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ABSTRACT

This document describes the algorithm for Aeroswllding smoke/dust) Detection
Product (ADP) over land and water from the multcdpsd reflectance measurements
observed by the Advanced Baseline Imager (ABI) and@sOES-R. It includes the
description of theoretical basis, physics of thebpem, validation of the product, and
assumptions and limitations.

Episodic events, such as smoke and dust outbreajiact human health and economy.
Therefore, it is desirable to have qualitative mation on the time, location and
coverage of these outbreaks for the monitoringfaretasting of air quality. GOES-R
ABI is designed to observe the Americas in a 5-t@naterval and at 0.5, 1, 2 km spatial
resolution in the visible, near-IR, and IR bandspextively. Taking advantage of the
unique capability of GOES-R ABI, ADP will be procdeecwith an algorithm designed to
take advantage of various spectral measurements.

Aerosol detection algorithm is based on the faat #moke/dust exhibits features of
spectral dependence and contrast over both viardenfrared spectrum that are
different from clouds, surface, and clear-sky atpmese. The fundamental principle of
the detection algorithm depends on threshold telsish separate smoke/dust from cloud
and clear-sky over water and land.

By using MODIS observations as proxy, GOES-R ABbg&eidust algorithm has been
tested for different scenarios such as wild fitesst storms, and dust transport from
Africa. Comparisons with RGB images and other Stgagdroducts such as CALIPSO
have been performed along with a sensitivity stoidhe detection on the accuracy of
sensor radiances/brightness temperature. In getieealequirement, i.e., 80% correct
detection for dust over water and land, for smoker ¢éand, and 70% correct detection
for smoke over water, can be achieved. Prelimiaaalysis shows that radiometric or
calibration errors at the 5% level can be tolerated



1 INTRODUCTION

Aerosols perturb the Earth’s energy budget by edati and absorbing radiation and by
altering cloud properties and lifetimes. They asgert large influences on weather, air
quality, hydrological cycles, and ecosystems. Aelieeleased into the atmosphere due
to natural and anthropogenic activities lead tedetated air quality and affect Earth’s
climate. It is important to regularly monitor thilgal aerosol distributions and study
how they are changing, especially for those aesosth large spatial and temporal
variability, such as smoke, sand storms, and dB&{, 2007]. Detection of these highly
variable aerosols is challenging because of stiotegactions with local surface and
meteorological conditions.

Because atmospheric aerosols can directly altar sold Earth radiation in both visible
and infrared (IR) spectral regions through scatteand absorption processes, both
visible and IR remote sensing techniques have bsed for detection of aerosols in the
atmosphere [e.g., Tanre and Legrand, 1991; Acke88, 1997; Kaufman et al., 1997;
Verge-Depre et al., 2006]. Visible and IR images lba used for detecting episodic
smoke and dust particles due to the fact that taesesol particles display some spectral
variations in visible and IR spectral regions diffet from those of cloud or clear-sky
conditions. In practice, the detection is basetheranalysis of reflectance (or radiance)
in visible bands or brightness temperature (BTIRibbands. The magnitude of the
difference in reflectance or BTs in selected bged€hannels) can be used to infer the
signature of dust and smoke. This is the basic ad@ar aerosol detection algorithm,
which will be described in detail in this document.

1.1 Purpose of This Document

The aerosol detection Algorithm Theoretical Bastes@ment (ATBD) provides a high
level description of and the physical basis fordeeection of smoke/dust contaminated
pixels with images taken by the Advanced Baselmnader (ABI) flown on the GOES-R
series of next generation NOAA operational geostatiy meteorological satellites.
The algorithm provides an initial estimate of thhegence or absence of smoke or dust
within each ABI pixel.

1.2 Who Should Use This Document

The intended users of this document are thoseestien in understanding the physical
basis of the algorithms and how to use the outptltie algorithm to optimize the
episodic aerosol detection for a particular applica This document also provides
information useful to anyone maintaining or modifyithe original algorithm.

1.3 Inside Each Section
This document is broken down into the following maéections.

» System Overview Provides relevant details on ABI instrument cloteastics
and detailed description of the products generayetthe algorithm.



» Algorithm Description: Provides the detailed description of the alganith
including physical basis, the required input arelderived output. Examples
from algorithm processing using proxy input data aso provided.

» Test Data Sets and OutputsProvides a description of the test data sets tsed
characterize the performance of the algorithm &edjuality of the output.
Precision and accuracy of the end product is egtdnand Error budget is
calculated.

» Practical Considerations Provides an overview of the issues involving
numerical computation, programming and procedureslity assessment and
diagnostics and exception handling.

* Assumptions and Limitations Provides an overview of assumptions which the
algorithm is based on and the current limitatiohthe approach. The plan for
overcoming some limitations with further algoritit@velopment is also given.

1.4 Related Documents

Besides the references given throughout, this deatiis related to documents listed as
bellow:

(1) GOES-R Mission Requirements Document (MRD)

(2) GOES-R Functional and Performance Specificationubwmnt (F&PS)

(3) GOSE-R ABI Aerosol Detection Produgtigorithm and Test Implementation
Plan (ATIP) Document

(4) GOSE-R ABI Aerosol Detection Product ValidationfiP@ocument

1.5 Revision History

This is the second version (Version 2.0) of thisudoent for 100% maturity delivery.
Version 2.0 is based on Version 1.0 including mdy éhe revisions but also
improvement of algorithm itself and related chantgesrecision and accuracy estimates
etc. All the documents were created by the GOESAR ADP team led by Dr.

Shobha Kondragunta of NOAA/NESDIS/STAR. The ADPtaacludes Dr. Steven
Ackerman of University of Wisconsin-Madison and Bubu Ciren of PSGS QSS Group,
Inc., Maryland. Version 2.0 ATBD accompanies theveey of the version 5.0 algorithm
to the GOES-R AWG Algorithm Integration Team (AIT).

2 OBSERVING SYSTEM OVERVIEW

This section will describe the products generatethb ABI ADP algorithm including
smoke and dust and the requirements it placeseosethsor.
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2.1

Products Generated

As described in Tables 1 and 2, ADP measurementacy is defined as 80% of correct

classification for dust over water and land, forogmover land, and 70% correct
classification for smoke over water with measuretnnange given as binary yes/no
detection above threshold of 0.2 aerosol opticptileas stated in GOES-R Ground

Segment Functional and Performance Specificatié&i @ (G417-R-FPS-0089 V1.9). It
should be noted that aerosol optical depth of éfihds background atmospheric aerosol
and is not computed with this algorithm.

Table 1 GOES-R mission requirements for Aerosol Dettion
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Z 0o = - <@ : < o3~ o Q S3
= 3] =1 =1
Q a5 3
() < a
Dust: 80%
correct
detection
Aerosol Binary Jover land an
. es/no water
Detection Y .
. 0,
(including | GOES-R C Total 2 km 1km detection |Smoke: 80 15 min 15 min N/A
Smoke and Column above corre_ct
Dust) threshold 0.] detection
(for AOT) |over land an
70% over
water
Dust: 80%
correct
Aerosol Binary ovift;%taog n
l_)etect_ion Total yes/n_o water
(including | GOES-R FD 2 km 1km detection ; 15 min 806 sec N/A
Column Smoke: 809
Smoke and above correct
Dust) threshold 0. detection
(for AOT)
over land an|
70% over
Dust: 80%
correct
detection
Aerosol Binary Jover land an
. es/no water
Detection Y .
- . 0,
(including GOES-R M Total 2 km 1km detection | Smoke: 80 15 min 806 sec N/A
Smoke and Column above corre_ct
Dust) threshold 0.] detection
(for AOT) |over land an
70% over
water

C=CONUS, FD=full disk, M= Mesoscale
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Table 2 GOES-R qualifier for Aerosol Detection
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C=CONUS, FD=full disk, M= Mesoscale

The purpose of the ADP algorithm is to identify Afdkels which are contaminated by
either smoke or dust during daytime to facilitdte tmonitoring of occurrences and
development of smoke/dust episodes. However, dtlesteelatively weak contribution of
aerosols compared to reflection from the surfadbécsatellite measured
reflectances/brightness temperatures, the ADP ithgoiperforms better for heavy smoke
/dust episodes (with aerosol optical depth >0.2r@\ark surface than over bright
surfaces. Smoke detection over semi-arid and agobns is less accurate due to lower
contrast with the background. The algorithm outpwurrently written in netCDF4
format for smoke flag (1/0 for yes/no), dust fldgQ(for yes/no) and 4 quality flags
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(contained in a 1 byte integer), i.e., smoke detaajuality flag (1/0 for not determined
(bad)/ determined (good), Dust detection qualigf{1/0 for not determined(bad)/
determined(good)), smoke detection confidence (fl@401/11 for lower/medium/high
confidence) and dust detection confidence flagQ@DQ.1 for lower/medium/high
confidence). In addition, product quality infornmatiflags (contained in a 4 byte integer)
are also generated but only as internal output.details on both quality flags and
product quality information flags are given in tabB and 4 respectively.

2.2 Instrument Characteristics

The ADP will be produced for each pixel observedh®/ABI. Table 5 summarizes the
channels used by the current ADP algorithm.

The backbone of the ADP algorithm is the distinetdpectral and spatial signature of
aerosol (smoke/dust). Temporal variability hasbesn taken advantage of, in the current
version of algorithm, but is planned for futuresiens. Similar to clouds, variability of
smoke or dust plume is much larger than the sudaee a course of day. Besides the
threshold test, by tracking the variability ovend, for example, variability over a course
of 30 minutes, it is possible to define if a piieladen with smoke/dust. However, it
must be noted that cloud, smoke and dust may hkstemporal variability. Taking
advantage of temporal variability in smoke/dusedgbn has high requirement on
separating clouds from smoke/dust. In additiorsremvn in Table 5, different ABI
channels have different spatial resolution, randiam 0.5 km for visible to 2 km for IR
channels. In ADP algorithm, the output resolutis2km. Hence, channels with higher
spatial resolution than 2 km have to be aggregat@#m by sub-sampling before
applying the ADP algorithm. Like any other threshbhlsed algorithm, the ADP
algorithm requires optimal performance of the imstent. First, the ADP algorithm is
designed to work when only a sub-set of the expgedbtannels are available. Missing
channels, especially the crucial ones, will imghictctly the performance of the
algorithm.

Second, the ADP algorithm is sensitive to instrunmense and calibration error.
Thresholds are required to be adjusted accordiogiye status of instrument operation
and performance. Third, calibrated observatiorsatso critical, but since the
algorithm does not compare the observed valudsosetfrom a forward radiative
transfer model, uncertainties in calibration carabeliorated by modifying thresholds
post launch of the ABI. The channel specificatiars given in the MRD.

13



Table 3 Quality flags for ABI aerosol detection praluct

. Meaning
Byte/Bit . 1bit: O 1
Quality Flag Name (default)
2bit: 00 (default) 01 11
0 | QC_SMOKE_DETECTION Determined (good) Deter mr:r?; d(bad)
1 QC_DUST_DETECTION Determined(good) Deter mr:r?; d(bad)
2-3 | QC_SMOKE_CONFIDENCE Low Medium High
4-5 QC_DUST_CONFIDENCE Low Medium High
6 SPARE
7 SPARE
*Start from the least significant bit
Table 4 Product quality information flags for ABI aerosol detection product
Meaning
Bytt?/Bi Diagnostic Flag Name 1bit: O (default) 1
2bit: 00 (default) 01 11
0 QC_INPUT_LON Invalid longitude Valid longitude
1 QC_INPUT_LAT Invalid latitude Valid latitude
23 OC_INPUT_SOLZEN Invalid solar zenith angle (SZA) Valid solar zenith angle(SZA) Solar zenith
90<SZA or SZA <0 0SSZA<90 angle >60
1
45 OC_INPUT_SATZEN invalid local zenith angle(VZA) Valid local zenith angle(VZA) Local zenith
90<VZA or VZA <0 0SVZA<90 angle >60
Snow/ice
6-7 QC_INPUT_SNOW/ICE_SOURCE Snow/ice Mask from ABI retrieval Snow/ice Mask from IMS Mask from
Internal test
8 QC_INPUT_SUNGLINT_SOURCE ABI sun glint Mask Internal sun glint Mask
9 QC_INPUT_SUNGLINT outside of sun glint within sun glint
10 QC_INPUT_LAND/WATER Water Land
11 QC_INPUT_DAY/NIGHT Day Night
12 QC_WATER_SMOKE_INPUT Valid ABI inputs invalid ABI inputs
2 13 QC_WATER_SMOKE_CLOUD Cloud-free Obscured by clouds
14 QC_WATER_SMOKE_SNOW/ICE Snowl/ice free With snow/ice
15 QC_WATER_SMOKE_TYPE Thin Smoke Thick Smoke
16 QC_WATER_DUST_INPUT Valid ABI inputs Invalid ABI inputs
17 QC_WATER_DUST_CLOUD Cloud-free Obscured by clouds
18 QC_WATER_DUST_SNOW/ICE Snow/ice free With snow/ice
’ 19 QC_WATER_DUST_TYPE Thin dust Thick dust
20 QC_LAND_SMOKE_INPUT Invalid ABI inputs Valid ABI inputs
21 QC_LAND_SMOKE_CLOUD Cloud-free Obscured by clouds
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QC_LAND_SMOKE_SNOW/ICE

Snow/ice free

With snow/ice

23 QC_LAND_SMOKE_TYPE fire Thick smoke

24 QC_LAND_DUST_INPUT Valid ABI inputs Invalid ABI inputs
25 QC_LAND_DUST_CLOUD Cloud-free Obscured by clouds
26 QC_LAND_DUST_SNOWI/ICE Snow/ice free With snow/ice

27 QC_LAND_DUST_TYPE Thin dust Thick dust

28 spare

29 spare

30 spare

31 spare

*Start from the least significant bit

Table 5 Channel numbers and wavelengths for the ABIChannels used in the ADP algorithm are
highlighted in different colors. Key channels aredentified by a check mark.

1 0.45-0.49 0.47 21277 1 Dust/Smoke

2 0.59-0.69 0.64 15625 0.5 Dust/Smoke

3 0.846-0.885 0.865 11561 1 Dust/Smoke

4 1.371-1.386 1.378 7257 2 Dust/Smoke

5 1.58-1.64 1.61 6211 SMOKE

8 2.225-2.275 2.25 4444 2 Smoke
3.80-4.00 3.90 2564 Dust/Smoke

8 5.77-6.6 6.19 1616 2

9 6.75-7.15 6.95 1439 2

10 7.24-7.44 7.34 1362 2

11 8.3-8.7 8.5 1176 2

12 9.42-9.8 9.61 1041 2

13 10.1-10.6 10.35 966 2

14 10.8-11.6 11.2 893 2 Dust/Smoke

15 11.8-12.8 12.3 813 2 Dust/Smoke

16 13.0-13.6 13.3 752 2

Input for both

Dust and smoke

I Input for smoke

Input for dust
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3 ALGORITHM DESCRIPTION

3.1 Algorithm Overview

The ADP serves to aid air quality forecasters enidfying smoke and dust laden
atmosphere. The ADP algorithm follows heritageatgms:

* Aerosols (dust) from AVHRR Extended (CLAVR-x) of SPIS/STAR
* Non-cloud obstruction (including smoke and dustgdgon in the MOD/MYD35
MODIS cloud mask developed for MODIS by the Uniwgrsf Wisconsin (UW).

The fundamental outputs of the ADP consist of fitags. They are the aerosol flag,
smoke flag, dust flag and aerosol detection quélhiys. Aerosol flag has a value of O for
no aerosol and 1 for with aerosol. In the smoke/tlag, O represents smoke/dust and 1
represents no smoke/dust, respectively. The daiailjuality flags are given in section
2.1. The following sections describe the ABI ADBalthm.

3.2 Processing Outline

The processing outline of the ADP algorithm is swaned in Figure 1, which includes
the basic modules as input, output, and detecti@n and and water. The algorithm is
written in C++, and products are outputted in nei@Oormat. For optimizing CPU
usage, the ADP algorithm is designed to run on segsnof data. Each segment is
comprised of multiple scan lines (10 lines).

16



( Start )

A 4
Allocate RAM & read input

A 4
Initialize output

A 4
- Done Output
> Process each pixel » results
A
No Y
Daytime? End
Yes
Cloud mask Yes No Cloud mask
over land over ocean
\ 4 v \ 4 A\ 4
Dust Smoke Smoke Dust
detection detection detection detection
\ 4 4
> Update output for current pixel <

Figure 1: High level flowchart of the ADP algorithm, illustrating the main processing sections.

3.3 Algorithm Input

This section describes the input needed to prabesaDP algorithm. While the ADP
is derived for each pixel, it does require knowkedd the surrounding pixels. In its
current operation, we run the ADP algorithm on segi® of 10 scan-lines.

3.3.1 Primary Sensor Data

Calibrated/Navigated ABI reflectances and brighsniesnperatures on selected channels,
geolocation (latitude/longitude) information, an8lAsensor quality flags are used as the
sensor input data for the algorithError! Reference source not found.contains the
primary sensor data used by the ADP algorithm. rEflectance channel data with

good quality will be averaged to the IR footpriasolution.
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Table 6 ADP primary sensor input data.

Name Type Description Dimension

Ch1 reflectance input Calibrated ABI level 1b reflectance at channe| grid (xsize, ysize)
Ch2 reflectance input Calibrated ABI level 1b reflectance at channe| grid (xsize, ysize)
Ch3 reflectance input Calibrated ABI level 1b reflectance at channe| grid (xsize, ysize)
Ch4 reflectance input Calibrated ABI level 1b reflectance at channe| grid (xsize, ysize)
Ch6 reflectance input Calibrated ABI level 1b reflectance at channe| grid (xsize, ysize)
Ch7 brightness input | Calibrated ABI level 1b brightness temperaturq grid (xsize, ysize)
temperature channel 7

Ch 14 brightness input Calibrated ABI level 1b brightness temperaturq grid (xsize, ysize)
temperature channel 14

Ch 15 brightness input | Calibrated ABI level 1b brightness temperaturq grid (xsize, ysize)
temperature channel 15

Latitude input Pixel latitude grid (xsize, ysize)
Longitude input Pixel longitude grid (xsize, ysize)
QC flags input ABI quality control flags with level 1b data | grid (xsize, ysize)

Note that, the cloud mask required in ADP algoriibrdesigned to primarily come from
ABI cloud product. Channels used to determinectbed mask are not listed here as
that information is part of the cloud mask ATBD.

3.3.2 ABI Product Precedence and Ancillary Data
The dynamic data are from both ABI Level-1b andéle¥ products needed by the ADP

algorithm are listed in Table 7. They include clondsk from ABI cloud product,
snow/ice mask from ABI level-2 product, sun glinhsk and day/night flag are
determined internally in the ADP algorithm fromwieg and illuminating geometry

information.
Table 7 ABI Product Precedence and Ancillary inputdata.
Name Type Source Dimension
Cloud masH input ABI level 2 cloud product grid (xsize, ysize
ABI Produc Sr:r?;vslll(ce input ABI level 2 Snow/Ice Product grid(xsize, ysize)
Precedencsyn glint | . Internally determined but needs information { _ . ., . .
Data mask Input viewing geometry it e, TR
Day/night | . Internally determined but needs information id(xsi .
flag Input viewing geometry gitelpehas, vene)
Ancillary | Land/Water| e 1 km dataset grid(xsize.ysize)
Data mask http://glcf.umiacs.umd.edu/data/landcq ’

* Snow/lce mask
Primary source of snow/ice is ABI Level-2 Snow/Reduct. However, under the
situation that the primary source is missing, latéve Multisensor Snow and Ice
Mapping System (IMS)http://nsidc.org/data/g02156.h{hgnow/ice mask will be the

secondary source.

In addition, the ADP algoritras imternal snow/ice test over land,
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whose function is to eliminate the residuals frotteenal snow/ice mask over land. It is
applied after the primary /secondary snow/ice madketails on the internal snow/ice
mask are given in section 3.4.2.1.

* Cloud mask
The purpose of using cloud mask in the ADP algaritk to eliminate pixels with
obvious clouds, such as high and ice cloud, bgfereorming smoke/dust detection.
Hence, the requirement of ADP algorithm for clouasikis more specific than just cloud
or clear mask. Stringent cloud mask has the patetaticlassify smoke as cloud, while
loose cloud mask increases the chance of misigergitlouds as smoke. The ADP
algorithm intends to use only individual tests iBl&loud mask product which indicate
the existence of high cloud, ice cloud and thinusircloud. However, this dependency
was not tested because ABI cloud algorithm wageedy to run on MODIS. Efforts will
be put once common proxy data become availablee@lly, the ADP algorithm is using
MODIS data as proxy, including MODIS cloud mask.asBd on the definition of
individual test from both ABI cloud mask and MODd®ud mask, the individual test
used in ADP algorithm is mapped to ABI cloud mask ¢hey are given igrror!
Reference source not found.

Table 8 Mapping of ABI ADP cloud mask tests to ABlcloud mask tests

MODIS
cloud mask
tests used b

ABI ADP

Bit No.

ABI Cloud
mask tests Locations where the tests ar
Byte No. (Bi used in ADP
No.)

Description

Smoke over land
Smoke over water
Dust over land
Dust over Water

9 3(7) CIRREF- Near IR Cirrus Test (1.38n)

ETROP — Emissivity at

Smoke over Water
2(4) TrOpOpause Test Dust over water
15 3+3 ] + Smoke over land
() |ULST - Uniform Low Stratus Te Dust over land
when ETROP is true but ULST is fal

Smoke over Water

16 3(7) CIRREF- Near IR Cirrus Test (1.38n) Smoke over Land
Smoke over water
18 2 (5) PFMFT — Positive FMFT (Split-Windo Dust over water
BTD) Test Smoke over land
Dust over land
19 3(2) EMISS4 — 4um Emissivity Test Smoke over land
20 34) RGCT — Reflectance Gross Contrast T Smoke over land

* Sun glint mask

The ADP algorithm is designed to generate intesoal glint mask based on ABI viewing
and illuminating angles as second source. The Bohaggle ) is calculated as follows
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cos() = cos@) * cos@) +sin(éy) * sin(6) * cos(L80- @)

& : solar zenith angle

@ satellite zenith angle

¢ : relative azimuth angle

Note thatg is defined as the difference between satellitmatti angle and solar azimuth
angle. An area with calculated sun glint angleatgrethan zero and less tharf #0
defined as sun glint area.

» Day/night mask
A day/night flag is determined internally based mipioe solar zenith angle. Day is
defined as solar zenith angle of less thah &Hile night is defined as solar zenith angle
greater than 87

* Land/water mask
The only static input data required by the ADP &t is a global 1km land/water
mask. The global land cover classification collectcreated by The University of
Maryland Department of Geography with Imageriesfithe AVHRR satellites acquired
between 1981 and 1994 [Hansen et al., 1998] isdhece
(http://glcf.umiacs.umd.edu/data/landcover/).

3.4 Theoretical Description

The ADP algorithm attempts to separate cloudy dear pixels from those with smoke
or dust. The detection of smoke or dust relieshendistinctive signature of smoke or
dust which is often expressed in terms of spewtahtions of the observed brightness
temperature or solar reflected energy. The specdration of the refractive index plays
an important role in the success of these methobfsaddition, the scattering and
absorption properties of an aerosol also deperti@particle size distribution and the
particle shape. Several aerosol remote sensihgitpees have been developed using
observations from the Advanced Very High Resoluiadiometer (AVHRR) [e.qg.
Barton et al., 1992]. Similar to the dust plumés, volcanic ash plumes often generate
negative brightness temperature differences betdiéem (BT;;) and 12um (BTyp).
Prata [1989] has demonstrated the detection obwidcaerosols using two infrared
channels, while Ackerman and Strabala [1994] agpiieservations at 8.6, 11 andub2
from the Hyper Spectral Infrared Sound (HIRS) imstent to study the Mt. Pinatubo
stratospheric aerosol.

Image based aerosol detection always involves gasoms of the radiometric
characteristics of aerosol, clear and cloudy sceries surface conditions also influence
the separation of aerosol pixels from those widaeckky or cloud. The ADP algorithm
currently uses spectral and spatial tests to if{epixels with smoke or dust in the
daytime. Temporal tests are planned for futureigassof the algorithm. The algorithm
also treats the detection differently for water &ant.
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3.4.1 Physics of the Problem

Techniques for the remote sensing of aerosols wilay and thermal measurements
from satellites have been developed for severa&iuments, including AVHRR and
MODIS. Fundamentally, these methods are basedeorathative signatures of
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Figure 2: Real and imaginary part of dust, soot, weer and ice as a function of wavelength. Plots are
based on data obtained from CRTM.

aerosols. The problem of accurate detection arssifieation is compounded by the fact
that the physical characteristics of aerosols fedicle size distribution, concentration,
chemical composition, location in the atmosphehange as the aerosol layer develops
and dissipates. These physical changes are capfaddilecting the radiative
characteristics of the original aerosol and oumabéljty to detect them from satellite
observations. In addition to being present astiwece region, aerosols are transported
by winds to other regions of the globe.

Fundamentally, the radiative signatures of an atilager are determined by the

scattering and absorption properties of the aemghin a layer in the atmosphere. These
are:
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Extinction coefficient, o, (which integrated over path length gives the @ptic
thickness, 7). This parameter characterizes the attenuatiosadétion through
an aerosol volume due to aerosol scattering (medday scattering coefficient
Osc9 and absorption (measured by absorption coeffiagp) so thatg=

Oscat Oabs

Single scattering albedow =0o_,/0.,, , which describes how much attenuation

ext ?
of radiation is due to scattering. It ranges betwedéor a non-absorbing medium
and 0 for a medium that absorbs and does not seaitegy.
Phase function,P(u, 1) which describes the direction of the scatteredgne

Hereu andy’ are the cosine of solar and local zenith angespeactively.

There are three important physical properties pdudicle that are needed to determine
the scattering and absorption properties listedv@bo

The index of refractionfi=m —im ) of the particle: The index of refraction of

the medium is also required, but for air it is Measurements of the index of
refraction of a material are very difficult to malgohren and Huffman 1983].

Them, is an indication of the scattering properties wkilem is an indication of

the absorption characteristics of the material. 3¢atering and absorption
properties of an aerosol also depend on the pagigk distribution. The index of
refraction of smoke and dust is different from acewvater (Figure2), which
suggests that multi-spectral techniques shouldskeéulin separating the aerosol
from clouds.

The shape of the particle: Microscopic analysi®ats that aerosols are
irregular in shape. Thus, the assumption of sphkpiarticles is often not accurate
but a reasonable approximation. Shape effectstraayparticular problem in
the vicinity of strong infrared absorption bands$mall particles with a uniform
size distribution [Bohren and Huffman, 1983]. Assatisfactory method of
handling the radiative properties of irregular stdhparticles has been developed
for general application to remote sensing techrigthee sensitivity studies
generally assume spherical shaped particles.

The size distribution of the particles, n(r): bhdition to defining the radiative
properties, the n(r) also determines the aerossekroancentration. Particle size
distributions of aerosols are often expressedlag-aormal distribution.

Because of these distinctive wavelength dependansal properties, the spectral
threshold based techniques are used to detectsthuske, volcanic ash work. The bulk
transmittance of many aerosols displays a stroegtsgd variation in the 8-1Am and
10-12um regions. This is also a spectral region over Wwithe atmosphere is fairly
transparent. For these reasons, techniques havedeeeloped which successfully
employ satellite radiance measurements at 11 anani 2o detect aerosols. These split
window IR techniques have primarily been appliegtdtzanic aerosols, particularly
those from sulfur-rich eruptions [e.g. Prata 19B&rton et al. 1992] as well as dust
outbreaks [Legrand et al., 1992, 2001; Evan eR8Dg]. As demonstrated in Figure 3,
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dust absorbs more radiation at 12pum than 11pum hnadaases the brightness temperature
difference between the two to be negative.

There is absorption and emission of water vapthenl1l and 12 pm channels. Because
the weighting function for the 11um channel peakger in the atmosphere than the
12um channel does, the presence of a dry air rofies, associated with dust events, will
tend to reduce the positive Bl-BT12um Values associated with clear sky atmospheres.
In addition, dust has a larger absorption at 12pan &t 11um, so that dust plumes
generally have a higher emissivity and lower traissivity in the 12 um channel
[Ackerman, 1997; Dunion and Velden, 2004]. For melevated dust layers, the
increased temperature separation between thealiestdnd the surface, and coincident
reduction of dry air closer to the peak of the 11yenghting function makes the split
window brightness temperature difference less p@siThis difference has also been
observed to be affected by the optical thickness @ven dust plume, so that in thick
optical depths the Blym-BT12m difference becomes more negative.

Darmenov and Sokolik [2005] further explored thigllimess temperature difference
technigue using MODIS data applied to dust outlsdedm different regions of the

globe. In general, Bgim-BT11,m becomes less negative andiB&-BT1m becomes
more negative with increasing dust loading (Figg)re However, in the ADP algorithm,
the 3.9 um is chosen instead of 8 um because 3.8gsrees water vapor absorption and
also to eliminate the false alarm from low leveluds (often towering cumulus).

1
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— i I 5 |
x -1 I—J.—u
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@ 1{16-24N) _
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-3 - sky L
—4 T T T
-2 -1 0] 1 2
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Figure 3. Combined tri-spectral diagram of brightness temperature differences for “heavy dust”
pixels. From Darmenov and Sokolik [2005].

Dust absorbs at blue wavelengths and appears diduraivn in color. Clouds are
spectrally neutral and appear white to human dyasthis reason, the reflectances at
0.86, 0.47 and 0.64pum have been used to identst diis is often done in a ratio of one
to another or as a normalized difference index.éxample, the MODIS aerosol optical
depth retrieval algorithm has a condition thataratf reflectances between 0.47 um and
0.64 um should be less than 0.75 for the centrall joh a 3 X 3 box to be identified as
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dust.Evan et al [2006] use a constraint that the redleoe value of the 0.861 channel
(Ro.seum) divided by the reflectance value of the 0.63pmnctel (R sam) is within the
range of 0.6—1.0 for the AVHRR (this range is dligldifferent for MODIS due to
differences in the spectral response functionspi\glue to the nonlinear relationship
with optical thickness, we chose to square thectdihces prior to applying a test. The
physical basis for this test is that the presercealler aerosols, like smoke, tends to
reduce the values for this ratio, as smaller padiare more efficient at scattering light at
0.63um. Although dust particles are observed ttexcaore light at 0.8 than at 0.86
pm probably due to their size, they tend to exhiire uniform scattering across this
spectral region [Dubovik et al., 2002]. A ratio ¢yfest of Bsqm/ Rosam has been found
to be useful in discriminating pixels containingak@ from those with dust

Although dust particles are observed to scattetertight at 0.68m than at 0.86m
probably due to their size, they tend to exhibitenaniform scattering across this
spectral region [Dubovik et al., 2002]. Thus, thBa R sqin/ Ro.sam test [Evan et al.,
2006] has been found to be useful in discriminagingls containing smoke from those
with dust. Another test for dust examination ovetev is the requirement that the ratio of
reflectance at 0.47 um and 0.64 pum is smaller than Similar to the dust detection
over land, low level clouds (often towering cumqgloan also have a negative split
window brightness temperature difference. Thereforghtness temperature between
3.9 um and 11 um can be used to screen out cloudromated pixels.

The RGB image in Figuré shows a dust plume with different regions of hedwrsgt, thin
dust, and clear sky clearly identified. For thdgterent regions, the relationship
between different visible and IR BTD are plottedhe four panels of Figurg. Clear

sky pixels have low reflectance at both 0.47 aed @m, thin dust has elevated
reflectances at these channels, and thick duskspiveye 20% or greater reflectance at
these channels. The BTD between 3.9 um and 11lleiteg against the BTD between
11 pm and 12 pm shows a clear separation of thiskpixels compared to thin dust and
clear-sky.
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Figure 4: The relationship between various combinabdns of channels for heavy, thin dust, and clear

conditions.

For smoke tests, fire spots are detected by lookirmxels with BTs at 3.9 um greater
than 350K and the BTD between 3.9 um and 11 pntegrézan or equal to 10K.

Pixels that pass fire test are assumed to haveesmokhe smoke tests over land take

advantage of a linear relationship observed betWw#@DIS reflectance at 0.63 pm and

2.13 um (Figure).

This relationship gets noisy when reflectanic2. 43 um is greater

than 20%. When smoke is present in a pixel, treeelarger increase inkym than

R2.25:m.
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Atmospherically Corrected Surface Reflectance
non-urban midlatitude Summer

0.25 -

e = 0006 + 0.671% - B= D962

Surface Reflectance (0.644 um)

Surface Reflectance (2.1 am)

Figure 5 : Surface reflectance at 0.64m va. surface reflectance at 2fdm from MODIS. (Reference:
Remer et al. 2005)

Smoke is separated from cloud using spatial unityrtasts for 0.64 pm channel.
Clouds show large variability in this channel comgabto smoke.

Spatial variability tests will also help in avoidithe mis-classification of clouds as
smoke. By using the standard deviation of refleataat 0.86um, where both smoke
aerosols, thick clouds show uniform variability quamed to thin smoke and partially
cloudy pixels. Also, while reflectance from closdspectrally independent, it is not for
smoke. This allows the use of spectral contrats tesing 0.47 um, 1.61 um, and 2.25
pum to separate clouds from thick smoke. A comimnatf tests developed using
multiple channels are shown in Figure 6.

First of all, over water, clear pixels, pixels leadwith thick smoke and cloud are more
uniform than pixels with partial cloud or thin duBly using the standard deviation of
reflectance at 0.86um, where both aerosol and sleffdcts are moderate, pixels which
contain thick smoke vs. clouds/thin smoke can Ipasged. It is known that smoke in
visible channels looks brighter than water surtagedarker than a cloud. However, it is
very difficult to completely separate them by onbing the reflectance test. Therefore,
based on the fact that reflection from clouds ecsqally independent, while reflection
from smoke has strong wavelength dependence, apeotitrast tests are combined to
separate clouds, smoke and water surface. Figdt,dhe ratio between 0.47um to
1.61um is used, the rationale for choosing thesectvannels is due to the fact that
aerosol effect is larger at 0.47um but water i«kelaat 1.61um. Secondly, the ratio
between 2.25um to 1.61um is combined to enhancseeiaration of smoke from clouds.
Thirdly, by constraining R0.47um and R1.61um, treokoke can be identified
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Figure 6: Scatter plots of R vs. Ry 4qm: Rs VS. Rigm Ra VS. Roagum R4 VS. Rigym  for clear-sky
pixels (blue), thick smoke pixels (dark brown), thin smoke (light brown) and cloudy pixels (red).
Definitions of R;and R,are given in section 3.4.2.

3.4.2 Mathematical Description

Computation of binary flag for smoke/dust in the RBlgorithm is a process of
elimination and determination. It has three levelBirst, any pixel which contains cloud
(high and optically thick clouds) and snow/ice,atgtined from input cloud mask and
snow/ice mask, is tagged as a cloudy pixel angratessed. Second, pixels
contaminated by clouds but not screened by clougkraee further identified by a
combination of spectral and spatial variabilityt¢ées Third, spectral variability tests
determine if a pixel has smoke or dust. Due tddleethat the contrast of smoke/dust to
underlying surface is different for land and watennputation of binary flag for
smoke/dust in the ADP is separated for land an@mvatThe following sections describe
the various tests employed in the ADP algorithme $mbols and formulae used in the
various tests through the ADP algorithm are defiagdollows:

R0 .64 Hm R0.47 Hm

Rat 1 =
Ro6a um * R0.47 ym
Rat 12 21
Rat 2 = 2
R0.47 ym
R - R
NDV] 0.86 um 0.64 um

Rose um * Ro.e4a um



In the formulae listed above, “Rat” is for rati?NDVI” is Normalized Difference
Vegetation Index, “MNDVI” is Modified Normalized Eference Vegetation Index, “R”
is reflectance. Additionally variables such as "Bdr Brightness Temperature, “BTD”
for Brightness Temperature Difference, “StdR” féai®lard Deviation of Reflectence
computed spatially for 3 X 3 pixels.

Calculation of StdR for pixel which is not on thadge of scan is from the surrounding 3
by 3 pixels. For pixels on the edge of scan, stahdaviation for the closest pixel is
assigned.

3.4.2.1 Snowlice test over land
Before proceeding to any tests over land, it isartgmt to identify pixels contaminated
by snow/ice As described earlier, ABI snow/ice prctds the primary source, and
snow/ice mask from IMS is used as a second soHi@&ever, a further test is designed
to catch any pixels that pass through but have oew
The specific tests as currently implemented are:
1) Good data test

* Rogsum Rieyum>0 &

o BTllpm> OK &

» ABI quality flags for above channels indicate gatada

2) Snow and Ice tests;

if BT11un<285K & (Ro.gsun Ri61um)/ (Ro.gsunt R1.61£lm)>0-01
then snow/ice indicated for all pixels within 5 X&1".

The results from utilizing these internal snowfests show that false snow detections
from the original MODIS product are removed.

3.4.2.2 Dust Detection over Land

Figure 7 is a flow chart of the algorithm to detdwt presence of dust over land during
daytime (defined as solar zenith angle less thdml8grees). The tests are not performed
over snow and ice or in the presence of clouds.

The specific tests as currently implemented are:
(1) Test for the presence of snow/ice by first gshBl mask and then using internal

snow/ice test. Also test for the presence of cddoylusing ABI cloud mask. Any
pixel with positive snow/ice/cloud mask is not presed.
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(2) Test for the quality of the input radiance data
*  Ro.47um Rosapm Ro.gspm Rizgum> 0 &
. BTg,gum BTllum BTlZum> 0K &
» ABI quality flags for above channels equal to zéndjcating quality of
the data is assured.

(3) Thin Dust detection: BTD and R tests — checlpigels with thin dust and no cirrus
clouds

If

BTllpm'BTImeS ‘02K & BT3.9pm' BTllme 15K & Rl.38um< 0035
then begin

If

MNDVI < 0.08 & Rat > 0.005

then thin dust

else

If

BT3_gum- BTllme 20K then thin dust
endelse

endif

endif

(4) Thick dust test
If

and
MNDVI < 0.2 then dust
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Dust over land

Snow/ice

R (0.47um,0.64um,0.86um,1.38um) >0

BT(3.9um, 11um 120m) >0
Quality flag for above channels =0

BTi1um-BTiuns-0.2K &
BT3.9um--BT12um215k &
R138um<0.035

BT3 9ym--BT12um220k

tN

Figure 7: Detail Flow chart of dust detection ovetand.

3.4.2.2.1 Example result

The results of an application of the dust test OIS Aqua data on April 15, 2003 at
20:20 UTC is shown in Figure 8. The left hand siflehe figure is a red-green-blue
(RGB) false color image of the scene showing tleation of the dust outbreak. The
right-hand side of the figure shows the resulttefdust test. Pixels flagged as dusty are

colored orange. A second example is shown in Fiure
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Figure 8: Left: a red-green-blue (RGB) false coloimage of a MODIS Aqua observation data on
April 15, 2003 at approximate 20:20 UTC. Right: tle results of the dust test where pixels flagged as
dusty are colored orange.
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Figure 9: Left: a red-green-blue (RGB) false coloimage of a MODIS Aqua observation data on
March 4, 2004 at approximate 19:55 UTC. Right: theesults of the dust test where pixels flagged as
dusty are colored blue.
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Figure 10: Detailed flow chart of dust detection ogr water.

3.4.2.3 Dust Detection over Water

Figure 10 is a detailed flow chart of the algorittordetect the presence of dust over

water during the daytime. The tests are not perdorover snow and ice or in the
presence of ice clouds.

The specific tests as currently implemented are
1) Test for the presence of snow/ice by first usingpry /secondary
snow/ice mask. Also test for the presence of ddmdusing ABI cloud
mask. Pixel is considered to be obscured by clduatsy of ABI cloud
mask tests in 3/7 (byte no./bit no.), 2/5 and 2@(8) is true. Any
pixel with positive snow/ice/cloud mask is not presed.

2) Test for the quality of the input radiance data

*  Ros7um Rosaum Rogepm>0 &
* BTzoum BTi1um BTi2um> OK
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* ABI quality flags for above channels equal to zendjcating
guality of the data is assured.

3) Uniformity and spectral tests for residual clouds

* MeanR gsum> 0 and StdRgeum= 0.005 &
® R0.47pmf 0.3 &
e R1<20

4) Tests for dust
If 4AK< B opunr BT11um< 20K then thin dust test
Else
Thick dust test

4.1 thin dust test
if
BT11unr BT12um< 0.1K and -0.3 NDVI < 0 and
Ro.47m/Ro.64m < 1.7 and
BT3ounr BT11um> 10K and BTiunr BT12um< -0.1K
then thin dust

4.2 thick dust test
if
BTg,gum BTllum> 20K and
BT11umBT12um< OK @and -0.3< NDVI < 0.05
then thick dust

5) Set dust mask flag

There are three separate tests for dust over vesteh, is elaborated below. Any of the
tests can pass for the pixel to be flagged as dakhough some of the tests have
multiple conditions that must be passed.

3.4.2.3.1 Example result

The results of an application of the dust test OIS data on May 18, 2010 at
approximate 12:30 UTC is shown in Figure 11. TédfeHand side of the figure is a
RGB images, the middle image is MOIDIS AOD (larbart 0.2) the brightness. The
image to the right shows the results of the waterland dust detection algorithm, where
orange and brown regions indicate the presencesif d
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Figure 11: MODIS Terra observations on May 18, 201@t approximate 12:30 UTC. A dust
outbreak is flowing from the Sahara desert over thedjacent Atlantic Ocean.

The MODIS AOD image shows no data over sun gligiae. The RGB image and the
ABI dust mask image show qualitative agreement.

3.4.2.4 Thick Smoke Detection over Land

Figure 12 is a detailed flow chart of the algorittordetect the presence of smoke over
land during daytime. Note that, the tests are eotopmed in the presence of snow/ice
and ice clouds
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Smoke over land

Snow/ice

BT(3.9um 11um) >0
Quality flag for above channels =0

R (0.47m,0.64um,0.86um 2.25m) >0
Quality flag for above
channels =0

Figure 12: Detailed flow chart of thick smoke detetion over land.

The specific tests as currently implemented sedgignére:

1) Test for the presence of snow/ice by first using Afask and then using
internal snow/ice test. Also test for the presarfodouds by using ABI
cloud mask. Pixel is considered to be obscureddnyds if ABI cloud
mask tests in 3/7 (byte no./bit no.), 3/2, 2/5)2(&(3) is true. Any pixel
with positive snow/ice/cloud mask is not processed.

2) Test for the quality of the input radiance data

*  Ro.47um Rosaum Rogsum: Reosyum>0 &

. BT3.9um BTllum > 0K

» ABI quality flags for above channels equal to zémdjcating
guality of the data is assured.
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3) Fire detection (hot spot)
If
BT3_gum> 350K and B'£,gpm- BTllme 10K
then fire
4) Spectral and uniformity tests for thick smoke
If
R2_25pm< 0.2 and
R0.64pm> (006 + 3-25Hn) and
R;>0.85and R>1.0 and
StdRy 6aum=< 0.04 (3x3)
then thick smoke

5) Set smoke flag

If fire or thick smoke then smoke

3.4.2.4.1 Example result
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The results of an application of the smoke te8i@DIS Terra data on May 2, 2007 at
16:35 UTC is shown in Figure 13. Smoke over Florgddetected. Comparisons of
smoke mask to RGB images show that both smokelandrand water were well

23131645 . hdf

captured.

no data snow/ice land water glint cloud smoke dust

Figure 13: Left: a red-green-blue (RGB) false coloimage of a MODIS Terra observation data on
May 2, 2007 at approximate 16:35 UTC. . Right: theesults of the smoke test where pixels flagged
as smoky are red.

3.4.2.5 Smoke detection over water

Figure 14 is a high level flow chart of the algbnit to detect the presence of smoke over
water during daytime. The tests are not performetie presence of ice clouds.

The specific tests as currently implemented sedgaignare
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1)

6)

2)

3)

Test for the presence of snow/ice by first usingpry /secondary
snow/ice mask. Also test for the presence of ddmdusing ABI cloud
mask. Pixel is considered to be obscured by clduaBI cloud mask
tests in 3/7 (byte no./bit no.), 2/5, 2(4)+ 3(3)rise. Any pixel with
positive snow/ice/cloud mask is not processed.

Test for the quality of the input radiance data

*  Ro.47um Rosaum Ro.gspum, Rizsum, Reosum™> 0

Uniformity test

If StdFé,gGum <=0.003 then
thin dust determination test
else
thick dust determination test

3.1) Thick dust determination test
If

Rs > 5.0 and R47um> 0.12 and 0.022<R1ym<0.05 and R< 0.5
then thick dust
howver,
if Rs3>5.0then thin dust
3.2). thin smoke determination test
If Rz > 6.0 and R< 0.3 then thin dust

Set smoke flag
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Smoke over water

Snow/ice

R(0.47um 0.86um, 1.61um,2,25um) >0
Quality flag for above channels =0

Figure 14: Detailed flow chart of smoke detection\er water.

3.4.2.5.1 Example result

The results of an application of the smoke te81@DIS Terra data on October 28, 2003
at approximate 18:25 UTC is shown in Figure 15. Egnover the coast of California due
to a fire in the dry season is detected. The dedexbverage of the smoke is very similar
to the pattern that observed from the RGB imagiicating the success of ADP
algorithm.
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Figure 15: Left: a red-green-blue (RGB) false coloimage of a MODIS Terra observation data on
October 28, 2003 at approximate 18:25 UTC. Righthte results of ADP algorithm.

3.4.3 Algorithm Output

The final output of this algorithm is a single yesiask for dust and smoke. The
parameters are listed belowtnror! Reference source not found.

Table 9 ABI aerosol imagery detection algorithm output

NETE! Type Description Dimension

Aerosol flag| output | Detected aerosol binary flag (1/0 - yes/ grid (xsize, ysize)

Smoke flag | output | Detected smoke binary flag (1/0 — yes/n grid (xsize, ysize)

Dust flag output Detected dust binary flag (1/0 — yes/no grid (xsize, ysize)

quality flagfor Smoke detection quality flag

smoke output (0/1 — good/bad ) grid (xsize, ysize)
uality flag for Dust detection quality fla . . .
q gustg output (0/1 - goog/bady) 9 grid (xsize, ysize)

In addition the following information is included the output:

» Date and Time (swath beginning and swath end)

* Bounding Box

o product resolution (nominal and/or at nadir)
number of rows
number of columns
bytes per pixel
data type
byte order information
o location of box relative to nadir (pixel space)

* Product Name

O O O0OO0oOo
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* Product Units
* Ancillary Data to Produce Product (including prodpecedence and interval
between datasets is applicable)
o Version Number
o Origin (where it was produced)

o Name

» Satellite

e Instrument

» Altitude

* Nadir pixel in the fixed grid
e Attitude

* Latitude

* Longitude

» Grid Projection

» Type of Scan

* Product Version Number
» Data compression type

* Location of production

» Citations to Documents
» Contact Information

4 Test Datasets and Outputs
4.1 Proxy Input Data Sets and validation data

4.1.1 Input Data sets

The MODIS instrument flying on NASA’s Aqua and Tesatellites measures radiances
at 36 wavelengths including infrared and visibladmwith spatial resolution 250m to
1km. The cloud mask is part of the MODIS Cloud PicidAckerman et a].1998, 2008;
Frey et al, 2008;King et al, 2003;Platnick et al, 2003]. Due to the fact that MODIS
has nearly all ABI channels, currently MODIS praesdhe optimum source of data for
testing (Table 10)
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Table 10 Mapping of ABI Channels to MODIS Channels

ABI Channel (um)

MODIS Channel (um)

Channel 1: 0.45 - 0.49

Channel 3: 0.459 - 0.479

Channel 2: 0.59 - 0.69

Channel 1: 0.62 - 0.67

Channel 3: 0.846 - 0.885

Channel 2: 0.841 - 0.876

Channel 4: 1.371 - 1.386

Channel 26:1.36 - 1.39

Channel 5: 1.58 - 1.64

Channel 6: 1.628 - 1.652

Channel 6: 2.225 - 2.275

Channel 7: 2.105 - 2.155

Channel 7: 3.8 — 4.0

Channel 21: 3.929 — 2.989

Channel 11: 8.3 -8.7

Channel 29: 8.4 - 8.7

Channel 14: 10.8 - 11.6

Channel 31: 10.78 —11.28

Channel 15: 11.8 -12.8

Channel 32: 11.77 - 12.27

The disadvantage is in the lack of temporal coverégthe current algorithm (V5)
testing, a total of 146 cases (or MODIS granul88)for dust and 66 for smoke) were
used for testing the performance of ADP algorithr@urrently, no simulated ABI data
with aerosols are available but we plan to usestmellated ABI data once it becomes
available.

MODIS L1-B 1km radiance data were obtained from MAS®vel 1 and Atmosphere
Archive and Distribution System (LAADS, http://ladsb.nascom.nasa.gov¥isible
channel reflectances were normalized to the overBen position by dividing with the
solar zenith angle. For the IR channels, radian@¥s converted to Brightness
Temperatures. Viewing and illumination geometry ged-location are from
MOD/MYDO03. Various cloud tests used in ADP are agted from the corresponding
bits in the MODIS cloud mask product (MOD/MYD35nd@v/ice mask from
MOD/MYD35 is used as the primary source of snowfieesk. Land/water mask is also
from MOD/MYD35. Both sun glint mask and day/nigtad are internally calculated as
described in section 3.12.

4.1.2 Truth data

4.1.2.1Supervised MODIS RGB image and MODIS Aerosol optica
depth product

Both smoke and dust have a distinctive signatufRGB image, and NASA Natural
Hazard systenmhftp://earthobservatory.nasa.gov/NaturalHazam@sd MODIS rapid
response systertfp://rapidfire.sci.gsfc.nasa.gov/galléryutinely issues MODIS
observations containing the smoke and dust outbraadund the globe. By selecting
granules which are dominated by either only smakenty dust, a supervised truth
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dataset were obtained. Then the corresponding Ae@jstical Depth (AOD) product is
used to identify the smoke/dust laden (AOD>0.2) smdke/dust free (0.2>A0D>0.0)
pixels; Note that, the traditional MODIS AOD prodwwer land only covers dark dense
vegetation surface. However, MODIS deep blue A@&lpct on AQUA provides

AOD coverage on bright surface such as over degé@DIS pixels with no AOD
retrievals are considered as covered by clouds@mwkce, bright surface over land and
bad input data. These conditions are consistenfiguorable for detection of smoke/dust
as well as discussed in Section 3. In addition,tdube difference in cloud screening
procedures between MODIS AOD product and ADP aligorj only pixels with both
MODIS AOD product and ADP indicating cloud-free ditions are used for quantitative
analysis.

4.1.2.2CALIPSO VFM product

With the launch of CALIPSO and CloudSat in the E®$rain formation in April 2006,
the ability to conduct global satellite cloud protiualidation increased significantly.
Besides cloud type, CALIPSO also identifies aerdgeds including smoke and dust.
Vertical Feature Mask (VFM) is the CALIPSO produdtich is used for validating ABI
ADP product. It gives not only vertical distriboni of aerosol layer but also 6 types of
aerosol, including clean marine, dust, polluted doslluted continental, clean
continental, polluted dust and smoke. Howeversiiase spatial coverage and narrow
swath of CALIPSO lidar observation limits the ambahmatch-up overpasses with
MODIS for smoke and dust cases. From 2006 to 2836yt 48 match-up cases are
found with CALIPSO passing through the smoke/dlistne. Among them there are 22
smoke cases and 26 dust cases.

4.2. Output from simulated/proxy data sets

4.2.1. Output for Dust Detection

4.2.1.1. Comparison with RGB image and AOT product

Supervised RGB image can capture dust events velfysimce dust plumes look brown
in the image compared to cloud. Thus, RGB imagebeansed to validate the ADP dust
detection algorithm. Therefore, we can apply deséction algorithm to MODIS
measurement of a dust event and compare the aeteesult with the MODIS RGB
image. One example is shown in Figure 16 for theDNE)Terra image of April 7, 2007
at 07:30UTC. Qualitative comparison of dust detectvith MODIS RGB image shows a
good agreement.
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Figure 16: Left: MODIS Terra RGB Image on April 7, 2007 at about 07:30 UTC. Right: the results
of the dust detection. Bottom: MODIS AOD (only pixés with AOD > 0.2 are shown)
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Dust particles are mainly located near desert regagmd downwind areas and a dust
event is mainly associated with high aerosol optiepth (AOD) so that the AOD
distribution retrieved from satellite observatiandelp us to qualitatively examine the
ADP dust detection algorithm.

4.2.1.2. Comparison with CALIPSO VFM

CALIPSO is onboard the same spacecraft as MODISAqul its VFM products provide
vertical distribution of 6 aerosol types, includisigoke and dust over its narrow (about 5
km) track. Although the sparse spatial coveragéMfIPSO lidar observations limits the
number of overpass matchups with MODIS Aqua grarageeral cases containing dust
outbreak were found. And the possibility of usihg MODIS and CALIPSO overpass
and the CALIPSO aerosol type data to validate tbé& Aust detection is explored.
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Figure 17: Comparison of dust detected (orange) usj ABI ADP algorithm with CALIPSO Vertical
Feature Mask (VFM) on February 23, 2007, UTC 12:00a) RGB image, b) Aerosol Optical depth
from MODIS C5 aerosol Product, ¢) Dust mask from ADP, d) Dust (orange) on CALIPSO track, e)
Dust (orange) detected with ABI ADP algorithm on CA.IPSO track, f) Dust vertical distribution on
the part of CALIPSO track collocated with ABI ADP, g) Dust from ABI ADP on the same part of
track as in b.

First example is shown in Figure 17 for CALIPSO V&l ABI ADP for MODIS Aqua
image of February 23, 2007 at 12:00UTC. The dustplis clearly visible in the RGB
image. As shown in Figure 17 (d) and (e) CALIPSEWindicates existence of dust
over the beginning part of CALIPSO track which kaBocations with MODIS, and the
dust is seen starting from the surface of Libyasddeand becoming elevated over the
sea. ABI ADP dust mask over the co-located CALIR&OK is given in Figure 17c.
CALIPSO VFM data shows that dust was dispersed é&&tvwhe surface and 2 km
(Figure 17g). First of all, it is clearly seentlizere is a good agreement between the
dust plume pattern detected by ADP and the pasieon in both RGB and MODIS
AOD. Secondly, similar good agreement is also ge@ALIPSO VFM track.
According to the definition of accuracy (correct@ml| detection) shown in equation in
4.31, the agreement between ABI ADP and CALIPSO Vi§Ig5%.
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Figure 18: Comparison of dust detected (orange) usy ABI ADP algorithm with dust (orange) and polluted
dust (brown) in CALIPSO Vertical Feature Mask (VFM) on May 09, 2007 at UTC 14:55. a) RGB image, b)
Aerosol Optical depth from MODIS C5 aerosol Product c) Dust (orange) on CALIPSO track, d) Dust
(orange) detected with ABI ADP algorithm on CALIPSOtrack, e) Dust vertical distribution on the part of
CALIPSO track collocated with ABI ADP, f) Dust from ABI ADP on the same part of track as in b.
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Unlike the case in Figure 17, the co-located ov&s®nown in Figure 18 between
CALIPSO and MODIS is over water. It is noted tthas co-located overpass is right on
the edge of a sun glint region where ABI ADP dataret processed. Therefore, by
excluding pixels in the overpass within sun glintdavith MODIS AOD less than 0.2, the
agreement between ABI ADP and CALIPSO VFM is al&luf6. For a total of 26
match-up cases for dust, the average of agreesestlo.

4.2.2. Output for Smoke Detection
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4.2.2.1. Comparison with RGB image

Smoke is associated with fire events and the dghstaibution of smoke plume is
uniform and looks gray to a human eye comparedcdowd. This feature is useful in
identifying smoke plumes in a RGB image withoufidiflty. Thus, RGB image can be
used to validate the ADP smoke detection. One elaimghown irError! Reference
source not found.for a fire event in Australia observed by MODISuggon August 25,
2006 at 17:15UTC. Qualitative comparison of smo&tdtion with MODIS RGB image
shows a good agreement, especially for the thiakkenplumes over vegetated areas.
Figure 19: Left: MODIS Agua RGB Image on August 25,2006 at 17:15UTC. Right: the results of the

smoke detection (pixels flagged as smoky are in coéd red). Bottom: MODIS AOD (only larger than
0.2 are shown).
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In general, aerosol optical thickness of smokevshim Figure 19) is high and its spatial
distribution is in plume structure. Thus, AOD imam be used to quantitatively
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validate our ADP smoke detection. As seen in FidieAOD plumes compare well
with the ADP smoke flags. The agreement is 84%.

4.2.2.2. Comparison with CALIPSO VFM

In figures 20 and 21, two cases of ABI smoke de&tadas shown for two different days in
different years. For both examples shown, ABI send&tection mask agrees well with
MODIS RGB image and the matchups with CALIPSO trsickiw that the agreement
between what CALIPSO observed and what ABI is shgvis good. Parts of the track
where CALIPSO detects smoke, ABI identifies thosels as clear-sky/clouds or the
other way. It should be noted that we have notgs&td the sensitivity of our retrieval to
the height of the aerosol layer and aerosol amoufilthough, we can use CALIPSO to
identify the height of the aerosol, we have noetathe validation efforts to the next
level where we will be conducting “deep-dive” sesliof individual case studies to
understand the limitations of the algorithms.
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Figure 20: Comparison of smoke detected (red)) usinABI ADP algorithm with smoke in CALIPSO
Vertical Feature Mask (VFM) on July 25, 2006, UTC 8:15. a. RGB image b. Aerosol Optical depth
from MODIS C5 aerosol Product. C. Smoke (red) on LIPSO track. d. Smoke detected with
ABI ADP algorithm on CALIPSO track. e. Smoke vertical distribution on the part of CALIPSO
track collocated with ABI ADP d. smoke from ABI ADP on the same part of track as in b.
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Figure 21: Comparison of smoke detected (red) usingBl ADP algorithm with smoke in CALIPSO
Vertical Feature Mask (VFM) on October 2, 2007 at 7:50 UTC. a) RGB image, b) Aerosol Optical
depth from MODIS C5 aerosol Product, c) Smoke (redpn CALIPSO track, d) Smoke detected with
ABI ADP algorithm on CALIPSO track, e) Smoke vertical distribution on the part of CALIPSO
track collocated with ABI ADP, d) smoke from ABI ADP on the same part of track as in b.
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For smoke detection, two CALIPSO VFM vs. ABI ADPsea are presented. They are
both over land on July 23, 2006 at 05:15 UTC antbler 2, 2007 at 17:50 UTC
(Error! Reference source not foundandError! Reference source not found). The
agreement between the ABI ADP and CALIPSO VFM i%7dnd 80% respectively.
For a total of 22 smoke cases, the agreement betAM8EADP and CALIPSO VFM is
about 80%.

4.2.3. Correct Detection (Accuracy) Estimates

Due to lack of ground truth for the accuracy estanthe evaluation of ADP products is
mainly based on the inter-comparison to other ki@dlased smoke and dust products
(such as RGB image, HMS smoke analysis, and CALIFSEM product). As mentioned
before, the correct detection estimates are seargative.

Correct detection = (TPD + TND) / (TPD+FPD+TND+FND) (4.3.1)

In equation 4.3.1, TPD is true positive detectibND is true negative detection, FPD is
false positive detection, and FND is false negatis®ection. The primary validation
approach will provide an overall performance of atgorithm but will not provide
information on performance of the algorithm ovdfetent geographic regions.
Therefore, additional spot checks and statistid¢sb&icarried out.

Because accuracy of aerosol detection calculated eguation 4.3.1 will include true
negative detects (clear sky pixels), it will nobyide information on the true positive
detects which a user might be interested in. Thereprobability of detection and false
alarm ratio (FAR) are computed using equations24a8d 4.3.3:

POD= "2 %100 (4.3.2)

(TPD+FND)

FAR=_{"2__*100 (4.3.3)

(FPD+TPD)

As discussed in section 4.2, two types of trutla@ae used. One is the supervised
MODIS RGB and MODIS AOD products and the other m@ALIPSO VFM product.

By collocating outputs from ABI ADP algorithm ruritty MODIS measured radiance as
proxy with these two types of truth data, statsta accuracy, hit rate, and miss rate are
calculated (see 1)
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Table 11Correct Detection, Probability of Detection, and Fése Alarm Ratio of ABI
dust and smoke detection

No. of Matchups Dco”e."t POD FAR
etection
CALIPSO VFM
Dust 2031 81.3% 70.6% | 29.4%
(26)
Smoke 5(’32)2 80.5% 71.9% | 28.1%

Supervised MODIS AOD product

Dust over land 6?582)11 84.5% | 63.6% | 36.3%
Dust over water 3?257)2 3 83.2% 78.5% 21.5%
Smoke over land 6%(?8)37 80.1% 77.3% 22.7%

Smoke over water 4?3%03 82.2% 86.4 % 13.5%

Based on these validation studies, the GOES-R &Blsol detection algorithm meets
the Functional Product and System requirements @@%&ct detection for dust over
land and water, for smoke over land, and 70% codetection for smoke over water).

However, we are increasing our validation effoggcbmpiling large amount of AOD

and extinction data from ground-based networks siscAERONET (AERosol Robotic
NETwork) and IMPROVE (Interagency Monitoring of Reoted Visual Environments).
The presence of dust and smoke can be indiredéyred from these measurements and
used in the validation of the ABI aerosol dust/sedktection product. This work is
currently ongoing and will be presented in any sgloent documents related to
validation are presented.

4.3. Error Budget

To examine the sensitivity of the detection aldoritto the radiometric bias/noise, we
perturbed the reflectances at all detection channih a bias of -5% and a random noise
of 5% and compared the results with those withletradiometric perturbation. An
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example of alust case for the MODIS Aqua dain April 15, 2003 aR0:20 UTC i<

shown inFigure 22. After adding the radiometric noise/bias, the namiif dust pixel:
detecteds reduced by about 9.3%
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Figure 22: Comparison of dust detection before (a) and after) the perturbation on the reflectance
of the detection channels for a dust case. ¢) Saatplot of the detection results before and aftertte

perturbation of 5% noise and -5% biases.Linear regression line (red color) and the formulaare
given. The blue envelope is the +18% ABI requiremend) Similar to c) but only 5% noise

perturbation is applied.

An example of smoke case for the MODIS Aqua datAwgust 19, 200:at 19:00 UTC
is shown in Figure 23After adding the radiometric noise/bias, the nemiif dust pixel:
detected is redied by about 7.6%. he impact mainly comes from the bias rather 1

the noise These sensitivity tests suggest falgorithm modifications may be ne«
after the ABI instrument launches or instrumentehédr changes from p-launch to

post-launch.
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Figure 23: Similar to Figure 22 but for a smoke case of MODI\qua data on August 19, 2003 ¢
approximate 19:00 UTC.

4.4. Framework run and validation

4.4.3.Framework run

As shown in section 4.1, the ADP algorithm wasdetied extensively. However, tt
validation work was done with offline runs, i.eyunning ADP algorithm withot
integrating it into GOESR ABI product framework. Under e operational environmer
ADP algorithm will be running in the framework. d¢eneral, the procedure for runni
the ADP algorithm in the framework is as follows: firsbmmon input radiance data
generated from proxy data set, the common datasludesboth the required input ar
ancillary data in a common data format, i.e., néfCBecond, the aerosol detect
algorithm is called according to the order of pdssece. Finally, results from ea
product are written to an output file in netCDFar.

4.4.4.Consistency tests with MODIS granule

To test the offline runs with runs through integratof ADP algorithmnto the
framework, comparisons \re made between outputs from offline run with otgdtom
framework run with common input di and using the V3 algorithniror tests show
below, MODISobservations from two granulesre used as proxy for GO-R ABI,
i.e., 1km radiances from MODIS bands corresponding to éliginnels required by AD
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algorithm and cloud mask from MODIS cloud mask picidFigure24 and Figure 25
show the comparisons of offline smoke/dust mask tibs« from framework rurfor
two MODIS granules. Framework run s able to reproduce exactly the same resul
from offline run for one granule and another oneegit one pixel. The differencethat
one pixel is caused by the difference of precismone of the thresholcalues used in
the algorithm, k., brightiess temperature of MODIS band 31 (&1, BT11). The valu
of BT11 is 284.99874 in offline run and 285.0001r22Zramework run, while th
threshold used in th@moke detection is set as 285

HODATA SMOKE  DUST

Figure 24: Comparisonof offline run with framework run for MODIS (Terra) observation on June
4, 2005, UTC13:20. a) smoke/dust mask from framewkrmun, b) difference between framework run
and offline run.

HOGaTA SuisE  DUST NODATA SWMOKE ~ DUST

Figure 25: Comparison of offline run with framework run for MODIS (Terra) observat ion on June
4, 2005, UTCO03:25. a) smoke/dust mask from framewkrrun, b) difference between framework anc
offline run.
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4.4.5.Results from Framework run with global MODIS obsenation

To further test the framework run, global MODIS {Bderra and Aqua) observations for
August 24 and 25, 2006 were selected as proxy imputn ADP algorithm in the
framework. Figure 26-b show global smoke/dust mask product from frameworkof

the ADP algorithm. Note that, the white shadedoeds due to the missing MODIS
granule data. In general, the framework run preduw abnormal smoke or dust
pattern for each of these two days, and consistsnegen between results from these two
consecutive days. Furthermore, large smoke pl@s@ting from biomass burning

were identified over South America, and dusts fahrat storm are shown over Sahara
desert. Although the location of the dust and snpiemes are consistent between the
two days, there are differences in the amount afkenand dust present. This is very
typical because while old fires die out, new fifesn and dust transport occurs in the
free troposphere moving it long distance over stiore periods. In fact, with the

current operational GOES fire and aerosol prodwetsknow that substantial diurnal
variation exists for fire duration.  In additicas shown in Figure 27 and Figure 28 for
smoke and dust case, smoke/dust mask produced Byfdih framework run has very
similar pattern of smoke/dust as identified in M@GRGB images. These framework
runs were not compared to offline runs. It shal&b be noted that these runs are based
on Version 3 algorithm. Framework runs using ansh algorithm for a longer time
period covering several seasons is currently unalgrwResults are not available yet to
present in the ATBD.
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Figure 26: Global smoke/dust mask from ADP algorithm run in the framework for MODIS (Aqua)
observations. a)August 24, 2006, b) August 25, 20(
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NODATA SMOKE  DUST

Figure 27: Smoke/dust mask from ADP algorithm run in the framework for Aqua, August 27, 2006,
UTC 17:15. Left: MODIS RGB image Right: smoke/dustmask from ADP.
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NODATA SMOKE  DUST

Figure 28: Smoke/dust mask from ADP algorithm run n the framework for Aqua, August 24,
2006, UTC 13:20. Left: MODIS RGB image Right: smok&lust mask from ADP.

5. PRACTICAL CONSIDERATIONS

5.2. Numerical Computation Considerations

The ADP algorithm is implemented sequentially. &e® some tests require ancillary
data, the ancillary data (e.g., day/night, snowkcm glint, and cloud/clear) need to be
input first. To balance the efficiency and memaguirement for the full disk
processing, a block of scanning pixels are reawlalRAM buffer together instead of
reading data pixel by pixel.

5.3. Programming and Procedural Considerations

The ADP requires knowledge of spatial uniformitytris that are computed for each
pixel using pixels that surround it. Detection esformed separately for land and water.
In addition, future temporal tests require inforimatfrom the previous image. Beyond
this reliance, the ADP is a pixel by pixel algonith

5.4. Quality Assessment and Diagnostics

The following procedures are recommended for diagrigpthe performance of the ADP.
» Monitor the percentage of pixels falling into ea&DP aerosol bin values. These
values should be quasi-constant over a large area.
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* Monitor frequency of false positives of regionsagsess need to have region
specific thresholds developed and implemented.
» Periodically image the individual test resultsdok for artifacts or non-physical
behaviors.
» Monitor retrievals over different surface (geograplype for dependency of
errors on surface brightness
* Monitor spectral threshold values and provide dityuldag depending on how
close the spectral BT differences are to spectfiegisholds
» Monitor retrievals for temporal consistency. Aegrievals consistent from
image to image?
Quialify flag with value of 0/1/2 representing lovreedium/high confidence will be
generated according to how far the actual value#gh test is from the predefined
threshold.

5.5. Exception Handling

The quality control flags for ABI ADP will be cheeld and inherited from the flagged
Level 1b sensor input data, including bad sengautidata, missing sensor input data and
validity of each channel used; and will also beatieel and inherited from the ABI cloud
mask at each pixel.

The ADP also expects the Level 1b processing tpdlay pixels with missing
geolocation or viewing geometry information.

The ADP does check for conditions where the ADFoabe performed and generates
quality control flags for snow/ice pixel, pixelstvisaturated channels; pixels missed
geolocation or viewing geometry information.

5.6. Algorithm Validation

For pre-launch validation, ADP algorithm will betersively validated by using MODIS
RGB images, MODIS aerosol product and Vertical tieaMask from CALIPSO. The
new analysis in the development to validate the ABiRg AERONET and IMPROVE
data will be presented in the next release of thBB as well as the ADP validation
report. For post-launch validation, besides aboestioned approach, field campaigns
will also be carried out. Details on Algorithm \ddition are given separately in the ABI
ADP algorithm testing and validation plan document.

6. ASSUMPTIONS AND LIMITATIONS

The following assumptions have been made in theentialgorithm:
» Calibrated and geo-located radiances in ABI chanaglrequired by ABI ADP
algorithm as shown in Table 2 are available;
» ABI cloud mask is available and adequate for thgpse of DP algorithm
» All the ancillary data are available.
Limitations applying to current algorithm are:
* Only for daytime
* Smoke detection over land is limited to dark suefac
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* Not optimal for optically thin smoke and dust
* No testing has been done to determine algorithntdtrans if smoke and dust or
other types of aerosols co-exist in the same pixel

6.2. Performance

The following assumptions are made in estimatirgp@rformance of ADP algorithm:
- smoke/dust mask from CALIPSO VFM represents thiatru

visual separation of smoke, dust and clear pixelsn fMODIS RGB image
introduces negligible error;
Thresholds used in the current algorithm are taddor MODIS channel
specifications. Post —launch tuning of these tiokis will not affect the
estimate of algorithm performance.
In case of ABI sensor degradation, product prodactnight squeeze but studies
will be carried out prior to the launch on the ettef the effect any changes to
instrument characteristics will have on productliqua

6.3. Assumed Sensor Performance

ABI ADP algorithm assumes the sensor will meetitgent specifications and produce
calibrated quality radiance in the required chasifgte Table 2). As shown in section
3.4.1., impacts from instrument noise and calibragrror can be mitigated by adjusting
threshold accordingly. However, ADP algorithm has tolerance on missing channels.
As discussed in above sections, ADP algorithm selbe optimal channels or
combination of channels to best separate signsinoke/dust from others. Therefore,
missing any channel will definitely downgrade tlefprmance of the algorithm and
eventually leads to failure if crucial channels arigsing. In addition, ADP algorithm
will be dependent on the following instrumental rettderistics.
» The spatial uniformity tests in ADP will be critibadependent on the amount of
striping in the data.
» Errors in navigation from image to image will affélce performance of the
temporal tests.

6.4. Pre-Planned Product Improvement

6.4.3.Improvement 1

Smoke detection over water is not optimal and mekd improvements. We already
improved the algorithm for the Version 5 releassoagted for the 100% delivery.
Current algorithm has not been able to take adgentétemporal variability information
that is unique for Geostationary Platform. We glantilize the rapid refresh rate of
GOES_R ABI and improve the algorithm.

6.4.4. Improvement 2

The spectral screening thresholds are currenthariohction of viewing and solar

geometry. Testing will be carried out to underdtére dependencies of some of the
smoke/dust tests on viewing and solar geometri@slditional testing will also be done
using simulated proxy data to determine ABI spétin@sholds and how robust these
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spectral thresholds are under different scenari@ased on these tests, algorithm could
be improved.

6.4.5. Improvement 3

There are other algorithms based on spectral tblésésts that have been recently
developed for SEVIRI. We will try to adapt thossts to improve smoke detection
over water, dust detection over land and water,adsw find a way to detect dust in the
night time.  Algorithm would have to be substamyialtered for night time dust
detection because visible channels will not belalta.

6.4.6. Improvement 4

Validation of smoke/dust detection still remainshallenge at this stage. Besides the
validation exercises that have already been coembletdditional validations will be
carried out. They include comparisons with the gabbased measurements and other
satellite products. Validation with ground-basedswement will take advantage of
measurements from aerosol sampler in IMPROVE nétand Angstrom exponent
information from AERONET for any indications of skeddust particle over some local
and regional event. This, however, is not a dicechparison but an indirect subjective
evaluation of smoke/dust detection product. Forgansons with other satellite
products, Aerosol Index from OMI will be fully uséal quantify the accuracy of
smoke/dust products.
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Appendix 1: Common Ancillary Data Sets

1. LAND_MASK_NASA_1KM

a. Datadescription

Description: Global 1km land/water used for MODIS collection 5
Filename Iw_geo 2001001 _v03m.nc

Origin: Created by SSEC/CIMSS based on NASA MODIS catech
Size 890 MB.

Static/Dynamic: Static

b. Interpolation description

Theclosest point is used for each satellite pixel:

1) Given ancillary grid of large size than satellitelg
2) In Latitude / Longitude space, use the ancillataddosest to the
satellite pixel.

2. MDS_L2 CLD_MASK_FILE

a. Data description

Description: MODIS L2 cloud mask 1km
Filename MOD35_ L2.AYYYYDDD.HHMM.005.yyyydddhhmmss.nc

/

MYD35 L2.AYYYYDDD.HHMM.005.yyyydddhhmmss.nc.
Where,
MOD35 L2/ MYD35 L2 - Level 2 Cloud Mask from TERR
(MOD) /
AQUA (MYD)
A — Nothing to do here
YYYYDDD - 4 digit year plus 3 digit of Julian day
HHMM — 2 digit of hour and 2 digit of minutes in GIM
005 — Processing system version
yyyydddhhmmss — processing date/time
Origin: NASA DAAC
Size 45 MB
Static/Dynamic: Dynamic
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b. Interpolation description

Theclosest point is used for each satellite pixel:

In Latitude / Longitude space, use the ancillariadadosest to the satellite
pixel.

3. SNOW_MASK IMS_ SSMI
a. Data description

Description: Snow/Ice mask, IMS — Northern Hemisphere, SSM/I —
Southern Hemisphere

4km resolution — the 25 km SSM/I has been oversaainp 4km
Filename snow_map_4km_YYMMDD.nc

Origin: CIMSS/SSEC

Size 39 MB.

Static/Dynamic. Dynamic

b. Interpolation description
Theclosest point is used for each satellite pixel:
1) Given ancillary grid of large size than satellitelg

2) In Latitude / Longitude space, use the ancillataddosest to the
satellite pixel.
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