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Inference without significance: measuring support for
hypotheses rather than rejecting them
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‘Null hypothesis testing in the statistical sciences is

like protoplasm in biology; they both served an early

purpose but are no longer very useful’ (Anderson

2008).

Introduction

David Anderson’s comment is part of a long history of

criticism of null hypothesis significance testing (NHST)

by statisticians and statistically minded biologists. Some

colorful comments about NHST procedures are that

they are ‘not a contribution to science’ (Savage 1957), ‘a

serious impediment to the interpretation of data’ (Skipper

et al. 1967), ‘worse than irrelevant’ (Nelder 1985), ‘diffi-

cult to take seriously’ (Chernoff 1986), and ‘completely

devoid of practical utility’ (Finney 1989). The long and

intense criticism does not seem to have had much effect

in ecology. Although use has declined slightly (Fidler

et al. 2006; Hobbs & Hilborn 2006), NHST and its associ-

ated P-value are currently used in over 90% of papers in

ecology and evolution (Stephens et al. 2006).

NHST is based on positing that a certain condition

(the null hypothesis) is true and then calculating the

probability (the P-value) of the observed data, or of
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Abstract

Despite more than half a century of criticism, significance testing continues to

be used commonly by ecologists. Significance tests are widely misused and mis-

understood, and even when properly used, they are not very informative for

most ecological data. Problems of misuse and misinterpretation include: (i)

invalid logic; (ii) rote use; (iii) equating statistical significance with biological

importance; (iv) regarding the P-value as the probability that the null hypothe-

sis is true; (v) regarding the P-value as a measure of effect size; and (vi) regard-

ing the P-value as a measure of evidence. Significance tests are poorly suited

for inference because they pose the wrong question. In addition, most null

hypotheses in ecology are point hypotheses already known to be false, so

whether they are rejected or not provides little additional understanding. Eco-

logical data rarely fit the controlled experimental setting for which significance

tests were developed. More satisfactory methods of inference assess the degree

of support which data provide for hypotheses, measured in terms of informa-

tion theory (model-based inference), likelihood ratios (likelihood inference) or

probability (Bayesian inference). Modern statistical methods allow multiple

data sets to be combined into a single likelihood framework, avoiding the loss of

information that can occur when data are analyzed in separate steps. Inference

based on significance testing is compared with model-based, likelihood and

Bayesian inference using data on an endangered porpoise, Phocoena sinus. All of

the alternatives lead to greater understanding and improved inference than pro-

vided by a P-value and the associated statement of statistical significance.
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unobserved data more extreme, given the hypothesis and

the probability model.1 The basic idea is that an improba-

ble outcome (small P) is reasonable cause to question the

validity of the null hypothesis. The assumption of a null

hypothesis leads to the burden-of-proof issue, because the

null hypothesis remains the accepted condition unless

and until data indicate that it should be rejected. In the

context of conservation or wildlife management, where

data are often limited, the requirement to disprove a null

hypothesis of no effect or no impact can have non-pre-

cautionary implications (Peterman & M’Gonigle 1992;

Taylor & Gerrodette 1993; Dayton 1998; Brosi & Biber

2009).

As currently used, NHST is a combination of ideas

developed in the 1920s and 1930s, primarily by Fisher

(1925) and Neyman & Pearson (1933). Actually, these

and other statisticians had substantially different views

about the nature and role of statistics in the scientific

process. There were vigorous disagreements at the time

(Goodman 1993; Inman 1994; Salsburg 2001) and it is

doubtful that any of them would approve of NHST as it

is practiced today. Fisher’s idea was that the P-value was

an ‘aid to judgment’ about the truth of a hypothesis. A

small P-value meant that the data did not support the

hypothesis, but Fisher was not dogmatic about a 0.05 cut-

off for significance (see Hurlbert & Lombardi 2009 for

changes in Fisher’s thinking), nor did he view the out-

come of any single experiment as decisive. Neyman and

Pearson, on the other hand, explicitly framed the problem

as a decision between two competing hypotheses. Fisher’s

P-value was a flexible measure of evidence, whereas the

Neyman–Pearson test was a rule for behavior which

would minimize the rate (or frequency, hence the term

‘frequentist’) of incorrect decisions. The modern hybrid

NHST combines these ideas by identifying Fisher’s P with

the Neyman–Pearson Type I error rate a. The two meth-

ods are fundamentally incompatible, and the result is ‘a

mishmash of Fisher and Neyman-Pearson, with invalid

Bayesian interpretation’ (Cohen 1994). Their combination

‘has obscured the important differences between Neyman

and Fisher on the nature of the scientific method and

inhibited our understanding of the philosophic implica-

tions of the basic methods in use today’ (Goodman

1993).

This paper makes three points: (i) that NHST is widely

misused and misunderstood; (ii) that even when properly

used, NHST is only marginally informative for most eco-

logical data; and (iii) that better methods of inference are

available. The first two points are covered relatively

briefly, as the problems with NHST have long been well

described.2 However, many of the papers are in the statis-

tical, medical and social science literature and may not be

familiar to ecologists. An excellent paper on ‘the insignifi-

cance of significance testing’ for ecologists is Johnson

(1999) (see also Yoccoz 1991; McBride et al. 1993; Ellison

1996; Cherry 1998; Germano 1999; Anderson et al. 2000;

Läärä 2009). The third point is illustrated by working

through a specific example, showing that alternatives to

NHST can give greater insight and understanding of data.

As in any branch of science, new and improved statisti-

cal methods are constantly being developed. Ecologists

would not use 80-year-old genetic or physiological tech-

niques when more powerful and useful methods are avail-

able. Why don’t we apply the same standards when

drawing conclusions from our data?

Misuse and misunderstanding of NHST

Probably the most pervasive and serious misuse of NHST

is to interpret a P-value as the probability that the null

hypothesis is true. A small P-value, particularly P < 0.05,

is taken to mean that the null hypothesis is false, or at

least likely to be false. A variant of this misinterpretation

is to regard a non-significant result as confirmation of the

null hypothesis. Thus, after finding that P > 0.05, a com-

mon conclusion is something like ‘There is no difference’

or ‘There is no effect’. Another variant, when there is a

clear alternative hypothesis, is to interpret 1 ) P as the

probability that the alternative hypothesis is true. Yet

another variant is that if the null hypothesis is rejected,

the theory or idea that motivated the test must be true.

1This paper primarily addresses a point-null hypothesis,

which posits the strict equality of a parameter (e.g. the

mean) among the groups tested. A point-null hypothesis

is the most common form of NHST in the ecological lit-

erature. Alternatives such as interval and one-sided tests,

which use a similar inferential procedure but posit non-

null hypotheses, are discussed briefly later. Despite the

misnomer, NHST as used here refers generally to infer-

ence conditioned on a hypothesis.

2David Anderson maintains two lists of hundreds of

quotations and citations critical of null hypothesis testing,

one compiled through 1997 by Marks Nester http://warn-

ercnr.colostate.edu/~anderson/nester.html, and another

compiled through 2001 by Bill Thompson http://warn-

ercnr.colostate.edu/~anderson/thompson1.html. An updated

list through 2010 can be found at http://swfsc.noaa.

gov/SignificanceTestRefs. For discussions of informed use

of NHST, see Cox (1977), Harlow et al. (1997), Nickerson

(2000), Guthery et al. (2001), Robinson & Wainer (2002),

McBride (2005), Stephens et al. (2006) and Martı́nez del

Rio et al. (2007).
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In one form or another, all of these misuses involve

regarding the P-value as a statement about the probability

of a hypothesis being true. But P cannot be a statement

about the probability of the truth or falsity of any

hypothesis because the calculation of P is based on the

assumption that the null hypothesis is true. P is the prob-

ability of data (or of data more extreme) conditional on a

hypothesis, not the probability of a hypothesis conditional

on data. This may sound like statistical double-talk

but the difference is fundamental. The probability that

I will encounter a certain species, given that it is rare in

the study area, is quite different from the probability

that the species is rare in the area, given that I have

encountered it.

The common misinterpretation of P as the probability

that the null hypothesis is true is appealing because it

seems logical. Consider the following:

If the hypothesis is true, this observation cannot

occur.

This observation has occurred.

Therefore, the hypothesis is false.

This is a valid syllogism in deductive logic called modus

tollens, or denying the consequent. The logic of NHST is

similar, but the statements are probabilistic:

If the null hypothesis is true, this observation is un-

likely to occur.

This observation has occurred.

Therefore, the null hypothesis is likely to be false.

The structure of the NHST argument is the same, and

the logic seems reasonable. But it is invalid. Why?

Because we have moved from the black-and-white of

deductive logic to the grays of probabilistic inference, and

the rules are different. An example will show the fallacy:

If this person is a chemist, he ⁄ she is unlikely to win

a Nobel Prize in chemistry.

This person has won a Nobel Prize in chemistry.

Therefore, this person is unlikely to be a chemist.

The first statement, while true, is about the proportion

of chemists who win Nobel Prizes. The validity of the

conclusion, however, depends on the proportion of Nobel

Prize winners in chemistry who are chemists, and neither

the data (the second statement) nor the assumptions (the

first statement) say anything about that. We are attempt-

ing to make a statement about the probability of truth of

a statement (that the person is a chemist) using a frame-

work of deductive logic when the situation calls for prob-

abilistic reasoning. In the language of conditional

probabilities, we want the probability of being a chemist

conditional on winning a Nobel Prize in chemistry, not

the probability of winning a Nobel Prize conditional on

being a chemist.

The illogic of NHST has been pointed out many times

before (e.g. Berkson 1942; Rozeboom 1960; Bakan 1966;

Oakes 1986; Cohen 1994; Royall 1997; Goodman 1999;

Trafimow 2003). Despite the faulty logic, the NHST

pseudo-syllogism is alluring and continues as one of the

‘fantasies of statistical significance’ (Carver 1978). A fur-

ther complication is that there are situations where the

logic seems to work perfectly well. Substitute ‘this is a fair

coin’ for ‘this person is a chemist’ and ‘10 ‘‘heads’’ in a

row’ for ‘win a Nobel Prize’ in the argument above, and

everything can seem fine.

Aside from its logical problems, NHST has a subtly

corrosive effect because it permits lazy analysis and

impedes clear thinking. NHST has become so ingrained

and automatic that it is carried out by researchers and is

often required by journal editors with little thought about

what the procedure means or whether it is necessary. ‘Sta-

tistical ‘‘recipes’’ are followed blindly, and ritual has taken

over from scientific thinking’ (Preece 1984). ‘The rituali-

zation of NHST [has been carried] to the point of mean-

ingless and beyond’ (Cohen 1994). Nelder (1985) decried

‘the grotesque emphasis on significance tests’, and Sals-

burg (1985) satirized ‘the religion of statistics’. Statistical

ritual leads to publication of papers that are methodologi-

cally impeccable but contain little actual information

(Guthery 2008).

For example, one result of rote use of NHST is a con-

fusion of statistical significance and biological importance

(Boring 1919; Jones & Matloff 1986). Many ecologists

are familiar with the idea that important biological

effects may exist but not be statistically significant in a

particular study because of small sample size. Calcula-

tions of statistical power can be helpful in this situation

(Gerrodette 1987; Cohen 1988; Urquhart & Kincaid

1999; Gray & Burlew 2007), but power calculations, espe-

cially post hoc, are themselves confusing, misunderstood

and misused (Goodman & Berlin 1994; Steidl et al.

1997). In particular, a power calculation based on the

observed data provides no more information than the

P-value itself (Thomas 1997; Hoenig & Heisey 2001).

Despite the general awareness of possible low power, a

biological effect that is not statistically significant is often

summarily dismissed as unimportant (‘Growth rate was

not significantly related to temperature’) or nonexistent

(‘There was no difference in mean length among

groups’). Effect size may not even be reported, leaving

the reader uninformed about the estimated size of the

biological effect, statistically significant or not. However,

lack of statistical significance does not mean lack of bio-

logical importance.

The converse can also happen – that is, biologically

unimportant effects can be statistically significant if sam-

ple size is large. When samples can be obtained relatively

easily and cheaply (e.g. air, water or, increasingly, genetic

samples), large sample size can lead to detection of trivial

Inference without significance Gerrodette
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differences and ultra-precautionary ‘significant’ results

(McBride 2005). A colleague recently showed me a paper

which examined prey size for two predators, based on a

large sample of stomach contents (Fig. 1A). The authors

had concluded that one predator ate larger prey than the

other, based on a statistically significant difference

(P < 0.001) in median prey length. Looking at Fig. 1A,

does the difference in prey lengths seem ecologically sig-

nificant? Can you even tell which predator eats the larger

prey? The authors had lost sight of the difference between

statistical significance and biological importance.

A less harmful but more mindless use of NHST is to

give a statistical blessing to results that don’t need it.

Another colleague found a large difference in stable d15N

isotope ratios of a predator at two locations (Fig. 1B). An

editor insisted that a significance test for the difference in

isotope ratios between the two locations be carried out

before the paper could be published. Can you believe it?

Do we learn anything by assuming that d15N values at the

two locations were equal (when clearly they were not),

and then calculating that P < 0.0000000000000001? (This

small value is not the probability that the two locations

have equal isotope values, as just explained, although we

tend to think of it that way.)

Significance tests are commonly used in intermediate

steps in an analysis. NHST may be used to decide

whether to pool subsets of data, whether the data can be

considered to follow a certain distribution (goodness-of-

fit tests), and whether a parameter should be retained in

an analysis or dropped because it is ‘not significant’. In

nearly all such applications, lack of statistical significance

is equated with the plausibility of the null hypothesis and

implausibility of the alternative, when in actuality the null

and alternative hypotheses were not resolvable with the

data. For example, using a significance test to determine

if data are normally distributed will reliably lead to the

conclusion that the data are normal if sample size is

small and not normal if sample size is large, an observa-

tion that led Berkson (1938) to an early criticism of

NHST. In addition, multiple testing within an analysis

leads to inflated Type I error rates and many false results,

particularly in stepwise regression (Whittingham et al.

2006; Anderson 2008; Mundry & Nunn 2009).

The P-value is sometimes regarded as a measure of

effect size, so that a small P is taken to indicate a large

(‘significant’) effect. However, P depends on sample size

as well as effect size, and the relationship between P and

effect size can be highly non-linear even with equal sam-

ple sizes. Here is a thought experiment that shows how

these can be confused. Suppose we conduct experiments

designed to measure the effect of two toxins. The experi-

ment with the first toxin has a sample size of 100 and

gives P = 0.01. The experiment with the second toxin has

a sample size of 10 and gives P = 0.07. Which toxin has

the stronger effect? It is tempting to say the first, because

P is lower and significant at the 0.05 level, and sample

size is larger. Actually, however, the results indicate a

stronger effect for the second because, despite the much

smaller sample size, the P-value is still relatively small.

With the usual assumptions of normal distributions and

equal variances, the results indicate that the effect of the

second toxin is q(0.07) ⁄ q(0.01)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100=10

p
¼ 2:0 times as

large as the first, where q(x) is the standard normal quan-

tile of x. Given the difference in sample sizes, to indicate

an equal toxic effect the P-value of the first experiment

would have to be Uðqð0:07Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100=10

p
Þ ¼ 0:000002, where

F is the standard normal cumulative distribution func-

tion. The relationships between P, sample size and effect

size are not simple.

By focusing on the P-value and a sharp boundary

between significance and non-significance, NHST can

hinder rather than help interpretation of data. As Hoenig

& Heisey (2001) conclude: ‘The indirect logic of frequen-

tist hypothesis testing is simply nonintuitive and hard for

most people to understand’.

Marginal utility of NHST

Even if NHST is understood and used properly, the

results are usually not very informative for making infer-

ence with ecological data. As discussed in the previous

section, NHST poses the problem in a way that does not
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Fig. 1. Two unthinking uses of significance

tests. (A) Statistical significance is not the

same as biological significance. A paper

concluded that length of prey was

significantly greater for Predator 1

(P < 0.001). (B) A significance test confirms

the obvious. An editor required a significance

test to show that the two locations had

different d15N stable isotope ratios.
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give the answer that most ecologists need, and that most

ecologists think it gives them. A P-value is the right

answer to the wrong question.3

For example, provided all assumptions have been met,

a P-value for the slope of a regression line indicates

whether the observed relationship between the x and y

variables could have occurred by chance alone. But what

we need to know is how much the data support a slope

of 0 versus a slope that would indicate an important

effect. The NHST approach does not provide a measure

of how improbable a slope of 0 is – that is, no measure

of how strongly chance might be eliminated as an expla-

nation of the data. The P-value itself, as we have seen, is

not such a measure. Similarly, the Type I error rate is a

measure of how frequently the wrong conclusion will be

reached if the null hypothesis is true, and the Type II

error rate provides a similar measure if the alternative

hypothesis is true. However, there is no measure of which

of these two hypotheses, the null or alternative, might be

true. Further, the calculation of P and error rates depends

on unobserved data. Basing conclusions on what might

have been observed, but was not, does not seem the best

way to proceed. What might have been observed may

depend on the intentions of the investigator (Meeks &

D’Agostino 1983; Berger & Berry 1988).

Fisher regarded the P-value as a relative measure of sup-

port, and inference based on P was a reasoned judgment,

neither automatic nor absolute. In modern use, P is usu-

ally interpreted in an absolute sense, so that a small P, say

P < 0.05, is regarded as moderately strong support against

the null hypothesis, and P < 0.01 as strong support. The

P-value has no such absolute meaning because it depends

on the alternatives (Berkson 1938; Oakes 1986; Schervish

1996; Royall 1997). A result with P < 0.05 does not neces-

sarily provide strong support against the null hypothesis

(Edwards et al. 1963; Sterne & Davey Smith 2001). In fact,

results with P = 0.05 are at most weak support, and the

null hypothesis may still have substantial probability, even

>0.5, of being true (Berger & Sellke 1987; Trafimow

2003). Interpreting P as a measure of support generally

overstates the evidence against the null hypothesis

(Goodman 1993), leading to falsely ‘significant’ results.

The NHST approach also leads to a focus on statistical

significance rather than on the size of the biological effect.

Tukey (1969) pointed out that many physical laws would

not have been discovered if physicists had been content

to conclude ‘when you pull on it, it gets longer’. The

amount by which it gets longer is important. Similarly,

the estimated size of the biological effect, such as the

effect of a toxin or the difference in haplotype frequen-

cies, is more informative than the statement that it is

statistically significant or not.

NHST was developed in the context of controlled

experiments. Results of controlled experiments in marine

ecology can be clear and elegant (e.g. Connell 1961; Paine

1966; Dayton 1971; Lubchenco & Menge 1978) but, in

many situations, experiments are not possible. Instead,

ecologists rely on data collected at different times, places

and conditions to infer what processes are important.

Most hypothesis testing in ecology is inductive and

descriptive, not deductive (Quinn & Dunham 1983), so it

is not surprising that NHST is ill-suited for drawing con-

clusions from such data (Johnson 2002; Eberhardt 2003).

Monitoring of abundance, for example, is a common

and important type of observational data. In the experi-

mental framework of NHST, the procedure would be to

decide on the length of the monitoring period, collect

data over this period, and analyze the data for a signifi-

cant trend. For the Type I and II error rates to be accu-

rate, the data may be analyzed only once at the end of

monitoring period. It would not be valid to analyze the

data before the end of the monitoring period or to use

the data again after another point had been added to the

series, at least not without adjusting for multiple testing.

Few ecologists follow such a strict protocol when analyz-

ing monitoring data.

NHST inference is based on assuming that the null

hypothesis is true, but point-null hypotheses are state-

ments already known to be false at some level of preci-

sion (Berkson 1942; Cohen 1994; Johnson 1999).

Consider Fig. 1 again. Is it realistic to hypothesize that

two predators eat exactly the same size of prey, or that

two locations have exactly the same d15N ratio? Does any-

one seriously think that the density of animals does not

change at all from year to year? Or that haplotype fre-

quencies or fatty acid composition are exactly equal

among different populations? Of course not. Because such

hypotheses are known to be false before any data are col-

lected, rejecting them (or not) is a largely meaningless

exercise. The results of NHST tell us little except whether

our sample size was sufficient to detect the differences.

Some modifications of NHST, such as equivalence tests

(Patel & Gupta 1984; McBride et al. 1993; Dixon & Pech-

mann 2005) or significance tests without null hypotheses

(Jones & Tukey 2000), address the vacuity of such

hypotheses, but do not avoid the convoluted logic of

NHST (Camp et al. 2008). They still pose the problem as

a decision conditional on a hypothesis rather than as a

measure of support conditional on data.

NHST encourages a dichotomous decision to either

accept or reject the null hypothesis. Such a procedure is

both unrealistic and unhelpful in most scientific situations,

3I owe this phrasing to Daniel Goodman, Montana

State University.
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including ecology (Quinn & Dunham 1983; Cohen 1994;

Germano 1999; Johnson 1999). Few observations or exper-

iments lead to complete falsification of a meaningful

hypothesis. Platt (1964) argued that science could advance

rapidly by posing and testing mutually exclusive hypothe-

ses. In ecology, however, where confounding factors and

multiple interacting causes are to be expected, the notion

of mutually exclusive hypotheses is often inappropriate.

Most ecological data provide evidence that, taken in the

context of previous work, either increase or decrease sup-

port for an idea incrementally. What we really want to

know is the degree to which new data change such sup-

port, or, if there are competing hypotheses, the degree to

which data support one hypothesis over another. NHST

does not provide such answers.

More satisfactory methods of inference measure the

degree of support for hypotheses. Evaluating the consis-

tency of a hypothesis with data is more direct and infor-

mative than the other way around. Hilborn & Mangel

(1997) use the metaphor of a detective searching for

answers (support for hypotheses) given clues (data). As

Good (1992) put it, ‘We need methods for estimating the

probability that a hypothesis contains some truth’ – what

we might call the ‘truthiness’ of a hypothesis.4

Comparison of methods of inference using
vaquita (Phocoena sinus) data

In this section, we compare NHST with model-based,

likelihood and Bayesian inference using data on the vaq-

uita, Phocoena sinus, also called the Gulf of California or

desert porpoise (Rojas-Bracho et al. 2006). This small

cetacean, endemic to a limited area in the Northern Gulf

of California, Mexico, is on the brink of extinction,

mainly due to bycatch in artisanal fishing nets (Rojas-Bra-

cho & Taylor 1999; see also http://www.vaquita.tv). Vaqu-

itas are listed as Critically Endangered by the IUCN, as

well as endangered by both Mexico and the USA. This

example was chosen because the data are relatively simple,

and the comparison of data from two groups (e.g. treat-

ment and control) is one of the most basic uses of statis-

tics. The example also shows the critical role of inference

in conservation and management. Because restrictions on

fishing to protect vaquitas may have economic impacts

on fishers, managers are reluctant to take action unless

there is strong evidence that vaquitas are declining in

abundance.

Joint US-Mexican line-transect surveys were carried out

in 1997 and 2008 to estimate vaquita abundance. For

simplicity, we consider a subset of the data collected with

the same methods (sightings using 25· binoculars) on the

same ship (David Starr Jordan) in the same area (the spe-

cies’ core area described in Jaramillo-Legorreta et al.

1999) in both years. The point estimates of abundance

were 409 (SE = 250) in 1997 (Jaramillo-Legorreta et al.

1999, Table 1, with SE computed from CV) and 179

(SE = 74) in 2008 (using methods described in Gerro-

dette et al. 2011 applied to the 1997 core area). The ques-

tion of primary interest is whether vaquita abundance

declined during the 11-year period between the two sur-

veys. Although the 2008 point estimate (179) was less

than half the 1997 point estimate (409), standard errors

were large. There is a large overlap of the 95% lognormal

confidence intervals for the two estimates (Fig. 2A), so

there is uncertainty whether a decrease in abundance

actually took place. R code for the analysis of the vaquita

data is provided in Supporting Information Appendix S1.

Frequentist inference

First, we use a standard NHST approach. Given the esti-

mates and their standard errors and assuming indepen-

dence, a Wald test can be used to test the significance of

the difference between the 1997 and 2008 estimates:

z ¼ d̂

ŝd
¼ N̂1997 � N̂2008ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var N̂1997

� �
þ var N̂2008

� �q

¼ 409� 179ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2502 þ 742
p ¼ 230

261
¼ 0:88

where ŝ is the estimated standard error. From the stan-

dard normal distribution, P = 0.38 for this z value or lar-

ger (two-tailed). Thus, the null hypothesis that 1997 and

2008 abundance was equal is not rejected. In the indirect

logic of NHST, P = 0.38 does not mean 1997 and 2008

vaquita abundance was equal, but it does mean that the

data were not inconsistent with that assumption. The

burden of proof is to show that abundance changed, and

the data were not sufficiently improbable to do that. It is

frequently emphasized that failing to reject the null

hypothesis does not mean that the null hypothesis is true,

but when a decision has to be made, this is a distinction

without a difference. The practical consequence is that we

act as if there was no decline in vaquita abundance.

As an alternative to NHST, many papers suggest

approaching the data as an estimation problem rather than

4‘Truthiness’ would be a descriptive word in this con-

text but unfortunately for science, it already has been

given another meaning. American political comedian Ste-

phen Colbert coined truthiness to describe something

known to be true intuitively ‘from the gut’, without

regard to logic or data. Truthiness was Merriam-Webster

Word of the Year for 2006.
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as a hypothesis-testing problem (e.g. Jones 1955; Gardner &

Altman 1986; Nakagawa & Cuthill 2007). In other

words, the primary goal is to estimate effect size and a

measure of its uncertainty, such as a confidence interval,

not to test the null hypothesis of no change. For the vaquita

data, the effect of interest is the change in abundance,

d = N2008 ) N1997. One estimate of d is the difference of

the two point estimates, N̂2008 � N̂1997 ¼ �230, where the

negative value indicates that the change was a decrease. The

key question is, how certain are we of this estimate? If we

assume a normal distribution with standard deviation 261,

as computed in the Wald test above, the 95% confidence

interval for d extends from )741 to +281 (Fig. 2B). The

confidence interval includes 0, which represents the null

hypothesis that 1997 and 2008 vaquita abundance was the

same.

Confidence intervals and NHST are both frequentist

procedures, and they are closely related: if the null

hypothesis of no difference is not rejected at the a level,

then the 1 ) a confidence interval will include 0. Thus,

computing a confidence interval does not lead to a differ-

ent conclusion than NHST about the statistical signifi-

cance of the results. It does, however, focus attention on

the quantity of interest, and thus is more informative

than simply reporting a P-value. Looking at Fig. 2B, one

is less likely to misstate the NHST result as ‘there was no

decline in abundance’. The estimated decline is 230 ani-

mals, not 0, although the confidence interval about the

estimated decline is large and includes 0. In the case of

the thought experiment with two toxins, computing and

reporting effect sizes would make it clear that the esti-

mated effect of the second toxin was larger. When there

are three or more estimates to be compared simulta-

neously, a significance test does have the advantage that it

gives the overall Type I error rate of falsely rejecting the

null hypothesis, a rate not easily shown by confidence

intervals.

Confidence intervals, like P-values, are widely misun-

derstood. Many biologists interpret the 95% confidence

interval to mean that we are ‘95% confident’ that the true

value is in the interval – for example, the probability is

0.95 that the true change in vaquita abundance is between

the upper and lower limits of the vertical line in Fig. 2B.

This interpretation of a confidence interval is natural and

intuitive but, unfortunately, incorrect. A confidence inter-

val is not that kind of probability interval, which is why

Neyman chose a different word for the concept. Rather,

calculating a 95% confidence interval is a procedure

which, on average, will include the true value ‘95% of the

time’. However, the ‘time’ over which this probability

applies is the set of all possible realizations of the data,

whereas we are interested in the probability that applies

to the data we actually have (Goodman 2004b). Like

NHST, a confidence interval is a rule for behavior which

performs well in a hypothetical long run of data. It does

not say anything about the probability of including the

true value or of making the correct decision for the data

we presently have.

Inference conditional on data

Next we consider methods of reaching conclusions which

are conditional on the data, rather than conditional on a

hypothesis. Unlike NHST, these methods indicate the

degree of support for the hypothesis that vaquitas

decreased in abundance. The degree of support can be

measured in terms of likelihood ratios (likelihood infer-

ence), probability (Bayesian inference) or information

theory (model-based inference). For discussion of other

alternatives, see Good (1992), Lecoutre et al. (2001) and

Berger (2003). We also consider two approaches to the

data. In the first approach, analysis proceeds in three

steps: (i) estimate 1997 abundance, (ii) estimate 2008

abundance, and (iii) compare the two estimates. Inference

about change in abundance (the third step) is based on

the results of the first two, as in the Wald test above.

However, the estimates and their standard errors are

summaries of the original data, and some information is

lost. In the second approach, we use the original data to

estimate abundance and infer change in abundance in a

single integrated analysis. Combining data into a single

analysis leads to improved inference (Goodman 2004a).
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Inference based on summarized data

We assume that line-transect analyses (Buckland et al.

2001) of the 1997 and 2008 data have already been car-

ried out to estimate vaquita abundance in each year.

Inference about change in abundance is based on the

resulting estimates N̂1997 ¼ 409, ŝ1997 ¼ 250, N̂2008 ¼ 179

and ŝ2008 ¼ 74, where ŝ is the standard error of the esti-

mate.

Likelihood inference

Likelihood inference uses the evidence provided by data

to compare two hypotheses (Royall 1997; Taper & Lele

2004). Likelihood is the relative support that the data

provide for different values of a parameter. For the vaqui-

ta data, because each value of d = N2008 ) N1997 could be

produced by different combinations of N2008 and N1997

(e.g. a change of d = )200 could be produced by

N2008 = 200, N1997 = 400, by N2008 = 199, N1997 = 399,

etc.), there is a joint likelihood of two parameters, d and

abundance in one of the years, say 1997. Continuing with

the assumption of lognormal error distribution (Fig. 2A),

we use the lognormal distribution to compute the joint

likelihood L of d and N1997 given the data as

Lðd;N1997jdataÞ ¼ lnormðN1997jN̂1997; ŝ1997 Þ
� lnormðN1997 þ dj N̂2008; ŝ2008Þ

where lnorm(x | a,b) is the lognormal probability density

of x given mean a and standard deviation b. We compute

the product because we want the probability of jointly

observing the 1997 and 2008 data, and we assume data

from the 2 years are independent.

The joint likelihood L may be plotted as a function of

its two parameters, the change in abundance d and vaqui-

ta abundance in 1997 N1997. The likelihood surface has a

diagonal ridge, indicating that the likelihoods of d and

N1997 are negatively correlated (Fig. 3A). Our focus is to

judge support for change in abundance d; N1997 is a

so-called nuisance parameter, a parameter of secondary

interest which is necessary to estimate in order to make

inference on the parameter of primary interest, d. There

are various ways to obtain the likelihood of a parameter of

interest which is influenced by other parameters (Royall

1997, Chap. 7). A common method is to use, for each

value of d, the maximum of the likelihoods computed

over all values of N1997 (Fig. 3B). This is called the profile

likelihood because it is the profile of the likelihood surface

viewed from the d axis. The mean of this function is near

)230, as expected, but the maximum is at d = )113.

Given the likelihood of d (Fig. 3B), inference can be

based on the ratio of the likelihoods of any two values of

d. For example, the likelihood ratio against the hypothesis

of no change is L(d = )113) ⁄ L(d = 0) = 0.0000156 ⁄
0.0000109 = 1.44 (ratio of heights of vertical dotted lines

in Fig. 3B). A likelihood ratio of 1.44 means the data pro-

vide more evidence for a change of )113 vaquitas than

for a change of 0, but only weakly so.

Inference could also be based on the range of d values

for which the data provide evidence of a given strength.

Royall (1997, p. 11–12) suggests, for example, that a like-

lihood ratio of 8 could be interpreted as moderate evi-

dence, intuitively equivalent to the ratio of evidence in

favor of a two-headed coin over a fair coin when 3

(23 = 8) consecutive heads have been observed. A likeli-

hood interval of d values for which there is this degree of

support extends from )666 to +142 (horizontal gray line

in Fig. 3B). Values of d inside this interval have likeli-

hood ratios >1 ⁄ 8 and values outside this interval have

likelihood ratios <1 ⁄ 8.

Bayesian inference

In the Bayesian system, knowledge of an unknown quan-

tity, such as N1997, N2008 or d, is represented by a probabil-

ity distribution (Gelman et al. 2004; Link & Barker 2010).

Prior to the data, there is a state of knowledge about each

unknown quantity, called the prior distribution, and after

considering the data, there is a new state of knowledge,
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called the posterior distribution. The data change, or

update, the state of knowledge. Likelihood connects the

prior to the posterior. Conceptually, this may be written

posterior ¼ prior� likelihood=C

where C is a normalizing constant to ensure that the pos-

terior distribution sums to 1, as a probability distribution

should. The posterior, therefore, is determined only to a

proportionality constant. In the results below, we scale

posterior distributions to their maximum values in order

to compare different posteriors conveniently. If the prior

is informative (that is, if we have some previous informa-

tion), the posterior is a combination of what was previ-

ously known and what the data contribute via the

likelihood function. On the other hand, if the prior is not

informative in the context of the model, the posterior is

proportional to the likelihood.

For the vaquita data, we could proceed with d and

N1997 as in the likelihood inference calculation in the

previous section, but to illustrate the use of prior infor-

mation in a Bayesian context, we consider the probability

distributions of N1997 and N2008, and compute

d = N2008 ) N1997 as a derived parameter. The joint pos-

terior distribution of N1997 and N2008 is

PrðN1997;N2008jdataÞ ¼ PrðN1997;N2008Þ
� LðN1997;N2008jdataÞ=C

where Pr(x,y) is the joint probability of x and y. The joint

lognormal likelihood given the data, L(N1997, N2008 |

data), is computed in the same manner as the joint likeli-

hood in Likelihood inference, and represents the evidence

provided by the data. The new term is Pr(N1997, N2008),

the joint prior distribution, which is peculiar to the

Bayesian approach.

We initially assume a uniformly flat surface for the

joint prior, which means that we assume all values of

N1997 and N2008 are equally probable in each year, and

that there is no correlation between them.5 The result is

the joint posterior probability distribution of N1997

and N2008 shown in Fig. 4. The marginal posteriors of

N1997 and N2008 are obtained by integrating the joint pos-

terior for each variable (Fig. 5A). The distribution of

d = N2008 ) N1997 can be obtained by sampling the joint

posterior distribution.6 As expected with uniform priors

in this simple case, the posterior of d (Fig. 5B) is similar

to the likelihood of d (Fig. 3B), with a mean of )225 and

a maximum value at d = )94. They are not exactly the

same shape because Fig. 3B is a profile of the likelihood

function, whereas Fig. 5B is proportional to the marginal

integral of the likelihood function.

Despite the similarity in shape of Figs 3B and 5B, there

is an important conceptual difference: the posterior is

a probability distribution, whereas the likelihood is

not. This has consequences for inference. A probability

distribution is an absolute measure of support, but likeli-

hood ratios (and, later, information-theoretic differences)

provide relative measures of support among two or more

hypotheses. We can compute an interval which has a

probability of 0.95 of including the true value, i.e. what

many people incorrectly think a 95% confidence interval

is giving them. Posterior probability intervals are also

called credibility intervals. A central 95% probability

interval for the change in vaquita abundance extends

from )864 to +111 (horizontal gray line in Fig. 5B).

The central 95% probability interval contains equal

probabilities in the upper and lower tails of the distribu-

tion, but other intervals may be used. The shortest inter-

val is called the highest posterior density interval. We can

also compute Pr(d < 0) = 0.88, that is, the probability of

a decrease of any amount (fraction of the area under the

curve to the left of the vertical dotted line in Fig. 5B).

Another informative statistic is the odds of a decrease

Pr(d < 0) ⁄ Pr(d > 0) = 0.88 ⁄ 0.12 @ 7. In other words, it is

seven times more probable that vaquita abundance

decreased than that it increased.

A useful but sometimes controversial feature of Bayes-

ian methods is the use of prior information. It is useful

because additional information from previous or related

studies can be brought seamlessly into the analysis for

stronger inference. It can be controversial because conclu-

sions may depend not on current data alone, but on a

combination of current data and additional information

brought from other studies. Here we will not discuss the

issue but simply illustrate the use of informative priors

and show that they modify the posteriors.

5Uniform priors are sometimes assumed to be nonin-

formative. However, all priors contain information, and

uniform priors can be informative. In the present case,

some values of N1997 and N2008 should certainly be con-

sidered more probable than others a priori, and the

assumption of no correlation between them implies some

unreasonable possible rates of population increase. Given

the data of this particular example, these issues are of lit-

tle consequence as there is virtually no posterior support

in these regions.

6Other functions of N1997 and N2008 could be com-

puted from the joint posterior. For example, we could

base inference on the ratio r = N2008 ⁄ N1997 instead of on

the difference d = N2008 ) N1997. In that case, r > 1

would indicate an increase in abundance, r < 1 a

decrease, and r = 1 the hypothesis of no change.
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Prior to the 1997 survey, there was some knowledge of

vaquita abundance based on previous partial surveys in

the area (Barlow et al. 1997). Likewise, prior to the 2008

survey, there were indications that the population could

be as small as 150, based on increased fishing effort and

the bycatch rate in gillnets (Jaramillo-Legorreta et al.

2007). For the sake of this example, we do not attempt a

detailed analysis, ignore some issues of independence, and

simply assume reasonable prior means of 600 and 150 for

1997 and 2008, respectively, with large uncertainty

(CV = 100%), based on these previous data. With these

informative lognormal priors, the marginal posteriors of

N1997 and N2008 (Fig. 6A) are narrower and slightly differ-

ent in position than the posteriors with uniform priors

(Fig. 5A). The posterior of d (Fig. 6B) is also narrower

than the previous estimation (Fig. 5B). As a result, the

central 95% probability interval is smaller, from )622 to

+51 (horizontal gray line in Fig. 6B), the probability of a

decrease Pr(d < 0) = 0.93 is larger (fraction of area under

the curve to the left of the vertical dotted line in Fig. 6B),

and the odds of a decrease 0.93 ⁄ 0.07 @ 13 are higher.

These differences are due to the additional information

brought to the analysis in the priors.

In either case, the results of Bayesian analyses are

somewhat different than the conclusions of the previous

frequentist and likelihood analyses of the summarized

data. The odds that vaquita abundance decreased between

1997 and 2008 are moderately strong – 13 or 7, depend-

ing on whether we want to base inference on the addi-

tional data in the priors or not.

Inference based on original data

The original line-transect data were the number of km

surveyed each year, the number of vaquita sightings each

year, and group size and distance from the trackline for

each sighting. There are five parameters to estimate

instead of two: d, N1997, g, f1997 and f2008, where the latter

three are additional nuisance line-transect parameters

needed to estimate abundance in each year. Because stan-

dard line-transect software (Thomas et al. 2010) uses a

combination of likelihood and non-likelihood methods,

we use the full likelihood approach of Eguchi & Gerro-

dette (2009) to compare methods of inference. See Gerro-

dette et al. (2011) for more details of the application to

these data.
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Likelihood inference

The five-dimensional joint likelihood equivalent of

Fig. 3A would be difficult to plot, but our focus is on d,

the change in abundance. The profile likelihood of d

based on original data (Fig. 7A) is narrower than the

profile likelihood based on summarized data (Fig. 3B).

The maximum likelihood estimate is d = )224 vaquitas,

and the likelihood ratio against a change of 0 is

L(d = )224) ⁄ L(d = 0) = 2.5 · 108. This is extremely

strong evidence that vaquita abundance decreased, intui-

tively equivalent to the strength of evidence in favor of a

two-headed coin over a fair coin when log2(2.5 · 108) =

24.6 consecutive heads have been observed. The 1 ⁄ 8 like-

lihood interval extends from )840 to )168 (horizontal

gray line in Fig. 7A).

Bayesian inference

For the integrated Bayesian analysis, uniform priors were

used for all parameters except g (Gerrodette et al. 2011).

The posterior of d (Fig. 7B) is much narrower than the

posterior based on summarized data with uniform priors

(Fig. 5B), and all of the probability density is less than

zero. The maximum probability occurs at a change of

d = )220 vaquitas, the median value at d = )313, and

the central 95% probability interval extends from )707 to

)175. The probability of a decrease is Pr(d < 0)

> 0.9999999, and the odds of a decrease are Pr(d <

0) ⁄ Pr(d > 0) = 1.8 · 109.

Model-based inference

Inference can be based on model selection (Burnham &

Anderson 2002; Anderson 2008). We compare a model

with a parameter for change in abundance d to a model

without such a parameter. The relative support for the

two models is measured by the difference in Akaike’s

Information Criterion (AIC). For the model with a

change in abundance,

AICd ¼ �2 logðLð~d; ~N1997;~g;~f 1997;~f 2008jdataÞÞ þ 2� 5

¼ 635:40

whereas for the model without a change in abundance,

which has only four parameters,

AIC�d ¼ �2 logðLð~N;~g;~f 1997;~f 2008jdataÞÞ þ 2� 4

¼ 667:51
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Likelihood L is computed at the maximum likelihood

estimates ~h of the parameters. The AIC difference between

the models is DAIC = 32.1. An AIC difference of 3

already indicates much less support, so a difference of

32.1 indicates very little support for the no-change-

in-abundance model. Support can also be judged in terms

of model weights. The Akaike weights of the two models are

wd ¼ 1=ð1þ e�32:1=2Þ ¼ 0:9999999

and

w�d ¼ e�32:1=2=ð1þ e�32:1=2Þ ¼ 0:0000001

again indicating very strongly that vaquita abundance

decreased between 1997 and 2008.

Conclusion

Different methods of statistical inference use different

metrics and can give quantitatively and qualitatively dif-

ferent results (Table 1). Support for a hypothesis can be

measured in terms of information theory, likelihood

ratios or probability. The concept of likelihood conditional

on data is central to inference, although model-based,

likelihood and Bayesian inference use likelihood in differ-

ent ways. Modern statistical methods allow multiple types

of data to be combined into a single analysis for improved

inference. In the case of the vaquita data, there was a sub-

stantial loss of information when summarized data (esti-

mates and standard errors) were used to infer change in

abundance. Integrated analyses based on the original data

had less uncertainty (Fig. 7) and indicated much stronger

support for the conclusion that there was a decrease in

abundance (Table 1). All of the alternatives to NHST were

more informative about ‘what the data say’ than the

P-value and its associated significance.

Fifty years ago, Rozeboom (1960) wrote that his criti-

cism of NHST was ‘not a particularly original view’, and

that ‘the traditional null-hypothesis procedure has already

been superceded [sic] in modern statistical theory by a

variety of more satisfactory inferential techniques’. Fifty

years on, would that this were so.
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