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ABSTRACT

This document is the Algorithm Theoretical Basischment (ATBD) for the next
generation of Geostationary Operational Environmler@atellite (GOES-R) Legacy
Atmospheric Profile (LAP) and derived products gatien. It is a high level description
and the physical basis for the physical retriefadtmospheric temperature and moisture
profiles with infrared (IR) radiances measured iy Advanced Baseline Imager (ABI) to
be flown on the GOES-R). The algorithm retrievesgerature and moisture profiles and
the derived products including total precipitablatev (TPW), layer precipitable water
(LPW), lifted index (LI), convective available potél energy (CAPE), total totals index
(TT), Showalter index (SI), and K-index (KI) frontear sky radiances withiN by M
ABI field-of-view (FOV) box area. This document ntains a description of the
algorithm, including scientific aspects and praalticonsiderations. It is divided in the
following main sections.

* Overview

* Algorithm detailed description

* Algorithm inputs and files description
* Practical considerations

* |nitial validation

12



1 INTRODUCTION

1.1 Purpose of This Document

The legacy atmospheric profile (LAP) algorithm tretecal basis document (ATBD)
provides a high level description and the physicasis for the retrieval of legacy
atmospheric temperature and moisture profiles wififtared (IR) radiances taken by the
Advanced Baseline Imager (ABI) flown on the nexingetion of Geostationary
Operational Environmental Satellite (GOES-R) serie6 NOAA geostationary
meteorological/environmental satellites. The lggatmospheric profile (LAP) product
provides temperature and moisture profiles, alont@) werived total precipitable water
(TPW) and atmospheric instability indices from clsly radiances withit x M ABI
field-of-view (FOV) box area, here one FOV meanse pixel. One field-of-regard (FOR)
is defined asv x M FOVs. The derived instability indices include ditt index (LI),
convective available potential energy (CAPE), tatdals index (TT), Showalter index
(SI), and K-index (KI). The ABI LAP product is amtinuation of the current GOES
Sounder product before it is presumably succeedednbadvanced hyperspectral IR
sounding instrument in the post-GOES-R era (Sckiat. 2008).

1.2 Who Should Use This Document

The intended user of this document are those stedein understanding the physical
basis of the algorithms and how to use the outptitie algorithm to optimize the LAP
product for a particular application. This documnalso provides information useful to
anyone maintaining, modifying, or improving thegbnial algorithm.

1.3 Inside Each Section
This document is broken down into the following maections.

* Observing System Overview Provides relevant details of the ABI and provides
a brief description of the products generated leyaligorithm.

» Algorithm Description: Provides a detailed description of the LAP altjon
including its physical basis, its input and itspoutt

» Test Data Sets and OutputsProvides a description of the test data set tsed
characterize the performance of the algorithm amaity of the data products. It
also describes the results from algorithm procgssging SEVIRI data.

» Practical Considerations Provides an overview of the issues involving

numerical computation, programming and procedugeslity assessment and
diagnostics and exception handling.
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» Assumptions and Limitations All the assumptions and limitations concerning
the algorithm theoretic basis have been descrihddiscussed.

1.4 Related Documents

This document currently does not relate to any rotdecument outside of the
specifications of the GOES-R Ground Segment Funatioand Performance
Specification (F&PS) and to the references giveaughout.

1.5 Revision History

Version 0.1 of this document was created by Dr. Ouwnf Cooperative Institute for
Meteorological Satellite Studies (CIMSS) at the UWWsldison and Timothy J. Schmit of
Center for Satellite Applications and Research (BYAf NOAA/NESDIS, with the
intent to accompany the delivery of the version al@orithms to the GOES-R AWG
Algorithm Integration Team (AIT). (July 2008)

Version 0.1 comments/suggestions from N. Nalli (RTRSGS) (September 2008)
Version 1.0 was developed to meet 80% ATBD requérgim(May 2009)

Version 1.0 comments/suggestions from Mitch Golg&TAR/NESDIS) (June 2009)
Version 1.0 updates from Jun Li (CIMSS) (July 2009)

Version 1.1 updates from AIT and Jun (SeptembeBR00

Version 2.0 updates from Xin Jin, Jun Li and Tinm®&da (June 2010)

Version 2.0 updates from AIT (September 2010)

14



OBSERVING SYSTEM OVERVIEW

1.6 Products Generated

The GOES-R ABI LAP algorithm is responsible for thetrieval of atmospheric
temperature and moisture profiles for a FOR coimgjsbf M x M ABI FOVSs, in this
document FOR specifically refers to the pixel grémpone profile retrieval. At the time
of this writing, M = 5 is assumed, although because current requmtsncall for 4 km
mesoscale stability parameters, a smaller valueMomay be necessary. From the
temperature and moisture profiles, the associaf®/ Bnd atmospheric stability indices
such as LI, TT, KI, SI and CAPE are also deriva@the product generation needs IR BTs
from all ABI channels along with NWP output. ThA&R output includes temperature
and moisture profiles at all 101-levels but onlg 84 level temperatures from 100 hPa to
1050 hPa and 35 level moistures from 300 hPa t® h#& are useful. The surface skin
temperature, TPW, PW at three atmospheric layersigma ordinate (PW_low: 0.9 —
SFC, PW_mid: 0.7 — 0.9, PW_high: 0.3 — 0.7), LI, REA TT, Kl and Sl are also
products included in the output. Table 1 showsrdgeiirements for LAP products. More
requirement information can be found in the GOEBHRD and the F&PS.

Note: In the LAP code, M = 3 is the default setting
Table 1. Requirements for GOES-R LAP products.

Table 1.1. Requirement on LAP temperature profile

Legacy Temperature Profile: CONUS | Requirement

Product Geographic CONUS,
Coverage/Conditions Full Disk,
° Mesoscale

Reflects layering of NWP Models

Product Vertical Resolution (km) (TBR); inherent vertical resolution i4
only 3to 5 km

Product Horizontal Resolution (km) 10

Product Mapping Accuracy (km) 5

Product Measurement Range (K) 180 — 320 K

1K below 400 hPa and above

Product Measurement Accuracy (K) boundary layer

CONUS: 30 min
Product Refresh Rate/Coverage Time| Full Disk : 60 min
Mesoscale: 5 min

CONUS: 266 sec

Mission Product Data Latency Full Disk: 266 sec
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Mesoscale: 266 sec

Product Measurement Precision
Temporal Coverage Qualifier (K)

2 K below 400 hPa and above
boundary layer
Day and Night

Product Extent Qualifier

Quantitative out to ade67° LZA

Cloud Cover Conditions Qualifier
Product Statistics Qualifier

Clear conditions associated with
threshold accuracy over specified
geographic coverage

Table 1.2. Requirement on LAP moisture profile

Legacy Moisture Profile: CONUS

Requirement

Product Geographic
Coverage/Conditions

CONUS,
Full Disk,
Mesoscale

Product Vertical Resolution (km)

Reflects layering of NWP Models
(TBR); inherent vertical resolution is
only 3to 5 km

Product Horizontal Resolution (km) 10
Product Mapping Accuracy (km) 5
Product Measurement Range (%) 0-100

Product Measurement Accuracy (%)

Sfc-500 mb: 18% 500-300 mb: 18%
300-100 mb: 20%

Product Refresh Rate/Coverage Time

CONUS: 30 min
Full Disk : 60 min
Mesoscale: 5 min

Mission Product Data Latency

CONUS: 266 sec
Full Disk: 266 sec
Mesoscale: 266 sec

Product Measurement Precision (%)

Scf-500mb: 18%
500-300 mb: 18%
300-100mb: 20%

Temporal Coverage Qualifier

Day and Night

Product Extent Qualifier

Quantitative out to ade67° LZA
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Cloud Cover Conditions Qualifier associated witteshold accuracy

Product Statistics Qualifier Over specified gepbia coverage

Table 1.3. Requirement on LAP Derived Stabilityited (5 indices: CAPE, Lifted
Index, K-index, Showalter Index, Total Totals)

Legacy Moisture Profile: CONUS Requirement
Product Geographic ICZISINDUisSIé
Coverage/Conditions Mesosca{le
Product Vertical Resolution Not Applicable
Product Horizontal Resolution (km) 10

Product Mapping Accuracy (km) 2

Lifted Index: --10 to 40 K
CAPE: 0 to 5000 J/kg
Product Measurement Range Showalter index: >4 to -10 K
Total totals Index: -43 to > 56
Kindex: 0 to 40

Lifted Index: 2.0 K
CAPE: 1000 J/ kg

Product Measurement Accuracy Showalter index: 2 K
Total totals Index: 1
Kindex: 2
CONUS: 30 min

Product Refresh Rate/Coverage Time| Full Disk : 60 min
Mesoscale: 5 min

CONUS:159 se (under review)
Mission Product Data Latency Full Disk: 159 sec(under review)
Mesoscale: 266 sec

Scf-500mb: 18%
Product Measurement Precision (%) | 500-300 mb: 18%
300-100mb: 20%

Temporal Coverage Qualifier Day and Night

Product Extent Qualifier Quantitative out to ade67° LZA
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Cloud Cover Conditions Qualifier

associated witteshold accuracy

Product Statistics Qualifier

Over specified gepbia coverage

Table 1.4. Requirement on LAP Total Precipitabletéa

Legacy Moisture Profile: CONUS

Requirement

Product Geographic
Coverage/Conditions

CONUS,
Full Disk,
Mesoscale

Product Vertical Resolution

Not Applicable

Product Horizontal Resolution (km) 10
Product Mapping Accuracy (km) 2
Product Measurement Range 0—-100 mm

Product Measurement Accuracy

Lifted Index: 2.0 K
CAPE: 1000 J/ kg
Showalter index: 2 K
Total totals Index: 1
K index: 2

Product Refresh Rate/Coverage Time

CONUS: 30 min
Full Disk : 60 min
Mesoscale: 5 min

Mission Product Data Latency

CONUS: 266 sec
Full Disk: 806 sec
Mesoscale: 266 sec

Product Measurement Precision

3 mm

Temporal Coverage Qualifier

Day and Night

Product Extent Qualifier

Quantitative out to ade67° LZA

Cloud Cover Conditions Qualifier

associated witfeshold accuracy

Product Statistics Qualifier

Over specified gepgia coverage
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TPW (total precipitable water) is the amount of liguwsater (in cm) if all the
atmospheric water vapor in the column was conden3éx following equation is used
to derive TPW:

TPW=—2 [q(p) (p (1)
Pu9

w

wherep, equals to 1000 which means the water density imkgg equals to 9.8 which
means the gravity acceleration in fn/g(p) is the mixing ratio (g/kg) of water vapor
profile at pressure level pp.is the surface air pressure in hPa. Since the wateor

content is very rare above 300 hPa, only water vapatent between surface and 300
hPa is accumulated to derive TPW.

Layer precipitable water (PW) provides informatiam the water vapour contained in a
vertical column of unit cross-section area in tHegers in the troposphere:

Boundary Layer (BL, PW_low): [Surface - 900 hPa]
Middle Layer (ML, PW_mid): [900 hPa - 700 hPa]
High Layer (HL, PW_high): [700 hPa — 300 hPa]

In some cases, such as the center of a low presgst@em the surface air pressure could
be lower than 900 hPa. In other cases such astbednigh altitude areas, the surface
pressure can get lower than 700 hPa. The sigmasyeesordinate is applied to
circumvent such cases. The boundaries for PW cedloal are converted into sigma
indices with the values of 1.0, 0.9, 0.7, and @8pectively. The conversion between
sigma pressure and normal air pressure ordinaiedagh the following equation:

P,, = 0005+ sig _idx[(P, — 0009 2
where P, is the pressure corresponding to a specific sigwel index;sig _idx is the

sigma index;P, is the surface air pressure. Since the retrievedtore profile doesn’t

necessary contain values at these levels for diftesurface pressures, a linear
interpolation is conducted to find mixing ratio vat at these levels.

ln q( psig) - ln q( pbelow)

] (3)
In q( pabove) =In q( pbelow)
where g is the mixing ratio profile;p,,,,. is the pressure level just aboyg, and p,,,,

q( psig) = q( pbelow) + [q( pabove) - q( pbelom)] [E

is the pressure level just belopy, .

LI (lifted index) in units of degrees Celsius (°Cyyides estimations of the atmospheric
stability in cloud-free areas. Among all the poigntindices, the LI has been
implemented and coded. The LI index (Galway, 198&presses the temperature
difference between a lifted parcel and the surroundir at 500 hPa. The parcel is lifted
dry adiabatically from the mean lowest 100 hPallev¢he condensation level, and then
wet adiabatically to 500 hPa. In the LAP algorittira same routine will be implemented
for the GOES sounder. Negative values of LI indiddiat the parcel is warmer than its
environment and unstable.
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In the GOES-R LAP code, it takes the following faimcalculate LI in the code:
LI =T,,— (WLIFTS(T,) + 27316 4)

where T,, is the air temperature at the"&evel (500 hPa)WLIFT5 is a function to
calculate temperature at 500 hPa for the given bu#i-potential temperaturery, ),

lifted along wet adiabatic process. The followirgiation is used to derive WLIFT5:
WLIFT5= A0+T,, AL+ T, (A2+T,, [{A3+ T, ([A4+T,, [{A5+T,, [A6))))) (5)

here AO to A6 are coefficients listed in Table AR, is derived from the following

equation:
T, =PT-WOBHPT)+WOBHKT, ) (6)
where PT = (T +273.16) [{1000/P}*****- 273.16the potential temperature (°C);

T: the air temperature in °C;

P=P,-05*R,, the parcel pressure from surfade)(to 100 hPaR,, );

T =T —(T-T,) AL+ A2[T + (T —-T,) {A3+ A4[(T —-T,) - A5T)), temperature
at lifting condensation level, where T angd dre air and dew point temperature in °C,
respectively; Al to A5 are coefficients listed imble A6. T, is widely used in the
calculation of stability indices. In GOES-R LAP @ is derived depending on the air
temperature T. If T is higher than -20 °C, the tioit TEMSATIs called to calculate
temperature (K) at specified saturation vapor pnesB... over water:

sat

TEMSAT= AL+V [(A2+V [(A3+V [(Ad+ A5[V))) + 273186,
whereV = LoglQ(P,,,), Al to A5 are coefficients listed in Table A7.R,, is lower than
0.0636 or higher than 123.3972, TEMSAT is set tdf(r is lower than -20 °C, the
function TVPICEis called to calculate temperature (K) at;&ver ice. It takes the same
form asTEMSATbut with different coefficients:

TVPICE= AL+V [(A2+V [(A3+V [(Ad+ A5[V))) + 27316,
whereV = LoglO(P,,), Al to A5 are coefficients listed in Table A8.H,, is lower than
1.403D-5 or higher than 6.108DDYPICEis set to 0.T, is the smaller value between

TEMSAT/TVPICENd T. fTEMSAT/TVPICEequals to 0T, is set as (T - 40).

WOBF is the difference between the wet-bulb po&riimperature (°C) for saturated air
and that for completely dry air at given temperatdtris calculated with two methods:
If temperature (T) is above 20°C, it takes thigrfor
WOBF = A4/(L+ (T - 20) [{AL+ (T - 20) [{A2 + (T - 20) [A3)))* + AS{T - 20) - A6
If temperature (T) is below 20°C, it takes thisnfor
WOBF = B4/(1+ (T - 20) {B1+ (T - 20) (B2 + (T - 20) [(B3)))*
Here Al to A6 and B1 to B4 are coefficients lisked able A5.

The LI indicates the atmospheric thermodynamicipidity, its value indicates that
O< LI, stable
-3< LI <0, marginally unstable
-6< LI <-3, moderately unstable
-9< LI <-6, very unstable
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LI <-9, extreme unstable

The LI value itself cannot predict whether storm#l wccur. It gives the forecaster a

general idea of the convective forcing if thundemsis do develop. Unstable LI values
(negative values) combined with high TPW valuescai# that the troposphere is near
saturation and has instability. The LI is less ukgf winter when the bottom layer of the

troposphere tends to be dry (low dew points) and ¢stable). Precipitation can be

produced with stable LI due to other ingredientisichv are not correlated with the LI like

elevated convection, dynamic forcing without thedymamic forcing and isentropic

lifting. Therefore the LAP products must be useaamjunction with other data sources
(forecast profiles, radio-sounding, and satellitagery, Radar ...) in order to alert the
forecasters about the possibility of the occurrentenesoscale events. The LAP is
generated from the exploitation of ABI IR brightedemperatures (BTs). ABI provides
one full resolution image (2 x 2 km at nadir) evéf minutes at the satellite nadir for
every IR channel. Thus, these products are usefila prediction of severe weather due
to their ability to measure high resolution tempanad spatial variations of atmospheric
stability and moisture. A time sequence of the iesaip the best way to monitor drying
and moistening trends as well as stability trends.

CAPE (convective available potential energy) in unitslotiles per kilogram (J/kg) is a
measure of the cumulative buoyancy of a parcd @seis. Its definition is:

Z,
CAPE= ngi(Tva ~T,.)dz
o )
where Z, is the level of free convectior, is the equilibrium level T, and T, are
wet-bulb potential temperature for the environmand the air parcel, respectively.

equals to 9.806 which means the gravity acceleratian/g. In the GOES-R LAP code,
the integration is performed from the surface l¢vethe 57" level corresponding to 100
hPa.T,, andT,, at difference levels are calculated with theseaqos respectively:

T, = (T +273.16) [{1000/PJ****'- 273.16 (8a)

T,, = (SATLFT+273.16) [{1000/P§***.- 273.16 (8)

In the above two equation®? is the air pressure at a specific levél; is the air
temperature (°C) an8ATLFTIs the temperature (°C) where moist adiabaticalbsses
P. The original algorithm to deriv8 ATLFTin the sounding code was developed by
Herman Wobus, a mathematician formerly at the naegther research facility but now
retired. The value returned by functi8ATLFTcan be checked by referring to Table 78,
pp. 319-322, Smithsonian meteorological tablesRbland List (' revised edition).

CAPE values larger than 1000 J/kg represent maglarabunts of atmospheric potential
energy. Values exceeding 3000 J/kg are indicativeeoy large amounts of potential
energy, and are often associated with strong/seveather.

TT (Total Totals) Index in units of degrees CelsiiS)(is indicative of severe weather
potential. And is computed using discrete pressewel information. It is a sum of two
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separate indices: vertical totals (VT: measuretafics instability) and cross totals (CT:
measure of moist instability):

TT =VT +CT =(T850-T500 + (T,850-T500 9
where T and T, are air and dew point temperature in °C, respelgtifor example,

T500 represents atmospheric temperature at 500 hiPdhe GOES-R LAP code, the
values of T and T, at these specific pressure levels are linear potated from the

original 101-level pressure ordinate.

Generally, TT values below 40 - 45 are indicatdrdéitte or no thunderstorm activity,
while values exceeding 55 in the Eastern and Cledtvied States or 65 in the Western
United States are indicators of considerable sewesgher.

S| (Showalter index) in units of degrees Celsius (¥4 parcel-based index, calculated
in the same manner as the LI, using a parcel ath®20 That is, the 850-hPa parcel is
lifted to saturation, then moist adiabatically t605hPa. The difference between the
parcel and environment at 500 hPa is the Sl. Adhller smaller than -3 indicates the
possible condition for a severe weather.

Kl (K-index) in units of degrees Celsius (°C) is a@enindex using data from discrete
pressure levels instead of a lifted parcel. It &dal on vertical temperature changes,
moisture content of the lower atmosphere, and #mgcal extent of the moist layer. The
higher the Kl the more conducive the atmosphete isonvection. The formula for Ki
is:

Kl =(T850+T,850 —(T700-T, 700 —-T500 (10)
In the GOES-R LAP code, the values ©f and T, at these specific pressure levels

(500/700/850 hPa) are linear interpolated fromdhginal 101-level pressure ordinate.
Severe weathers are very likely to occur if theigadf KI exceeds 30.

Only clear ABI IR BTs within each Field-of-RegarB@R) are processed for LAP and
derived products. Usually there are multiple clgar FOVs in each FOR. Two methods
are available in the algorithm to select the repméag value for the specific FOR: one is
the simple average of all clear sky FOVs for eabtlanoel; another method is to
determine the warmest FOV with largest value oflthd.0.8 channel and use the values
of all IR channels at this FOV as representativeshis FOR. A subroutine named
Find_Good_BTis presented for the BT manipulation in the maourgling retrieval
module and called right after the determinationclefar pixels within the FOR. The
simple average method is better to reduce theumsntal noise. However, since there
are always some cloudy pixels misidentified asrgeels, which in general have lower
value at IR 10.8 channel, the second method isebéttan the simple average in
mitigating cloud impact. According to several casdth SEVIRI as used as proxy, it is
found that the cold bias is much stronger thanitis¢rumental noise (for details see
3.4.2.1); therefore the warmest FOV method is setthee default method in LAP
sounding algorithm.
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Temperature and moisture forecast information eslusgether with ABI IR clear BT for
generation of LAP and derived products; two stepsused in the algorithm: regression
followed by the variational iterative physical retral.

1.7 Instrument characteristics

The next-generation geostationary satellite senidisenable many improvements and
new capabilities for imager-based products. Givet GOES-R will nohost a sounding
instrument, the question becomes whether the ptediased on the ABI will provide an
adequate substitute for legacy sounder-based podlite ABI (Schmit et al. 2005) on
the next-generation GOES-R will certainly improy@oo the current GOES imager with
more spectral bands, faster imaging, higher speggalution, better navigation, and more
accurate calibration. The ABI expands from five e bands on the current GOES
imagers to a total of 16 spectral bands in theblas{VIS), near-infrared (NIR), and IR
spectral regions. The coverage rate for full diskns will increase to at least every 15
min, and the continental U.S. region will be scahaeery 5 min. ABI spatial resolution
will be 2 km at the subpoint for 10 IR spectral dsnl km for select NIR bands, and 0.5
km for the 0.64-um VIS band (Schmit et al. 2005pweéver, the ABI was designed
assuming a companion high-spectral-resolution IRinder, originally called the
Advanced Baseline Sounder (ABS), and more recehdyHyperspectral Environmental
Suite (HES). Consequently, the ABI only has onebaar dioxide (COZ2)-sensitive
spectral band. It was envisioned that informaticomf the ABI would improve select
products from the HES, such as an improved sub-pmkaracterization through the
higher-spatial-resolution information of the ABIit al. 2004a). Also, it was envisioned
that information from the HES would improve ABI-leals products, including cloud
height (through the many spectral bands on the Hi8)surface temperature through a
better surface emissivity estimate. However, reaieof atmospheric temperature and
moisture profiles were to be computed solely withS+adiances.

Both the current GOES Sounder and ABI have threeenwapor absorption channels
although the spectral coverage is different. Studiave shown that the ABI, with
numerical model forecast information used as trekdpamund, will be slightly inferior to
the GOES-13/0O/P sounder performance, yet both astantially less capable than a
high-spectral-resolution sounder with respect téormation content and retrieval
accuracy. The ABI will provide some continuity tife current sounder products to
bridge the gap until the advent of the GOES advamtieared sounder. Both theoretical
analysis and retrieval simulations show that dadanfthe ABI can be combined with
temperature and moisture information from foreecastels to produce derived products
that will be adequate substitutes for the legaogpcts from the current GOES sounders
(Schmit et al. 2008).

2 ALGORITHM DESCRIPTION
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The LAP product is a continuation of the currentEB0Sounder product. As we prepare
for the next generation of geostationary satellitels important to ensure the continuity
and quality of products that users depend on fioencurrent satellite series. The GOES
Sounders (Menzel and Purdom 1994) have providelitgjbaurly radiances and derived
products over the continental United States (CONHBI®) adjacent oceans for over a
decade (Menzel et al. 1998). The derived produadude: clear-sky radiances;
temperature and moisture profiles; TPW and layer BMWiospheric stability indices such
as CAPE and LI. These products are used for a auwftnumerical weather prediction
(NWP) and forecasting applications (Menzel and Bordl994; Bayler et al. 2001;
Dostalek et al. 2001; Schmit et al. 2002). The GQBA 4/15 Sounders will continue the
mission of nowcasting (short-term forecasts) andM3\pport. GOES-14 is the current
on-orbit spare, while GOES-15 is under-going onitddsting.

The next generation GOES series will enable mamyronements and new capabilities
for imager-based products. Given that GOES-R vatl most a sounding instrument, the
guestion arises whether the ABI-based products prdvide an adequate substitute for
legacy sounder-based products.

The current GOES Sounders have 18 IR spectral banpofile the atmosphere; while
the current GOES Imagers have only 4 IR spectratifamost of them provide surface
and cloud information. With the advent of advanaedgers, like the ABI, producing
‘legacy atmospheric profile type’ products is pb&si(Schmit et al. 2008). However, the
narrowband imager spectral coverage cannot matehpérformance of high spectral
resolution advanced sounders (Schmit et al. 200%.imagers have spectral resolution
on the order of 50 — 200 ¢hfor a single band, while advanced hyperspectrahders
have spectral coverage on the order of 0.5 fona single channel. The finer resolutions
enable measurements of important spectral chamgesrésult from vertical structures
and other phenomena. Nevertheless, with the cufi@nt IR spectral band imager,
certain products like TPW, LI and skin temperathere been produced (Hayden and
Schmit 1991), evolving from experience with GOESSR and VAS data (Smith et al.
1985).

Although the advanced sounding products that weignally envisioned for GOES-R
cannot be realized without the HES, legacy soupdeducts that are used by the NWS
and others agencies must be provided. Schmit e(2808) showed that adequate
substitute products can be generated from ABI dataonjunction with information
from short-term numerical model forecasts. The townity’ products produced from
today's low-spectral resolution sounder include TRWand surface skin temperature.
Their study also showed that the ABI, combined withmerical model forecast
information as the background, would be slightlferior to the GOES-13/0/P Sounder
performance, and substantially less capable thiaiglaspectral resolution sounder with
respect to information content and retrieval accyr&urrent GOES sounder clear-sky
radiances in bands 1-15 (14.7- to 4.4-um) are dlssed in the NWP models. They will
be replaced by ABI bands 7-16 (3.9- to 13.3-um)cihinclude only one C£sounding
band. Information from the future NPP/JPSS Croasktrinfrared Sounder (CrIS) and
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other polar-orbiting high-spectral polar-orbitirf§ sounders in conjunction with the finer
spatial resolution ABI data may substitute for eatrsounder temperature information
for radiance used within NWP, especially relatedhe large scale patterns. Research
based on current polar orbiting systems has shdwnbenefits of combining high-
spectral resolution IR sounder measurements wgh gpatial resolution imager data (Li
et al. 2004; 2005). For NWP assimilation of GOESir®&ter measurements, moisture is
the key information. Regarding information contdmth the ABI and current sounder
have three narrow “water vapor” {8 absorption) bands and longwave window bands.
However, a HES-type sounder (Wang et al. 2007) faister scanning and high spectral
resolution remains essential for regional NWP fasi@ emissivity, better nowcasting
products, moisture profiles, moisture flux, bettdoud heights, and many additional
environmental applications.

2.1 Algorithm Overview

This section describes the input needed to prabessAP and derived products. While
the LAP products are derived for each FOR, therdlgo does require knowledge of the
clear mask information for each FOV within the FORAt the moment, the LAP

algorithm can run on full disk (within the specdidocal zenith angle limitation), or
CONUS, or mesoscale region. The LAP algorithm Iso adesigned to run with

information from only FOR.

2.2 Processing outline

The process initialization gives access to ABI #fiances or BTs, ABI CM, local zenith
angle and ancillary data (topographic data, laradrsask, longitude, latitude). Only if the
pixel or FOR is labelled as clear air (find 10 aomclear pixels within the FOR) and the
local zenith angle of this pixel or FOR is belowe tbonfigurable maximum zenith
threshold (67 degree), the LAP TPW, PW, LI, CAPE, KI, TT, and SI parameters are
calculated for this FOR.

BTs of all IR channels are read into the LAP altjon although some of them are not
used. NWP files are used as background. The 3.@hennel is excluded in retrieval
because it is difficult to simulate accurately bymmmunity Radiative Transfer Model
(cRTM), or Pressure-Layer Fast Algorithm for Atmbsgc Transmittances (PFAAST).
The 8.5-um is selectable because the surface emtyssit this channel has large
fluctuation over desert. This channel is excludedthe default setting. The 9.7-um
channel is used only in regression and is excludethe physical retrieval. Table 2
summarizes the current channels used by the LA&uptpalthough most VIS, NIR and
IR bands are used by the cloud mask (CM) produceigeion.

Table 2. Channel numbers and approximate centre¢lengths for the ABI.
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| Used in LAP Sounding

Channel Number  Wavelength (“""Regression Physical

1 0.47

2 0.64

3 0.86

4 1.38

5 1.61

6 2.26

7 3.9

8 6.15 v v

9 7.0 v v

10 7.4 v v

11 8.5 ¢)*

12 9.7 v

13 10.35 v v

14 11.2 v v

15 12.3 v v

16 13.3 v v

*: This channel is selectable in physical retrieVais safe to use over ocean only and
must be avoided over desert.

Note: There are two arrays holding channel indegasn the GOES-R LAP code: the
one for regression is fixed and the one for physetaieval is changeable. It is easy to
turn on or turn off the channel in the physicatiestal based on the actual performance of
this channel after launch.

The algorithm relies on spectral and spatial infation. The performance of the LAP is
therefore sensitive to any imagery artifacts otrimaent noise. Calibrated measurements
are also critical because the LAP compares therebdeaadiances to those calculated
from a forward radiative transfer model (RTM). Ttleannel specifications are given in
the GOES-R mission requirement document (MRD. Emeldsea mask and the surface
emissivity (SE) maps for the month at the IR ch#saee also used as input during the
processing step on land pixels. The software has bdesigned in a very modular way.

The whole process includes:
(1) Pre-processing:

» Initialization: reading of processing options frdire configuration file,
calculating the minimal number of clear pixels regd for a retrieval
based on the FOR size and the minimal fractionezrcsky determined in
the configuration file, reading of all coefficiefite names, get IR SE
maps, initialisation of RTM, get calibrated ABI IBTs and associated
geographical ancillary data to process, read of @Bl, etc.

» Determined by configuration file, optional ABI cleaveraging or warmest
BT to process on FOR of M x M pixels. Mean of clpatels BTs on FOR
or BTs of warmest clear pixel at IR10.8, are the awailable methods to
calculate BTs of the FOR
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» Take collocated forecast temperature and moisttoglgs and other 2-D
forecast products such as surface skin temperasuréace air pressure,
and surface wind speed: spatial, temporal andoarterpolation of [6 -
18 hours] range forecast NWP model to the RTM presdevels of
temperature and moisture profiles at the centeFOR position. The
forecast can be 6-hour, 12-hour, or 18-hour forebas the forecast will
be outputted at least every 6 hours. The foredeststwo time steps will
be interpolated to match the satellite observatiofsmporally and
vertically in space, it is linear interpolation. Hmontally the bi-linear
interpolation is applied, based on the relativéagise of the center pixel to
the four nearest NWP grids. (Please refer to pofitils.c in /geocat/src
for details). Ideally, the highest temporal resolutforecast information
should be used.

 Read in the regression coefficient array for nowedir regression to
generate the first guess.

* Read in the look-up table (LUT) array for oceanidace emissivity.

* Bias adjustment of ABI BTs. The bias correction fioents are read
from the configuration file and BT correction is dea

* Performing of non-linear regression to build thestfiguess profiles of
temperature and moisture using bias corrected BV¢P profiles, NWP
surface pressure, month, latitude, and local zeaitiie (LZA).

» If over ocean/lake, perform a LUT-based interpolatimethod to get
surface emissivity over water based on the nedaseiwind speed.

(2) Processing:
* Performing of physical retrieval for temperatured anoisture profiles in
Physical Retrieval Module using the first guess.
* Checking that the retrieved profiles of temperatarel moisture are
between limits and they have physical sense.
» Performing direct calculation of FOR TPW, PW, LIABE, KI, TT, and
Sl parameters from the retrieved profiles of terapee and moisture.
3) Post-processing:
» The following quality flags are output for each FOR
e Overall quality;
* Retrieval quality, including failure to converge;
* Quality of surface temperature first guess in tefm
the difference between calculated BT and observed
BT at 11-um.
» The following quality information is output for da&OR:
* Number of clear sky pixels within the FOR;
* Residual of the profile;
* Number of iterations done;
e Quality information bit-field: contains a singletbi
indicating ocean or land.
* Writing of output file.
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A flowchart (Fig Al) is presented in the AppendicBon to help readers understand the
whole process.

Note: A linear regression mode is assumed for @masection. So far it is not done
because we don't have field data. However, thexdvan arrays are hardcoded in the
sounding code and one is filled with 1.0 for slapel the other is filled with 0.0 for
offset. These two arrays will be removed in theifatand an ancillary data file will be
introduced, containing the coefficients for biasreotion.

2.3 Algorithm Input

3.3.1 Primary Sensor Data

The list below contains the primary sensor datal uisethe LAP algorithm. The primary
sensor data means information that is derived wdleim the ABI observations and
navigation.

» Calibrated BTs (K) for IR bands 7-16 from x M (whereM=5) FOV array, or
calibrated BTs (K) for IR bands 7-16 fravix M FOV array

» Sensor LZA at the center of edghx M FOV array

» Latitude at the center of eabhx M FOV array

* Longitude at the center of eabhx M FOV array

* ABI channel use index array

* NeDR (radiance detector noise) array

» ABI CM for each pixel in thél x M FOV array (developed by cloud team)

3.3.2 Ancillary Data

The following lists and briefly describes the alariy data required to run the LAP
algorithm. Ancillary data means information th&hot included in the ABI observations
or navigation data.

* Non-ABI dynamic data

(1) Surface pressure from 6—-18 hour forecast from NVéBeh

(2) Surface pressure level index from 6—18 hour fortefcasn NWP model.

(3) Near surface wind speed vectors (zonal and memdjioinom 6-18 hour
forecast from NWP model.

(4) Surface skin temperature from 6—18 hour forecash fiNWP model.

(5) Temperature profile from 6—18 hour forecast from Rkiodel.

(6) Moisture profile from 6—18 hour forecast from NW®ael.

(7) Forecast error covariance matrix from comparisoesveen forecast and
radiosondes (matchup files) (Li et al. 2008). Assutlmere is no correlation
between temperature and moisture in the error Gvee matrix.
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It is suggested that for CONUS or mesoscale prougssegional NWP output will be
used, while global NWP data will be used in fuBldprocessing.

* Non-ABI static data

(1) Land Mask

(2) Surface Elevation

(3) Temperature profile EOF file derived from the maiglfiles (Li et al. 2008).

(4) Water vapor profile (in term of logarithm of mixirrgtio) EOF file derived from
the matchup files (Li et al. 2008).

(5) IR SEs for ABI bands from UW-Madison baseline fitabase. A global database
of monthly IR land SE derived from the MODIS opeyaal land surface
emissivity product (MOD11). Emissivity is availaldéobally at ten wavelengths
(3.6,4.3,5.0, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1, a4@Bum) with 0.05 degree spatial
resolution (Seemann et al. 2008). Monthly SEs hmaen integrated into the ABI
spectral response functions to match the ABI bands.

(6) LUT for ABI IR SEs over ocean as a function of LZkd wind speed above
ocean surface. (http://ams.confex.com/ams/pdfpAr&t810.pdf).

(7) Regression coefficient file. This coefficient fitentains 81 regression coefficient
datasets. Each coefficient dataset correspondsdd @A ranging from O to 80
degrees. The regression coefficient file is anyaofa81*110 * (3*L+1+9), where
L(=101) is the atmospheric pressure levels usériTiN.

The names of all Non-ABI static data files are latdein the green boxes in Fig Al
except the IR SE files which are loaded into GEOGaAitomatically when the program
starts. In addition, a clear-sky fast and accufat@ard RTM is needed in the iterative
physical retrieval process. Currently the cRTM &ed as the forward RTM. To run
cRTM for ABI, the Planck-function and band-correcticoefficients must be loaded into
memory at the beginning (this is done by callingubroutine which reads in these
coefficients from a static data file ). Other alaey static files needed for the cRTM ABI
cases are provided. These files contain regressamifficients and are called in a
subroutine for the calculation of atmospheric tratttsince. For a complete view of the
RTM mechanism, please refer to the Fig Al.

2.4 Theoretical Description

2.4.1 Physics of the Problem

LAP retrieval is a process of iteratively adjustiadirst guess profile based on the BT
residuals between observed and calculated ABI IRi®aThe first guess is used in the
initial calculation. ABI spectral and spatial radi@ signatures are used in the retrieval
process.
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Assuming CQis a well-mixed gas, an IR band with €&@bsorption contains temperature
profile information (assuming a non-isothermal aspieere), while IR bands with
varying gas absorption (e.g.o®) contains both temperature and the gas conciemirat
information. ABI has 10 IR bands within which thrbands contain strong water vapor
absorption, one has strong ozone absorption anthan€Q absorption. The other ABI
IR bands are atmospheric “window” bands that conbaformation of the surface skin
temperature, emissivity and low level moisture.

The LAP algorithm infers a temperature and moispraile from the satellite observed
radiances in a given set of spectral bands. Theass parameters are then derived from
this profile. The method is an optimal estimatioging an inversion technique. The
method thus tries to find an atmospheric profilachtbest reproduces the observations
(Rodgers, 1976). In general, this is a multi-solofproblem, and therefore a “background
profile” is here used as a constraint. This backgdoprofile is often from a short range
forecast model, which is fed to the iteration schem an initial proposal for a solution.
The original background is then slowly modifiedairtontrolled manner until its radiative
properties fit the satellite observations. In addito the background, a first guess which
is the starting point in the iteration procedureised. The first guess is important, for
example, if the first guess contains structure laimio the real atmosphere, the final
solution will be good. A typical first guess fielsl a short-term forecast; however, we
found a regression is usually better than the BBesince the regression uses combined
forecast and ABI IR radiances as predictors, sor¢igeession is used here as the first
guess. Major limitations of this method are thenhegmputational effort and the fact that
the retrieved profiles tend to retain features lné first guess due to low spectral
resolution and few spectral bands.

2.4.2 Mathematical Description

3.4.2.1 Use of Field of Regards (FOR)

The LAP execution on FOR basis has been evaluatsttad of pixel by pixel basis.
This has been done in order to speed up the pliageaad because the processing in
FOR could reduce noise, and also the spatial resolof ABI LAP products will be
similar to that of the current GOES Sounder. A bd# x M FOVs has been considered
as adequate (see Figure 1) for one FOR. The widineoFOR M x M pixels) will be an
adjustable parameter in the configuration file.sTwill allow adjustingM depending on
the size of the region to process and the machiagacteristics of the user.
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Figure 1. FOR — 1 x 1 FOV (left) versus FOR 3 xright) FOVs SEVIRI TPW at
OOUTC on 18 August 2006.

Figure 2 shows the differences on the spread betRd&a OV-9.2 simulated BT versus
SEVIRI BT obtained with the mean of clear pixelslamith the IR10.8 warmest clear
pixel SEVIRI BT for grid boxes of 0.5°x0.5°. ECMVWhRalysis 00 and 12 UTC has been
used as input to RTTOV-9.2. Due to the differertidyaour, two methods for calculating
the FOR BTs will be implemented and checked in LAP:

(1) Mean BTs of all clear pixels withiime FOR

(2) The BTs at the IR10.8 warmest cfazel within the FOR

ET mean for IR13.4 BT warmest@IR10.5 for IR13.4
2008 /07 sea uncarrected 2008 /07 sea uncarrected
T S

T T
corr.= 09512 corr.= 0.98924

rm=s = 27874 rd rm=s = 1.7900
[ bioz = 24872~ = b ZI0T hias = 1.7154 b

H. p= 173430

ity

il

IR13.4 ECWWF+RTTONG.Z aynthatic BT
E:
IR13.4 ECWWF+RTTONG.Z aynthatic BT

280 2685 270 280 2685 270
IR13.4 SEVIRI BT IR13.4 SEVIRI BT

Figure 2. Scatter plots of IR13.4 SEVIRI BT ver&EBGMWF+RTTOV-9.2 synthetic BT.
(Left) Mean of SEVIRI BT clear pixels in 0.5° x ®@%ox. (Right) SEVIRI BT at IR10.8
warmest clear pixel in 0.5° x 0.5° box.
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3.4.2.2 NWP Profiles Interpolation to L Levelof RTM

As explained before, it is convenient to use a B3-hour range forecast NWP output
from a model as background profile. The LAP sofevainould be able to work with any
NWP model and it should accept the set of levesslalvle on the NWP files. Since it is
not adequate to provide error matrices, EOFs, ssgye coefficients, etc for any number
of pressure levels, it is necessary to performnterpolation of different NWP model to
RTM L pressure levels (e.g., 101 levels from 083100 hPa). Then, it is necessary to
provide the functions and tools to manage NWP GIR&3 and to apply spatial, temporal
and vertical interpolation in order to get a co#lted background profile of temperature
and humidity at the FOR.

Temporal and vertical interpolations are made msi@lT mainframe processing.
Temporal interpolation is made at NWP pressurelselbetween previous and following
available NWP data close to the time of the im&igé¢he case of vertical interpolation, it
has been added a special function to make thecakititerpolation. A function has been
developed to make the vertical interpolation thatteripolates the temperature and
humidity profiles from any set of pressure levels RTM L pressure levels. This
interpolation function interpolates linearly in Exithm of the pressure the NWP forecast
temperature and humidity fields available on ussfréd vertical pressure levels to the
RTM L pressure levels.

Besides the profile interpolation, some NWP surfaceducts including the surface
pressure and surface skin temperature are alsoogeatplin the retrieval. They are
interpolated into the satellite FOR resolution e&©OR containgVl x M pixels) before
regression. The surface pressure is required asdacfor for non-linear regression. The
NWP surface skin temperature over ocean and lakebevused as a fixed value in the
physical retrieval and the regressed sea surfageerature will be discarded.

3.4.2.3 Radiance Bias Adjustment

Radiance bias adjustment is very important folieeal accuracy. The biases are caused
by both measurement problems and errors in theatradi transfer model. The bias
correction is based on finding the difference betwehe observed BTs and those
simulated from the RTM (synthetic radiances). Usutdere are two ways for radiance
bias estimation

(1) using collocated NWP analysis and radiance measntsn

(2) using quality controlled radiosonde observationsA@Bs) and collocated

radiance measurements

One issue in radiance bias calculation is the ewiigestimate. Due to the emissivity
uncertainty, radiance bias estimation on windowdsamight not be reliable; especially
on desert pixels. A possible solution is to condbe bias adjustment using observations
over ocean which requires a number of collocatedRAand ABI observations over
clear sky. BT bias correction for water vapor ar@,@bsorption bands should help the
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retrievals. A small number of collocated SEVIRI Basd RAOBs are applied in the
GOES-R LAP algorithm to demonstrate the improvensdtdr bias adjustment (Fig. 3)

(Jin et al. 2008a). The coefficient of the biasuatinent’s robust regression will be read
from the configuration file. When GOES-R will beuteched, initial bias configuration

will be provided.
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Figure 3. The retrieved RH RMSE profiles using SEVBTs with (solid line) and
without (dashed line) bias correction (BC) in plegsdiretrieval. The dash-dotted line is
the forecast RMSE for comparison.

3.4.2.4 Use Generalized Least Squares Regreasis First Guess

The LAP algorithm uses the general least squareS)@gression as the first guess; the
regression uses ABI IR band radiances and forgra$te as predictors, Figure 4 shows
the flowchart of the first step — deriving a regiesa first guess. A global radiosonde
dataset with surface skin temperature and IR SHsigdlly assigned (Seemann et al.
2003; 2008) is used to generate the regressiorfideats. The predictands include
temperature/moisture/ozone profiles as well asaserkkin temperature and SE; the basic
predictors include ABI IR spectral band BTs, suefgaressure, latitude, month, and
land/ocean flag. Since ABI only has a few soundisgectral bands, the
temperature/moisture profiles from NWP forecast etodre used as additional
predictors. Here we use temperature forecast betd@@ and 1050 hPa and mixing ratio
forecast between 300 and 1050 hPa as additiondilcpwes. GiverZ (e.g., temperature or
water vapor/ozone mixing ratio at a given pressevel) as a predictand, the regression
equation is written in the following form:
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Z= MZB Ty +ZC be+Zb|T +Z log(w) + D, p,
+D (Lat)+D (mor)+D (Pland) (11)

hereT,; is the channgl BT; T, andw; are forecast temperature and water vapor mixing
ratio at levell, respectivelyps is the surface pressurkat is the latitude between + 70;
monis the month between 1 and Pandis the land/ocean flag (1.0 for land and 0.0 for
ocean)A, B, b,C andD; to D, are regression coefficients; n andm are the number of
ABI IR spectral bands, profile temperatures andilgranixing ratios used as predictors,
respectively. As of this writing, we have chosenw® of 10 ABI IR bands for baseline
predictors (see Tab. 2). Considering the diurnanges in Band 7 (3.9 um) and the
aerosol/dust contamination in Band 11 (8.5 pum)dhe® spectral bands are not used in
the regression. 81 regression coefficient sets gererated; each coefficient set
corresponds to one LZA ranging from 0° to 80°. 8itlee predictors have very different
error levels, the GLS fit is applied. The error devor surface pressure is 10 hPa,
land/ocean flag 0.01, latitude 0.1, month 0.000de Error levels for temperature and
moisture profiles are derived from the comparisbmearly 9000 collocated NOAAS8S
radiosonde measurements and the GFS forecastesrafiithe ARM SGP site (Li et al.
2008).

ABI IR Radiances
Calibrated, Navigated

Radiance averaging
Bias adjustment
Cloud masking

Bias adjusted,
Clear ABI Radiances

Forecast T/Q profiles

Apply regression
coefficient

First guess (T, Q, O, Ts)

Go to physical
Module

Figure 4. Regression flowchart for the LAP algarith

In order to generate the regression coefficiehis,réegression problem can be simplified
by assuming a linear relationship between the agtheric state vectoX and the
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measurements as well as additional predictorasingX = CY' , whereC is the matrix

of regression coefficientX has the dimension aflevs (number of levels) bynsamps
(number of profiles/samples), whi¥ehas the dimension efsamps< nchans(number of
channels) and is nlevsx nchans The superscript refers to transposition. Since the
elements in matrixX have non-constant variances, according to the odetii GLS, a
non-constant error covariance matrix must be intced which is denoted & The best
fitting solution is the one that minimizes the safhthe squared deviations from the data,
i.e.(X-CY")? and minimization yield€ = (YTQ*X)*X QY.

To generate the regression coefficients, a glalaaing data set, prepared at CIMSS to
be used in clear-sky regression retrieval appbeatifor various instruments, is utilized.
The so-called SeeBor database (Borbas et al. 2008jprises global temperature,
humidity and ozone profiles from TIGR3, NOAA88, aBCMWF, supplemented by
profiles from desert radiosondes and ozone sonbles.total number of training set
profiles is approximately 15700. For each profseme surface parameters critical for
RTM calculation, such as surface skin temperatume &E at ABI IR bands are also
accompanied. Other surface parameters such acesyfassure and surface type are
provided as well.

The regression derived profile is used as the §usss for physical retrieval iterations.
Since the forecast profile is used together with B BTs as predictors, the regression
should be no worse than the forecast.

In summary, the following combination (in Tablei8)recommended for the first guess
and background options, option 1 is recommend,amtihn 2 is acceptable if regression
is not used.

Table 3. Options for first guess and backgroundctiin.
Option| First guess optionX) | BackgroundX®) | Background error covariancB)(
1 Regression Regression Forecast error covariance
2 Forecast Forecast Forecast error covariance

Note that in the practice, the background can atsoe from the regression since the
regression is close to the background; we find tisag regression as both background
and first guess provide the best results. Thistfwa approach is not consistent with the
theory of maximum likelihood since the radiances ased twice in both regression and
physical retrieval, but it is consistent with tlegularization inverse theory which is more
mathematically solid. Therefore the regressiore®mmended for both first guess and
background in the physical retrieval for practigatposes.

3.4.2.5 Physical Retrieval Algorithm for LAP

The LAP retrieval approach uses an optimal metHazbmbining ABI observations and
a background in the form of short-term forecastmfra NWP model which accounts for
the assumed error characteristics of both. If eglect scattering by the atmosphere, the
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clear-sky radiance measured by the GOES-R ABI fpexific IR spectral band within a
FOV is given by

Ps Ps
RW) = £,(V)B,()1,(v) = [ B(v)dz (0, p) +[L~ £,(v)] | BR)dT" (v)
0 0 ’ (12)
whereR(v) is the clear spectral radiance in the IR reg®seen by the ABI IR band with
central wavenumbey, B is the Planck radiance which is a function of terapee at
pressure ), = is the atmospheric transmittance function, sups&idenotes surface,
' =r’/r, andes is the SE. The BTTh(v) can be also calculated froR(v). The

measured BT for a given ABI IR bakds

Yo =Th +& (13)
where g is the measurement error plus other uncertairgdigsh as calibration and
radative transfer calculation errors.

The variational retrieval is performed by adjustthg atmospheric profile stat€, from

the backgroundX®, to minimize a cost functiod(X) (Rodger 1990; Li and Huang 1999;
Ma et al. 1999; Li et al. 2007). The regularizatiparameter (also called smoothing
factor) is introduced for convergence and solustability. The cost function is defined

by

IX) =YY" =FX)"ETTY" - F(X)]+[X = X°]" B X - X°] (14)

wherey is the regularization parametd, and E are the error covariance matrices of
backgroundX®, and the observation vector (channel radiand€8)respectivelyF(X) is
the forward RTM operator and superscrijtsand —1 are the matrix transpose and
inverse, respectivelyy is vector of ABI IR BTs (10 IR channels for ABI)X is state
vector containing temperature profil(p) and moisture profileq(p) on L vertical
pressure levels plus the surface skin temperataris,fast RTM (operator) for radiances.
That is

¥ (Y1, Y2, - WN) = (T, Thy, ..., Thy)

)¢ (X11 X21 ey X2L+l) = (1-11 T21 -'-1TL, |nq11 Inq21 ey |mL1TS)
E (fu f2 ..., fN)

By using the Newtonian iteration

X = X #3°(X) (X)) (15)
the following quasi-nonlinear iterative form is abted

Ky = (Fy [, +)B™) IR, OO, +F, BX,) (16)

where X is the vector of atmospheric state to be solved; the iteration stem = 0
denotes first gues8X, = Xn — X®, 8Yn = Y™ — F(X,). That is
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is the measured BT for ABI channel while is the calculated BT for ABI channlel
through RTMF. F is the tangent linear operative (Jacobian) of fsdvmodelF. The
regularization parameter is adjusted in each itarabccording to the discrepancy
principal (Li and Huang 1999; Li et al. 2000).

The reason to introduce the regularization paramgt® balance the contributions from
background and satellite observations in the swiutilt is important when the
background (e.g., forecast) error is not Gausswarthe error exhibits only a locally
Gaussian distribution. Since there are correlatmmong atmospheric variables, only a
limited number of variables are needed to explha \tertical structure variation of an
atmospheric profile (Smith, 1976). The numbemalependent structure functions can be
obtained from a set of global atmospheric profdmples. Assume

X - X" =dA, 17)

whereA = (o1, a2, ..., am), and

®ris the N, matrix N, of the first EOFs of the temperatprofile, @, is the
matrix of the first EOFs of the water vapor mixingtio profiles, ®ts=1, and

M=N*+No*1 o Lap processing, 1 temperature EOF and 3 wapor mixing ratio

EOFs are used. By definitiod, ®=1. Definingﬁ'= F [® Eq. (13) becomes
~T -1 -1 =T -1 =
An+1 = (Fn (E |:Fn +J'B ) |:Fn (E qéYn + Fn Da‘n)’ (18)
where A= 0, and
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IFamy -y = o* 19)

whereo is the observation error of ABI, and del

1 N
X[?==3"x2
X = 2 X = (X Xy
Eq. (17) and Eq. ()&re applied to derive the solution from ABIlradiance:

In the LAP physical retrieval process, the watgorgprofile is expressed as logarithm
mixing ratio given that the logarithm varies mareehrly with the IR radiances than dc
the base mixing ratio. Figure 5 shows the practical flowchasf one dimensione
variational (LDVAR) physical retrieval algorithm piemented in the LAP soundir

code.

i
Start | Error matrix, EOF file for T(p) and w(p) |
1
i ‘ Forward model calculation
¥ E ﬁ' l
Input i i i End
BT, Month, Lat, | ‘ Jacabian calculation
NWP profile & | - 1
Surface analysls| | = _
parameters | % ‘ 6R = f}m — R, output
+ i 8 a i . ;
Regression | (|| Yes <= S8R, <8R, — fai
(T,W,0,Ts.emis)| : l i i l Retumn updated
T _ T, W, Ts.
i Decrease gamma Increase gamma i PN
; (7p=08" 7ny, (7n= 18 74 i j
. ; sum_Fass=iNum_Pass+1 Surn_Fail=MNum_Failk~ | ’_\
/> Inversion calculation i
f Update profiles ;
(To physical madule) : /i\ - (ExIt physical module)
; - . !
i B T ;
; _~“BLL values >0 and < 400, & _ |:‘ ~
€ " Num_Fail < Max_Num_Fail(-3), & . .
; ~-._Hum_Iass < Ma=_lter_Num —£), & ]
‘y‘eS \‘\\tiR 2 Inﬂlumunl_Nuisa(=l]})K')// no
N e
=N P
-

2.4.2.5.1 Atmospheric profiles (Xn)
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The atmospheric profiles of temperature and masaue represented by the veckqy
where n=0 denotes the first guess profile. Adef writing, the LAP algorithm relies on
the cRTM for the radiative transfer calculationshene the profile parameters are
represented at a maximum lofprescribed pressure levels. The implementatiothef
physical retrieval uses 6-hour forecast or finexldé provided by NCEP (National
Centers for Environmental Prediction) on half degoe finer latitude/longitude grid.
Each profile is interpolated both in space and timdit the time and location of the
actual satellite observation. Since the forecaatsseface temperature (SST) is usually
better than the regressed value as less impactettiébgloud contamination in clear
pixels, it is also used in the retrieval as thegerature at the lowest layer and kept
unchanged in the physical iteration. A total numioér121 clear sky radiosondes
collected during the 2004 and 2006 AEROSE in tbpital North Atlantic Ocean are
used for evaluation (Nalli et al. 2006). The congr of ECMWEF forecast SST,
regressed SST and the measured SST is plottedjume=6. It is found that the forecast
SST is much closer to the observation than theessgd that has an increased negative
bias, showing the cloud contamination in the cl@aels. When over land, the regressed
skin temperature is used in the retrieval and gmlat each iteration. The observation
vector thus has a length of. 2+ 1, that is,L temperaturesl. humidity (mixing ratio)
values and 1 surface skin temperature. Theretbee NCEP Global Forecast System
(GFS) forecast is used as the background prfile
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Figure 6. Forecast (black) and regressed (red) sseface temperature against the
measurement. The number of samples is 121.

2.4.2.5.2 The fast radiative transfer model and Jacobian matix (F )

The radiative transfer model employed in this @rsdelivered to AIT is based on
cRTM. Note that RTTOV and cRTM provide tangentln Jacobian calculations, while
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PFAAST does not provide Jacobian calculation an@gproximate analytical form (Li
1994) is used.

The Jacobian matrix, (the subscriph denotes theth iteration in the physical retrieval
procedure) describes the change of the radianttee@fOA with a changed atmospheric

parameter:

F.G. )

_ oY, ()
0X, (1)

(20)

Wherei is the spectral band index in the radiance ve{Qrj is the parameter index in

the profile vectorX).

If there are a total oN spectral bands used for physical retrieval, th&rimnaas thus\
columns and P+1 rows. It is indeed the computation of these Bmow that is a
substantial factor of the computational load ofitteieval algorithm.
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Figure 7. SEVIRI (dashed line) and ABI (solid lipedacobian calculations for
temperature (left panel) and water vapour mixingpré&ight panel) with U.S. standard

atmosphere and a LZA of zero.

Figure 7 shows the temperature (left panel) ane&mapour mixing ratio (right panel)
Jacobian calculations for some SEVIRI (dash lirees) ABI (solid line) IR spectral
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bands from U.S. standard atmosphere with a LZA eb.zPFAAST is used in the
calculations.

From the Jacobian calculations, it can be seen $BAfIRI 13.4 um band provides
temperature profile information; SEVIRI 6.2 and 18 spectral bands provide water
vapour information. The information from forecastmiperature profile along with the
13.4 pm provides temperature profile. Temperaturafilp is needed for moisture
retrieval in order to derive the moisture informoatisince these water vapour absorption
bands also contain temperature information. Th@ri2and 13.4 um bands also contain
weak water vapour absorption, hence providing uséoundary layer moisture
information. ABI has one more water vapour absorpband than SEVIRI.

Some comparisons among PFAAST, cRTM and RTTOV ared
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Figure 8. The scatterplot of BT from CRTM, RTTOWdaPFAAST for band 6.2-, 7.3-
and 13.4-um against SEVIRI observations over lafafi7 samples for August 2006 are
included in calculations.

Figure 8 shows the comparison of BTs between RTKiukitions and SEVIRI
measurements for the three absorption bands. Wedfabhese models have similar
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performances at the 6.2-um, but cRTM has bettezeagent with observations at both
7.3 and 13.4-um bands.
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Figure 9. Comparison of Jacobians approaches inVGRRTTOV and PFAAST for the
SEVIRI 6.2- and 7.3-um bands using US76 standarbsgpheric model, given LZA of
zero. Also plotted are results of perturbation radttusing squares:) for CRTM, pluses
(+) for RTTOV and circlesd) for PFAAST.

Jacobian accuracy is also very important for LARrigeal. Figure 9 shows the
temperature (left) and water vapor mixing rati@lit) Jacobian calculations for SEVIRI
water vapour absorption bands from cRTM, RTTOV &KAAST based on the U.S.
standard atmosphere with LZA of zero. The watgrovas expressed as a logarithm of
mixing ratio in the Jacobian calculations. It isufol that these approaches have very
similar performances in extracting temperature iggrohformation, but have quite large
differences in extracting moisture profile inforieat The Jacobian approaches in cRTM
and RTTOV are very close to the perturbation methedthe true value.

2.4.2.5.3 Observed brightness temperatures (Ym)

The observed BT vectf™ represents the satellite measured BTs i\tispectral bands.
The original satellite measurements must be biasstetl to account for the (possible)
bias between the satellite observation and the RSilwth biases must be assessed in an
independent step, (see section 3.2.4 for detaif)ekample, by comparing the clear sky
radiances with the calculated radiances using themes RTM and collocated
forecast/analysis atmospheric profiles.
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2.4.2.5.4 Calculated brightness temperature (Yn)

The calculated BTY,, = F (X;) are computed from the atmospheric profile vector f
iteration stepn with the RTM.Y,, must be computed as a vector for MIIR spectral
bands.

2.4.2.5.5 Discrepancy principle for regularization parameter

The reason to introduce the regularization paramgt@so called smoothing factor) is to
(1) speed up the convergence, and (2) stabilizsdheion in case the background error
is not a Gaussian distribution, or only locally Gsian distribution. The factar is to
weight the contribution of background and sateltitsservations for the solution. ¥fis
too large, more weight is given to background arel golution tends to not deviate far
from background. However, i is too small, more weight is given to satellite
observations, but since the inverse problem ipaled and there are only a few spectral
bands (equations), the solution could be unstaldejective selection of is therefore
very important for accurate and stable solutiorhe Tiscrepancy principal is used to
select this regularization parameter (Li and Hua8§9) which is reflected by Eq. (19),
where

0.2 - e2
é k, (21)
g, is the square root of the diagonal Bfor the observation error of spectral bdqgd
which includes instrument error and forward modsbr that is,

e = + 2, (22)

wherery is the instrument noise of spectral banavheready is the forward RTM error
that is assumed to be 0.15 K or less for the sgmeetl band. Usually® can be
estimated from the instrument noise and estimat&d Brror.

Since Eg. (19) has a unique solution fgr the atmospheric parameters and the
regularization factor can be determined simultasBou For simplicity, a numerical
approach (Li et al. 2000) is adopted for solving E®);y is changed in each iteration
according to

yn+1 = qnyn , (23)

whereq is a factor fory to increase or decrease. Based on Eq. (Ri3)pbtained within
each iteration by satisfying the following conditg

g=1.0;
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1|l FOXo)-Y™ || 2 < &%, theng, = 1.8;
If[| FOX)-Y™ | 2= 6%, then stop the iteration;
If{| F(X)-Y™|[ 2> 6%, theng, = 0.8.

The g factor has been found from empirical experiment®rnsure that the solution is
stable between iterations. Thyssontinues to change until the iterations stop.

2.4.2.5.6 Iteration checking and residual estimation

In the retrieval processing, several checks areenfad retrieval quality control. The
quantity Rs, = ||F(X»)-Y"||* is computed to check the convergence or divergersce
follows:

If any element &,> 4000r <0, the profiles are not reasonably reconstructed
from eigenvector space to normal space, stop iberatse first guess as final
retrieval.

If5°< Rs+1< Rs, iteration is convergent, set = 0.8, continue to next iteration
and accumulate the count of passed iteration;

IRs+1> RS, iteration is divergent}, = 1.8, continue to next iteration and
accumulate the count of failed iteration;

IRs+1< 0.3 stop iteration.

If the count of passed iteratio6 stop iteration.

If the count of failed iteration 3=stop iteration.

The degree of convergence for each iteration dependthe accuracy of the previous
atmospheric and surface state. In addition, in etrhtion, each level of water vapor
profile is checked for super-saturation. A unitygmaude of RH (=99%) is assumed at
any supersaturated level. Moreover a unity mageitodRH (=2%) is assumed at any
level in case of dry bias.

2.4.2.5.7 Other considerations

The algorithm testing is conducted on a Dell wakeh running Linux using code
written in FORTRAN. For computation efficiency,ettfollowing transform can be
performed for Eq. (18):

N
F,=E*0F, (24a)
1
o, =E * oY, (24b)
Then Eq. (18) becomes
A =(F OF, +B™Y) F, LY, +F, 4) (25)
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Using Eg. (25) instead of Eq. (18) will avoid somatrix multiplications and reduce
computation time.

In addition,
() For the regression, all the ABI IR bands will bediexcept the 3.9- and 8.5-um
bands
(2) For the physical retrieval, all ABI IR bands ared£xcept the 8.5-, 9.7- and 3.9-
pm bands

(3) Forecast profiles (temperature/moisture) and sar&gén temperature should be
spatially and temporally interpolated into ABI FORs

(4) Surface temperature and moisture, if available, banused to improve the
boundary layer temperature and moisture retrievals

a. The science codes contain the option of includinfese temperature and

moisture observations
b. The surface temperature and moisture observationstraated as two

additional spectral bands in the physical retrieval

2.4.3 Algorithm Output

The Product Refresh Rate for the algorithm consists30 minute CONUS refresh and a
60 minute full disk refresh. Under these instanties algorithm will only be run every
half hour and every hour, respectively. No tempaggregation is required.

The output of the algorithm for each FOR includes:

Product:(1) LAP products: 101-level atmosphericgemture profile in K, 101-level
atmospheric moisture profile in g/kg.
(2) Derived products: TPW, PW_low, PW_mid, PW_high CAPE, Kl, SI, and

TT.

(3) Surface skin temperatures in K: updated if olerd; unchanged from NWP
forecast if over ocean/lake

Detailed description of the product can be foundable Al.

Quality Flags:
(4) General Quality Flag: including some general infation of each pixel such as

space background, latitude range, local zenithearagige, missing NWP data, or
number of clear pixel, and etc. Please see TableAe detail;

(5) Retrieval Quality Flags: non-convergent iteratioiasge residual, bad or missing
radiance data, etc. The definition of the valuegaes to each condition is listed

in Tab A2.
(6) First Guess Quality Flags: the 11-um BT differefedween observation and

calculation using first guess to drive the RTM. g1 critical as the uncertainty of
surface skin temperature is the largest error surdhe physical iteration. The
definition of each value assigned can also beenatd from Table A2.
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Diagnostic/intermediate information:
(7) Number of clear sky pixels in the FOR.
(8) Number of iteration for each retrieval.
(9) Residuals of average BT between observatidncattulation after retrieval.
(10) Land/Ocean flag. Please see Table A3 for ldetai

Metadata:

46



(1) Min, Max, Mean, Std of retrievals from first @gs for TPW, LI, TT, CAPE,
and Sl.

(2) Number of IR channels.

(3) Mean difference between calculated BT (fromstfiguess) and observed BT
for each IR channel.

(4) Number of QA flag values.

(5) Percent of retrievals with each QA flag value.

(6) Definition of each QA flag.

(7) Total number of attempted retrievals.

3 Test Data Sets and Outputs

This section describes the inputs and coefficiélgs needed to process the LAP and
derived products. These files are needed by the &dftware.

Note: All of the ancillary files and external furarts/subroutines applied in the LAP
sounding algorithm are shown in a sketch map in A&ig

The list of inputs and files needed is the folloguin

* Inputs

i) ABIIR BT

i) ABICM

i) GFS GRIB files from range [6 - 18] hour forecasted
» ABI geographical data

a. Longitude

b. Latitude

c. LZA
» Coefficients

1. Bias correction coefficients

2. Regression coefficient file. This coefficient filmontains 81 regression
coefficients; each coefficient dataset correspotw®ne LZA ranging
from O to 80 degrees

Error covariance matrix of background and firstgpiéB)
Error covariance of observation matrix (E)
Look-up-table for sea surface emissivity

o 0k~ w

EOF (Empirical Orthogonal Function) coefficientseriiperature profile
EOF file derived from training dataset and Wateporaprofile (in terms
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of the logarithm of the mixing ratio) EOF file deed from the training
dataset.

7. RTM coefficients for the GOES-R satellites are alseded
* Geographical static data files

1. IR surface emissivity for ABI IR bands from Univiysof Wisconsin
(UW) baseline fit database.

2. Land-sea mask and topographic data

» Configuration File of LAP

3.1 Input Data Sets

3.1.1 ABIIRBT

The ABI IR channels are the main input to LAP psxceSee Table 2 for the ABI BT
values needed at full IR spatial resolution.

The LAP process checks the availability of manda#! IR channels for each pixel; no
results are produced for pixels where one or mbamgels are missing. The use of IR8.7
BT over ocean should be studied (the 8.7-um hagd dooundary layer moisture
information but might be affected by dust aerosol).

3.1.2 ABI Cloud Mask

LAP and derived products are only generated inrctg pixels. As cloud mask is a
mandatory input to LAP, ABI CM must be executeddoefLAP process.

3.1.3 NWP data

NWP profiles from 6 — 18 hour forecast are needégse NWP data needs to be spatial,
temporal and vertically interpolated to get NWPadabllocated with ABI data. The
following parameters are needed:

(1) Surface pressure (SP)

(2) Surface pressure level index

(3) Surface Skin Temperature or Sea Surface Teryrera
(4) Vertical temperature (K) profile at NWP pressiavels
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(5) Vertical water vapor mixing ratio (g/kg) pradiat NWP pressure levels
(6) Sea surface wind speed

3.1.4 ABI geographical data

Longitude, Latitude and LZA associated to ABI cage are computed on real time by
functions available on the mainframe.

3.1.5 Coefficient files and other files

3.1.5.1 Bias correction coefficients

The original satellite measurements must be bigsstetl to account for the bias between
the satellite observation and the used RTM. Sudsds must be assessed in an
independent step, e.g. by comparing the clear Skg/\Wgith the calculated BTs using the
same RTM and collocated forecast/analysis atmogppesfiles. In order to calculate the
estimation of the bias correction coefficients, foétware and datasets for bias radiance
estimation will be developed after GOES-R is lawtthThe collocated ABI IR
radiances, radiosondes and model analysis willsiee for radiance bias estimate.

3.1.5.2 Regression coefficients

A global radiosonde dataset with surface skin teatpee and surface IR emissivities
physically assigned (Seemann et al. 2003; 2008)sed to generate the regression
coefficient. Since forecast temperature and moesprofiles are used as predictors to
help the retrievals. Since there are no forecati ohathe database, the forecast error
profiles have to be constructed to simulate theedast data. A separate match-up
database is used to derive the forecast errorlg@raficontains RAOBs, the GOES-12
Sounder BT measurements and the NCEP GFS modekakireprofiles (the
RAOB/GOES/GFS match-up database) from June 200Sefstember 2004 over the
CONUS. One difficulty in constructing a forecast rogr profile is that
temperature/moisture at one level is highly coteslavith those from nearby levels. In
order to characterize the correlation in the emoofiles, the principle components
analysis (PCA) is applied.

From the RAOB/GOES/GFS match-up database, a s#&irefast error profiles U are
obtained. Then the PCA is performed on U

U =ExA (16)
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Where E = [El, E,...... ,Em] is the Eigenvector amai is the number of Eigen vectofis
the matrix set of Eigen values. For each errorifgrdd; (i=1, n, and n is the number of

profiles), we haveJ, = ExA, where A\, :[/\il A, ... A,| isthe Eigen values for
the " error profile. The} Eigenvalues/; corresponds to thd' jEigen vector E Both

the Eigen vectors and the Eigen values are arramg#dte order of relative importance
with the most important Eigen value/vector as tirst fone. Statistical analysis is
performed on all the Eigen values to get the meah the standard deviation (STD),
which are used to generate random numbers as Eajars, which in turn are used to
simulate the forecast error profiles. Due to theretation between nearby levels, it is not
necessary to have all the Eigen values and vetdaoesonstruct each profile. Using 90 %
of the dataset as training and other 10 % for wadiloh, it shows that 15 temperature and
9 moisture Eigenvectors are sufficient to const@&t% of the variance of the forecast
error profiles. Figure 10 shows the original (orgmd constructed (cnst) bias and root
mean square (RMS) of forecast error. The temperairin K, and the moisture in

logarithm of mixing ratio (g/kg). The thin dottethé is the constructed bias profile; the
thin solid line is the original bias profile; thei¢k dotted line is the constructed RMS
profile; and the thick solid line is the originalM$ profile. Except around 200 hPa,
where the temperature is highly variable near tlopdpause, the constructed error
profiles have very close bias and RMS as origimaso

200 7 200
': '\' —-cnst bias
Lo — orgn bias Y
| i ]
3007 ) 3001 =~ cnstrms ’
— — = orgh rms
o 4]
o o
= 4007 < 4007
Q 4b]
5 S
@ 500[ @ 500(
o o
8001 8007
70071 7007
8001 8007
900 900
1000 — 1000 — ' ‘
2 -1 0 1 2 3 05 0 05 1
temperature error moisture error

Figure 10. The original (orgn) and constructed {)chims and RMS of forecast error. The
temperature is in K, and the moisture in logaritinmixing ratio (g/Kg). The thin dotted
line is the constructed bias profile; the thin ddine is the original bias profile; the thick
dotted line is the constructed RMS profile; and tiiek solid line is the original RMS
profile.
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The regression derived profile is used as the dgustss for physical retrieval iterations.
Since forecast profile is used together with ABI BR's as predictors, the regression
should be not be worse than the forecast.

3.1.5.3 The error covariance matrix of background and first guess (B)

The statistical error of the background is repre=sgiby the matrix8 (see Figure 11).
This (A+1) by (A.+1) element matrix represents the correlation eflitackground error
of one parameter to the same parameter in anotwal. | The pairs of errors for
temperature, humidity and skin temperature arenasduo be uncorrelated. The levels
correspond to the RTM pressure levels. Schembtidhle matrix has thus the above
form, where the value of 6.5 in the lower rightroar is the error correlation of the skin
temperature to itself (by assuming that the skmperature background has an error of
2.5 K). The matrix will be supplied by CIMSS at tbiaiversity of Wisconsin-Madison
(UW-Madison) and can be calculated from radiosorashesNCEP GFS forecast matchup
file. The temperature error correlation values arailable for every 5° latitude belt and
are the same for the northern and the southernspéeries. The humidity error matrix is
available only on a global scale.

o

(=)

LbylL =
LbyL temperature/moisture
temperature/temperature | |Error covariance values :
Error covariance values (all 0) :
L by L
Moistureftemperature . L by L. :
Error Covariance values Molsture/molsture :
Error Covariance values :
(All 0) :

=

000 e e 0| |65
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Figure 11. The background error covariance matrix.

3.1.5.4 The observation error covariance matrix

The errors of the observed BTs and the errors@RfTM are represented by the matrix
E. The elements describe the covariance of the Bor edf the instrument, and an
assumed uncertainty of the RTM is added to thatevals the covariance of any two
different spectral bands is not known, this mathxs only diagonal elements. The
(assumed) error of the radiation model was merdiyed to these diagonal elements.
The observation error covariance matrix is defirmsddiagonal matrix; the diagonal
element is the square of observation error definelg. (22).

The instrument noise is from ABI specification (&lat 300 K for ABI bands 7-15 and
0.3 K at 300 K for ABI band 16); 0.15 K is assunfed forward model error for each
ABI spectral IR band.

3.1.5.5 EOFs for temperature and moisture profiles

Since there are correlations among atmospheriabias, only a limited number of
variables are needed to explain the vertical strectariations of an atmospheric profile
(Smith, 1976). The number of independent structwmetions (i.e., EOFs, the Empirical
Orthogonal Functions) can be obtained from a selaifal atmospheric profile samples.
See Eq. (16) for the EOF representation of a @ofilusing EOF representation is
necessary because of the limited number of ABI pectral bands available. The
advantages of using EOF representation for a praie: (1) reducing the number
unknowns in solution, which makes solution morélstaand (2) significantly reduce the
time of computation in the retrieval process. Wavéh found that using the EOF
representation will not degrade the retrieval aacyin ABI profile retrieval.

Figure 12 shows the first 5 temperature EOFs fleftel) and first 5 water vapor mixing
ratio (logarithm) EOFs calculated from a globairtiag data set.
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Figure 12 The first 5 temperature EOFs (left panel) anst $ water vapor mixing rati
EOFs derived from a global training data set. Tater vapor i expressed as the
logarithm of mixing ratio in EOF calculatiol

Table 4 The cumulative variances for T, In(Q) and I3) for the first 5 EOF:

EV Cumulative Var| Cumulative Var| Cumulative Val
for T (%) for Ln(Q) (%) | for Ln(O3) (%
1 68.0 39.3 80.C
2 81.5 76.7 87.€
3 87.4 85.7 92.1
4 90.5 90.6 94 .2
5 92.8 93.2 96.1

Table 4 lists the cumulative variances for thet fssEOFs for temperature profile (1
water vapor mixing ratio profile (InQ) and ozonexing ratio profile (InO3). Profiles
from a hemispheric training dataset are used foF E@lculations. In the ABI physic
retrieval process, temperature profile EOis recommended since there is only one;
absorption band, and 3 water vapor mixing ratio E@fe recommended since there
three water vapor absorption bands plus -um and 13.3tm weak water vapol
absorption bands that provide boundary layer masnformation

3.1.5.6 RTM coefficients



In addition, a clear sky fast and accurate RTMaeded in the retrieval process. In the
current LAP version delivered to Algorithm Integost Team (AIT), the cRTM is used.

3.1.5.7 IR SE database

Handling IR SE is very important since an emisgigtror of 0.01 in IR window region
could result in approximately 0.5 K BT changes.efEhare three methods to handle IR
SE in physical retrieval:

(1) Use emissivities from database;
a. Advantage: monthly global coverage
b. Disadvantage: currently only available at MODIScps bands
(2) Use look-up-table to calculate SE over ocean asnatibn of LZA and surface
wind speed;
(3) Use regression based emissivities;
a. Advantage: dynamic emissivities, at ABI bands
b. Disadvantage: rely on emissivities in training dataght create false
diurnal variation in ABI emissivity retrievals

Ermigsivity, Wersion A, filled by Adjacent Month: MYD11C3 A2008091, 5.53pm

07 07s 08 0&s 0s 0485 1

Figure 13. IR surface emissivity at 8.3 um fronei@ional MODIS product.

The regression for emissivity is simple but usualguses a false diurnal change of
emissivities, which results in additional errorwater vapor retrieval. Another option is
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to use an IR emissivity model. While emissivity retsdhave been proved quite reliable
over ocean, they are much less accurate over landemissivity database is being
developed at CIMSS by combining MODIS emissivity asierements and laboratory
measured hyperspectral emissivity spectra. The ABYsical retrieval can use
emissivities interpolated spectrally, temporallyd apatially from this database. Some
information about the emissivity database can b&iokd from the following link:
http://cimss.ssec.wisc.edu/iremiskFigure 13 shows a global emissivity image 8fj8m,
using the operational MODIS emissivity product.

In the current version, the monthly updated emigss/ from the MODIS-derived
baseline fit database are used as the defaulhgdttr land pixels and the look-up-table
approach is the default setting for ocean pixete bok-up-table for ocean emissivity is
based on the Wu-Smith emissivity model (Wu and BmiB97). The regressed
emissivities are discarded.

Note: For the oceanic cases, the default wind speednigshif the value from forecast
product is not available. The maximal wind speed e maximal LZA for the LUT are
20 m/s and 75° respectively. For cases with langed speed and/or LZA values, these
thresholds are applied.

Effective Sea Sfc Emissivity (eff_emis_database_850-2700_ek_hqg_hg_sea.nc)

0
U(ms" 0

Figure 14: Sea surface emissivity)(@gainst LZA o) and wind speed (U).

3.1.6 Ancillary data sets
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The following ancillary data, remapped onto saeiinages, are mandatory:

* Land/sea mask
Atlas and sea/land mask datasets covering the WBOIES-R disk in the default satellite
projection at full ABI IR horizontal resolution aeailable within mainframe package.
These ancillary data are available in the mainfraofevare package on ABI full disk in
the default satellite projection at full IR resadur.

3.1.7 Configuration File

Here is a list of all parameters that are incluihethe Configuration file for LAP:
* Block size (5), the size of the FOR;
* Minimal clear sky fraction (0.2) in FOR required foretrieval,
» Flag of the availability of surface air temperatarel moisture data;

» The default value (273.0 K) of surface air tempamtf real observation is not
available;

» The default value (7.0 g/kg) of surface air moistifr real observation is not
available;

» Flag of printing some results during the physiedtieval iteration
* Method for BTs calculations of FOR MEAN or WARMEST IR 10.8 channel

3.1.8 List of proxy data sets

Here is a list of all proxy data sets used fordetion purposes:

For ABI:

» Simulated ABI BTs for all IR channels over CONUSIwspatial resolution of 2
km and temporal resolution of 5 minutes for one,d&y between 12:00 June 04
and 12:00 June 05, 2005;

For SEVIRI:

* Real observations of full-disk MSG-1/SEVIRI IR BWath spatial resolution of 3
km and temporal resolution of 15 minutes for Aug2G6;

* Real observations of regional MSG-1/SEVIRI BTs wsibatial resolution of 25
km over European, North Africa and adjacent oceargas; this data set covers a
long temporal span between April 2007 and Septer2bé8 with two files for
each data: one for the midnight and one for thexnoo
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Since the SEVIRI's channel configuration is slighdifferent with ABI, a table is
presented in the following to help readers undadstéhe application of these
channels in LAP sounding retrieval.

Table 5. Channel numbers and approximate centre¢lengths for the
SEVIRI.
Channel Number  Wavelength (um\Used in LAP Sounding
egression Physical
1 0.635
2 0.81
3 1.64
4 3.92
S 6.3 v vz
6 7.3 v v
/ 8.7 V)
8 9.7 v
9 10.8 v v
10 12.0 v v
11 13.4 v 7

*: This channel is selectable in physical retrievals safe to use over ocean only
and must be avoided over desert.

3.2 Output from Input Date Sets

The primary outputs of this algorithm are legaay@dpheric profiles. They are listed in
Table 6below. Note the levels of output need tdéermined based on the pressure
levels of a chosen RTM. For example, the curreaesgurre levels from 100 hPa to surface
from cRTM are: 96.1138, 103.0172, 110.23667.1175, 125.6456, 133.8462,

142.3848, 151.2664,
223.4415, 235.2338,
328.6753, 343.6176,
459.7118, 477.9607,
617.5112, 639.1398,
802.3714, 827.3713,

160.4959, 170.0784, 18@3,0180.3203, 200.9887, 212.0277,
247.4085, 259.9691, 272.9786.2617, 300.0000, 314.1369,
358.9665, 374.7241, 396.89D7.4738, 424.4698, 441.8819,
496.6298, 515.7200, 532.2335.1669, 575.5248, 596.3062,
661.1920, 683.6673, 708.5629.8857, 753.6275, 777.7897,
852.7880, 878.6201, 904.,8631.5236, 958.5911, 986.0666,

1013.9476, 1042.2319, 1070.9170, and 1100.0000.

Table 6. Output LAP primary values.

LAP Value

Description

Temperature profile (K)

Temperature values at preskevels from 0.005 hPa to
surface, but only those below 100 hPa are useful

Water vapor mixing ratio

profile (g/kg)

Moisture mixing ratio values at pressure levetsfr0.005
hPa to surface, but only those below 300 hPa atilus

Surface skin temperature

(K)

Surface skin temperature, retrieved over land only,
interpolated from NWP SST over water
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In addition, the output also includes the deriveatpcts from temperature and moisture
profiles, which are listed in Table 6 below.

Table 7. Output LAP derived product values.

LAP derived product Description

TPW (cm) Derived product from moisture profile

PW_Low (cm) Derived product from moisture profile

PW_Mid (cm) Derived product from moisture profile

PW_High (cm) Derived product from moisture profile

LI (K) Derived product from temperature and moistprofiles
CAPE (J/kg) Derived product from temperature andstoce profiles
TT (K) Derived product from temperature and moistprofiles
Sl (K) Derived product from temperature and moistprofiles
Kl (K) Derived product from temperature and moistprofiles

Moreover, the output also includes some variatwesg|fiality control, which are listed in
Tables A2 and A3.

Note that all geographical and geometric infornrafior the output should be that of the
centroid of clear FOVs within the FOR.

The following figures Fig. 15-23 are the resultoatput variables based on the
simulated ABI observations and GFS-6 hour forefrasthe moment of 22:00, Jun& 4
2005 over CONUS.

Clear Fraction

120" W 105 W 90’ W

45 N

30N

06
Clear Fraction
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Figure 15: Clear sky fraction ( = Num_Clr_Pix / Bko Size**2) using a simulated ABI
case; FORs with fraction lower than 0.2 are noteetd.
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Figure 16: Output quality control variables usingimulated ABI case.
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Figure 17: Same as Fig. 15 but for TPW (mm) anthitse components.
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Lifted Index
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45" N

30°N

10 20 30
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Figure 18: Same as Fig. 15 but for LI.
CAPE
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Figure 19: Same as Fig. 15 but for CAPE.
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Figure 20: Same as Fig. 15 but for TT.
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Figure 21: Same as Fig. 15 but for KI.
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Sl
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Figure 22: Same as Fig. 15 but for SlI.

Skin Temperature
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Figure 23: Same as Fig. 15 but for skin temperature
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3.2.1 Precision and Accuracy Estimate

The following procedures are recommended for diagygpthe performance of the LAP.
» Fraction of clear sky pixels within FOR
» Counts of total iterations.
» 11-micron BT difference between observation anddation with first guess
surface skin temperature.
» BT residuals between calculation and observatiter &ihal iteration.
* Processing time should be monitored.

3.2.2  Error Budget

(1) Results from SEVIRI using the LAP algorithm showattiSEVIRI/ABI improves
moisture forecasts between 300 — 700 hPa when cechpeith one month’s
radiosondes; SEVIRI-derived water vapor RH from ltAd> algorithm meets the
requirement (18%).

(2) TPW can reach an accuracy of approximately 9.5% owean when compared
with collocated one month’s AMSR-E data.

(3) TPW can reach the accuracy of approximately 11.5& tand when compared
with radiosondes.

(4) Overall TPW can reach an accuracy of approximat&Bt when compared with
ECMWEF analysis.

(5) LI has error of 2 K when compared with radiosonolesr land.

Validation for other products will be carried ouABI accuracy is expected to be better
than SEVIRI because of improved water vapor spkictfarmation, among other things.
We will conduct further analyses with more validatidatasets under development. For
example,

e Simulated ABI datasets

e Inter-comparison with Metop IASI and NPOESS hypectfal IR sounding data
as well as other satellite measurements
Compare with RAOBs from dedicated field campaignsluding over oceans
Compare with ECMWF analysis
Enhance cloud detection
Improve handling of SE
Algorithm improvement, including better RTM and a@sisited Jacobian schemes
Time continuity incorporation

Complete validation statistics are shown in Table 8
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Table 8: LAP sounding product validation vs. regments using MSG-1/SEVIRI as

proxy; data set includes 457 radiosonde-SEVIRI mgiccases of August 2006 over

land.
Product Accuracy (Req. Precision (Req. Accuracy Precision
(SEVIRI) (SEVIRI)
Temperature 1K below 400 hPa| 2K below 400 hPa] 0.5K below 400 <1.9K below 400
profile (K) and above and above hPa and above hPa and above
boundary boundary boundary boundary
Moisture profile Sfc-500 mb: 18% | Sfc-500 mb: 18% | 5% Sfc-900 hPa: 12%
(RH) 500-300 mb: 18% | 500-300 mb: 18% 900-600 hPa:
300-100 mb: 20% | 300-100 mb: 20% 18%
600-300 hPa:
15%
Derived stability | LI: 2 K LI: 6.5K LI: 0.7K LI: 2K
indices CAPE: 1000 J/ kg | CAPE: 2500 J/ kg | CAPE: 50 J/KG CAPE: 200 J/ kg
SI: 2K SI: 6.5K SI: 0.5K SI: 2K
TT: 1 TO: 4 TT: 05K TT:35K
Kl: 2 KI: 5 Kl: 1.5K Kl: 6 K
TPW 1 mm 3 mm 0.3 mm <3 mm

As can be seen from table 8, all requirements aeusing this one-month (August)
of SEVIRI data compared to radiosondes, with theepkon of the precision of the
K-index. It is expected that this will fall withithe requirements when: a larger
dataset is used and/or when the additional bantiseoABI are used (that are not on
the SEVIRI) and/or when the improved noise perfarcgaof the ABI is used. An
improved NWP model with higher spatial/temporabtaon, such as regional meso-
scale forecast models (RUC, NAM, and etc) will also helpful. It will definitely
improve the quality of first guess, therefore #dibslity indice, including the k_index,
will be improved to meet the requirements.

3.3 Algorithm Validation

3.3.1 Input Data Sets

3.3.1.1 Fast RTM in testing

The physical retrieval algorithm has been testemhquSEVIRI data and PFAAST
(Hannon et al. 1996). The PFAAST model has 105qume level vertical coordinates
from 0.05 to 1100 hPa, and uses line-by-line RTBILRTM) calculations and the high-
resolution transmission molecular absorption spscwopic database HITRAN 2000. The
calculations take into account the LZA, absorption well-mixed gases (including
nitrogen, oxygen, and carbon dioxide), water vagmicluding the water vapor
continuum), and ozone. Forecast ozone is useberrdadiance calculation (regression
ozone can also be used), the SEVIRI spectral bafd2 pum), 6 (7.3 pm), 9 (10.8 um),
10 (12 pm), 11 (13.4 pm) are used in physicaleetli For retrievals over ocean, band 7
(8.7 um) can also be included in physical retrieadthough the radiance in this band
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may be influenced by dust over the ocean from thkafn region (e.g., Nalli et al.,
2004).

3.3.1.2 Proxy input data sets

As described below, the data used to test the In&Rides full disk SEVIRI observations
collocated with radiosondes, ECMWF 6-hour analyses| operational AMSR-E TPW
product. The time period chosen was August 20@ur analysis spans the entire
SEVIRI domain and should therefore encompass aréarbe of weather conditions.
While SEVIRI obviously does not operate over theESOdomains, we have preferred
the use of empirical SEVIRI data over simulated ARRta up to this point. The rest of
this section describes the proxy and validationadats used in assessing the
performance of the LAP.

Another proxy validation dataset is also availableluding 18-month SEVIRI clear sky
BTs, ECMWEF 12-hour forecast and 6-hour analysisocated at 00 and 12 UTC from
April 2007 to September 2008 over Europe, Northicsfrand ocean areas nearby. The
spatial coverage of this dataset is shown below.

80 W 30° W 0 30 E 80 E

Figure 24: The spatial coverage and local zenigieaof the regional validation dataset.

4.3.1.2.1 SEVIRI Data

SEVIRI provides 11 spectral channels with a spagablution of approximately 3 km

and a temporal resolution of 15 minutes. More imfation on the SEVIRI can be found
in Schmid et al. (2000), Schumann et al. (2002)jam et al. (2003), and Schmetz et al.
(2002). SEVIRI provides the best source of dataerily for testing and developing the
ALS. Except for the 6.9m and 10.35um IR spectral bands, SEVIRI provides an
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adequate source of proxy data for the testing aveldpment of the LAP. The SEVIRI
data was provided by the SSEC Data Center.

43122 Radiosonde Data

One month of radiosonde data at 00 UTC and 12 UTQugust 2006 have been
collected. A matchup file has been developed Fat tmonth containing collocated
radiosondes, ECMWEF 12 hour forecast, and SEVIRdrcd&y BT measurements. A total
of 457 matches are contained. The spatial distobuif these samples is presented in the
following figure.

Figure 25: The spatial distribution of radiosondessfor the full disk validation dataset.

4.3.1.2.3 AMSR-E Data

Since radiosondes are usually limited to over land; also very important to validate
legacy sounding derived products over the oceaQ k&tellite data and products can be
used for this purpose. We have used operation® pRoduct from AMSR-E onboard
Aqua platform for validation over ocean. The coited AMSR-E TPW and SEVIRI
TPW product in August 2006 are used.

4.3.1.2.4 ECMWEF Analysis Data
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In order to validate LAP products over land andasgeéhe ECMWF 6-hour analysis data
are also used for validation, collocated ECMWF d2ihforecast, analysis and SEVIRI
BT measurements in August 2006 of the full diskevage and April 2007 — September
2008 of the regional coverage are used.

3.3.2  Output from Inputs Data Sets

The LAP products were generated using the SEVIR& deom the entire month of
August 2006. Figure 26 below shows the SEVIRI TPWrkaying on the 11 um BT
image (back/white). Operational SEVIRI CM applied clear detection. This image is
for 00 UTC on 18 August 2006. Figure 27 is theaas Figure 26 but for the LI.

SEVIRI TPW--20060818:00

Total precipitable water (mm)

0

UW/CIMSS

Figure 26. Example of LAP TPW from 00 UTC August 2806 produced from SEVIRI
on MET-8.
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SEVIRI LI--2006.08.18.00 + EC fcst

-15

-10

-5

Lift Index

10

15
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UW/CIMSS

Figure 27. Example of LAP LI from 00 UTC August Z&06 produced from SEVIRI on
MET-8.

3.3.2.1 Precisions and Accuracy Estimates

To estimate the performance and accuracy of the, \® have used radiosondes,
AMSR-E, and ECMWF analysis data as described abdwes section will present our
analysis methodology for estimating the precisiod accuracy. The next section will
provide the quantitative results in terms of thePRRspecifications. Results from both
summer and winter month are presented. Sincetthesphere is stable in winter over
Europe for most situations, analysis on instabilityices are focused on summer month
only.

4.3.2.1.1 TPW analysiswith radiosondes

The SEVIRI IR derived TPW values were computed aodhpared with RAOBS,
AMSR-E and ECMWEF analysis. The differences betwgen SEVIRI TPW and other
measurements are then calculated for each pixtHdnSEVIRI domain. The error for
clear sky pixels is estimated as follows:

Error (%) = [(A-B)/A]*100

68



The averaged percentage error can be calculat
Average Error (%) = (1/NS) * sum(Err

where NS is the total number of sam, A is the true value and B is the retrieved v.
Figure 28shows the scatterplot between SEVIRI TPW and radids TPW for Augus
2006 over landor summer valdatic. An average percentage error of 11.5% is obte
from SEVIRI using thé&. AP algorithm.

TPW (mm)
0 R-0.03
60 | RMSE=2.85 (11.5%)
BIAS=-0.2973
50| o
o o g

0 10 20 30 40 50 60 70
True

Figure 28 Scatterplot of SEVIRI TPW using tiLAP algorithm versus RAOB over lan
one month (August 2006) matchup (SEVIRI/RAOB) datase(for summer validatic.

Figure 29 shows the scatterplots of SEVIRI TPW gdiAP algorithm versus ECMW
analsis over ocean (upper right panel) and land (loigdrt panel), one month (Janue
2008) matchup (SEVIRI/ECMWEF analysis) data is uged winter validation. The
SEVIRI improves the forecast (upper left panel)raveean by 0.7 mm, while it improv
the forecast (lower left panel) by 0.4 mm over
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Figure 29. The scatterplots of SEVIRI TPW using R Algorithm versus ECMWF
analysis over ocean (upper right) and land (lowght), one month (January 2008)
matchup (SEVIRI/ECMWEF analysis) data is used famtes validation.

4.3.2.1.2 TPW Analysiswith AMSR-E

The SEVIRI TPW retrievals are also compared witeraponal AMSR-E TPW product
over ocean for August 2006. The temporal separdigiween SEVIRI and AMSR-E is
less than 15 minutes, while the spatial distandevden the two is less than 10 km.
Figure 30 shows the TPW scatterplot between AMS&E SEVIRI, a total of 2822939
samples are used. The retrieval TPW agrees vellywith AMSR-E observations with
the correlation of 0.96. When SEVIRI TPW is lesart 25 mm, SEVIRI has slight wet
bias, while when SEVIRI TPW is greater than 25 n®BVIRI has slight dry bias, which
is consistent with the MODIS results (Seemann.€2@03).
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Temporal dist < 15 minutes

Products: TPW L :
Spatial dist < 10 km
Total precipitable water (mm)

701 100
R=0.96

%)

RMSE=2.77 (9.47%)
607 BIAS=0.4034

Relative density of frequency of occurrence (

: E 0
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AMSR-E

Validation of TPW from physical retrievals compared with TPW .
from AMSR-E over ocean in August 2006 (2,822,939 samples). HibGl s

Figure 30 The TPW scatterplot between AM-E and SEVIRI for August 20C

4.3.2.1.3 TPW Comparisonswith ECMWF Analysis

Figure 31shows SEVIRI TPV and LPWuvalidation with ECMWF analysis for Augu
2006 (31044 samples which is 1% of all samples3.aBove, thiLAP algorithm is used
for deriving the water vapor products from SEVIRIPW reaches approximate acacy
of 9% over both land and ocean, as shown in themlpft panel of Figur31.
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Figure 31 Scatterplot between ECMWF analysis and SEVIRtewaapor product
(TPW, WV1, WV2, and WV3) foil00 UTC, August 18, 2006; only 1% of matchu
samples are included.

A monthly-averaged time series of TPW and LPW components (WN2/WV3)
correlation coefficient (R) between forecast/retaleand ECMWEF analysis is presen
using the 18nonth regional validation dataset. For TPW, thpromement oR by LAP
is about 0.5 when compared with the forecast. Byenal, The R value can go higl
than 0.9 in winter and shows less seasonal vami#itian the forecast. Considering th
IS one more moisture band in ABI than SEVIRI, tesult could be evebetter if real
ABI data is applied. The performance of LAP alduntis quite different at differel
heights and best result is for the high level mwestomponer
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Figure 32: The time series of TPW and LPW (inclgdiwV1/WV2/WV3) correlation
coefficient between forecast/retrieval and the ECMWhalysis from April 2007 to
September 2008.

43214 LI analysiswith radiosondes and ECMWF analysis

The SEVIRI derived LI values were also computed andpared with RAOBs for
August 2006. The LI RMS difference between the SHEHVImeasurements and
radiosondes is 2.05 K as indicated in the scatiegiven in Figure 33.
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Figure 33 Same as Figui28 bu for Lifted Index. Radiosondes are used as 1

The monthly averaged time series of LI between |07 and September 2008 o
Europe and North Africa is plotted in the followinthe difference between forecast «
retrieval is trivial because teterature profile and louevel moisture profile have ve
little improvement.

LI

0.9

085}
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Corr. Coef.
o
N
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0.65 ' ' ' '
0704 0708 0712 0804 0808

Month
Figure 34: Same as Figure 32 but fot
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4.3.2.1.5 Profileanalysiswith radiosondes and ECMWF analysis

One month (August 2006) spatially and temporallijfocated SEVIRI and RAOB are
used for full disk validation of the algorithm, ah8l-month (April 2007-September 2008)
spatially and temporally collocated SEVIRI and ECH\Ahalysis are used for a regional
validation of algorithm. The operational SEVIRI Qioduct from EUMETSAT is used
for clear pixel identification. Test results shavat physical retrieval does improve the
regression (used as the first guess), while theessgn improves the forecast for both
summer and winter. Since the regression algoritbes forecast and SEVIRI radiances
as predictors, an improvement from regression éwercast is expected. The physical
retrieval improves the regression since it accobetser for the nonlinearity of moisture
to IR radiances.

Figure 35 shows the RMSE for RH between SEVIRIlieetds and radiosondes for
August 2006, a total number of 457 comparisons iackuded. SEVIRI provides
significant improvement on the forecast. Due to lidted spectral information, it is
difficult for SEVIRI to improve the boundary layeroisture forecast.
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Figure 35. The RH RMSE between SEVIRI retrievald eadiosondes for August 2006.

Figure 36 shows the RMSE for temperature (left) &td (right) between SEVIRI

retrievals and ECMWEF analysis for January 2008 daed, a total of 203491 matchups
are included in the land statistics. Figure 3&ame as figure 36 but for mean bias.
Figure 38 is the same as Figure 36 but over ocaamtal of 149724 matchups are
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included in the ocean statistics. Figure 39 isesamfigure 37 but for mean bias. SEVIRI
slight improves the temperature forecast, whil@miproves the moisture significantly
above 700 hPa. Compared with summer results (Figbyethe water vapor forecast is
worse and the satellite data provide can help.

Temperature Relative humidity
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1 15 2 25 3 5 10 15 20 25 30
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Figure 36. The RMSE for temperature (left) and @ight) between SEVIRI retrievals
and ECMWF analysis for January 2008 over landta tf 203491 matchups is included
in the land statistics.
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Figure 39. The mean bias for temperature (left) &id (right) between SEVIRI
retrievals and ECMWF analysis for January 2008 @eean, a total of 149724 matchups
is included in the land statistics.

The temporal evolution of the retrieved atmosphprdfiles versus the forecast is carried
out by processing the 18-month dataset and plottatie following two figures. It is
found that the improvement of temperature pro8lémited and the major improvement
occurs at the near surface levels (below 900 HRa)inter the reduction of RMSE at
low levels is about 0.3 K and in other seasonsvéilae can go up to 0.5 K. Similar
results can be expected by ABI since SEVIRI and A& only one CO2-absorbing band
at 13.4-um.
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Figure 40. The evolution of forecast (top) andiesed (middle) temperature profile
RMSE (K) against ECMWEF analysis from April 20073eptember 2008. Also plotted is
the RMSE difference between retrieval and fore@asttom).

The improvement of moisture profile happens atuger levels (higher than 700 hPa)
and the best results are located near the 500M@Ewhile, the seasonal pattern of the
improvement is obvious: more RMSE of RH is reduicedinter and spring than other
seasons and the largest improvement is about 1Bfte 8Bl has one more water vapor
band at 6.9-um, it is expectable that the improvegmé&RH by ABI could be slightly
better than the proxy result.
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Figure 41. The evolution of forecast (top) andies®d (middle) RH profile RMSE (%)
against ECMWEF analysis from April 2007 to Septeni2@d8. Also plotted is the RMSE
difference between retrieval and forecast (bottom).
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4.3.2.1.6 CAPE analysiswith radiosondes and ECMWF analysis
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Figure 42. Same as Figure 28 but for CAPE.

Figure 42 shows the CAPE retrievals. Since CAPE date large variations, it is
difficult to make a decent scattering plot. Howetae retrieval still has good agreement
with observation if filtering out some outliers.

The monthly averaged time series of CAPE betwear 2007 and September 2008
over Europe and North Africa is plotted in the doling. The difference between forecast
and retrieval is trivial in most seasons except&imhen the retrieval is much better
than forecast. Such a pattern indicates that the CAPE product may be helpful in
predicting convective weather in winter, such assstorms.
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Figure 43. Same as Figure 32 but for CAPE.

4.3.2.1.7 TT analysiswith radiosondes and ECMWF analysis
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Figure 44. Same as Figure 28 but for TT.

TT Phy

T
0.9 g

0851

081

Corr. Coef.

0.75~

0.7

0.65 : : : :
0704 0708 0712 0804 0808

Month
Figure 45. Same as Figure 32 but for TT.

4.3.2.1.8 Sl analysiswith radiosondes and ECMWF analysis
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Figure 46. Same as Figure 28 but for SI.
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Figure 47. Same as Figure 32 but for SI.

4.3.2.1.9 KI analysiswith radiosondes and ECMWF analysis
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Figure 48. Same as Figure 28 but for KI.
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Figure 49. Same as Figure 32 but for KI.

3.3.3 Further Product Validation Plan

3.3.3.1 Offline validation of LAP and derived products (DP9 — truth datasets

True dataset over land
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The radiosondes (MSG spatial coverage) will be deedalidating LAP and DPs over
land, the ARM site radiosondes and microwave bds&d/ (frequent observations) over
South African and Germany will also be used a$trut

Truth dataset over ocean

Radiosondes from AEROSE (2006 — 2008) and AMSR-B/T®servations will be used
as truth over ocean.

Truth dataset over both land and ocean

ECMWEF analysis (6-hour global ECMWF analysis fanperature and moisture profiles,
0.25 degree by 0.25 degree) will be used as trugh both land and ocean, one month’s
ECMWEF analysis data (August 2006) will be used.

3.3.3.2 Offline validation of LAP and derived products (DP9 — test datasets

Test data over land

(1) Collocated Radiosondes - SEVIRI radiances dM&G spatial coverage (spatial
distance < 25 km, temporal difference < 0.5 hoda€MWF or GFS forecast can be used
as background. Time period is April 2007 — SeptenZ908.

(2) Collocated radiosondes and SEVIRI radiancedipcated SEVIRI radiances and
microwave TPW over ARM site in African and Germargpatial difference <15 km,
temporal difference <15 minutes.

(3) Products to be validated: Temperature profilejsture profile, TPW, LI, CAPE, TT,
SlI, K-Index.

Test data over ocean

(1) Collocated Radiosondes - SEVIRI radiances aa¥an from AEROSE (2006 —
2008) (spatial distance < 25 km, temporal diffeeerc 0.5 hour). ECMWF or GFS
forecast can be used as background. Time periddd6 — 2008.

(2) Collocated AMSR-E level 2 TPW product and SEMiBdiances. Spatial difference
<20 km and temporal difference <15 minutes.

(3) Products to be validated from AEROSE data: Texaure profile, moisture profile,
TPW, LI, CAPE, TT, SI, K-Index.

(4) Products to be validated from AMSR-E data: TPW

Test data over both land and ocean
(1) Collocated ECMWF analysis and SEVIRI radianfresn April 2007 — September

2008 at 00 UTC and 12 UTC (spatial distance < 25 temporal difference < 15
minutes). ECMWF or GFS forecast can be used asjbawgkd.
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(2) Products to be validated: Temperature profilejsture profile, TPW, LI, CAPE, TT,
SI, K-Index.

3.3.3.3 Offline validation of LAP and derived products (DP9 — test methods

Test methods over land

(1) Collect spatially and temporally collocated SRVradiances and radiosondes over
land.
(2) Add forecast (from GFS or ECMWEF) into the matgldata.
(3) Collect SEVIRI and radiosondes, SEVIRI and mwveave TPW over ARM sites in
Africa and Germany.
(4) Add forecast (from GFS or ECMWEF) into the matgldata.
(5) Algorithm test using SEVIRI radiances,
(a) Screen clouds using offline threshold methadusing operational SEVIRI
cloud mask product;
(b) Start with forecast, generate first guess LARfilg using regression
algorithm; update LAP profile using physical retaéalgorithm.
(6) Compare LAP/DPs from SEVIRI with radisosondesrdand.
(7) Compare LAP/DPs from SEVIRI with radisosondésA&M sites in Africa and
Germany.
(8) Compare TPW from SEVIRI with microwave TPW m@asnents at ARM sites in
Africa and Germany.

Test methods over ocean

(1) Collocate radiosondes and SEVIRI from AEROSEracean.

(2) Develop dust mask for SEVIRI radiances.

(3) Add forecast (GFS or ECMWEF) into the matchutada

(4) Collect SEVIRI and AMSR-E level2 TPW productidaforecast (GFS or ECMWF)

into this matchup data.

(5) Algorithm test using SEVIRI radiances,
(a) Screen clouds using offline threshold methadusing operational SEVIRI
cloud mask product;
(b) Start with forecast, generate first guess LARfile using regression
algorithm; update LAP profile using physical retiaéalgorithm.

(6) Compare LAP/DPs from SEVIRI with radisosondesraocean.

(7) Compare TPW from SEVIRI with AMSR-E TPW prodwster ocean

Test methods over both land and ocean
(1) Collect spatially and temporally collocated SRVradiances and ECMWF analysis.

(2) Add forecast (from GFS or ECMWEF) into the matgldata.
(3) Algorithm test using SEVIRI radiances,
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(a) Screen clouds using offline threshold methadusing operational SEVIRI
cloud mask product;
(b) Start with forecast, generate first guess LARfilg using regression
algorithm; update LAP profile using physical reaéalgorithm.

(4) Compare LAP/DPs from SEVIRI with ECMWF analysis

3.3.4 Frame work validation

(1) Take the output from the framework.

(2) Take the same test dataset of framework.

(3) Run the test dataset offline.

(4) Compare the offline results with framework aittpassure the consistency.
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4 PRACTICAL CONSIDERATIONS
4.1 Numerical Computation Considerations

The physical iterative procedure is less efficightan statistical approach. For
computation efficiency, numerical approaches amdusee Eq. (24) and Eq. (25) for
details. The interpolation of NWP field to ABI sfadly, temporally and vertically can be
pre-processed before the algorithm run.

4.2 Programming and procedural Considerations

The LAP algorithm requires knowledge of clear mag&rmation within each FOR. The

LAP is implemented sequentially (pre-process, regjom followed by iterative physical

approach). The LAP is purely a FOR by FOR algoritiimen it could be parallelized in

future version for processing with several CPU. Dimy task that is not made inside
LAP code is spatial interpolation of NWP beforeisatal process upon the arrival of new
NWP data to avoid repeat the process every slot.

4.3 Quality Assessment and Diagnostics

The following procedures are recommended for diagygpthe performance of the LAP.
* Monitor the percentage of clear pixels within tf@RE

« Derive BT residuals between observations and caliounls with forecast and
retrieval.

» Indicate large difference of IR10.8 BT between gkltton and observation.

4.4 Exception Handling

Algorithm cannot be run if any of the mandatoryditannels data or ABI CM is bad or
missing. The LAP does check for conditions whaeltAP cannot be performed. These
conditions include saturated profiles or missing\RJalues.

5 Assumptions and Limitations

5.1 Performance

The factors impact LAP performance include the augaacy of CM, uncertainty of fast
RTM, desert situation, radiance and calibrationsbienperfect of background error
covariance matrix. The strategies for mitigatindude:
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(1) For CM improvement, collaborate with cloud teamd provide feedback on using
their CM product, identify the problematic areasewh CM algorithm needs to be
improved.

(2) For desert region, develop SE database froml,lASing IASI SE for surface
condition in ABI LAP retrieval.

(3) For radiance bias, develop an algorithm fosladjustment, coefficients for radiance
bias adjustment should be updated routinely. Salebuld be conducted on the diurnal
characteristics of radiance bias.

(4) For background error covariance matrix, thaasahde/ABI matchup database will
be used to update forecast error covariance matioxthly update is needed.

5.2 Assumed Sensor Performance

Good ABI radiometric performance is required. Hétsignal to noise ratio is not good
enough, the accuracy of LAP product will be degdad@&he impact of instrument noise
on LAP product will be evaluated; algorithm will befined to mitigate this impact. For
example, increase the assumed noise in trainingetir@ssion coefficient for first guess
estimate.

5.3 Pre-planned Product Improvements

Here are pre-planned product improvements basedhenoperational priority and
feasibility.

6.3.1 Improvement 1: using emissivity database fronpolar-orbiting advanced IR
sounder radiances.

The IASI provides global radiance spectra with héglectral resolution, SE spectrum can
be derived from IASI radiance measurements ancdethissivity can be used for ABI
LAP retrieval.

6.3.2 Improvement 2: Radiance bias adjustment

It is very important to develop a robust algoritfon radiance bias adjustment, SEVIRI

and the current GOES Sounder data can be usedstdhie effect of radiance bias

adjustment and this algorithm can be applied to aiie the data is available.

6.3.3 Improvement 3: Using time continuity in LAPproduct improvement

ABI has much higher temporal resolution than theesut GOES Sounder; water vapor
variation is small during 15 minute time step. Tdrevious retrieval can be used as the

first guess for the current time step retrievaljohtwill avoid the disadvantage of coarser
temporal resolution of global forecast model (esgery 6 hours)
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6.3.4 Improvement 4: Using regional high resolutioriorecast model

Ideally, forecast should be output from regionadelaevery one hour, and spatial
resolution of the regional forecast model should @&m or better. The next two figures
are the results with different NWP model profilesb@ckground. This is a simulated ABI
case of 22:00 UTC, June 04, 2005. NAM is a typiegional model with higher spatial
and temporal resolutions than the ECMWEF forecad®akm vs. 30-km and 3-hour vs.
12-hour respectively. We found that using high-hetson regional NWP model profiles
as background can significantly improve the LARiestl for the low level moisture
profile which in turn, can improve the retrieval @W (Jin et al. 2008b).
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Figure 50: The (left) temperature and (right) Ridfje of RMSE against the true values
with WRF-simulated ABI case of 22:00 UTC June 208AM 3-hour forecast and
ECMWEF 12-hour forecast are used as backgroundeibl &P retrieval.
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Figure 51: Retrieved TPW with NAM (black) and ECMWfed) forecast as background
against the WRF-simulated true value.

5.4 Assumptions

(1)
(2)
3)

(4)
(5)
(6)

(7)
(8)
(9)

The single FOV ABI CM is available before the LA®rieval

A high quality dynamic land surface IR emissivitpguct is available
Forecast temperature, moisture profiles, as welhear surface wind speed,
surface skin temperature and surface pressuresailalae

NeDR and calibration for all ABI IR bands are knoamd reasonably good

A fast and accurate RTM along with K-Matrix comgiga are available
Algorithm/products will be validated with intensivground and aircraft
measurements

Forecast error covariance matrix will be updatadinely from matchup file
Retrieval is performed on FOR basis

Spectral response knowledge is stable and known

(10) ABI satellite position is known
(11) Good quality ABI data with respect to striping,tslidy, cross-talk, etc.

5.5 Limitations

(1) LAP and derived products are available over “cldé&g@Rs only (20% or more

clear FOVs within the FOR)

(2) Effect of emissivity temporal variation is not héeul Emissivities at ABI IR

bands are monthly dataset.

(3) Surface roughness and skin temperature non-homogsness are not handled
(4) Since it is an iterative physical retrieval, congiidn is relative expensive and

increase the width of the FOR could be necessdarge region processing

(5) Forecast temperature is hard to improve with ABI

91



(6) Surface air temperature and moisture observatimnbard to collect at the spatial
resolution of satellite pixel size and the tempoeablution of satellite scan

Due to likely differences on accuracy on sea, nesed and desert ABI pixels, separated
validation will be provided. For desert pixels, theface skin temperature difference
between the NWP first guess and the actual skipéeature could be high. Similar
behavior is expected on very hot or cold pixelsravan-desert land pixels. Also the fact
that the emissivity atlas is not updated in neal time may introduces some errors.
Then, the quality for desert pixels may be worse.
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APPENDIX 1
The following table contains the LAP sounding altjon output variables.

Table Al: LAP sounding output variables -- products

Variable Name Unit | Type Sizé Description

Tprof K Float32| NX_NY_PROF | Retrieved temperature profile
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Woprof g/kg | Float32] NX_NY_PROF | Retrieved moisture profile
Lst K Float32] NX_NY Retrieved surface skin temperature:
1) it is only meaningful over land
2) it is same as the interpolated SST from
NWP over ocean and lake
CAPE J/ikg | Float3d NX_NY Convective available potential energy
LI °C Float32] NX_NY Lifted index
TT °C Float32] NX_NY Total Totals
Kl °C Float32| NX_NY K-index
Sl °C Float32] NX_NY Showalter index
TPW cm Float34 NX_NY Total precipitable water vapor
TPW_High cm Float34d NX_NY Layered PW from 700 to 300 hPa
TPW_Mid cm Float321 NX_NY Layered PW from 900 to 700 hPa
TPW_Low cm Float33 NX_NY Layered PW from surface to 900 hPa
Lon_reduced ° Float3p NX_NY Longitude
Lat_reduced ° Float3p NX_NY Latitude

TNX_NY refers to the number of FORs in the x-direntby the number of FORs in the y-direction

*. Given the full disk size is X-by-Y and the steidfactor is M, then NX = ceiling(X/M) and
NY=ceiling(Y/M); PROF is the number of vertical kg depending on the pressure ordinate used in the
RTM. PROF = 101 in cRTM version.

Table A2: LAP sounding output variables — quallags

Variable Name Unit | Type Sizé Description

Quality Flag none| Int8 NX_NY Overall quality flag :
=0 : good
=1: space

=2 : latitude greater than threshold
=3 : local zenith angle greater than threshp
=4 : number of clear pixels less than
threshold

=5 : missing NWP data

=6 : fatal processing error

d

Quality Flag_Rtvl nonel Int8 NX_NY Retrieval qualitag:

=0: good retrieval

=1: non-convergence

=2: residual too large

=3: non-completed converge
=4: bad retrieval

Quality_Flag BT11 nondq Int8 NX_NY Skin temperatfirst guess quality:

=0: ABS(Cal_BT;- Obs_BT;) <2 K, good
=1: (Cal_BT,;- Obs_BT,) > 2 K, bad

=2: (Cal_BT;;- Obs_BTy) <- 2 K, bad

TNX_NY refers to the number of FORs in the x-direntby the number of FORs in the y-direction
#: Cal_BT, is the calculated BT at 11.0-um by forward RTM dinst guesses of skin temperature and
profiles.

Table A3: LAP sounding output variables -- qualitiormation

Variable Name Unit | Type Sizé Description
Num_Iteration nonel Int8 NX_NY Number of iterations
RMSE_BrtTemp_Nex{ K Float32] NX_NY RMSE of average BT residual after retrievgl
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Num_Clr_Pix none| Int8 NX_NY Number of clear pixéisFOR?

Quality_Information noneg] Int8 NX_NY Bit 0: QC_OCEAMNAND_FOR
0 = Ocean FOR, 1 = Land FOR

TNX_NY refers to the number of FORs in the x-direntby the number of FORs in the y-direction
@: this number changes with the FOR size.

Table A4: Coefficients used in function WLIFT5
AO -41.536

Al 1.36083317
A2 1.91780552E-2
A3 1.3333332E-4
A4 -1.66611135E-5
A5 -2.46666673E-1
A6 8.805555540E-9

Table A5: Coefficients used in function WOBF

Al 3.6182989E-03 Bl -8.8416605E-(3
A2 -1.3603273E-04 B2 1.4714143E-Q4
A3 4,9618922E-07 B3 -9.6719890E-(7
A4 29.930 B4 15.13
A5 0.96
A6 14.8
Table A6: Coefficients used in function TCON

Al 1.2185

A2 1.278E-03

A3 -2.19E-03

A4 1.173E-05

A5 5.2E-06

Table A7: Coefficients used in function TEMSAT
Al -.225896152438D+2

A2 .261012286592D+2
A3 .30206720594D+1
A4 .370219024579D+0
A5 .72838702401D-1

Table A8: Coefficients used in function TVPICE
Al -.2031888177D+2

96




A2 .2394167436D+2
A3 .2252719878D+1
A4 .1914055442D+0
A5 .9636593860D-2

Table A9: Coefficients used in function SVPWAT

A0 .999996876D0
Al -.9082695004D-2
A2 .7873616869D-4
A3 -.6111795727D-6
A4 .4388418740D-8
A5 -.2988388486D-10
A6 .2187442495D-12
A7 -.1789232111D-14
A8 .1111201803D-16
A9 -.3099457145D-19
B .61078D+1

Table A10: Coefficients used in function SVPICE

A0 .7859063157D0
Al .3579242320D-1
A2 -.1292820828D-3
A3 .5937519208D-6
A4 .4482949133D-9

A5 .2176664827D-10

Table A11: Coefficients used in function SatMix

Al 7.90298
A2 5.02808
A3 1.3816E-7
A4 11.344
A5 8.1328E-3
A6 3.49149
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Table A12: LAP meta-data (legacy vertical tempamprofile, legacy vertical moisture
profile, total precipitable water, and stabilitylines)

Name DetailsiComments

Date swath beginning and swath end

Time swath beginning and swath end
Bounding Box product resolution

number of rows and
number of columns,
bytes per pixel
data type
byte order information
location of box relative to nadir (pixel space)

Product Name
Product Units
Ancillary Data to Produce Product product precedenc
Version Number
Origin where it was produced
Quality Information
Name
Satellite GOES-16, etc.
Instrument ABI
Altitude
Nadir pixel in the fixed grid
Attitude
Latitude
Longitude
Grid Projection
Type of Scan
Product Version Number
Data compression type
Location of production
Citations to Documents
Contact Information

For each Soundings product, the
following information is required:
Mean, Min, Max and Standard deviatio
of retrievals from first guess for TPW
Mean, Min, Max and Standard deviation for Lifted Index, Total Totals, CAPE, and

of retrievals from first guess Showalters Index
Number of IR channels, channel 8 to
channel 16
For each IR channel, the following
information is required:
Mean difference between calculated B|
(from first guess) and observed BT for t

)

=2 =
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IR channel

Number of QA flag values

For each QA flag value, the following
information is required:
Percent of retrievals with the QA flag
value
Definition of QA flag

Total number of attempted retrievals
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Fig Al: The sketch map of all ancillary files andernal functions/subroutines applied in the LARrsting algorithm
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Appendix 2: Common Ancillary Data Sets

1. LAND_MASK_NASA_1KM

a. Datadescription

Description: Global 1km land/water used for MODIS collection 5
Filename Iw_geo 2001001 _v03m.nc

Origin: Created by SSEC/CIMSS based on NASA MODIS catech
Size 890 MB.

Static/Dynamic: Static

b. Interpolation description

Theclosest point is used for each satellite pixel:

1) Given ancillary grid of large size than satellitelg
2) In Latitude / Longitude space, use the ancillataddosest to the
satellite pixel.

2. NWP_GFS

a. Data description

Description: NCEP GFS model data in grib format — 1 x 1 degree
(360x181), 26 levels
Filename gfs.tHHz.pgrbfhh

Where,

HH — Forecast time in hour: 00, 06, 12, 18

hh — Previous hours used to make forecast: 0M®&3)9
Origin: NCEP
Size 26MB
Static/Dynamic. Dynamic

b. Interpolation description

There are three interpolations are installed:

NWP forecast interpolation from different forecasttime:

101



Load two NWP grib files which are for two differeiorecast time and
interpolate to the satellite time using linear rptdation with time
difference.

Suppose:

T1, T2 are NWP forecast time, T is satellite oleaton time, and
T1<T<T2. Yisany NWP field. Then field Y atsllite observation
time Tis:

Y(T)=Y(T1) * W(T1) + Y(T2) * W(T2)
Where W is weight and

W(T1)=1-(T-T1)/(T2-T1)

W(T2) = (T-T1)/ (T2-T1)

NWP forecast spatial interpolation from NWP forecas grid points.
This interpolation generates the NWP forecast fortie satellite pixel
from the NWP forecast grid dataset.

Theclosest point is used for each satellite pixel:
1) Given NWP forecast grid of large size than satetiitid

2) In Latitude / Longitude space, use the ancillanaddosest to
the satellite pixel.

NWP forecast profile vertical interpolation

Interpolate NWP GFS profile from 26 pressure level$01 pressure
levels

For vertical profile interpolation, linear interdion with Log
pressure is used:

Suppose:

y is temperature or water vapor at 26 levels, diilyis temperature
or water vapor at 101 levels. p is any pressurel leetween p(i) and
p(i-1), with p(i-1) < p <p(i). y(i) and y(i-1) ang at pressure level p(i)
and p(i-1). Then y101 at pressure p level is:

y101(p) = y(i-1) + log( p[i] / p[i-1] ) * (y[i] -y1i-1] ) / log (
p(i] / p[i-1])
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3. CRTM

a. Datadescription

Description: Community radiative transfer model
Filename N/A

Origin: NOAA / NESDIS

Size N/A

Static/Dynamic: N/A

b. Interpolation description

A double linear interpolation is applied in thearngolation of the
transmissitance and radiance profile, as well ds@rsurface emissivity,
from four nearest neighbor NWP grid points to theBite observation
point. There is no curvature effect. The weightsheffour points are
defined by the Latitude / Longitude difference betw neighbor NWP
grid points and the satellite observation poinhe Tveight is defined with
subroutine ValueToGrid_Coord:

NWP forecast data is in a regular grid.

Suppose:
Latitude and Longitude of the four points are:

(Latl, Lonl), (Latl, Lon2), (Lat2, Lonl), (Lat2, bd)
Satellite observation point is:

(Lat, Lon)

Define
alLat = (Lat — Latl) / (Lat2 — Latl)
alon = (Lon — Lonl) / (Lon2 — Lon1)

Then the weights at four points are:
wll = alat * aLon
w12 = alat* (1 —aLon)
w21 = (1 — alLat) * aLon
w22 = (1-aLat) * (1 — aLon)

Also define variable at the four points are:
all, al2, a21, a22

Then the corresponding interpolated result at lgatelbservation point
(Lat, Lon) should be:
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a(Lat, Lon) = (al1*w1l + al2*wl2 + a21*w21 + a22%) / u
Where,

u=wll +wil2¥1 + w22

c. CRTM calling procedure in the AIT framework

The NWP GFS pressure, temperature, moisture anteqaofiles start on
101 pressure levels.

They are converted to 100 layers in subroutine
Compute_Layer_Properties. The layer temperaturedsst two levels is
simply the average of the temperature on the twelse
layer_temperature(i) = (level_temperature(i) + letemperature(i+1))/2
While pressure, moisture and ozone are assumedggdmnential with
height.

hp = (log(p1)-log(p2))/(z1-22)

p = p1* exp(z*hp)

Where p is layer pressure, moisture or ozone. peptesent level
pressure, moisture or ozone. z is the height ofatyer.

CRTM needs to be initialized before calling. Tregbne in subroutine
Initialize_ OPTRAN. In this call, you tell CRTM whhcsatellite you will
run the model. The sensor name is passed througiida call
CRTM_Init. The sensor name is used to construesdnsor specific
SpcCoeff and TauCoeff filenames containing the sy coefficient
data, i.e. seviri_m08.SpcCoeff.bin and seviri_m@8Toeff.bin. The
sensor names have to match the coefficient fileesanYou will allocate
the output array, which is RTSolution, for the nianbf channels of the
satellite and the number of profiles. You alsoedle memory for the
CRTM Options, Atmosphere and RTSoluiton structtitere we allocate
the second RTSolution array for the second CRTMtoatalculate
derivatives for SST algorithm.

Before you call CRTM forward model, load the 10@dapressure,
temperature, Moisture and ozone profiles and tHelé@el pressure
profile into the Atmosphere Structure. Set thesufot the two absorbers
(H20 and O3) to be MASS_MIXING_RATIO_UNITS and
VOLUME_MIXING_RATIO_UNITS respectively. Set the
Water_Coverage in Surface structure to be 100%dardo get surface
emissivity over water. Land surface emissivity v using SEEBOR.
Also set other variables in Surface data strucsuweh as wind
speed/direction and surface temperature. Use NWRBce temperature
for land and coastline, and OISST sea surface teahpe for water. Set
Sensor_Zenith_Angle and Source_Zenith_Angle in Geonstructure.
Call CRTM_Forward with normal NWP profiles to flRTSolution, then
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call CRTM_Forward again with moisture profile mplted by 1.05 to fill
RTSolution_SST. The subroutine for this step id CAPTRAN.

After calling CRTM forward model, loop through eagirannel to
calculate transmittance from each level to Top whdsphere (TOA).
What you get from RTSolution is layer optical defthget transmittance
Trans_Atm_CIr(1) = 1.0

Do Level = 2, TotalLevels
Layer_OD = RTSolution(ChnCounter, 1)%Layer_QCaiti Depth(Level
-1)
Layer_OD = Layer_ OD/
COS(CRTM%Grid%RTM(LonIndex,Latindex) &
%d(Virtual_ZenAngle_Ind&SatZenAng * DTOR)
Trans_Atm_Clr(Level) = EXP(-1 * Layer_OD) &
* Trans_Atm_Clr(Level - 1)
ENDDO
DTOR is degree to radius PI/180.
Radiance and cloud profiles are calculated in CRRadiance_Prof
SUBROUTINE Clear_Radiance_Prof(Chnindex, TempPrafjProf,
RadProf, &
CloudProf)
B1 = Planck_Rad_Fast(Chnindex, TempProf(1))
RadProf(1) = 0.0_SINGLE
CloudProf(1) = B1*TauProf(1)

DO Levellndex=2, NumLevels
B2 = Planck_Rad_Fast(Chnindex, TempProf(Ledsk))
dtrn = -(TauProf(Levelindex) - TauProf(Leveledl))
RadProf(Levellndex) = RadProf(Levellndex-1) +
(B1+B2)/2.0_SINGLE * dtrn

CloudProf(Levellndex) = RadProf(Levellndex) +
B2*TauProf(Levellndex)

B1=B2
END DO
Transmittance, radiance and cloud profiles areutatied for both normal
CRTM structure and thé"2CRTM structure for SST.

Call Clear_Radiance_TOA to get TOA clear-sky radeaand brightness
temperature.
SUBROUTINE Clear_Radiance_TOA(Option, Chnindex, Riaal
TauAtm, SfcTemp, &

SfcEmiss, Rad®rrTemp_Clr, Rad_Down)
IF(Option == 1) THEN
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IF(PRESENT(Rad_Down))THEN
RadClr = RadAtm + (SfcEmiss * Planck_Rad_2ishindex,
SfcTemp) &
+ (1. - SfcEmiss) * Rad_Down) * TauAtm
ELSE
RadClr = RadAtm + SfcEmiss * Planck_Rad_Fast(ndex,
SfcTemp) &
* TauAtm
ENDIF

CALL Planck_Temp(Chnindex, RadClr, BrTemp_ClIr)

ELSE
RadClr = 0.0
BrTemp_Clr=0.0
ENDIF

In this subroutine, Rad_Down is optional, dependingf you want to
have a reflection part from downward radiance wy@n calculate the
clear-sky radiance. Notice that clear-sky radiaame brightness
temperature on NWP grid only calculated for nor@RITM structure not
the SST CRTM structure.

Also save the downward radiances from RTSolutiahRmSolution_SST
to CRTM_RadDown and CRTM_RadDown_SST. Save CRTMutated
surface emissivity to CRTM_SfcEmiss. The abovestp done in
subroutine CRTM_OPTRAN
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