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ABSTRACT

This Rainfall Rate Algorithm Theoretical Basis Datent (ATBD) contains a high-level
description (including the physical basis) of agogithm for estimating pixel-scale
rainfall rate from images taken by the Advanceddiae Imager (ABI) flown on the
Geostationary Operational Environmental Satellgees R (GOES-R) series of National
Oceanic and Atmospheric Administration (NOAA) gedistnary meteorological
satellites. A brief overview of the GOES-R obsegvsystem is followed by a more
specific description of the Rainfall Rate algorithralidation efforts, and planned
improvements.



1 INTRODUCTION

1.1 Purpose of This Document

The Rainfall Rate Algorithm Theoretical Basis Doa@nh(ATBD) provides a high-level
description of and the physical basis for the esfiom of pixel-scale rainfall rate from
images taken by the Advanced Baseline Imager (ABNWn on the Geostationary
Operational environmental Satellite-Series R (GOHSeries of National Oceanic and
Atmospheric Administration (NOAA) geostationary metological satellites. The
rainfall rate is produced as an Environmental DR&cord (EDR) and the algorithm
output is used by the rainfall potential algorithoncreate nowcasts of rainfall rates and
accumulations.

1.2 Who Should Use This Document

The intended users of this document are thoseestin in understanding the physical
basis of the algorithms and how to use the outpdhie algorithm in a manner that is
consistent with its underlying assumptions. Thigumment also provides information
useful to anyone maintaining or modifying the angjialgorithm.

1.3 Inside Each Section
This document is broken down into the following maections.

» System Overview Provides relevant details of the Rainfall Ratgdklithm and
provides a brief description of the products geteerdy the algorithm.

» Algorithm Description: Provides all the detailed description of the alfm
including its physical basis, its input and itspoutt

» Test Data Sets and Output Provides a description of the test data set used
characterize the performance of the algorithm amity of the data products. It
also describes the results from algorithm procgsssing simulated input data.

» Practical Considerations Provides an overview of the issues involving
numerical computation, programming and procedugeslity assessment and
diagnostics and exception handling.

» Assumptions and Limitations Provides an overview of the current limitatioris o
the approach and gives the plan for overcomingethigsitations with further
algorithm development.

1.4 Related Documents

This document currently does not relate to any rottteument outside of the Parallax
Algorithm Theoretical Basis Document and to thecspmtions of the GOES-R Ground



Segment Mission Requirements Document (MRD) andctamal and Performance
Specification (F&PS) and to the references giveaughout.

1.5 Revision History

Version (0.1) of this document was created by Dwobé&tt J. Kuligowski of
NOAA/NESDIS [National Environmental Satellite, Dataand Information
Service]/STAR [Center for Satellite ApplicationsdaResearch] and its intent was to
serve as a draft submission to the GOES-R Progriice@GPO) for initial comments.

Version (1.0) of this document was created by Diobétt J. Kuligowski of
NOAA/NESDIS and its intent was to accompany thevaey of the 80% algorithm to the
GOES-R AWG Algorithm Integration Team (AIT).

Version (2.0) of this document was created by Dwobé&t J. Kuligowski of
NOAA/NESDIS and its intent was to accompany theveey of the 100% algorithm to
the GOES-R AWG Algorithm Integration Team (AIT).



2 OBSERVING SYSTEM OVERVIEW

This section will describe the products generatethb ABI Rainfall Rate Algorithm and
the requirements it places on the sensor.

2.1 Products Generated

The Rainfall Rate Algorithm produces a field oftar#aneous rainfall rates associated
with the most recently available GOES imagery.teiims of the F&PS, it is responsible
directly for the Rainfall Rate / QPE [QuantitatiReecipitation Estimate] product within
the Hydrology product sub-type, and meets the requents listed in Table 1. The
Rainfall Rate Algorithm design calls for a quarttita rainfall rate in millimeters per
hour on the same grid as the 2-km ABI IR bandses€&products are intended for use by

operational meteorologists and hydrologists forodloforecasting.

There are no

diagnostic products for external use aside fromdfieial Rainfall Rate product and
accompanying quality flags, but the calibrationftiont tables and rainfall class grids
will be available internally for diagnostic purpsse

Requirement Description

Requirement Value

Name

Rainfall Rate / QPE

User

GOES-R

Geographic Coverage

Full Disk

Temporal Coverage Qualifiers

Day and night

Product Extent Qualifier

Quantitative out to atsied0 degrees LZA or 60 degrees
latitude—whichever is less—and qualitative beyond

Cloud Cover Conditions Qualifier

N/A

Product Statistics Qualifier

Over rain cases andaseale-sized surrounding regio

Vertical Resolution

N/A

Horizontal Resolution 2.0 km
Mapping Accuracy 2.0 km
Measurement Range 0 — 100 mm/hr

Measurement Accuracy

6 mm/hr at a rate of 10 mmw/ith higher values at
higher rates (pending addition: “Quantitative for
convective rainfall and qualitative for stratiform
rainfall.”)

Product Refresh Rate / Coveragés min

Time (Mode 3)

Refreshment Rate / Coverage Tir
(Mode 4)

m&ES min

Vendor Allocated Ground Latency

266 sec

Product Measurement Precision

9 mm/hr at a rat&éCofnm/hr with higher values at
higher rates (pending addition: “Quantitative for
convective rainfall and qualitative for stratiform
rainfall.”)
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Table 1. F&PS Requirements for the Rainfall RapE algorithm.

Note that for pixels outside the local zenith anghel latitude cutoffs, rainfall rates will
still be generated by the algorithm, but their wiébe discouraged and they will not be
validated for comparison against spec.

2.2 Instrument Characteristics

The rainfall rate will be produced for each pixekerved by the ABI between 60°S and
60°N latitude that has a local zenith angle (LZA)less than 70 degrees. The final
channel set is still being determined as the dligms are developed and validated.
Table 2 summarizes the current channel use by #iefdd Rate Algorithm. Note that
these particular bands had METEOSAT Spinning Endadn¢isible InfraRed Imager
(SEVIRI) equivalents and therefore are the onlysonged in the current version of the
algorithm. However, the operational version of twele will be modified to include
inputs from the available ABI bands without SEVI&juivalents if they are shown to
have a positive impact on algorithm performance.

Channel Number Wavelength gm) Resolution (km) Used in Rain Rate
1 0.47 1.0
2 0.64 0.5
3 0.865 1.0
4 1.378 2.0
5 1.61 1.0
6 2.25 2.0
7 3.9 2.0
8 6.19 2.0 v
9 6.95 2.0
10 7.34 2.0 v
11 8.5 2.0 v
12 9.61 2.0
13 10.35 2.0
14 11.2 2.0 v
15 12.3 2.0 v
16 13.3 2.0

Table 2. Channel numbers, wavelengths, and fodtpides of the ABI bands.

In addition to the data from the individual bantise algorithm also uses brightness
temperature differences (BTD’s) between pairs ¢décded bands, and also uses some
spatial gradient information from the infrared (Nndow band (14); see Section 3.4.1.1
for details. Therefore, the performance of thenRdii Rate Algorithm is sensitive to any
imagery artifacts or instrument noise. The charspmcifications are given in the
Mission Requirements Document (MRD) section 3.4420L The performance outlined
therein was assumed during development efforts.
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3 ALGORITHM DESCRIPTION

This section contains a complete description of dlgorithm at the current level of
maturity (which will improve with each revision).

3.1 Algorithm Overview

The rain rate algorithm identifies raining pixelsdaderives rain rates on a pixel level in
ABI imagery. lts calibration is based on matché#\BI data with microwave (MW)-
derived rainfall rates, which are considered to tbe most accurate estimates of
instantaneous rainfall rate available from satelliata. The ABI rain rate algorithm is
based on the Self-Calibrating Multivariate Preeipdn Retrieval (SCaMPR) algorithm
first described in Kuligowski (2002).

The algorithm derives rainfall rate fields in twiess:

1. Identify pixels that are experiencing rainfall. €Tlpredictors and predictor
coefficients for detecting rainfall are derived ngsidiscriminant analysis in a
calibration against MW-retrieved rainfall areas.

2. Retrieve rainfall rates for pixels where rainfadlshbeen detected. The predictors
and predictor coefficients for retrieving rainfalite are derived using stepwise
forward linear regression in a calibration agaMyV-retrieved rainfall rates.

The rain rate algorithm provides estimates of mstaeous rainfall rate at the same pixel
resolution as the ABI. In addition to its use stimating rainfall rates from current ABI
data, the estimates are also extrapolated forwatiche in the GOES-R Rainfall Potential
Algorithm, and these nowcasts are in turn usechpstifor the Probability of Rainfall
Algorithm (see corresponding ATBD’s for additiortails).

3.2 Processing Outline

The processing outline of the rain rate algoritsrsummarized in Fig. 1. The rain rate is
designed to run on individual pixels, with someomfiation required from pixels in the
5x5 neighboring region.

12
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Figure 1.High Level Flowchart of the rain rate algorithniydtrating the main
processing sections.
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3.3 Algorithm Input

This section describes the input needed to protessainfall rates. While the rainfall

rate is derived for each pixel, it does requiretiah knowledge of the surrounding pixels
(5x5). The Rainfall Rate Algorithm can run witifarmation from only one pixel, but

only if certain predictors are removed from thedictor set.

3.3.1 Primary Sensor Data

The list below contains the primary sensor datad use the Rainfall Rate Algorithm.
Primary sensor data refers to information thateiswed solely from the ABI observations
and geolocation information.

» Parallax-corrected, calibrated brightness tempezat(or radiances that will then
be converted to brightness temperatures) for char$)el0, 11, 14, and 15 (see
separate ATBD for description of parallax correstadgorithm)

» Pixel latitude and longitude

* Minimum channel 14 brightness temperature over @ &xay centered on the
pixel of interest

» Average channel 14 brightness temperature of theese4 pixels along the scan
line (2 on each side) and nearest pixel in theddjacent scan lines

* Any relevant ABI quality control flags

3.3.2 Ancillary Data

The following list briefly describes the ancilladata requited to run the Rainfall Rate
Algorithm. Ancillary data is defined as data thedjuires information not included in the
ABI observations or geolocation data. All threetloése ancillary data sets would be
considered to be non-ABI dynamic data (i.e., they raot other ABI-derived products);
no static ancillary data (i.e., time-constant dagjl data such as topography or a land/sea
mask) are required.

» MW-derived rainfall rates

Rainfall rates, presumably from MW data but alsopssible from active radar,

are required as a calibration target for the atbori These rainfall rates do not
need to be available in real time, though the amuof the rain rate estimates
tends degrade slightly as the difference betweertithe period covered by the
training data and the time of the retrieval frora &Bl becomes longer. The MW
rainfall rates will be obtained from an operatiohdSDIS Blended Microwave

Rainfall Rate product that will combine rainfalltea from multiple platforms

(e.g., SSMIS, AMSU-B/MHS) and match their statigtidistributions in order to

resolve inconsistencies between the two.

14



Matched MW rain rates and ABI predictors

These MW-derived rainfall rates are matched withl-8Brived predictors that
have been aggregated to the spatial resolutioneoM\W rain rates (nominally 15
km). Each data point is on a separate data rgtioeddata are not necessarily on

a regularly-spaced grid, though they can be) aedctintents of each record of

this matched file are given in Table 3:

4-Byte Variable Type Value
Word
0 MW pixel latitude Real*4 | -60.0 to 60.0
1 MW pixel longitude Real*4 | -180.0 to 180.0
2 MW rainfall rate (mm/h) Real*4 | 0to 50
3 SEVIRI band 8 brightness temperature (K) Real1474 tb 325
4 SEVIRI band 10 brightness temperature (K) Realtd74 to 325
5 SEVIRI band 11 brightness temperature (K) Realtd74 to 325
6 SEVIRI band 14 brightness temperature (K) Realtd74 to 325
7 SEVIRI band 15 brightness temperature (K) Realtd74 to 325
8 S = 0.568-(#hin11.-217 K) Real *4 | -107.432 to 43.56
9 G{ = Tavq,ll.i' Tmin,ll.: Real*4 Oto 151
10 MW satellite ID Integer*4

Table 3.Contents of each data record of the IR-MW matcledd file.

Retrieval coefficient table

8

This table contains the ID’s (from the matched)fité the selected predictors
along with their calibration coefficients for botain / no rain discrimination and
rain rate calibration. A list of the contents bisttable is provided in Table 4:

4-Byte Variable Type Value

Word

0 Digital day Real*4 | 0to 366.99

1 Number of previous time periods required |Integer*41 and higher
training

2-13 Heidke Skill Score from rain / no rain calibratReal*4 |-1.0to 1.0
(1 value for each of 12 classes)

14-25 |Correlation coefficient from rain rate calibratReal*4 |-1.0to 1.0
(1 value for each of 12 classes)

26 First rain rate predictor ID for class 1 Inteédet to 16

27 Second rain rate predictor ID for class 1 Integd to 16

28 First rain / no rain predictor ID for class 1 telger 41 to 8

15



29 Second rain / no rain predictor ID for class 1 | nteger*41 to 8
30-33 | Predictor ID’s for class 2 Integeridto 16for rate; 1 tc
8 for rain / no rain
34-73 | Predictor ID’s for classes 3-12 Integef*#o 16for rate; 1 t¢
8 for rain / no rain
74-75 | Rain rate intercept for class 1 Real*8
76-77 | Class 1 rain rate multiplier for predictor 1 Real*8
78-79 | Class 1 rain rate multiplier for predictor 2 Real*8
80-85 | Rain rate intercept and multipliers for class |Real*8
86-145 | Rain rate intercept and multipliers for skss3-12Real*8
146-147Class 1 rain / no rain multiplier for predictor 1 | e&*8
148-149Class 1 rain / no rain multiplier for predictor 2 | ed&*8
150-153Class 2 rain / no rain multipliers Real*§
154-193Class 3-12 rain / no rain multipliers Real*§
194-205Class 1-12 rain / no rain threshold values Realt4
206-207/Class 1 nonlinear transformation multiplier |Real*8
predictor 1
208-209Class 1 nonlineatransformation multiplier fqReal*8
predictor 2
210-213Class 2 nonlinear transformation multipliers Real*8
214-253Class 3-12 nonlinear transformation multipliers  R&a
254-255Class 1 nonlinear transformation exponent/Real*8
predictor 1
256-257/Class 1 nonlinear transformation exponent/Real*8
predictor 2
258-261Class 2 nonlinear transformation exponent Realt8
262-301Class 3-12 nonlinear transformation exponent Real*8
302 Class 1 nonlinear transformation intercept|Real*4
predictor 1
303 Class 1 nonlinear transformation intercept|Real*4
predictor 2
304-305Class 2 nonlinear transformation intercept Realt4
306-325Class 3-12 nonlinear transformation intercept Realf
326- |Look-up table values for adjusting raiates fo|Real*4
1325 |class 1 (1000 values at intervals of 0.1 mm/h)
1326- |Look-up table values for adjusting rain rates|Real*4
2725 |class 2
2726- |Look-up table values for adjusting rain rates|Real*4
12325 |classes 3-12
Table 4.Contents of the retrieval coefficient table file.

3.4 Theoretical Description

As stated previously, retrieval of rainfall ratequées two steps: determining which
pixels in satellite imagery will be associated widlinfall, and then deriving rainfall rates

16



for those pixels. In the case of visible / IR mgients such as the ABI, the basic
approach is to use the information about cloudytopperties that are inherent in the

brightness temperature information (e.g., heidhitkness, phase, particle size) to make
inferences about the occurrence and rate of rdihis algorithm develops statistical

relationships between the brightness temperatuigesaand the occurrence of rainfall

and its intensity. In the algorithm, discriminaaralysis is used to determine the best
predictors and predictor coefficients for occureen@and stepwise forward linear

regression is used for intensity.

3.4.1 Physics of the Problem

The difficulty in using visible- and IR-wavelengittformation for retrieving rainfall rates
is that raining clouds are generally optically Kaimeaning that the information at these
wavelengths comes from the top portion of the clamt typically above precipitating
hydrometeors that are actually of interest. Micawerfrequency information is relatively
more valuable because raining clouds are genematlyptically thick in that portion of
the spectrum, meaning that MW signals are sendititbe total water or ice path in the
cloud rather than just the properties of the clmpd However, since MW sensors are for
the near future restricted to low-Earth orbit (LEQ@ainfall information from such
instruments will not be available on a continuoasi® without a much more substantial
LEO satellite constellation than is currently pladn The compromise has been to use
the intermittently-available but relatively morecatate MW-based rainfall rates as a
calibration target for visible and IR data from g&ionary platforms, and to use the
resulting calibration to retrieve rainfall ratestla¢ full spatial and temporal resolution of
the geostationary data.

The following subsections describe how this catibra process is performed in the
Rainfall Rate Algorithm. The first subsection déses the MW data set that is used as a
calibration target and how it is matched against ABl predictors, and the subsequent
four subsections describe respectively how thenitigi data are assembled, how the
rainfall detection algorithm is calibrated, how tRainfall Rate Algorithm is calibrated,
and then how the resulting calibration is appliedndependent data to product the rain
rate product.

3.4.1.1 Training Data: Matched ABI Predictors and Microwave
Rain Rates

The MW rain rates serve as the calibration targettfe rain rate algorithm, both in terms
of identifying raining areas and in retrieving timensity of rainfall. In practice, any

reliable rainfall rate field could be used for badition, including radar data, and it is not
necessary that these fields be continuous in spaceme—just that they represent

instantaneous rates of rainfall rather than accatimrs over time. Since rainfall rates
from multiple microwave instruments are used, thees should be bias-adjusted since
differences among the input data sets will effegyivact as noise in the training data set.
This blending and bias adjustment is performed bgeparate algorithm that was
developed by S. Kidder of the Cooperative Institide Research in the Atmosphere
(CIRA) and is currently moving toward operatiomaplementation at NESDIS.
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To properly match the ABI predictors with the MWraates in space, differences in
footprint size between the ABI and the MW sensoustibe addressed. The procedure in
this algorithm is to aggregate the ABI data onte MW footprint. For each available
MW footprint, those ABI footprints that at leastrpally overlap the MW footprint are
identified, and the fraction of the coverage of M®&/ footprint by the ABI footprint is
computed based on the location of the footprintersnand assuming a circular footprint
at the stated nadir spatial resolution of the umsent of interest. (In the case of scanners
such as the AMSU that have varying local zenithiesmgnd thus varying footprint sizes,
footprints with a scan angle exceeding 40 degreesignored to avoid egregious
violations of this assumption of constant footpraite.) The weight of each GOES
footprint is proportional to the total computed dapping area with the MW footprint
such that all of the weights add up to unity. Hwe aggregation process, the GOES
brightness temperatures are converted to radiammsggregated, and then the resulting
radiance is converted back to brightness temperaturhis prevents errors from the
nonlinear relationship between radiance and brigggrnemperature.

Time matching of the ABI predictors with the MW maiates should match the ABI and
MW fields that are closest in time. For the cutreequirement of 15-min update
frequency, the ABI and MW pixels should be withi» Tinutes in time; if in the future
the requirement is changed to a 5-min update cylote ABI and MW pixels should be
within 2.5 minutes in time. Due to the latencynotrowave data, previous ABI images
will need to be available for matching with microxgadata that may be up to 3 hours old
at the time of availability.

Note that the predictors in this algorithm are netessarily restricted to ABI data;
predictors from other GOES-R instruments (e.ghthghg) can also be used, in addition
to any other ancillary data that might prove torbkevant (e.g., stability profiles from
numerical weather models). This point will be egisgain in the subsections on training.
The current list of predictors is presented in €b] where the subscript refers to the
wavelength of the brightness temperature T; e.gs4i§ the brightness temperature at
7.34 pm. Note that the matched MW-ABI data filenteans the component SEVIRI
brightness temperature values and also the denrdes in Predictors 2 and 3; the
additional predictors in Table 5 (i.e., brightnésmperature differences) are computed
internally by the calibration program to reduce teguired size of the matched data files.
The constant adjustments are performed in ordewptimize the nonlinear predictor
transformation described in Sections 3.1.4.3 antd22. In the case of brightness
temperature differences, a constant is added ierdodavoid negative values which have
an undefined logarithm; in the case of the brigbsnemperature values, a constant is
subtracted because lower (but positive) values most sensitive to the nonlinear
transformation.

Input ID Description
1 Teo- 174 K
2 S = 0.568-(fin11.-217 K) + 25 K
3 Tavg11.:~ Tmina1:- S + 85K
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4 T734- Te1c+ 30 K
5 Tes- T734+ 30 K
6 T112-T734+ 20 K
7 Tge- T2+ 30 K
8 T112-T123+ 20K
9-16 Nonlinear transformations of predictors 1-8

Table 5. Predictors computed from the data in the match¥d-ABI data file.

The performance of the rain rate algorithm has [#®wn to improve when the data are
divided into classes that can be determined aidrmmn available data. Specifically, the

data have been divided into 4 latitude regions 36%, 30°S-EQ, EQ-30°N, and 30-

60°N) and further into 3 rainfall types accordimgselected ABI brightness temperature
values from the matched MW-ABI data set:

- Type 1 (water cloud): 73<T112and Tg5T11.<-0.3
- Type 2 (ice cloud): 73<T112and Tg5T11.2>-0.3
- Type 3 (cold-top convective cloud); 32T11.2

These types were determined by experimenting whith ¢hanges in the relationship
between T;,and rainfall rate (f12is the band typically used for rain rate retrievals
because of its sensitivity to cloud-top temperatwith relatively small water vapor
effects) for various brightness temperature thrissddference regimes. The thresholds
are the points at which this relationship changesifecantly from one side of the
threshold to the other, which implies that theyrespnt significantly different regimes
for rainfall rate retrieval purposes. This resuttsa total of 12 rainfall classes in the
algorithm. Separate files of matched MW rain rades ABI data are maintained for
each class.

Separate matched data sets are maintained forraiéall class, with the data points in
reverse time order (i.e., the most recent dathenfitst record and the oldest data in the
last record). These matched data sets are rollmhge data sets; i.e., older data are
cycled out as newer data are brought in to keepldte set up-to-date. Initial work with
training data sets covering a fixed period of tifeqy., 24 hours) proved to be unsuitable
because time variations in the intensity distribatof rainfall would affect the robustness
of the calibration. For example, if an extendediqak of light rain or no rain were
followed by heavy rain, the algorithm might be prehtially calibrated for light rain and
thus perform poorly when the heavy rain began. efsure a training data set that
contains enough raining pixels for reliable reshlisis still short enough to reflect recent
conditions, the number of raining (>0.25 mm/h) dabats in the training data files are
kept fixed. Specifically, as newer data becomelabi® and are added to the training
data file, the oldest data points are removed timilnumber of raining pixels returns to
the same value as before the newer data were adgiEbitivity studies showed that the
best results were obtained when 5,000 raining piwelre required for Type 1 and Type 2
clouds and 1,000 raining pixels were required fgod& 3 clouds. It should be noted that
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the number of training pixels read is controlledtls training code rather than by the file
size; i.e., the training code will read through ttaning file (i.e., backward in time) until
the required number of raining pixels is read. réfm@e, it is not critical for the training
file to be trimmed strictly to the required numlzdrtraining pixels as extra pixels will
simply be ignored.

It is important to note that the training of theefficients and the retrieval of the actual
rain rates can be done in parallel to save time: dbefficients would be updated
whenever new target data become available, andiiese updated coefficients would be
used in retrieving the rain rates from the nexilatée set of ABI imagery.

3.4.1.2 Rainfall Detection

The objective of the rainfall detection portiontbe algorithm is to separate clear and
cloudy but non-raining pixels from raining pixel¥he training of the separation portion
of the algorithm is applied to each cloud classassely using discriminant analysis
(similar to linear regression but with a binary gioctkand—the value is 1 if the MW rain
rate exceeds 1.0 mm/h and O otherwise. Note lieat.0 mm/h threshold is used because
of significant differences among MW instrumentssansitivity to drizzle and very light
rain). For each of the 12 algorithm classes, dignant analysis is performed using each
of the available predictors, and the predictor thratduces the best Heidke Skill Score
(HSS; see Section 3.4.2.1 for definition) for r&ino rain discrimination (compared to
observations) is selected. This first predictothisn combined with all of the remaining
predictors for a second set of tests to deterntieebest 2-predictor combination. The
result is an equation for linearly combining ongwo predictors, plus a threshold value
above which the pixel is considered to be raining.

This threshold value is then optimized to produceabiased result, since experience has
shown that the best HSS value is not necessargpcasted with minimum bias.
Specifically, the maximum and minimum values foe tiain / no rain discriminator are
computed, and for 1,000 intervals of equal sizeltias is computed for each selected
rain / no rain discriminator value (such that negté would be classified as raining when
the minimum threshold value is used and all of theoald be classified as raining when
the maximum threshold value is used). A binaryrcdeas then used to identify the
threshold value with a bias closest to unity (itkee number of pixels in the training data
that are classified as raining by the scheme islese as possible to the number of
raining microwave pixels in the training data), ahis is the threshold value that is used.

Once the predictors and coefficients have beerctgeleand the threshold value has been
determined, the resulting predictor ID’s and caeéints are then written to a file for use
by the prediction program. A more detailed desimipof this process is contained in
Section 3.4.2.1.

3.4.1.3 Rainfall Rate Estimation

The objective of the rainfall rate portion of tHgaithm is to determine rainfall rates for
those pixels that were classified as raining by diseriminant analysis scheme, with
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separate equations for each algorithm class. @Qoesdly, only those pixels that have
non-zero target rainfall rates are used in devalpphe equations for retrieving rainfall
rates.

Since the relationship between many of the predic{e.g., IR window brightness
temperature) and rainfall rates is known to be inealr, the first step is to supplement the
predictor set with a second set of predictors thepresent optimal nonlinear
transformations of the original set: for each ailfpon class, each original predictor is re-
scaled to eliminate negative values, and then tiedigtors and target rain rates are
regressed against each other in;ddgg;o space. The resulting slope and intercept
become an exponent and multiplier in linear spaoé, this slope and intercept are used
to create a nonlinear transformation of each ptedic

After creating the set of transformed predictors éach algorithm class (which are
included with the original predictors in the preadicpool), all of the predictors are
evaluated via linear regression against the target rates, with separate regressions
performed for each algorithm class. The predithat has the best correlation with the
target rain rates is then combined with each of rdt@aining predictors, and the 2-
predictor combination that produces the best catigei with the target data is selected.
After this is done, a preliminary set of rain raiesretrieved and compared to the
microwave training data to derive a set of coefiits for adjusting the retrieved rain fall
rate distribution to match the distribution of thecrowave rainfall rates. All of the
required coefficients are then written to a file e by the prediction routine. A more
detailed description of this process is contaime8ection 3.4.2.2.

3.4.1.4 Independent rainfall rates

The equations produced by the calibration of thiefafi detection and rainfall rate
estimation are used to derive the rainfall ratesnficurrent ABI imagery that comprise
the algorithm output at the full ABI resolution.oté¢ that the rainfall rates are produced
using different equations for each of the 12 classe

3.5 Mathematical description

3.5.1 Calibration: Rain / no rain discrimination

Mathematically, a special case of multiple lineagression called discriminant analysis
(in which the target values are 0 and 1 insteazbafinuous values) is used to separately
calibrate the rain /no rain discrimination for eadorithm class. A two-predictor
additive multiple regression model is used for ealgorithm class:

Yo =B + b X, +0 X, + e 1)
where y is the target MW rain rate or rain / nomnaalue; the x’s are the two selected
ABI-derived predictors; the b’s are the calibratmefficients; and is the residual error,

which is to be minimized by solving the followingsséem of normal equations for the
coefficients l, b1, and b:
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j=1 j=1 j=1

ne ne

Zxc,l,jyc,j = c,OZXc,l,j +bc,1ZC:Xc2,J,j +bc,22cxc,1,jxc,2,j (2
=t =t

j=1 =1
nC

Zxc,Z,jyc,j :bc,ozcxc,z,j +bc,1zcxc,l,jxc,2,j +bc,ZZCX02,2,j
=1 =t =t

j=1

where the first part of the subscript is the algyoni class, the second is the predictor
number, and the third part is the data point nun@@é&sums are over the total number of
data points in the clasg.)

The calibration procedure begins by solving theddjztor version of these equations
(i.e., no terms containing b; or x.») for each of the first 8 (untransformed) predistor
the matched data set (see Table 5). Since theitsudpthese equations will be
continuous (i.e., non-binary), a threshold valuestiie determined for converting the
output to binary values: outputs above the thrieshe assigned a value of 1 (rain) and
outputs below are assigned a value of O (no raiihjs threshold is selected to produce
the minimum amount of bias; i.e., the number okfsxn the training data set that are
classified as raining should match as closely asipte the actual number of raining
microwave pixels in the training data set. In orgedo this, the equation outputs are
computed for each training pixel and the highestlawest values are preserved. This
range of values is divided into 1000 equally spanéztvals, and for each of these 1000
threshold values the number of pixels classifieca@isng is computed. Since this
number decreases monotonically as the thresholek vatreases (the threshold value
must be exceeded), a simple binary search carbihesed to identify the threshold
value that produces the best match to the microwateein terms of the number of
raining pixels.

Once the bias has been optimized, the HSS is cadot that particular predictor, and
the predictor the highest Heidke Skill Score (HBjelected. The HSS is computed as
follows:

_ 2(C1C4 B C2C3)
S v o) +e) (6 +ou)e + o)) )

where g is the number of correct no-rain estimatgss¢he number of false alarms (i.e.,
the estimate has rain but the observation hasiny g is the number of failed detections
(i.e., the estimate has no rain but the observdtamrain); and,ds the number of correct
rain estimates for the class of interest. High86Halues indicate greater skill, with 1 as
a perfect value (i.e.sc3=0).

After the first predictor is selected, the procedisrrepeated for each two-predictor pair
containing the first selected predictor to obta predictors and the associated
coefficients from Eq. (1) plus the threshold valoeconverting the continuous equation
output into binary form.
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It should be noted that the selection of only Zpters was the result of
experimentation—additional predictors were showhtadave a positive impact on the
performance of the algorithm. This may be duéntohigh degree of correlation among
the visible and IR bands when depicting opticatigh clouds.

3.5.2 Calibration: Rainfall rate

For each class, a separate pair of predictordested for the rain rate retrieval, using
Egs. (1)-(2) as the basis for selection but withttmous output. Prior to selection, the
set of 8 predictors is supplemented by a set oflim@ar transformations (see Table 5).
These nonlinear transformations for each predg@mnd class xp,cT use the power
function; i.e.,

T Bpc
Xie =0 o X% (4)

where the coefficients, candy care found by solving the equation
log,,y = Iogloap,c + ﬁp,c log,, X' %)

Solving this equation separately for each prediatat class yields the following least-
squares solutions:

n Npe

(IOglo Xoci )Z (IOglo Yei )

o

p.c

Mpe Z (Ioglo Xpe, )(IOglo Yei )_

Mp,

— i=1 =1 i=1
pr,c - i - i - i . (6)
p.c p.c
2
np,cz (loglo Xp,c,i ) - loglo Xp,c,i }
i=1 i=1

Npe

(loglo Yei™ lleO vacvi)

logy,a, =12 . (7)
p,c

For each predictgp in each class, the coefficients,, candp, care solved for by
applying Egs. (6) and (7) using the predictor valgg ; and the corresponding target
microwave rainfall rates.y. However, since the equation form in Eq. (4) has
intercept, it is constrained to pass through thgimf0,0), so a modified version was
developed.

Xpe = @ye(Xpe + Ve S ®)

The third unknowny, ) cannot be solved for with only two equationstts®equation is
optimized using a “brute force” approach. FirBg value ofy, cis initially set to 0 and

the equation is solved using Eqg. (6) and (7). Vdlae ofy, cis then incremented by 25
and Eq. (6) and (7) are solved again; i.e., theevafy, cis added to the each predictor
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value % when solving the equation. The Pearson correlat@fficient is then
computed for the transformed data:

cov(x y)
0,0,

Correlation =

(9)

where cov(x,y) is the covariance of the predictodt target data, ans, andoy represent
the standard deviations of the predictor and tadlgéd, respectively. The predictor data
in this case consists of the values of the transéor predictors (i.e.,TkS,c) and the target
data consist of the microwave rainfall rates agantsch they have been matched (i.e.,

Yo)-

If the equation fit (as measured by correlationfa@ent) is improved, the value af cis
incremented by 25 and the process is repeatetie Equation fit is degraded (i.e., lower
correlation coefficient), then the process stopbtae previous value afis used. This
process of determining the coefficients, Bp.c. andy,cis repeated for each predictor and
each class and applied to create the supplemettaf 8 transformed predictors for each
class.

The total set of 16 predictors is then used foibecaling the rainfall rate retrieval. For
each class, each predictor is first regressed sitgéie target rain rates using Eq. (2), and
the predictor with the highest Pearson correlatioefficient against the target
microwave rainfall rates is selected. The Peacsorelation coefficient is computed
using the same values as before, though for teefipredictors the values will bg x

i.e., the untransformed predictors.

The process is then repeated with the 15 possiloidimations of the selected first
predictor and each of the remaining predictors,thecair with the highest correlation
against the target data is selected as the pregiiato(and associated coefficient set) for
that class.

As with the rain / no rain discrimination, experimt® showed no positive impact from
using more than two predictors, again perhaps Isecaiithe high degree of correlation
among the visible and IR bands for optically thibduds.

Previous work has shown that the rainfall rateseetd using this approach generally
exhibit a strong systematic dry bias—too wet fav lainfall rates and much too dry for
higher rainfall rates. This is believed to be tégult of significant scatter in the training
data caused by spatial displacements between ltlest@loud tops and the heaviest
rainfall rates. To address this problem, an adjest for the retrieved rainfall rate is
derived that adjusts its distribution to match titaéning microwave rainfall rates.

Specifically, for each rainfall class, the rainfites are retrieved using the coefficients
derived above, and then are sorted from lowesigioelst and matched against the
training rainfall rates which have also been inaweatly sorted lowest to highest. The
result of this match is a lookup table (LUT) wheréhe value of the retrieved rainfall
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rate is converted to the value of the correspontdirggowave rainfall rate so that the
distribution of the retrieved rainfall rate will nch that of the microwave rainfall rates.

To create a useful LUT, linear interpolation isdise create a table with evenly spaced
increments of 0.1 mm/h for the training rainfalies In addition, since the MW rainfall
rates have a lower dynamic range (in part dued toarser spatial resolution), but
since extrapolation of the data could produce noysizal results, for all values between
50 mm/h (the maximum rainfall rate from the TRMMdvbwave Imager) and 100 mm/h
the input and output values are set equal to onthan(i.e., a retrieved rainfall rate of 75
mm/h will be mapped to a final rainfall rate of if#n/h). Linear interpolation is then
performed between the data point with the highastall rates and the (50 mm/h, 50
mm/h) data point. This LUT is then written to #d of the retrieval coefficient table in
Table 4, Section 3.2.2.

3.5.3 Application to independent data

The predictors and coefficients obtained duringdlération outlined in the previous
two subsections are then applied to the currentiABBgery using Equation (1) with the
appropriate coefficients and predictor values. e /no rain discriminator is computed
first. For values below the threshold, a rain afteero is assigned; for values above the
threshold, the rainfall rate is computed using @ with the rain rate coefficients (and
predictor transformations from Eqg. (4) as neediedipwed by the distribution
adjustment in Eq. (10).

3.6 Algorithm Output

The final output of this algorithm is the Rainf&lhte product—a field of instantaneous
rainfall rates in mm/h (rounded to the nearestgetg at the same resolution as the ABI
IR data—2 km at nadir. This product will also bec@ampanied by a grid of
corresponding quality flags, with values of O faog data and non-zero for data that are
of questionable quality due to deficiencies initiput data, as described in Table 6:

Byte | Bit Flag Source Value
0 0 | Rainfall Rate output RR 1=bad data; 0=0OK
1 | Local zenith angle block-out zone SDR 1=localitreangle>70° or
lat>60°; 0=0K
2 | Bad input data for®Irain / no rain| SDR 1=bad data; 0=0OK
predictor and RR
3 | Bad input data for"2rain / no SDR 1=bad data; 0=0OK
rain predictor and RR
4 | Bad input data for*Irain rate SDR 1=bad data; 0=0OK
predictor and RR
5 | Bad input data for"2rain rate SDR 1=bad data; 0=0OK
predictor and RR
6 | Retrieval coefficients missing RR 1=no retrievaéfficients;
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0=0K

7 Not used

Table 6.Quality flags for the Rainfall Rate product.

In addition, two quality information fields will beutput: a gridded file containing flags
indicating if the rainfall rate values were truredhtat 0 mm/h or at 100 mm/h (Table 7)
and a gridded file containing the rainfall classl@) of a particular pixel (Table 8):

Byte | Bit Flag Source Value
0 0 Rainrate > | RR 1=rain rate >100 mm/h but truncated at 100 mm/h;
100 mm/h O=rain rate <100 mm/h
1 Rainrate < 0| RR 1=rain rate <O mm/h but truncated at 0 mm/h;
mm/h O=rain rate <100 mm/h

Table 7.Diagnostic information for the Rainfall Rate protluc

Grid Field Source Value

1 Precipitation class identifier RR Value of raiass, ranging fron
lto 12

Table 8.Gridded quality information for the Rainfall Rateoduct.

Finally, the metadata file will contain the infortizan listed below in Table 9:

Type Variable

Float | Total rain areanumber of pixels in image with rain rates > 1 mjn/h
Float | Total rain volumet@tal rain in rain area, mm

Long |Total number of pixels where retrieval wagiapted
Long |Number of QA flag value8

Long |Number of retrievals with QA flag value 8ll(bits set to D
String | Definition of QA flag value O:

Good rain rate retrieval

Long |Number of retrievals with QA flag bit 0 setto

String | Definition of QA flag with bit O set to 1:

Bad rain rate retrieval

Long |Number of retrievals with QA flag bit 1 setlo

String | Definition of QA flag with bit 1 set to 1:

Local zenith angle block-out zone

Long |Number of retrievals with QA flag bit 2 setlo

String | Definition of QA flag with bit 2 set to 1:

Bad input data for % rain / no rain predictor

Long |Number of retrievals with QA flag bit 3 setlo

String | Definition of QA flag with bit 3 set to 1:

Bad input data for % rain / no rain predictor
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Long |Number of retrievals with QA flag bit 4 setto

String | Definition of QA flag with bit 4 set to 1:
Bad input data for % rain rate predictor

Long |Number of retrievals with QA flag bit 5 setlo
String | Definition of QA flag with bit 5 set to 1:
Bad input data for ? rain rate predictor
Long |Number of retrievals with QA flag bit 6 setlo

String | Definition of QA flag with bit 6 set to 1:
Retrieval coefficients missing
String | Definition of Rain Classes 1-12

Table 9.Metadata for the Rainfall Rate product.

Additional diagnostic information will be providelly the corresponding retrieval
coefficient table (Table 4, Section 3.3.2). All thfese fields will be delivered to the
GOES-R Archive System (GAS) and the Comprehensargé. Array-data Stewardship
System (CLASS) as well as being retained in 2-dawllstorage for diagnostic purposes.
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4 TEST DATA SETS AND OUTPUTS

4.1 Simulated/Proxy Input Data Sets

As described below, the data used to test the &aiRate Algorithm included SEVIRI
observations and blended MW rainfall rates. Tls& period chosen was th& ehrough
the 9" of January, April, July, and October 2005. WHBEVIRI is obviously not
operating over the GOES domain and does not havexact same spectral coverage and
spatial resolution, for rainfall rate applicatioritsjs still preferred over simulated ABI
data for objective validation, given the errors iexXed by the latter in depicting the
correct intensity and location of precipitationtieas. The rest of this section describes
the proxy and validation data sets used in asgdsenperformance of the Rainfall Rate
Algorithm.

4.1.1 SEVIRI Data

SEVIRI provides 11 spectral channels with a spa&ablution of 3 km at nadir (coarser
than the 2-km resolution of the ABI) and a tempaesolution of 15 minutes, and thus
represents the best source of data currently dlailor testing and developing the
Rainfall Rate Algorithm. Figure 2 is a full-diskESIRI image from 1200 UTC on
January 7, 2005. The SEVIRI data was providechbyGOES-R Proxy Data Team.
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Figure 2. Full disk 10.8- um color-enhanced image from SEM&R 1200 UTC on
January 7, 2005.

4.1.2 Microwave-Derived Rainfall Rates

The target data for calibration is a blend of MWihreates from multiple Special Sensor
Microwave/lmager (SSM/l) and Advanced Microwave Sding Unit (AMSU) sensors,
plus the Advanced Microwave Scanning Radiometer-E&8SR-E) and the Tropical
Rainfall Measuring Mission (TRMM) Microwave ImagérMl), all of which were
reprojected onto a common 8-km grid and bias-cteteto match the rain rates of the
TMI. Additional details on this process (which gsnilar to the process described in
Section 3.4.1.1 except that there will be no renrapm the operational alorithm) can be
found in Joyce et al. (2004). These fields arelabi@ every half hour, and include data
from all of the MW overpasses during that time peri An example is shown in Fig. 3.
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Figure 3. Blended MW rainfall rates covering 1230-1300 UTQanuary 2005.

4.2 Output from Proxy Input Data Sets

As part of an intercomparison exercise to selecichvialgorithm would be used for
GOES-R, the rain rate algorithm was applied to SB\data from the 8 through the 9

of January, April, July, and October 2005. The samme periods were used for the
evaluation of algorithm precision and accuracynglwith all of January 2008. Figure 4
is an example of output from the Rainfall Rate Aithon described in this document.
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Figure 4. Sample rain rate algorithm output from 1245 UTGuzay 7, 2005.

4.2.1 Precision and Accuracy Estimates

The F&PS specifications for the Rainfall Rate aigon (see Table 1) refer to
instantaneous rainfall rates, so radar data (bpticesbased and ground-based) must be
heavily relied on since gauges generally do notvige reliable information on
instantaneous rates. However, such data are v#igull to obtain over Europe and
Africa. Comparisons will be made against Tropi¢ghinfall Measuring Mission
(TRMM) Precipitation Radar (PR) data and Nimrodamadata over Western Europe
obtained from the British Atmospheric Data CenBADC).



Because slight errors in the spatial location affedl can significantly degrade statistics
that are computed on a pixel-by-pixel basis (epert 2008), a “fuzzy” approach for

fine-scale rainfall validation has been selectedenshy the Rainfall Rate pixel is

compared with the pixel within a 10-km radius thas the most similar value rather than
with the directly corresponding pixel. This is ariant of the “single observation —

neighborhood forecast” strategy described in E{2808).

4.2.1.1 Validation against TRMM PR

Validation against the 5-km resolution TRMM PR 2A2%duct was performed for the
59" of January, April, July, and October 2005 pluso&llanuary 2008. For illustration
purposes, Fig. 5 shows the coverage of the TRMMI&fhg a typical 24-hour period.

20050106

LT SO GO 45N #00 ST SO0 IO0 T 1AW 10W GF 8 Ot 10E 15 20 TAE SUE S0E ME 45 DUC SOE ALE
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Figure 5. Coverage of TRMM PR data during October 6, 2005.

Figure 6 shows a scatterplot of the rainfall rakes was created using the “fuzzy”
verification method described in the previous sextwith the density of points indicated
by color (red=more dense; purple=less dense) mairgdite the visually misleading effect
of multiple overlapping points. The Rainfall Rgi®duct displays a significant wet bias,
but the best-fit line still corresponds quite weith the 1:1 line (i.e., a high occurrence of
matching values between the estimates and obsamgati
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Figure 6. Scatterplot of Rainfall Rate algorithm vs. collehTRMM rain rates; colors
are related to pixel density with red highest antppse lowest. Solid line is the 1:1 line
and the dashed line is the best-fit line.

Because rainfall rates are highly skewed towardraies that are of much less
hydrometeorological interest than higher rain raties F&PS precision spec focuses on
the performance of the algorithm for rain rated @imm/h (see Table 1). Specifically,
when the rain rate at a given pixel is 10 mm/h,dbresponding observed value should
be within 9 mm/h (i.e., within the range of 1 —rh#n/h) 68% of the time. This appears
to be a very loose requirement compared to mostysts; however, instantaneous
rainfall rate is far more variable in both spacd &ame than most other geophysical
parameters, and even a “fuzzy” validation approaitinot resolve this without using a
significantly larger radius than the 10-km radiged for this algorithm.

The performance of the algorithm against the F&RSipion spec is illustrated in Fig. 7
by the cumulative distribution function (CDF) ofsattute error in the Rainfall Rate
product (the values along the abscissa) with respegbe TRMM PR for only those
pixels with algorithm values between 9.5 and 10rB/Im(there are too few pixels with
rain rates of exactly 10.0 mm/h to enable a stedity significant analysis). These errors
were computed using the “fuzzy” verification stigtelescribed in the previous section.

33



The dashed line indicatehat 68% of the errors are below 8.9 mmwithich is within the
spec value of 9.0 mm/h.
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Figure 7. CDF of errors of Rainfall Rate product with raté®&-10.5 mm/h vs. TRMN

4.2.1.2 Validation against Nimrod data
Validation against the &m Nimrod composite radar produsgs performed for the™-

o™ of April, July, and October 2005 (Januar9 was not available from the BAC
archive)and all of January 20.. The coverage of these radars is illustrated in8.
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Figure 8. Coverage of Nimrod mosaic radar data.

Figure 9 shows a scatterplot analogous to Figné (sing the same “fuzzy” validation
as against TRMM PR), but here the Rainfall Ratelpct displays a very strong
systematic dry bias (indicated by the small slopth® dashed best-fit line), which in this
case translates into a volume bias of approximdié®s (i.e., the retrieved rainfall
volume is 14% lower than the Nimrod volume). Tikisot at all unexpected given that
IR-based algorithms can exhibit significant detactproblems for stratiform
precipitation at higher latitudes.
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Figure 9. Same as Fig. 6, but vs. Nimrod.

Figure 10 is analogous to Fig. 7, except thatfibidNimrod. As the red dashed line
indicates, approximately 68% of the errors arew&d mm/h, which is outside the spec
value of 9.0 mm/h; however, the requirement isgf@antitative validation only for
convective precipitation, and Western Europe isghon that is largely dominated by
stratiform rainfall. A comparison of Fig. 10 wikig. 7 illustrates the difficulty of
retrieving precipitation from the midlatitudes, wlestratiform precipitation is much
more prevalent and for which cloud-top imagery doatscontain sufficient information

to estimate rainfall to the same degree as inrtBds.
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Figure 10. Same as Fig. 7, but vs. Nimrod.

4.2.2 Error Budget

The validation ofetrievec rain rates against TRMM PR data for tfed®' of January,
April, July, and October 20( plus all of January 2008 summarized in Tabl10 using
the “fuzzy” verification described in Section 4.2. As discussed in the previo
section, the precisioand accuracspecs are botbeing met for the TMM PR. The
algorithm does not meet either spec ag Nimrod data largelgue to the low bias of tr
algorithm for stratiform rainfall; however, sindgelaccuracy and precisicspecs are only
for convective rainfall this iacceptable. Table 10 summaszthe performance of tl
algorithm against both TRMM arNimrod data at the 10 mm/h threshold compare

the F&PS spec.

Accuracy (mm/h) Precision (mm/h) Number of data
at 10 mm/fr at 10 mm/h points
Vs. TRMM 4.9 8.9 13887
Vs. Nimrod 8.6 9.7 501
Proposed F&PS 6.0 90 | @ -

Table 10 Comparison of Rainfall Rate algorithm validatieith F&PS
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5 PRACTICAL CONSIDERATIONS

5.1 Numerical Computation Considerations

The calibration portion of the algorithm createsipdates a series of external files
containing matched MW rainfall rates and ABI prédis, and whenever a file is
updated, ingests the data into an array and usé$ (Lower-Upper) matrix
decomposition to solve the resulting matrix forilwation coefficients (Eq. 2) and
predictor ID’s that are stored in a separate eglefite. The retrieval portion of the
algorithm ingests the calibration coefficient filaad the ABI predictor fields that are
indicated within these files and applies the caoédfit files to the predictor fields,
resulting in a rainfall rate field on the same gaglthe ABI predictors.

The calibration and retrieval portions of the RalhRate Algorithm do not need to be
run sequentially; in fact, parallel processingrisferred as long as care is taken to make
sure that coefficient files are available wheneweeded for the retrieval portion of the
algorithm. The only stipulation is that for optihperformance the calibration should be
updated as frequently as new Rainfall Rate fieldsratrieved (i.e., every 15 minutes).
Note that since the input microwave data may havatency of as much as 3 hours,
previous ABI data will need to be available forilbedtion purposes.

5.2 Programming and Procedural Considerations

The Rainfall Rate Algorithm requires knowledge pasal uniformity metrics that are
computed for each pixel using pixels that surroitndBeyond this reliance, the Rainfall
Rate Algorithm is purely a pixel by pixel algorithmo information from previous time
periods is required for the retrieval step (thoitgh needed for the calibration step—see
below). Note that although the current requirenfentrefresh rate (15 min) is longer
than the planned ABI refresh rate of 5 min, no terap averaging is performed to
generate the 15-min products; the most recentliladola ABI image is used to generate
the current Rainfall Rate product.

A collection of MW rainfall rates during the preu® 2-3 days should be available for
use as calibration targets. However, if necesayainfall rate algorithm can run using
pre-computed calibration coefficients which will lz@ljusted whenever target MW
rainfall rates become available and a sufficiergpdy of matched data pairs has thus
been built up. Furthermore, if the availability W rainfall rates is interrupted, the

algorithm will continue to produce estimates usitige most recently computed

calibration coefficients.

5.3 Quality Assessment and Diagnostics

Quiality flags will be produced and provided alonighvthe rainfall rate fields, with non-
zero values for pixels whose inputs have valuesidathe acceptable range. These flags
are described in detail in Section 3.6. Table i$fs lacceptable range values for the
inputs. Note that the minimum values in the taske for computational purposes: values
lower than that would produce negative predictdues, which will in turn result in
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errors when the nonlinear predictor transformatescribed in Section 3.5.2 is
performed.

Input ID Predictor Description Minimum Value
1 Te2 174 K
2 S=0.568-(hin11.-217 K) -25 K
3 -I-avg,ll.:'Tmin,ll.Z'S -85 K
4 T7_3['T6_1§ '30 K
5 Tgs5-T7.34 -30 K
6 T11.-T73: -20 K
7 TeeT112 -30 K
8 T112-T123 -20 K

Table 11. Minimum acceptable values for each algoripredictor.

The following procedures are recommended for diagmp the performance of the
rainfall retrieval algorithm.

» Periodically image the individual test results tamaally identify artifacts or non-
physical behaviors.

» Automatically evaluate the time series of the totahfall area and total rainfall
volume and flag excessively large changes for &rihvestigation.

5.4 Exception Handling

The Rainfall Rate Algorithm includes checking thalidity of each input ABI band
before retrieving a rainfall rate, and a ‘missifigegative) value is assigned to a pixel if
any of the input values are outside the acceptanige. The bits 1-4 (depending on the
predictor; see Table 6 in Section 3.4.3) of thdligulag for that pixel will also be set to
1. The Rainfall Rate Algorithm also expects thedlelb processing to flag any pixels
with missing geolocation or viewing geometry inf@tion.

If the microwave data are unavailable, the algarithill continue to produce estimates of
rain rate using the most recently available calibracoefficient tables; performance will
degrade slightly as a result but the degradatidhbeilimited. If one or more individual
ABI bands used by the algorithm become unavailatbie, algorithm will first output
missing values (and corresponding quality flags)dioy pixels that use the missing ABI
band, and then subsequent updates to the calibrediefficients will ignore the missing
bands and retrieval will continue as normal. Tlegrde of degradation in performance
will depend on the band(s) that are lost.

5.5 Algorithm Validation

Prior to launch, validation efforts will focus oubpe and Africa using SEVIRI data as a
proxy for ABI given the previously discussed comseabout using simulated data for
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rainfall rate validation. The validation data wdbnsist of TRMM PR data over the
Tropics and Nimrod ground-based radar data overt&uesurope, plus any ground-
based radar data from field campaigns that can bieired. These data sets were
described in Section 4.2.1.1. However, it showddbted that ground-based radars have
numerous well-documented limitations, so any grebased radar data used for
validation will need to be carefully quality-conem, including comparisons between
radar-derived rainfall total fields and correspandrain gauges to determine the extent
of such errors.

During the pre-launch period, validation tools vélso be developed: one set to be used
by operations to monitor the performance of the@tlgm in real time and identify any
anomalies; the second to be used by the algoritbueldpers to identify systematic
algorithm deficiencies, their possible causes, poténtial remedies. The former will be
transferred to the NOAA / NESDIS Office of Sat@liData Processing and Distribution
(OSDPD) while the latter will remain at STAR foreuby the algorithm developers and
collaborative partners outside STAR.

The post-launch phase will consist of monitoringhed product stream by OSDPD using
the aforementioned tools, and close collaboratietwben STAR developers and the
NOAA / NESDIS / OSDPD / Satellite Services Divisi(BSD) Satellite Analysis Branch
(SAB) analysts who are responsible for real-timenitasing of satellite rainfall. They
will evaluate the performance of the algorithm bfstdm an “eyeball” perspective of day-
to-day performance and from the perspective ofesyatic behavior of the algorithm as
identified using the statistical tools. Modifiaats to the algorithm to address any
deficiencies will then be identified and implemehte

Additional details about algorithm validation caa found in the corresponding Product
Validation Plan.
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6 ASSUMPTIONS AND LIMITATIONS

The following sections describe the assumptionslamitations of the current version of
the Rainfall Rate Algorithm.

6.1 Performance

Several assumptions have been made in developihgstimating the performance of
the Rainfall Rate Algorithm. They are listed beJagcompanied by proposed mitigation
strategies in parentheses.

1.

The calibration target (MW) rainfall rates are aeta. (No mitigation
possible)

The calibration target rainfall rates are availabith a reasonably short lag
time. Note that in the absence of calibration diéta algorithm will continue
to produce retrievals based on the last availadti@fscalibration coefficients.
The potential impact on doing so for an extendedogeof time will be
determined via testing.

The ABI data have been corrected for parallax praoretrieval of rainfall
rates. Mitigation is in progress via a coordingdedallax correction effort.

The available validation data (TRMM for the troparsd Nimrod for Western
Europe) provide a sufficiently representative samiplr evaluating whether
the algorithm will meet spec over GOES-R coveragea.a(Investigating
additional radar validation data from field campaiguch as NAMMA, and
COPS)

The processing system allows for processing of iplaltpixels at once for
application of the spatial uniformity tests. (Ndigation possible)

Striping (i.e., when two or more detectors havghdly different calibrations,
producing scan lines that are biased with resgeone another) and spectral
shifts are minimal. (No mitigation possible)

No data aggregation is performed in time; i.e.thé frequency of ABI
imagery exceeds the product refresh rate, only AB& image will be
processed per product. (No mitigation possible)

In addition, a number of limitations in the ability retrieve rainfall rates from satellite
data have been identified and are listed heregalth proposed mitigation strategies:

1. Satellite-based rainfall algorithms generally exhilmuch better skill for
convective (warm-season) rainfall than for stratifo (cold-season) rainfall,
because the relationship between cloud-top temperaind rainfall rate is much
stronger for the former than the latter. The isma of additional ABI bands
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provides some mitigation by implicitly including farmation about cloud-top
properties (particle size and phase); the potemtigiact of explicitly retrieved
cloud top properties from the ABI processing systsith be investigated as a
mitigation effort.

The current version of the algorithm does not antdor any influences on
precipitation below cloud level; e.g., modulationtbpography or evaporation of
hydrometeors in dry sub-cloud air. Mitigation dktformer is being explored
through a GOES-R Critical Path project to develapoeographic correction for
the algorithm that accounts for topographicallytioed wind flows. The
mitigation of other subcloud effects will be invgstted by examining the impact
of relevant numerical weather model fields (e.gtalt precipitable water and/or
low-level relative humidity) on precipitation esties. Note that ABI-derived
fields cannot be used for this application sinceythwill not be available for
cloudy regions.

Finally, the channel mapping between SEVIRI and Ads been used in the
development and pre-launch validation of the atpariis shown in Table 12:

ABI Band SEVIRI Proxy
Number Central Wavelength (um) Number| Central Wavelength (um)
8 6.19 5 6.2
10 7.34 6 7.3
11 8.5 7 8.7
14 11.2 9 10.8
15 12.3 10 12.0

Table 12.Channel mapping associated with ABI proxy data f®BVIRI during
algorithm development and validation.

6.2

Assumed Sensor Performance

It is assumed that the sensor will meet its curspecifications. However, the Rainfall
Rate Algorithm will be dependent on the followimgirumental characteristics.

The spatial variation predictors in the Rainfallt®&lgorithm will be critically
dependent on the amount of striping in the datateNhat this will affect the
retrieval only when any texture-related predict@e among the selected
predictors selected by the algorithm.

Unknown spectral shifts in some channels will dffdie BTD calculations and

thus compromise some of the predictors. Note tthiatwill affect the retrieval
only when any BTD’s are among the predictors setebly the algorithm.
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6.3 Pre-Planned Product Improvements

A number of potential improvements are being ingased for the “day-2” Rainfall Rate
product:

6.3.1 Smoothing along Region Seams

The current version of the algorithm does not aftietm smooth any discontinuities that
may occur along the seams between regions (i.eS, 30e equator, and 30°N). The code
will be modified to overlap the regions somewhal apply a weighted average to the
two overlapping regions to produce a smoother tesul

6.3.2 Incorporation of Numerical Model Moisture Fields to Correct for
Subcloud Evaporation of Rainfall

The current operational Hydro-Estimator rainfateralgorithm uses National Centers for
Environmental Prediction (NCEP) North American Mesgle (NAM) model total

column precipitable water and mean-layer relatiumidity from the lowest third of the
troposphere to enhance rainfall rates in moistoregand reduce them in dry regions.
Such a correction for the GOES-R Rainfall Rate r@lgm is being investigated.

6.3.3 Correction for Orographic Modulation of Rainfall

A GOES-R Critical Path Project in collaboration lwilampton University is working to
develop a correction for the orographic modulatbrainfall based on wind, topography,
and stability information from an operational nuioakweather model.

6.3.4 Incorporation of Time Change Information

Another GOES-R Critical Path Project, in collabamatwith City College of New York
(CCNY), involves determining Lagrangian (i.e., defollowing) time changes in cloud
properties and using them as predictors in thefathinlgorithm. This is an effort to
address the tendency of satellite rainfall algonghto underestimate rainfall early in the
convective cycle.

6.3.5 Incorporation of Retrieved Cloud Microphysics Information

A third GOES-R Critical Path Project, in collabaoatwith ESSIC involves
incorporating retrieved cloud effective radius afalid liquid water path information in
an improved regime classification and as directlisters in the algorithm.
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