X, y). Sk-i, y-j) refers to the vectors (m/s) in the surrounding
locations. This spatial test is only applied tatees within a predefined pressure range (
50 hPa), and location range (within 1 degree).
The normalized component used in the softwarenstcocted as such:

Qdpatiai= 1 — (tanh(|S¢i, y-)-Sk&, YI(A*ISK, W+(Sk-i, y-)I +B)))=*C  (17)

The values of the constants are:

A 0.2

B|1.0

C|3.0

Forecast Check
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This is currently set as an optional test, andnseasure of the consistency of the satellite
DMW with the forecast wind at the height of theeflédte DMW. The vector difference of
the DMW values and the forecast vector interpoldtethe same location and pressure
level is computed to calculate it. In function spd is represented as:

Forecast: &, Y)-Fu(x, YI/(A*(|Sa(X, Y+(F(X, Y)|)+B) (18)

Where (X, y) is the vector (m/s) from the final DMW atcltion &, y). Fi(x, y) is the
interpolated forecast vector (m/s) at locatinny.

The normalized component used in the softwarenstcocted as such:
Qi =1 - (tanh(|S(x, Y)-Fa(x, YI/(A*fc_spd+B)))**C (19)

In practice, fc_spd is the speed (m/s) of the faseat the DMW location. The values of
the constants are:

Al04

B|1.0

C|3.0

U-Component Consistency Check

This calculation is a measure of the DMW’s u-conmgran(m/s) consistency from each
intermediate vector. In function space it is cated as:

U-component: 4, Y-ur(X, YI/((A*|uz(x, Y+(u(x, Y)])+B) (20)

The normalized component used in the softwarenstcocted as such:

Qle =1 - (tanh(lu(x, Y)-ua(x, YI(A*|uz(x, Y+u(x, Y[+B)))*C (21)

The values of the constants are:

Al1l0

B|1.0

C|20

V-Component Consistency Check

This calculation is a measure of the DMW'’s v-comgran(m/s) consistency from each
intermediate vector. In function space it is cated as:

V-component: 46, V-V, WI/((A*|va(x, Y+(vi(x, Y)|)+B) (22)
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The normalized component used in the softwarenstcocted as such:

Qk = 1 - (tanh(j#(x, Y)-va(x, YI(A*|va(X, Y+va(x, Y|+B)))**C (23)

The values of the constants are:

All1l0

B|1.0

C|20

To achieve a single QI value to represent the tyuafieach DMW, a weighted average
of each normalized QI component is computed:

QI = (Test Weight * Normalized QI Component test) Test Weights  (24)

The test weights used for each normalized QI corapbis shown in Table 9.

Table 9. Test weights used for each normalizeda@iponent test.

Direction Component 1.0
Speed Component 1.0
Vector Component 1.0
Spatial Component 2.0
Forecast Component 1.0
U Component 0.0

V Component 0.0

Figure 12 shows an example of the final (weight@tistribution for winds generated
from the 12 UTC 04 August 2006 Meteosat-8/SEVIRIqyrdataset. DMWs that possess
QI values less than 0.60 are currently flaggednasceptable quality.
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Ql - Meteosat-8

| I AMY Count = 23306

% of Total AMVs

Figure 12. Histogram of the final (weighted) Qlwas for Meteosat-8 DMWs at 12 UTC
on 04 August 2006.

1.11.2.4.2 Expected Error Method

The Expected Error (EE) algorithm, originally desgdd at the Australian Bureau of

Meteorology (LeMarshall et al, 2004) is an extensb the QI algorithm described in the

previous section. It is designed to express quatityerms of a physical vector error

metric (meters/second, m/s), rather than a noredlscore such as the QI. A slightly

modified version of the EE algorithm described ierger et al. 2008 has been adopted
for use with the GOES-R DMWA. As shown in (25), thlgorithm regresses several

DMW variables against the natural logarithm of 8E, which represents the vector

difference (in m/s) between a large sample of called DMWs and radiosonde winds.

a, +ax, +a,X, +..a,X, = log(EE +1) (25)
where EE is the expected (or estimated) errgrisaa constant, and,avalues are
regression coefficients multiplied by their corresging predictors . The coefficients

are applied in real time to compute and assignEutokEeach DMW using:

EE = gt axtaxet.ax) _q
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(26)
The (-1) term constrains the minimum EE value ta&®. The current predictors are:

1. Constant (spectrally dependent)

2. QI Speed Test

3. QI Direction Test

4. QI Vector Difference

5. QI Local Consistency Test

6. QI Forecast Test

7. DMW Speed

8. Assigned DMW Pressure Level (height)

9. NWP Wind Shear (200 hPa Above — 200 hPa below DM\NyHt)

10.NWP Temperature Gradient (200 hPa Above — 200 leRavbDMW height)

Table 10. Expected Error coefficients and predgtor different Meteosat-8 channels
derived from the period August — October 2007.

Predictor Band-1 Band-4 Band-5 Band-6 Band-9
(0.60um) (3.9um) (6.2um) (7.3um) (10.8um)
CONST 3.073 3.13 2.42 2.42 2.871
QI Speed Check 0.176 0.003 0.0660 0.0660 -0.0664
QI Direction Check 0.290 -0.171 0.199 0.199 0.1394
QI Vector -0.101 -0.0471 -0.331 -0.331 -0.176
QI Local Consistency -0,280 0.244 -0.173 -0.173 -0.252
QI Forecast Check -0.585 -1.46 -0.552 -0.552 -0.509
DMW Speed 0.014 -3.61x18 7.10x10° 7.10x10° 6.26x10°
DMW Pressure -1.63x10° -9.43x10" -6.79x10" -6.79x10" -7.42x10*
NWP Wind Shear 0.011 0.015 7.80x10 7.80x10° 9.81x10°
NWP Temp Gradient 0.011 -7.47x18 6.89x10° 6.89x10° 0.0126

Table 10 shows a set of predictors and their résmecoefficients used to calculate EE
for different bands from the SEVIRI instrument (pyoto the ABI) onboard the
Meteosat-8 satellite, generated from a datasetagony collocated Meteosat-8 DMWs
and radiosonde wind observations that coveredéhegAugust — October 2007.
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Synergistic Use of the EE and QI Quality I ndicators

The outputted EE and QI quality indicators assedatith each DMW estimate can be
used synergistically in order to optimize the qyadind geographic coverage of the final
DMW dataset passed onto the user community. Thergigtic use of these quality
indicators is designed to take advantage of thengths of each. The EE is superior at
identifying the quality of relatively slow DMWs, wheas the QI is better at identifying
the quality of relatively fast DMWs. A study conded under the GOES-R Risk
Reduction (Berger et al. 2008) seeked to identifyesholds for each parameter that
could serve as a potential starting point for usensse, if so desired, in any process they
may have established to select a subset of theestighuality DMWs. Table 11
summarizes what these thresholds are, and showghya vary as a function of the
channel used to derive the DMW and the DMW speddW3 whose speeds are slower
than the indicated speed thresholds are considegier quality if their respective EE
quality indicators are less then or equal to thettiiEshold shown in Table 11. DMWs
whose speeds exceed the speed thresholds are eredsidgher quality DMWs if their
respective QI indicators exceed the QI threshdidsve in Table 11.

Table 11. Recommended thresholds for synergistoal the QI and EE indicators

Channel EE (m/s) < OR (Ql > & Speed (M/s) 3
1 (0.64um) 5.5 95 30

4 (3.90um) 5.0 95 30

5 (6.15um) 5.0 95 30

6 (7.30um) 5.0 95 30

9 (10.8um) 4.5 90 25

In order to validate the established thresholdsTable 11, Meteosat-8 DMWs were
generated for an independent dataset covering &gb2007 and compared to collocated
radiosonde wind observations. The EE values weteuleded using the generated
coefficients from Table 10, and the QI was caladaas described in the previous
section. Table 12 shows an example of DMW-RAOBfiation statistics looking at QI
> 0.6, QI > 0.8 and the specific EE/QI threshold fie DMWs from Table 11. The
statistics are for all available DMW heights in tegaset. A 0.8 QI threshold produces a
lower RMSE, mean vector difference, and standakdatien than the 0.6 threshold (as
expected). However, the QI/EE combination thresmetdlts in the lowest RMSE error,
mean-vector difference and speed bias of the thuedity indicator choices. Use of the
combined QI/EE thresholds generally results inrdtention of more (less) DMWs when
using the QI > 0.8 (0.60) threshold alone. Thesdirfigs also hold for the other channel
DMWs.

Table 12: Comparison statistics (m/s) between DMWsputed from the SEVIRI
IR-Window channel (10.8um) and collocated radiogowthds during Feb 2007.

QC QI>06| QI>08 | EE<=4.5
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.OR.
(QI>90 and
Speed>25 m/s
RMSE 7.62 7.30 6.14
Bias -1.62 -1.19 -1.02
Number of matches 23692 17501 16861
Mean Vector Difference | 6.08 5.82 5.03
Standard Deviation 4.60 4.39 3.53
Avg. DMW Speed 17.16 18.48 17.21

1.11.3 Algorithm Output

Derived motion winds will be generated separatebmf each of the six ABI bands
identified in Table 2. Collectively, the derived timm winds generated from each of
these ABI bands contribute are the derived motiamdvproduct. The Mode 3 full disk

DMW product has a 60 minutes refresh while the M8dtill disk product has a 15

minute refresh. To create these products, the DNg&righm should be run once an hour
and once every 15 minutes respectively. The DM\sbissidered as a “list” product as it
is not output on a grid. The contents of the outpiuthe DMWA are described in the
following subsections.

1.11.3.1 Product Output
ID Description
1 Date of middle image in image triplet (year antiah Day)
2 Time of middle image in image triplet (hour, mi@usecond)
3 Latitude (degrees)
4 Longitude (degrees)
5 Speed of wind vector (m/s)
6 Direction of wind vector (degrees)
7 Pressure assignment of tracer (mb)
8 Temperature associated with the pressure assigrohtracer (K)
9 Local Zenith Angle (degrees)
10 Time interval between image pairs (minutes)
11 Quality Flag; Good(0) or bad (non-zero) eatall
1.11.3.2 Diagnostic Information
\ ID \ Description
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1 u-component of vector 1 (m/s) [backward in time]

2 v-component of vector 1 (m/s) [backward in time]

3 u-component of vector 2 (m/s) [forward in time]

4 v-component of vector 2 (m/s) [forward in time]

5 Speed of forecast wind (m/s) at pressure assitgnsalellite wind

6 Direction of forecast wind (degrees) at pressusggagd to satellite
wind

7 Tracking correlation of vector 1 [backward in &m

8 Tracking correlation of vector 2 [forward in tilne

9 Standard deviation of cloud top pressure valnearget scene (hPa)

10 Cold sample counter in brightness temperatstediam

11 Latitude of vector 1 (degrees) [backward in {ime

12 Longitude of vector 1 (degrees) [backward inefim

13 Latitude of vector 2 (degrees) [forward in time]

14 Longitude of vector 2 (degrees) [forward in tjme

15 Standard deviation of largest 5x5 cluster (sampt reverse vector)

16 Standard deviation of largest 5x5 cluster (sar@pt forward vector)

17 Standard deviation of sample 1 divided by magnitit@verage
displacement

18 Standard deviation of sample 1 divided by magnitofd@verage
displacement

19 Number of distinct motion clusters from DBSCAN asd (sample 1 +
reverse vector)

20 Size of largest DBSCAN cluster (sample 1 — regerector)

21 Number of distinct motion clusters from DBSCAN asd (sample 2 +
forward vector)

22 Size of largest DBSCAN cluster (sample 2 — fodwaector)

23 Median cloud-top height (m)

24 Date of ¥ image (year and Julian day)

25 Time of 'image (hour and minute)

26 Date of 3rd image (year and Julian day)

27 Time of 3rd image (hour and minute)

28 Minimum cloud-top pressure (hPa) in largesttelus

29 Maximum cloud-top pressure (hPa) in largesttelus

30 Minimum cloud-top temperature (K) in largeststlr

31 Maximum cloud-top temperature (K) in largesisbobu

32 Dominant cloud phase of target scene

33 Dominant cloud type of target scene

34 NWP vertical temperature gradient (+/- 200 hPa apoessure
assignment of tracer)

35 NWP vertical wind shear (+/- 200 hPa about presaasggnment of
tracer)

36 Land mask

37 Low-level inversion flag
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1.11.3.3

Product Quality Information

Description

[ —

Product Quality Flag (0=DMW product passes all quaésts; > 0
DMW product fails quality test§See Table 5 in Section 3.4.2.1.1 for
description of DMW failure codes)

Expected Error estimate of derived wind (m/s)

Quality Indicator (QI) of derived wind (0-100,twi100 being the best)

QI Test 1 value (speed consistency)

QI Test 2 value (direction consistency)

QI Test 3 value (vector consistency)

QI Test 4 value (local consistency)

QI Test 5 value (forecast consistency)

OO |INO|ODWIN

Representative height error (hPa)

1.11.34

Metadata Information

Description

Satellite ID

Number of ABI channels

ABI channel number

Target box size (in pixels)

Lag size (in pixels)

Nested tracking flag (O=nested tracking disablednésted tracking
enabled)

Target type (0 = clear; 1 = cloudy)

Number of QC flag values: 23

O |O|N] O O~ WINFO

Definition of QC flag value 0:
Good wind; passes all QC checks

Definition of QC flag value 1:
Maximum gradient below acceptable threshold

11

Definition of QC flag value 2:
Target located on earth edge

12

Definition of QC flag value 3:
Cloud amount failure (less than 10% cloud coverdioud track winds
or greater than 0% cloud cover for water vapor clsly winds)

13

Definition of QC flag value 4:
Median pressure failure

14

Definition of QC flag value 5:
Bad or missing brightness temperature in targenhsce

15

Definition of QC flag value 6:
More than 1 cloud layer present

16

Definition of QC flag value 7:
Target scene too coherent (not enough structuredidable tracking)
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Definition of QC flag value 8:

17 Tracking correlation below 0.6 (not used for neditedking)
Definition of QC flag value 9:

18 u-component acceleration greater than 5 m/s (fordsigenerated from
visible channel) or 10 m/s (for winds generatedrfrany other channel
Definition of QC flag value 10:

19 v-component acceleration greater than 5 m/s (fordsigenerated from
visible channel) or 10 m/s (for winds generatedrfrany other channel
Definition of QC flag value 11:

20 u- and v- component accelerations greater than's(for winds
generated from visible channel) or 10 m/s (for wigénerated from an
other channel)

21 Definition of QC flag value 12:

Derived wind slower than 3 m/s

29 Definition of QC flag value 13:

Target scene too close to day/night terminatasilpde and SWIR only)
Definition of QC flag value 14:

23 Median pressure used for height assignment outsideptable pressur
range (channel dependent)

24 Definition of QC flag value 15:

Match found on boundary of search region
o5 Definition of QC flag value 16:
Gross difference from forecast wind (channel depat)d
Definition of QC flag value 17:
Median pressure of largest cluster for first imamgr is too different

26 . ; .
from median pressure of largest cluster for secomage pair — only
valid for nested tracking

27 Definition of QC flag value 18:

Search region extends beyond domain of data buffer

o8 Definition of QC flag value 19:

Expected Error (EE) too high

Definition of QC flag value 20:
29 o . .

Missing data in search region

30 Definition of QC flag value 21:

No winds are available for the clustering algorithm
Definition of QC flag value 22:

31
No clusters were found

32 Percent of targets associated with a QC flageval

33 Percent of targets associated with a QC flageval

34 Percent of targets associated with a QC flageval

35 Percent of targets associated with a QC flageval

36 Percent of targets associated with a QC flageval

37 Percent of targets associated with a QC flagevél

38 Percent of targets associated with a QC flageval

39 Percent of targets associated with a QC flageval

40 Percent of targets associated with a QC flageval

1)
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41 Percent of targets associated with a QC flageva0
42 Percent of targets associated with a QC flageval
43 Percent of targets associated with a QC flagevaP
44 Percent of targets associated with a QC flagevaB
45 Percent of targets associated with a QC flageva#l
46 Percent of targets associated with a QC flagevab
47 Percent of targets associated with a QC flagevab
48 Percent of targets associated with a QC flageval
49 Percent of targets associated with a QC flagevaB
50 Percent of targets associated with a QC flagevad
51 Percent of targets associated with a QC flageva0
52 Percent of targets associated with a QC flageval
53 Percent of targets associated with a QC flagevap
54 Total targets identified
55 Mean wind speed (m/s) for all good derived winds
56 Minimum wind speed (m/s) for all good derivechds
57 Maximum wind speed (m/s) for all good deriveddsd
58 Standard deviation about mean wind speed (m/s)lfgood derived
winds
59 Number of Atmospheric Layers
60 Definition of atmospheric layer 1:
(100 - 399.9 mb)
61 Definition of atmospheric layer 2:
(400 — 699.9 mb)
62 Definition of atmospheric layer 3:
(700 — 1000 mb)
63 Number of good winds in atmospheric layer 1
64 Number of good winds in atmospheric layer 2
65 Number of good winds in atmospheric layer 3
66 Mean height (mb) assigned to good derived winds
67 S’Fagdard deviation about mean height (mb) assigmgdod derived
winds
68 Minimum height (mb) assigned to good winds
69 Maximum height (mb) assigned to good winds
70 Standard deviation about mean wind speed (m/s)Ifgood derived

winds

2 TEST DATA SETS AND OUTPUTS
2.1 GOES-R Proxy and Simulated Input Data Sets
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The data used in the pre-launch phase to devedsp, and validate the ABI DMW
products fall into these two categories:

1) ABI proxy data from another observing system

2) ABI simulated data that are derived from use ofdiative transfer model
where the atmospheric and earth surface repregergatre provided by a
high resolution numerical weather prediction fostcaodel

The GOES-R Algorithm Working Group Proxy Data Teasnresponsible for the
generation of the proxy and simulated instrumet# dats.

2.1.1 SEVIRI Data

In terms of the ABI proxy data, the Spinning Enlethd/isible and Infra-red Imager
(SEVIRI) instrument onboard the European Meteosab8d Generation (MSG) satellite
(Schmetz et al, 2002) is being used since it ishtb& surrogate system for the future
ABI. The spectral coverage and pixel level resotubf the SEVIRI instrument is very
similar to that expected from the ABI instrumentigasthe noise level of the various
channels. Furthermore, the navigation and registraperformance of the SEVIRI
instrument is comparable to the expected ABI imsent performance. Finally, the
scanning rate of the SEVIRI instrument is similarthie nominal scanning strategies for
the ABI instrument. Table 13 lists the SEVIRI barttat are being used in DMWA
development and validation pre-launch phase aesviFor reference, the corresponding
ABI channels are also listed in this table.

Table 13: SEVIRI channels serving as GOES-R ABI proxy datalie GOES-R
DMWA.

SEVIRI SEVIRI ABI ABI
1=V Wavelength | Central el Wavelength | Central
Band Sensor | Band

Range Wavelength . Range Wavelength
Number Noise Number

(nm) (nm) (nm) (nm)

0.39@

1 0.56-0.71 0.60 53 2 0.59 -0.69 0.64
W/m2
0.24 K

4 3.48 -4.36 3.90 @ 300K 7 3.80-4.00 3.90
0.40K

5 5.35-7.15 6.20 @ 250K 8 5.70 - 6.60 6.19
0.48 K

6 6.85-7.85 7.30 @ 250K 10 7.24 —-7.44 7.30

9 9.80 - 11.80| 10.80 013K 11, 10.80 - 11.60| 11.20

. . ) @ 300K ) ) .

SEVIRI datasets being used for DMWA product develept and validation activities

include full-disk Meteosat-8 SEVIRI data for the mtlos of August 2006 and February
2007 and Meteosat-8 SEVIRI rapid-scan data fop#reod June 1-8, 2008. The temporal
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resolution of these data, 15 minute for Full Diskl &-minute for the rapid scan, mimic
what is to be expected from the scanning rate®i®fABI, making them invaluable for
testing and validating the DMWA. Use of these SEMIBservations enabled an analysis
of the performance of the DMWA over a full rangecohditions.

2.1.2 Simulated ABI Data

Simulated ABI radiances can be derived using ailddtaadiative transfer model over a
wide range of atmospheric and surface conditioasdhginate from short-term forecasts
output by a high-resolution numerical weather p®oin model. The GOES-R AWG
Proxy Data team has created several ABI simulatidiss section details work on a
CONUS simulation which mimics one of the proposeainssegments on the future ABI
(Otkin et al., 2007). Two flexible scanning sceoarare currently under review for the
ABI. The first mode allows the ABI to scan thelfdisk (FD) every 15 minutes, 3
CONUS scenes, and scan a 1000 km x 1000 km seledadn every 30 seconds. A
second mode would program the ABI to scan the FBrye®% minutes (Schmit et al.
2005). Figure 13 shows an example of simulated ix2igery and corresponding actual
GOES-12 IR/WV images over the CONUS at 00 UTC (0%eJ2005. The simulated data
captures the general features and locations watheSdifferences can be observed in the
cloud structures.

The synthetic GOES-R ABI imagery begins as a hggolution Weather Research and
Forecasting (WRF) model simulation. The CONUS satiah was performed at the
National Center for Supercomputing Applications @} at the University of lllinois at
Urbana-Champaign by the GOES-R AWG proxy data ted®mulated atmospheric
fields were generated using version 2.2 of the WirRigel (ARW core). The simulation
was initialized at 00 UTC on 04 June 2005 with IPS=data and then run for 30 hours
using a triple-nested domain configuration. Theeaubst domain covers the entire
GOES-R viewing area with a 6-km horizontal resalativhile the inner domains cover
the CONUS and mesoscale regions with 2-km and ek@67horizontal resolution,
respectively.

WRF model output, including the surface skin terapge, atmospheric temperature,
water vapor mixing ratio, and the mixing ratio agftective particle diameters for each
hydrometeor species, were ingested into the Suwee€3rder of Interaction (SOI)
forward radiative transfer model in order to geteamulated top of atmosphere (TOA)
radiances. Gas optical depths were calculatecedmh ABI infrared band using the
Community Radiative Transfer Model (CRTM). Ice wibabsorption and scattering
properties were obtained from Baum et al. (2009)enwas the liquid cloud properties
were based on Lorenz-Mie calculations.
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Figure 13. Simulated GOES-R ABI versus actual GQBSmager imagery at 00 UTC
on 05 June 2005. Top Left: Simulated 12 imagery from the GOES-R ABI. Top
Right: Actual 10.7um imagery from the GOES-12 imager. Bottom Left: Giaed 6.19
pm imagery from the ABI. Bottom right: Actual 6/5m imagery from the GOES-12
imager.

2.2 Output from Proxy and Simulated Data Sets
2.2.1 Derived Motion Winds Generated from SEVIRI Data

The DMW product has been generated from full di&®RI imagery for the entire
month of August 2006 and February 2007 as well ram fthe rapid-scan SEVIRI
imagery for the period Junel-8, 2008. Figures ld Hkm show examples of cloud-drift
winds generated from tracking cloud features olesein the SEVIRI 10.8um channel
over the full disk and the area covered by thed&pans. Figures 16 and 17 show
examples of low level (at or below 700 hPa) clouift-dvinds over the full disk
generated from tracking cloud features observedh& SEVIRI 0.60um and 3.9um
channels, respectively. Figure 18 shows an exaofptoud-top water vapor winds over
the full disk generated from tracking cloud featu@bserved in the SEVIRI 6.2um
channel. Figure 19 shows an example of clear-skgmaapor winds over the full disk
generated from tracking clear-sky moisture featuleserved in the 6.2um and 7.3um
channels.

64



Figure 14. Clouddrift winds derived from full disk 1-minuteMeteose-8 10.8um

SEVIRI data for 12 UTC onl February 2007These winds are derived from track
cloud features using tH#).8umchannel. High level (10@00 hPa) winds are shown
violet; mid-level (400700 hPawindsare shown in cyan; and low lewwinds (below

700 hPa) are shown in yellc



RAPID SCAN IR WINDS

SEVIRI data for 2359 UTC on 31 May 2008. These wiack derived from tracking
cloud features using the 10.8um channel. High 1€4@0-400 hPa) winds are shown in
violet; mid-level (400-700 hPa) winds are showryan; and low level winds (below
700 hPa) are shown in yellow.
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Figure 16. Clouddrift winds derived from full disk 1-minuteMeteose-8 0.60um
SEVIRI data for 12 UTC on 01 February 2007. Thesela/are derived from trackir
cloud features using the 0.60um channel. All widdsved from this channel are at I«
levels of the atmosphere (below 700 hduring the daynd are shown in yello
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Figure 17. Clouddrift winds derived from full disk 1-minuteMeteose-8 3.9um
SEVIRI data for 00 UTC on 02 February 2007. Thesels/are derived from trackir
cloud features using the 3.9um channel. All windswd from this channel are at Ic
levels of the atmosphere (below 700 hPa) duringntlet and are shown in yello
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Figure 18. Cloudep Water Vapor Winds derived from full disk-minute Meteosat-8
SEVIRI 6.2umdata for 12 UTC on 01 February 2007. These windderived from
tracking cloud features using the 6.2um channdilalk blue are winds found in ti
range 10@50 hPa; in cyan are winds found in the range-350 hPa; in yellow are
winds in the range 350550 hPe
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Figure 19. Cleasky WaterVapor Winds derived from full disk 3Btnute Meteosat-8
6.2um and 7.3urBEVIRI data for 12 UTC on 01 February 2007. Theselw are
derived from tracking cle-sky water vapor features using the 6.2um and 7.
channels. In dark blue are winds found ir range 10®50 hPa; in cyan are winds fou
in the range 25@50 hPa; in yellow are winds in the range —550 hPe

2.2.2 Derived Motion Winds Generated from Simulated ABI Data

The DMW products can also be generated from siradI@&@OE‘-R ABI imagery. Figur
20 shows an example of the IR cl¢-drift wind product generated from tracking clc
features observed in simulated 11.2um channel ipage00 UTC on 05 June 2005.
this example, an image triplet with a temporal hetson of 5 minutes was used. Fie
21 is an example of cleaky water vapor winds using a 8flnute time step. Channel
(6.19um) and channel 10 (7.34um) are included énplibt. Figure22 shows the result of
tracking channel 2 (0.6um), which is the heritage visible channel, at -minute
interval.
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Figure 20. Cloud-drift winds derived from simulatéBl 11um data at 00 UTC on 05
June 2005. The time interval of the image sequen8aminutes. High-level (100-400
hPa) winds are shown in violet; mid-level (400-H#x) winds are shown in cyan; low-
level (> 700 hPa) winds are shown in yellow.
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Figure 21. Clear-sky water vapor winds derived fmulated ABI 6.19um and 7.34um
data at 00 UTC on 05 June 2005. The time interidi@image sequence is 30 minutes.
High-level (100-400 hPa) winds are shown in vioieigl-level (400-700 hPa) winds are
shown in cyan.
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Figure 22. Low-level cloud-drift winds derived frasimulated ABI 0.64um data at 2230
UTC on 05 June 2005. The time interval of the imsgguence is 5 minutes. Mid-level
(600-700 hPa) winds are shown in cyan; low-levef@® hPa) winds are shown in
yellow.

2.3 Precision and Accuracy Estimates

This section describes the predicted performanack moduct quality of the DMWA
relative to the DMW specifications found within th@ OES-R Functional and
Performance Specification Document (F&PS). To estinthe precision and accuracy of
the DMW product requires coincident measurementefdrence (“truth”) atmospheric
winds values for the full range of observing geamend environmental conditions that
cover multiple seasons.

The reference (“truth”) datasets used include sahde wind observations and Global
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Forecast System (GFS) analyses winds. The radiesanidd observations are used
primarily to validate the DMW product over land andoastal regions. A
DMW/radiosonde wind collocation is considered aidzaiatch if the radiosonde
observation is within onkour in time within 150km in the horizontal, andhin 50 hPa in the
vertical of the DMW. The GFS model analysis wind fields are used to oreathe
performance of the DMW product over oceanic regidtere, theanalysis winds must be
within 30 minutes of the DMW, and are spatially filzontally and vertically) interpolated to the
DMW location. An advantage of this approach is that a DMW/Anialygnd collocation
match can be generated for every DMW produced.

The accuracy and precision estimates for the DMWdpcts are determined by
computing the Mean Vector Difference (MVD) and $tard Deviation (SD) metrics.
The mean vector difference between retrieved afetaece (“truth”) wind representing
theaccuracy (average erronf the GOES-R ABI wind product is computed from:

N

MVD =1/ NZ (VD), (10)

i=1

where:

VD, = (U, —u,)? + (v -V,)? (11)

U = u-component of satellite wind

Vi = v-component of satellite wind

ur = u-component of the reference wind

v, = v-component of the reference winds
N = sizkcollocated sample

The Standard Deviation (SD) about the mean vedttarence between the retrieved
GOES-R ABI DMW product and the reference wind dagpresentghe precision
(random error)of the ABI DMW product and is computed from:

SD = \/1/ N Z [(vD ) - (MvD)]? (12)

Certainly, assessment of algorithm performance mgpen the validation samples from
which the comparison statistics are derived. Fangple, validation of DMW products

performed at different locations, heights in then@dphere, different wind speeds, or
local zenith angle could generate different acopraed precision values for the same
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algorithm. The accuracy and precision of the DMVdduct will depend largely on a
number things that include: (1) Calibration and igation accuracy of the ABI
measurements, (2) ABI band that is used for feataking, (3) Height of the DMW in
the atmosphere, and (4) Accuracy and precisiom@firiput ABI cloud mask and cloud
height products.

Comparisons of DMW Products Derived from Meteosat-8 SEVIRI I magery to
Radiosonde Wind Observations

Tables 14-19 show DMW product validation resultsaafinction ABI band used and
AMV height assignment for August 2006 and Febru2097 over the earth’s full disk
when using collocated radiosonde wind observatidhese tables include the accuracy
and precision metrics and also the speed biasenelrich is of particular interest to the
NWP user community. Also included in these tables satistical comparison metrics
between NCEP short-term GFS forecast winds (valitha same time of the satellite
winds and at satellite wind height assignment) ettlosonde wind observations. These
statistics are included primarily for reference asda source of information for NWP
users of the DMW product.

The comparison statistics for the low level DMWsnputed using the visible band are
shown in Table 14. The accuracy of these DMWs fogust 2006 and February 2007 are
3.26 m/s and 3.10 m/s, respectively, with corredpanprecision values of 2.88 m/s and
2.16 m/s. These statistics indicate that thesbéleidDMWs possess some small seasonal
dependence, however, this behavior is also evidernthe GFS forecast winds. It is
interesting to note that the overall performancehef visible DMWSs is on par or even
slightly better than the GFS forecast winds as omeaksagainst collocated radiosonde
wind observations. The accuracy and speed biasianeictually indicate that visible
DMWs actually outperform the NCEP GFS forecast winak low levels of the
atmosphere below 700 hPa. This is a very goodtresal brings high expectations that
they can contribute to improving NWP forecast perfance when properly assimilated
into NWP data assimilation systems.

Table 14. Comparison statistics between DMWs coetgpuising the Visible (0.64um)
band from full disk Meteosat-8, NCEP GFS short-téomecast winds, and radiosonde
wind observations for the months of August 2006 &ebruary 2007. These estimates
were determined from comparisons to collocatedosaatide winds at 00 and 12 UTC.

Low Level Visible (0.64um) Windsvs. | GFSForecast Winds vs.
(P > 700hPa) Radiosonde Winds (m/s) Radiosonde Winds (m/s)

Aug 2006 Feb 2007 | Aug 2006 Feb 2007
Accuracy 3.26 3.10 3.29 3.11
Precision 2.88 2.16 2.81 2.07
Speed bias 0.28 -0.01 0.55 0.54
Speed 8.76 9.43 9.02 9.99
Sample 4976 3372 4976 3372
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The comparison statistics for the low level DMWsnpited using the SWIR band are
shown in Table 15. The accuracy of these DMWs fogdst 2006 and February 2007 are
3.52 m/s and 3.57 m/s, respectively, with corredpanprecision values of 2.25 m/s and
2.42 m/s. Like the visible DMWs, the SWIR winds aterived at low levels of the
atmosphere below 700 hPa. Their performance ing@&faccuracy and precision is very
similar to the performance of the visible DMWs. 8 an important result as these two
datasets are complimentary given that the visid\W& are generated during daytime
and the SWIR DMWs are generated during nighttintes Behavior is very important in
terms of their use and potential impact in NWP d@atsimilation systems.

Table 15. Comparison statistics between DMWs coetpusing the SWIR (3.9um) band
from full disk Meteosat-8, NCEP GFS short-term @@t winds, and radiosonde wind
observations for the months of August 2006 and traelyr 2007. These estimates were
determined from comparisons to collocated radiosamithds at 00 and 12 UTC.

Low Level SWIR (3.9um) Winds vs. GFSForecast Winds vs.
(P > 700hPa) Radiosonde Winds (m/s) Radiosonde Winds (m/s)

Aug 2006 Feb 2007 | Aug 2006 Feb 2007
Accuracy 3.52 3.57 3.33 3.41
Precision 2.25 2.42 1.97 2.21
Speed bias -0.15 -0.07 -0.06 0.29
Speed 9.40 10.89 9.51 11.25
Sample 993 1062 993 1062

The comparison statistics for the DMWs computechgishe LWIR band are shown in
Table 16. The comparison statistics are shown ldegels of the atmosphere and are
also broken down as a function of height in thecspiere. The overall accuracy of these
DMWs for August 2006 and February 2007 are 4.51ants5.21m/s, respectively, with
corresponding precision values of 3.62 m/s and 4% Both sets of DMW metrics
indicate some seasonal dependence, but this isneapected. This same behavior is also
observed with the NCEP GFS forecast winds andatsflihe fact that the average wind
speeds are higher in February than in August. WthenLWIR DMW performance is
evaluated as a function of height in the atmosphee magnitudes of the accuracy and
precision metrics are observed to be smallestandiver atmosphere and increase with
height. This indicates that the performance of EMdWs vary as a function of wind
speed. The same is true for GFS forecast windshwdign exhibit this same behavior.

76



Table 16. Comparison statistics between DMWs coetutsing the LWIR (10.8um)
band from full disk Meteosat-8, NCEP GFS short-tédomecast winds, and radiosonde
wind observations for the months of August 2006 &ebruary 2007. These estimates
were determined from comparisons to collocatedosaatide winds at 00 and 12 UTC.

All Levels LWIR (10.8um) Windsvs. | GFSForecast Winds vs.
(100-1000 hPa)| Radiosonde Winds (m/s) Radiosonde Winds (m/s)
Aug 2006 Feb 2007 | Aug 2006 Feb 2007
Accuracy 4.51 5.21 4.21 4.83
Precision 3.62 4.06 3.04 3.32
Speed bias 0.24 -0.54 0.02 -0.30
Speed 14.56 17.68 14.35 17.92
Sample 13987 15286 13987 15286
High Level
(100-400 hPa) | Aug 2006 Feb 2007 | Aug 2006 Feb 2007
Accuracy 5.65 5.94 5.27 5.54
Precision 4.25 4.46 3.48 3.47
Speed bias 0.08 -0.81 -0.05 -0.50
Speed 19.83 21.49 19.71 21.80
Sample 5441 7719 5441 7719
Mid Level
(400-700 hPa) | Aug 2006 Feb 2007 | Aug 2006 Feb 2007
Accuracy 4.39 5.25 3.95 4.67
Precision 3.28 3.84 2.59 3.36
Speed bias 0.62 -0.14 -0.15 -0.33
Speed 13.25 16.38 12.48 16.19
Sample 4445 4264 4445 4264
Low Level
(700-1000 hPa)| Aug 2006 Feb 2007 | Aug 2006 Feb 2007
Accuracy 3.12 3.39 3.07 3.33
Precision 2.34 2.42 2.31 2.17
Speed bias 0.02 -0.42 0.32 0.19
Speed 8.90 10.32 9.21 10.93
Sample 4053 3249 4053 3249

The comparison statistics for the cloud-top watepor DMWs computed using the
6.2um band are shown in Table 17. The comparisatissts are shown only for upper
levels of the atmosphere above 400 hPa since thiesis are only generated above 400
hPa. The accuracy of these DMWs for August 2006Fetztuary 2007 are 5.98 m/s and
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6.05 m/s, respectively, with corresponding precisialues of 4.45 m/s and 4.36 m/s.
Both sets of DMW metrics indicate no seasonal dépeoe. These statistics indicate that
the performance of these cloud-top DMWs is on pigh whe performance of the NCEP

GFS forecast winds. In fact, these DMWs outperfdinen NCEP GFS forecast winds in

terms of the speed bias metric. This is an extrengelod result and brings high

expectations that they can contribute to improvit/P forecast performance when

properly assimilated into NWP data assimilatioresyss.

Table 17. Comparison statistics between cloud-t&pB computed using the Water

Vapor (6.2um) band from full disk Meteosat-8, GR®r$-term forecast winds, and

radiosonde wind observations for the months of At@006 and February 2007. These
estimates were determined from comparisons to catéal radiosonde winds at 00 and 12
UTC.

High Level Cloud-top Water Vapor GFSForecast Winds vs.
(100-400 hPa) (6.2um) Winds vs. Radiosonde Winds (m/s)
Radiosonde Winds (m/s)
Aug 2006 Feb 2007 | Aug 2006 Feb 2007
Accuracy 5.98 6.05 5.76 5.65
Precision 4.45 4.36 3.99 3.78
Speed bias 0.04 0.00 -0.27 -0.79
Speed 21.04 22.91 20.73 22.12
Sample 13945 16976 13945 16976

The comparison statistics for the clear-sky watapor DMWs computed using the

6.2um and 7.3um bands are shown in Tables 18 an@ihE9comparison statistics for the

6.2um clear-sky DMWs are shown only for upper |lsvel the atmosphere above 400
hPa since these winds are only generated abovdhnB80The comparison statistics for
the 7.3um clear-sky DMWs are shown only for the aapineric layer between 450 hPa
and 700 hPa, since this is the layer over whiclseheinds are generated and most
representative.

The accuracy of the clear-sky water vapor (6.2uMiMzs for August 2006 and February
2007 are 5.64 m/s and 6.35 m/s, respectively, eathesponding precision values of 4.33
m/s and 5.00 m/s. The clear-sky water vapor (7.30#)Ws for August 2006 and
February 2007 had accuracies of 4.82 m/s and 6/81respectively, with corresponding
precision values of 3.32 m/s and 4.86 m/s. Both s€DMW metrics indicate that the
performance of the clear-sky DMWs will vary by ssaswith the most challenging
season being winter when the atmosphere is mueh. driis clear from these statistics
that the clear-sky DMWs are the most challengingddve. The primary reason for this
is that the feature being tracked in these casesdkear-sky moisture gradient which
lacks a sharp radiometric signal typically observath clouds. Complicating matters
further is the fact that the radiometric signalngeiracked emanates from a rather broad
layer of the atmosphere. Thus, the motion retrieiveh tracking clear-sky water vapor
features is more representative of the averageomaiver a broad atmospheric layer.
Statistical comparisons of these DMWs versus sitgylel reference/ground truth wind
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observations like radiosondes, then, reflect thisnmmenon with the result being slightly
worse performance (e.g., lower accuracy and redpesgsion).

Table 18. Comparison statistics between clear-sk\\B3 computed using the Water
Vapor (6.2um) band from full disk Meteosat-8, GR®r$-term forecast winds, and
radiosonde wind observations for the months of At@006 and February 2007. These

estimates were determined from comparisons to catéal radiosonde winds at 00 and 12
UTC.

High Level Clear-sky Water VVapor GFSForecast Winds vs.
(100-400 hPa) (6.2um) Winds vs. Radiosonde Winds (m/s)
Radiosonde Winds (m/s)
Aug 2006 Feb 2007 | Aug 2006 Feb 2007
Accuracy 5.64 6.35 4.48 4.89
Precision 4.33 5.00 3.24 3.70
Speed bias -0.25 0.87 -0.55 -0.33
Speed 14.96 18.68 14.67 17.49
Sample 5309 2478 5309 2478

Table 19. Comparison statistics between clear-sMM computed using the Water
Vapor (7.3um) band from full disk Meteosat-8, GA®r$-term forecast winds, and
radiosonde wind observations for the months of Au@®06 and February 2007. These

estimates were determined from comparisons to catéal radiosonde winds at 00 and 12
UTC.

Mid Level Clear-sky Water Vapor GFSForecast Winds vs.
(450-700 hPa) (7.3um) Winds vs. Radiosonde Winds (m/s)
Radiosonde Winds (m/s)
Aug 2006 Feb 2007 | Aug 2006 Feb 2007
Accuracy 4.82 6.31 3.56 4.03
Precision 3.32 4.86 2.26 2.87
Speed bias 0.00 0.86 -0.55 -0.99
Speed 11.50 13.84 10.94 11.99
Sample 3351 1907 3351 1907
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Comparisons of DMW Products Derived from Meteosat-8 SEVIRI Imagery to GFS
Analysis Winds

Tables 20-25 show DMW product validation resultsaafinction ABI band used and
AMV height assignment for August 2006 and Februz097 over the earth’s full disk
and over ocean when using collocated NCEP GFS sisalynds. These tables include
the accuracy and precision metrics and also thedsp@as metric which is of particular
interest to the NWP user community. It needs todited that use of NCEP GFS analysis
winds as the reference/ground truth wind obsermatleads to smaller magnitudes in the
accuracy and precision metrics as compared to thgnitudes of these metrics when
using radiosonde wind observations. Two reasoraylikontribute to this. First, the
horizontal and temporal resolution of the GFS asialyind field is much coarser than
the radiosonde wind observations and second, tie &malysis wind field is influenced
by a number of satellite-derived winds as theseaastmilated operationally by NCEP.
Despite this, these comparison statistics stilvjgl® a useful measure of the performance
of the DMWA.

The comparison statistics for the low level DMWsnputed using the visible band are

shown in Table 20. The accuracy of these DMWs fogust 2006 and February 2007 are
2.38 m/s and 2.19 m/s, respectively, with corredpanprecision values of 1.60 m/s and

1.55 m/s. These statistics indicate that the wasiDMWs possess a very small seasonal
dependence which is consistent with what was olsenhen comparing these winds to

radiosonde wind observations.

The comparison statistics for the low level DMWsnpmited using the SWIR band are
shown in Table 21. The accuracy of these DMWs fogust 2006 and February 2007 are
2.40 m/s and 2.55 m/s, respectively, with corredpanprecision values of 1.61 m/s and
1.56 m/s. Like the visible DMWs, the SWIR winds aferived at low levels of the
atmosphere below 700 hPa. Their performance ing@fnaccuracy and precision is very
similar to the performance of the visible DMWSs. pseviously mentioned, this is an
important result as these two datasets are complanegiven that the visible DMWs are
generated during daytime and the SWIR DMWs are rg¢e@ during nighttime. This
behavior is very important in terms of their used gyotential impact in NWP data
assimilation systems.

Table 20. Comparison statistics (ocean only) betvi2i!\Ws computed using the Visible
(0.64um) band from full disk Meteosat-8 and NCEPSGhnalysis winds (valid at 00
UTC and 12 UTC) for the months of August 2006 aetrbary 2007.

Low Level Visible (0.64um) Winds vs. GFS Analysis Winds (m/s)
(P > 700hPa) Aug 2006 Feb 2007
Accuracy 2.38 2.19
Precision 1.60 1.55
Speed bias -0.17 -0.32
Speed 9.47 9.61
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| Sample 284269 219746

Table 21. Comparison statistics (ocean only) betw2MWs computed using the SWIR
(3.9um) band from full disk Meteosat-8 and NCEP @G¥@lysis winds (valid at 00 UTC
and 12 UTC) for the months of August 2006 and Faty@007.

Low Level SWIR (3.9um) Windsvs. GFS Analysis Winds (m/s)
(P > 700hPa) Aug 2006 Feb 2007
Accuracy 2.40 2.25
Precision 1.61 1.56
Speed bias -0.33 -0.36
Speed 9.68 9.61
Sample 179276 150664

The comparison statistics for the DMWs computechgishe LWIR band are shown in
Table 22. The comparison statistics are shown ldewgels of the atmosphere and are
also broken down as a function of height in thecsphere. The overall accuracy of these
DMWs for August 2006 and February 2007 are 3.30ant 3.70m/s, respectively, with
corresponding precision values of 2.82 m/s and &/43 Conclusions to be drawn from
these statistics are similar to those drawn fromtistsics computed between these winds
and radiosonde wind observations. Both sets of Dkilrics indicate some seasonal
dependence which reflects the fact that the average speeds are higher in February
than in August. When the LWIR DMW performance iglerated as a function of height
in the atmosphere, the magnitudes of the accunagypeecision metrics are observed to
be smallest in the lower atmosphere and increatie lngight. This indicates that the
performance of the DMWSs vary as a function of wapeed.

Table 22. Comparison statistics (ocean only) betvigWs computed using the LWIR
(20.8um) band from full disk Meteosat-8 and NCERSGRalysis winds (valid at 00OUTC
and 12 UTC) for the months of August 2006 and Faty@007.

|  AllLevels | LWIR (10.8um)Windsvs. GFS Analysis Winds (m/s) |
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(100-1000 hPa) Aug 2006 Feb 2007
Accuracy 3.30 3.70
Precision 2.82 3.43
Speed bias 0.01 0.15
Speed 14.31 15.30
Sample 374979 392282

High Level
(100-400 hPa) Aug 2006 Feb 2007
Accuracy 5.16 5.66
Precision 3.76 4.31
Speed bias 0.47 0.65
Speed 23.67 22.46
Sample 86652 138326

Mid Level
(400-700 hPa) Aug 2006 Feb 2007
Accuracy 4.81 4.76
Precision 3.63 3.71
Speed bias 1.13 1.55
Speed 21.93 20.93
Sample 39141 35921

Low Level
(700-1000 hPa) Aug 2006 Feb 2007
Accuracy 2.42 2.28
Precision 1.63 1.56
Speed bias -0.32 -0.39
Speed 9.85 9.83
Sample 249150 218003

The comparison statistics for the cloud-top wateapor DMWs computed using the
6.2um band are shown in Table 23. The comparitatistscs are shown only for upper
levels of the atmosphere above 400 hPa since thiesis are only generated above 400
hPa. The accuracy of these DMWs for August 2006Fttuary 2007 are 5.83 m/s and
5.69m/s, respectively, with corresponding precisiatues of 4.29 m/s and 4.01 m/s.
Both sets of DMW metrics indicate no seasonal ddpece with respect to the
performance of the DMWA when using this channetrézk clouds. A positive speed
bias ranging from 1.22-1.43m/s is evident from ¢hesmparison stats which indicate the
DMWs are faster than the GFS analysis. The exaadores for this are not known.
Positive speed biases for these DMWSs, however, weot evident in the
DMW/radiosonde wind comparison statistics showiable 18.

Table 23. Comparison statistics (ocean only) betmaeud-top DMWs computed using
the Water Vapor (6.2um) band from full disk Metde8and NCEP GFS analysis winds
(valid at OOUTC and 12UTC) for the months of Augk806 and February 2007.
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High Level Cloud-top Water Vapor (6.2um) Windsvs. GFS Analysis
(100-400 hPa) Winds (m/s)
Aug 2006 Feb 2007

Accuracy 5.83 5.69

Precision 4.29 4.01

Speed bias 1.43 1.22

Speed 26.21 24.38

Sample 190795 254132

The comparison statistics for the clear-sky watapor DMWs computed using the

6.2um and 7.3um bands are shown in Tables 24 an@higscomparison statistics for the

6.2um clear-sky DMWs are shown only for upper Isvel the atmosphere above 400
hPa since these winds are only generated abovénR80The comparison statistics for
the 7.3um clear-sky DMWs are shown only for thecapieric layer between 450 hPa
and 700 hPa, since this is the layer over whiclsegheinds are generated and most
representative.

The accuracy of the clear-sky water vapor (6.2uMiMzs for August 2006 and February
2007 are 5.21 m/s and 5.52 m/s, respectively, eathesponding precision values of 4.06
m/s and 4.07m/s. The clear-sky water vapor (7.3@W)Ws for August 2006 and
February 2007 had accuracies of 4.97 m/s and 5/85raspectively, with corresponding
precision values of 3.85m/s and 3.73 m/s. Both seSMW metrics indicate that the
performance of the clear-sky DMWs will vary slightby season with the most
challenging season being winter when the atmosphkemeich drier. It is clear from these
statistics that the clear-sky DMWs are the mostllehging to derive. As previously
discussed, the primary reason for this is thatfiéhéure being tracked in these cases is a
clear-sky moisture gradient which lacks a sharporadtric signal typically observed
with clouds. Complicating matters further is thetféghat the radiometric signal being
tracked emanates from a rather broad layer of tithesphere. Thus, the motion retrieved
from tracking clear-sky water vapor features is en@presentative of the average motion
over a broad atmospheric layer. Statistical conspas of these DMWs with single level
reference/ground truth wind observations like radiales or even GFS analysis then,
reflect this phenomenon with the result being shigkvorse performance (e.g., lower
accuracy and reduced precision).

Table 24. Comparison statistics (ocean only) betmaear-sky DMWs computed using
the Water Vapor (6.2um) band from full disk Metde®and NCEP GFS analysis winds
(valid at 0OUTC and 12UTC) for the months of Aug2806 and February 2007.

High Level
(100-400 hPa)

Clear-sky Water Vapor (6.2um) Windsvs. GFS Analysis
Winds (m/s)
Aug 2006 |

Feb 2007
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Accuracy 5.21 5.52
Precision 4.06 4.07
Speed bias 1.30 1.30
Speed 15.72 17.57
Sample 103941 76028

Table 25. Comparison statistics (ocean only) betmaear-sky DMWs computed using
the Water Vapor (7.3um) band from full disk Metae8and NCEP GFS Analysis winds

(valid at OOUTC and 12UTC) for the months of AugB806 and February 2007.

Mid Level Clear-sky Water Vapor (7.3um) Windsvs. GFS Analysis
(450-700 hPa) Winds (m/s)
Aug 2006 Feb 2007
Accuracy 4.97 5.05
Precision 3.85 3.73
Speed bias 1.28 1.60
Speed 12.74 14.12
Sample 102526 85434

2.3.1 Error Budget

The GOES-R ABI DMW products are considered validas¢ the 100% level if the
overall accuracy and precision of the wind prodsatisfy the requirements specified
within the F&PS document.

Conformance of DMW Algorithm Performance to F&PS Accuracy and Precision
Specifications

This section summarizes the overall accuracy aadigion estimates of the DMW
product based on the use of ABI proxy data desdnbé&ections 4.1 and the reference
data described in Section 4.3. Tables 26 and Rihksoverall DMW product validation
results when using collocated radiosonde wind ofasiens and GFS analysis winds,
respectively. For each case, the DMWA accuracypadision metrics are shown
relative to the F&PS specifications for each osthenetrics. The DMWA accuracy and
precision metrics clearly demonstrate that the DMWeéets the F&PS accuracy and
precision specifications at the 100% level.
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Both sets of validation results demonstrate th# llee accuracy and precision estimates
for the DMW product meet the F&PS specificationstfeese metrics at the 100% level.

Table 26. Accuracy and precision estimates of DMWsose Q> 60) derived from full
disk Meteosat-8 imagery for the months of Augus0@@nd February 2007. These
estimates were determined from comparisons to catéal radiosonde wind observations

at 00 and 12 UTC. F&PS accuracy and precision 8pations are included in this table
for comparison.

F&PS Performance F&PS Validation with Radiosondes
Metric Requirement (m/s) | computed Metric (m/s) | Sample Size

Accuracy 7.5 5.20 65603

Precision 4.2 4.09 65603

Table 27. Accuracy and precision estimates of DMWisose QP> 60) derived from full
disk Meteosat-8 imagery for the months of Augus0@@nd February 2007. These
estimates were determined from comparisons to caténl GFS analysis winds at 00 and

12 UTC. F&PS accuracy and precision specificatians included in this table for
comparison.

F&PS Performance F&PS Validation with GFS Analysis
Metric Requirement (m/s) | computed Metric (m/s) | Sample Size
Accuracy 7.5 4.31 3145211
Precision 4.2 3.70 3145211
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3 PRACTICAL CONSIDERATIONS

3.1 Numerical Computation Considerations

The pattern matching performed by the DMWA is thestncomputationally expensive
aspect of the entire derivation process. It is m@tthen to focus on this step when
considering ways to improve the overall performawictne algorithm.

Major efficiency upgrades have recently been madihe tracking portion of the AMV
algorithm resulting in a 25% improvement in thegassing times. One recent upgrade
has been to terminate the sum-of-squared diffeeelf&D) calculation early once a
current minimum value has been exceeded. The edédor terminating the summation
early is that any additional calculations would giynincrease the summation value
above the current minimum.

A second implemented upgrade has been to begisetireh for the minimum SSD value
at the forecast location and "spiral" outwardsedadtof starting at the top left corner of
the search region where the SSD value is typicallich larger. This has the effect of
establishing a low threshold right from the stasttbat the SSD calculation can be
terminated earlier resulting in fewer calculations.

3.2 Programming and Procedural Considerations

The current version of the DMWA includes a largéadauffer that holds information
(radiance, brightness temperature, cloud mask, feto) adjacent line segments (also
called swaths). Such a buffer makes it possibletteralgorithm to track features that
move out of the domain of the middle line segmarttich is the only part of the buffer
being processed for targets. With each new linenseg read in, data in the buffer is
shifted upwards so that the “oldest” data is alwatythe top of the buffer while the new
segment data is added to the bottom of the bufieis involves a substantial amount of
copying from one segment of the buffer to anotheas. anticipated that future versions of
the algorithm will not have this buffer, as it ispected that the processing framework
provided by the AIT will take care of this task.i$hwill greatly simplify the algorithm
and should significantly improve its performance.

The current version of the algorithm is also lidit® processing three images of equal
size. These limitations will need to be addressefiure versions. In addition to adding
flexibility to the algorithm, having the ability tprocess images of varying size (mixing
and matching) will improve the timeliness of thequct.

As required by the AIT, a common variable type demion statement has been used
while writing the AMV algorithm.
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3.3 Quality Assessment and Diagnostics

The following information should be monitored/trexidfor diagnosing the quality of the
derived motion wind product:

* Number of total targets attempted

* Number of good winds generated

» Percent of winds retrieved with specified QA flaaues

* Mean, Min, Max and StdDev of derived wind speed

» Percent of retrievals with a QA flag value for gfied atmospheric layers

* Mean, Min, Max, and StdDev cloud height for specifatmospheric layers

3.4 Exception Handling

Exception handling is required for the developmehtobust and efficient numerical
software. Requirements set forth by the AIT alsess the importance of exception
handling. The main modules of the DMW program (@argelection.fo90 and
feature_tracking_utils.f90) use AlT-provided suliioe for error messaging.

For the most part, the DMWA assumes that all nesgssnage, forecast and ancillary

data are available through the processing framewbhnke only data that the algorithm

explicitly checks for is the temporal brightness\perature data, which is necessary for
the tracking portion of the algorithm. If the tennglodata is unavailable, the algorithm

outputs an error message and control is returnéeetprocessing framework.

As part of the target selection process, the DMWheaoks for missing or unrealistic
values within both the target and search regiolm®s& values are specified in Section
3.4.2.1.1 (see Channel Validity Test). If eithendtion is met, the algorithm will flag
the scene as bad and proceed to the next adjamaTd.s

3.5 Algorithm Validation

Validation of the DMW products requires collocatedasurements of reference (“truth”)
atmospheric wind values for the full range of ABlserving geometry and environmental
conditions. From these collocated measurementspanson metrics can be calculated
that characterize the agreement between the satediived DMWs and the reference
values.

During the pre-launch phase of the GOES-R progthm,product validation activities
are aimed at characterizing the performance anertanties of the DMW products
resulting from parameterizations and algorithmiglementation artifacts. During this
phase, there is total reliance on the use of GOEERBRproxy and simulated datasets as
described in Section 4.1. Post-launch validatiofi aply lessons learned to inter-
comparisons of actual DMW products generated freal rABI measurements and
reference (“ground-truth”) wind observations. Validn methodologies and tools
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developed and tested during the pre-launch phalsdevautomated and applied. More
specific details on DMW product validation actiegi can be found in the Product
Validation Document for the DMW product.

4 ASSUMPTIONS AND LIMITATIONS

The following sections describe the limitations amssumptions used in the current
version of the DMWA.

4.1 Algorithm Performance

The following assumptions have been made in devsjopand estimating the
performance of the DMWA.

(1) ABI pixel level channel data (for each line segmémm all three images in the
sequence are available along with accompanying-owedta (latitude, longitude,
solar and local zenith angles, image scan timealitguflags). It is further
assumed that the processing framework will handiepaieprocessing needed to
account for channel imagery whose resolutions nifégrd

(2) Forecast temperature and wind profiles, surface tkinperature, and surface
pressure are available and made available to thevVBNhrough the processing
framework

(3) The pixel level ABI cloud mask, cloud-top pressuckud-top temperature,
estimated cloud height retrieval error, and cloueight quality flag(s)
corresponding to each image in the image sequerecavailable through the
processing framework

(4) DMWA products are validated with reliable grounasbd wind measurements
and/or winds from a NWP model forecast/analysis

(5) Proxy datasets and simulated ABI radiance fieldsnfNWP models provide a
suitable surrogate for estimating the DMWA perfonoe/verification

4.2 Sensor Performance

It is assumed the GOES-R ABI sensor will meet jiscHfications as documented in the
ABI PORD (417-R-ABIPORD-0017).

4.3 Pre-Planned Product Improvements

While development of the baseline DMWA continues expect to focus on the
following issues.

4.3.1 Improve the Link between Pixels Dominating the Featre
Tracking Solution and Target Height Assignment

88



Target height assignment has been identified asjarnsource of error for the DMW
products. Deriving a representative height thatdasistent with, and has ties to, the
features being tracked is the goal of an upgraded derivation process. Studying and
improving the link between the features being teaclnd the heights assigned to these
features is the major focus of this future effort.

4.3.2 Quality Control Indicators

The quality control indicators attached to each DM¥&¢tor are important to the users of
these products. Proper interpretation and appbicadif these quality control indicators

helps the user community make optimal use of theADproducts. As such, improving

these quality control indicators so that they maceurately represent the integrity and
accuracy of the DMW product is vital. Of particulaterest by the NWP community is a
quality indicator that provides information abobuetestimated accuracy of the height
assignment associated with the derived motion vgratlucts. This will be an area of

future study.
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Appendix 1: Common Ancillary Data Sets

1. LAND MASK NASA 1KM
a. Data description
Description: Global 1km land/water used for MODIS collection 5

Filename Iw_geo _2001001_v03m.nc

Origin: Created by SSEC/CIMSS based on NASA MODIS catech
Size 890 MB.

Static/Dynamic: Static

b. Interpolation description

Theclosest point is used for each satellite pixel:
1) Given ancillary grid of large size than satellitélg

2) In Latitude / Longitude space, use the ancillaaddosest to the
satellite pixel.

2. SFC_TYPE_AVHRR_1KM
a. Data description
Description: Surface type mask based on AVHRR at 1km resolution
Filename gl-latlong-1km-landcover.nc
Origin : University of Maryland
Size 890 MB
Static/Dynamic. Static

b. Interpolation description
Theclosest point is used for each satellite pixel:
1) Given ancillary grid of large size than satellitélg

2) In Latitude / Longitude space, use the ancillaaddosest to the
satellite pixel.
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3. NWP_GFS

a. Data description

Description: NCEP GFS model data in grib format — 1 x 1 degree
(360x181), 26 levels
Filename gfs.tHHz.pgrbfhh

Where,

HH — Forecast time in hour: 00, 06, 12, 18

hh — Previous hours used to make forecast: 00®&3)9
Origin: NCEP
Size 26MB
Static/Dynamic. Dynamic

b. Interpolation description

There are three interpolations are installed:
NWP forecast interpolation from different forecasttime:
Load two NWP grib files which are for two differefiarecast time and
interpolate to the satellite time using linear rptdation with time
difference.
Suppose:
T1, T2 are NWP forecast time, T is satellite olaagon time, and
T1<T<T2. Yisany NWP field. Then field Y atsllite observation
time T is:
Y(T) = Y(T1) * W(T1) + Y(T2) * W(T2)
Where W is weight and
W(T1)=1-(T-T1)/(T2-T1)
W(T2) = (T-T1) / (T2-T1)

NWP forecast spatial interpolation from NWP forecas grid points.
This interpolation generates the NWP forecast fortie satellite pixel
from the NWP forecast grid dataset.

Theclosest point is used for each satellite pixel:
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1) Given NWP forecast grid of large size than satetjitid
2) In Latitude / Longitude space, use the ancillaaddosest to
the satellite pixel.

NWP forecast profile vertical interpolation

Interpolate NWP GFS profile from 26 pressure level$01 pressure
levels

For vertical profile interpolation, linear interdion with Log
pressure is used:

Suppose:
y is temperature or water vapor at 26 levels, diilyis temperature
or water vapor at 101 levels. p is any pressurel leetween p(i) and

p(i-1), with p(i-1) < p <p(i). y(i) and y(i-1) ang at pressure level p(i)
and p(i-1). Then y101 at pressure p level is:

y101(p) = y(i-1) + log( p[i] / p[i-1] ) * ('y[i] -y[i-1] ) / log (
p[i] / pli-1] )
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