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PREFACE  
In validation studies, comparisons frequently arise in which one has two sets of noisy measurements of the 
same quantity, often obtained by some match-up process. The results are often presented on a scatter plot 
with a reference line. This Technical Report discusses choices for such reference lines and attempts to 
provide some guidance on the use of standard linear fits and other calculations to learn more about the 
relationship between the two sets of data. The first section uses a simple example to provide a setting for a 
discussion of the theoretical problem. The second section uses more creative synthetic data sets to expose 
some of the difficulties. The third and fourth sections present some real world applications and further 
discussion of the complications. The fifth section summarizes the results, and the sixth section provides an 
outline with a basic set of calculations, analysis, questions and plots as a guide for investigating such data.



  
 
PROBLEM STATEMENT 
We define an experiment where one can measure a quantity with two separate methods, A and B, where 
both methods provide noisy estimates, linearly related to the true values. Specifically, let {Ri} be a set of 
truth values, and let {Ai} and {Bi} be two sets of measurements (or retrievals from measurements) with 
models and measurements of the form: 
    

A = μA R + a   and   Ai = μA Ri + a + εi  
and  

B = μB R + b   and   Bi = μB Ri + b + δi  
    
where μA and μB are slopes, a and b are constants, and εi and δi are measurement noise contributions. 
Eliminating R in the models and measurements gives 
    

A = μA/μB B + c   and   Ai = μA/μB (Bi – δi) + c + εi 
A = μC B + c        and   Ai = μC (Bi – δi) + c + εi 

or 
B = μB/μA A + d   and   Bi = μB/μA (Ai – εi) + d + δi    
B = μD A + d        and   Bi = μD (Ai – εi) + d + δi    
B = 1/μC A + d     and   Bi = 1/μC (Ai – εi) + d + δi 

    
Where the slopes are now μC=μA/μB in the first case and its reciprocal, μD=1/μC=μB/μA, in the second, and 
c and d are constants algebraically related to μA, μB, a, and b. 
    
The question addressed in this report is: Given two sets of measurements, how well can we estimate the 
parameters in these models when {Ri} is unknown? The basic problem is that we are trying to estimate 
characteristics of the linear relationship between A and B (for example, the slope and one point) and the 
variances of {εi} and {δi} from only five quantities – the means and variances of {Ai} and {Bi} and the 
covariance of {Ai} with {Bi}. We will see how far standard linear regression can take us, and explore the 
impact of three different simplifying assumptions. The individual simplifying assumptions are as follows: 
1) The two sets of measurements have the same slopes with respect to the truth, that is, μA/μB = 1; 2) One 
of the measurements is known to have no or very little noise, e.g., δi≡0 or the δi are very small; or 3) The 
noise in the two measurements, {εi} and {δi}, are of similar relative sizes/variances.  
    
SECTION 1. Warm-up Mathematical Exercises 
For simplicity of exposition, we create a small truth data set of twelve values and two very non-random 
sets of “measurements” with μA = μB =1, and a = b = 0. 
      
The truth values are given in the first row of Table 1, and the means and variances for these sets appear in 
the last two columns. The {Ai} and {Bi} are created so that the differences for Ai and Bi values from the 
truth, Ri are uncorrelated (have zero covariance) and have zero mean, and so that the Ai data is “noisier” 
than the Bi data. The data have been “cooked” so well that they have zero mean differences for each of the 
three possible truth values.  
       
Table 1. Very Simple Illustrative Example. 

1 

I 1 2 3 4 5 6 7 8 9 10 11 12 Mean   Va iance r
Ri 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 1.0 0.66

_ 
=2/3 6 

Ai -0.4 -0.4 0.4 0.4 0.6 0.6 1.4 1.4 1.6 1.6 2.4 2.4 1.0 0.82
_
=2/3+0.16 6  

Bi -0.2 0.2 -0.2 0.2 0.8 1.2 0.8 1.2 1.8 2.2 1.8 2.2 1.0 0.706
_
 =2/3+0.04 

εi=Ai-Ri -0.4 -0.4 0.4 0.4 -0.4 -0.4 0.4 0.4 -0.4 -0.4 0.4 0.4 0.0 0.160=0.42 

δi=Bi-Ri -0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 0.0 0.040=0.22 

Ai-Bi -0.2 -0.6 0.6 0.2 -0.2 -0.6 0.6 0.2 -0.2 -0.6 0.6 0.2 0.0 0.200=0.16+0.04 
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Notice that 
     

A = R   and   Ai = Ri + εi, with εi = {-0.4,-0.4,0.4,0.4,-0.4,-0.4,0.4,0.4,-0.4,-0.4,0.4,0.4} 
     

B = R   and   Bi = Ri + δi, with δi = {-0.2,0.2,-0.2,0.2,-0.2,0.2,-0.2,0.2,-0.2,0.2,-0.2,0.2} 
_
Ri = 

_
Ai = 

_
Bi = 1,   

_
Ai – 

_
Ri = 

_
Bi – 

_
Ri = 

_
Ai – 

_
Bi = 0, and  

_
εi = 

_
δi = 0 

     
and the covariance of {Ai} with {Bi} is 
     

COV(Ai,Bi) = COV(Bi,Ai) = 2/3 =VAR(Ri) 

The 
_
   operator is used to denote the mean of a set of values. The mathematical symbol 

_
   is used to denote 

a repeating decimal. The VAR() operator is used to denote the variance of a set of values and the COV(,) 
operator is used to denote the covariance of two sets of values. (Aside: If these were real samples of 
random variables, and the means were estimated from the samples, one would compute the variance 
estimates with the estimated mean and a denominator of n–1=11 to obtain an unbiased estimate of the 
variances for the underlying distributions of A and B, instead of a denominator of n=12 as was used here.) 
    
If we ignore the fact that both measurements are noisy, and proceed with standard linear regression fits of 
{Ai} with {Bi} and {Bi} with {Ai}, then we find the following: 

1) For {Ai} with {Bi}, the fit line passes through the point (
_
Bi,
_
Ai)=(1,1) and the fit slope estimate is 

    
 mAB = mC = COV(Ai,Bi)/VAR(Bi) = 2/3 / (2/3 + 0.04) ≈ 0.943 < 1 = μC = μA/μB 

2) For {Bi} with {Ai}, the fit line passes through the point (
_
Ai,
_
Bi)=(1,1) and the fit slope estimate is 

    
 mBA = mD = COV(Bi,Ai)/VAR(Ai) = 2/3 / (2/3 + 0.16) ≈ 0.806 < 1 = μD = 1/μC = μB/μA 
    
Both slope estimates are smaller than the true model slopes, and the one found using the noisier 
measurement as the independent variable is poorer. The problem is that standard linear regression 
methods expect the independent variable to be noise-free. The variances in both of the denominators for 
these two slope estimates have additional contributions from the noise in the independent variable choice. 
    
A scatter plot of B versus A appears in Fig. 1 along with two fit lines and a reference line. The data are 
shown by the + symbols. The  symbols are binned values discussed in Subsection 1.3. The solid 
reference line is just B=A. The dotted line is from a linear regression fit of the B values with the A values. 
It has a B/A slope of 0.806 and a B-intercept of 0.194. The dashed line is from a linear regression fit of 
the A values with the B values. It has an A/B slope of 0.943 (B/A slope of 1/0.943≈1.060) and an A-
intercept of 0.057. Notice that both fits have slopes less than 1.0 in their appropriate coordinate systems, 
pass through the point (1,1), and that the fit using the noisier A data as the independent variable has the 
poorest slope estimate. The slope estimate from the linear regression fit of the B values with A values is 
equal to COV(Ai,Bi)/VAR(Ai) and from the linear regression fit of the A values with B values is equal to 
COV(Ai,Bi)/VAR(Bi). In the next subsection, we consider the problem of estimating the truth and 
measurement noise variability given two match-up data sets. 
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Figure 1. Scatter plot of B versus A for the simple example in Table 1 along with two fit lines and a reference line. The 
data are shown by the + symbols. The solid reference line is just A=B. The dotted line is from a linear regression fit of 
the B values with the A values. It has a B/A-slope of 0.806 and a B-intercept of 0.194. The dashed line is from a linear 
regression fit of the A values with the B values. It has an A/B-slope of 0.943 and an A-intercept of 0.057. Notice that 
both fits have slopes less than 1.0 in their appropriate coordinates, pass through the point (1,1), and that the fit using A 
has the smaller slope. The  symbols are the results of binning for each unit interval using the A data to determine the 
bins. 
     

Subsection 1.1. Estimating Measurement Noise and Truth Variability 
If we have two sets of independent, noisy measurements of the same set of truth values, can we use them 
to estimate their own noise variability? The answer is a qualified “Yes” and one possible qualification is 
that μC = μA/μB is known a priori. (As we will see later, other possibilities involve some knowledge of the 
noise or signal variability.) We also make the standard assumptions that both measurements have 
independent, zero mean measurement noise, that is, 
     

Ai = μA Ri + a + εi  
and 

Bi = μB Ri + b + δi  
     

where εi and δi are instances of independent random variables with zero mean, uncorrelated with each 
other and with the truth, and variances σε2 and σδ2 respectively. Substituting these expressions we find that 
     
     VAR(Ai) =  μA

2 VAR(Ri) + 2*μACOV(Ri,εi) + VAR(εi)    ≈ μA
2 VAR(Ri) + σε2 

     VAR(Bi) =   μB
2 VAR(Ri) + 2*μBCOV(Ri,δi) + VAR(δi)    ≈ μB

2 VAR(Ri) + σδ2
          

     COV(Ai,Bi) =  μAμBVAR(Ri) + μBCOV(Ri,εi) + μACOV(Ri,δi) + COV(εi,δi)  ≈ μAμBVAR(Ri) 



  
 

4 

     
 (The lack of correlation of the measurement noise distributions with other quantities means that we 
expect terms such as COV(Ri,δi) and COV(εi,δi) to be unbiased and small, and have dropped them in 
deriving these approximate relationships. Their contributions are important for obtaining confidence 
intervals for slope estimates.) If μA/μB = μC is known, then these can be manipulated to give: 
For the general case,    | For our simple example, μA=μB=1 and μC=μA/μB=1. These become 
     μBμAVAR(Ri) ≈ COV(A,B) |     VAR(Ri) ≈ 2/3 
     σε2 ≈ VAR(Ai) – COV(A,B) * μC

 |     σε2 ≈ (2/3 + 0.16) – 2/3 * 1 = 0.16  
     σδ2 ≈ VAR(Bi) – COV(A,B) / μC |    σδ2 ≈ (2/3 + 0.04) – 2/3 / 1 = 0.04  
    
and we can estimate two of the three values directly from the sets A and B without knowing R. Practical 
difficulties are examined in Sections 2 and 3. Simple offset biases in the A and B measurements would 
not affect these calculations. (A common assumption is that μA = μB, that is, μC = 1. If this is incorrectly 
assumed, and we proceed with the calculations, then the approach breaks down because we do not 
completely cancel the μBμAVAR(Ri) terms in finding estimates of the noise variability. We would 
underestimate the noise in the data set with the smaller slope versus the truth and overestimate it in the 
one with the larger slope. This occurs in the real world examples in Section 3.) Lastly, no matter what the 
actual value of μA/μB = μC is, the variance of the difference 
     

VAR(Ai–Bi) = VAR(Ai) + VAR(Bi) – 2*COV(Ai,Bi) ≈ (μA–μB)2VAR(Ri) + VAR(εi) + VAR(δi) 
                    ≈ (μA–μB)2VAR(Ri) + σε2 + σδ2 = μB

2(μC–1)2VAR(Ri) + σε2 + σδ2 
    
gives an approximate upper bound on the sum of the measurement noise variances, σε2 + σδ2, and this 
estimate is better when the difference between μA and μB is smaller, i.e., the closer μC is to 1. 
  
Subsection 1.2. Adjusting the Slope Estimates for Measurement Noise in the Independent Variable 
This subsection answers the question: Why are both slopes less than 1 in the fits for the simple example? 
Standard linear least squares regression calculations (See, e.g., Neter and Wasserman, 1974.) assume that 
there is no noise or error in the independent variable, that is, there is a model with  
    

A = μC C + c    
    

and a set of noisy measurements of A with 
    

 Ai = μC Ci + c + εi  
    

The slope estimate for {Ai} fit with {Ci} is given by 
    

 mC = COV(Ai,Ci)/VAR(Ci) 
    

Replacing Ai with its expression in terms of Ci gives 
    

 mC = μC + COV(εi,Ci)/VAR(Ci) ≈ μC 
    

This final form is of no help in computing mC, since μC is the unknown, but, practically, it does tell us that 
having either less measurement noise (smaller absolute values of εi) or a more variable range of 
observations [larger VAR(Ci)] will lead to better regression estimates, mC, of the slope, μC, and that 
incidental covariance between the measurement noise and independent variable [larger COV(εi,Ci)] leads 
to poorer estimates. Even though there is a plus sign in front of the COV(εi,Ci) term in the expression for 
mC, there is no reason to expect the covariance involved to be positive rather than negative. So, with the 
standard assumptions, mC will provide an unbiased estimate of μC. 
    

What happens if we use a noisy set of measurements {Bi}, instead of {Ci}, with a model of the form 
   

A = μA/μB B + c 
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and a set of noisy measurements of A with 
    

 Ai = μA/μB (Bi – δi) + c + εi   
    
    

in our comparisons? (In standard statistics texts, this class of problems is referred to as “fits with errors in 
both coordinates.” See Press, 1992, Section 15.3 for methods to handle this complication directly. This 
subsection investigates what happens when standard linear regression meets this problem.) If we knew the 
δi’s, then we could find Ci = Bi – δi and be back to the first case. If we do not know them, and proceed by 
ignoring the presence of the δi noise term, then the slope estimate for {Ai} fit with {Bi} is given by 
    

 mAB = COV(Bi,Ai)/VAR(Bi)    
    

Substituting for Ai in terms of Bi gives 
    

mAB = μA/μB [1 – COV(Bi,δi)/VAR(Bi)] + COV(Bi,εi)/VAR(Bi) 
    

We also have COV(Bi,δi) = μBCOV(Ri,δi) + VAR(δi), and if we ignore the COV(Bi,εi) and COV(Ri,δi) 
terms (because we expect them to be small and because we expect them to be unbiased), we find 
    

 mAB =  COV(Ai,Bi)/VAR(Bi)   ≈ μA/μB [1 – VAR(δi)/VAR(Bi)] 
    

Variances are always non-negative, so the slope estimate, mAB, tends to be less in absolute value than the 
true slope, μA/μB. (The goal in least squares regression is to minimize the sum of the residuals squared. If 
there is noise in the independent variable, then a larger magnitude slope will increase this component in 
the residual difference, thus the slope is diminished in magnitude from the result obtained for a non-noisy 
measurement of the independent variable.) Notice that this error gets worse for larger noise in the 
independent variable (larger relative to the variability).  
    

We could have just as easily fit B with A and obtained an estimate for the reciprocal slope,  
    

mBA =  COV(Ai,Bi)/VAR(Ai)   ≈ μB/μA [1 – VAR(εi)/VAR(Ai)] 
    

So the slope estimate, mAB, of μA/μB from fitting {Ai} with {Bi} tends to be less in absolute value than the 
actual slope, and the slope estimate, mBA, of its reciprocal, μB/μA, from fitting {Bi} with {Ai} also tends to 
be less in absolute value than the actual slope. This explains why both slopes for the fits of the simple data 
sets were less than the model slope ratios of 1. 
    

If we have estimates of the variability of the measurement noise for one of the sets, then we can invert the 
approximate expression for mAB to obtain an approximately unbiased estimate of μA/μB as follows: 
    

μA/μB ≈ mAB / [1 – σδ2 / VAR(Bi) ] 
    

where σδ2 is an estimate of the {Bi} measurement noise. Since the sample data in Table 1 have zero 
covariances for all the appropriate ignored combinations and μA = μB = 1, we can check these results:  
    

 mAB = 1 * [2/3 / (2/3 + 0.04)] ≈ 0.943 and μA/μB = 1/1 ≈ 0.943 / [1 –  0.04/(2/3+0.04)] 
 mBA = 1 * [2/3 / (2/3 + 0.16)] ≈ 0.806 and μB/μA = 1/1 ≈ 0.806 / [1 – 0.16/(2/3+0.16)] 
    

This would actually be a circular algebraic result if we did not know the measurement noise directly. One 
cannot use the data for A and B and an assumption that they are related to the truth with the same slope 
(and thus to each other with unit slope) to find estimates of the variances of the noise, and also use the 
same noise estimates to correct the slopes from linear regression fits. One either has external information 
(or assumes) that they are both related to the truth with the same (or at least nearly the same) slopes and 
then finds estimates of the variances and noise as in Subsection 1.1, or one has external estimates of the 
measurement noise and then uses them to estimate the truth variability and to correct the slope estimates. 
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This completes the explanation of the slopes of the fit lines in Figure 1, and provides a means of 
correcting or estimating their inadequacies. An already obvious result is that one should use the less noisy 
variable (noise size relative to its variance) as the independent variable if presenting a single standard fit 
line. In the absence of information on which of two match-up measurements are noisier, one could assume 
that they have equal-size relative noise contributions, and thus the slope estimates will be equally biased 
(in relative absolute value) toward zero, and use the geometric mean of one with the reciprocal of the 
other as an estimate of the true slope. That is, if VAR(εi)/VAR(Ai) ≈ VAR(δi)/VAR(Bi), then 
    

μA/μB ≈ SQRT(mAB/mBA)   or   μB/μA ≈ SQRT(mBA/mAB). 
Since 

SQRT(mAB/mBA)=SQRT[VAR(Ai)/VAR(Bi)]  and  SQRT(mBA/mAB)=SQRT[VAR(Bi)/VAR(Ai)],  
    

this simple result just gives the ratios of the two measurements’ standard deviations as the slope estimate. 
It is forced by the equal relative noise assumption.  
    

Absent any information on which variable is noisier, one could also construct a bounding interval for the 
slope estimates by using the direct estimate and the reciprocal of the alternative fit estimate, that is,  
    

μA/μB є [mAB,1/mBA]   or   μB/μA є [mBA,1/mAB]. 
     
One could be more conservative and extend these intervals by the standard uncertainties in the regression 
fit slope estimates.  
    

Finally, if we take the product of the estimates for mAB and mBA, we find 
     

mAB * mBA = COV(Ai,Bi)/VAR(Bi) * COV(Bi,Ai)/VAR(Ai) = COV2(Ai,Bi)/[VAR(Bi)*VAR(Ai)]  
                   = ρ2(Ai,Bi) ≤ 1  

    

where ρ is the Pearson linear correlation coefficient of {Ai} and {Bi}. In the absence of noise in either 
variable this product should equal 1 since the two actual slopes are reciprocals. This is an alternative way 
to demonstrate that the slope estimates are biased toward smaller absolute values, and that the geometric 
mean of the relative accuracy for the two slope estimates is the Pearson linear correlation coefficient. 

 

Subsection 1.3. Binning with Noisy Independent Variables 
The  symbols in Figure 1, reproduced below, plot the bin-averaged values obtained by finding the 
average of the {Bi} data values in four bins, {[-1,0), [0,1), [1,2), and [2,3)}, using the {Ai} data to 
determine the bins. Even though the B data were constructed to have absolutely no measurement bias 
(The average value for the B measurements of any truth value is the truth value.), it appears that B values 
are too high for small truth values and too low for large truth values. The source of this misleading result 
can be seen in the use of the A values to determine the bins. The A data in the lowest bin, [-1,0), get there 
because the A measurement noise is negative, while the mean of the B data in this bin is the correct truth 
average value of 0 (The B data errors are uncorrelated with the A errors.); similarly, the A data in the 
highest bin, [2,3), get there because the A measurement noise is positive. This type of false bias can be 
accentuated when the truth data distribution drops off in density at the extreme values, since the small 
number of truth values properly in an extreme bin can be overwhelmed by a larger number of 
measurements in the bin due to noise in the bin-selecting measurement.  
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Repeat of Figure 1. 
    
When comparing two noisy measurement sets without truth values available to determine the binning, one 
should see how the results change with the binning variable switched and also with the binning performed 
using the averages of the paired values to sort the data. An alternative approach is to compare the 
distributions of measurements from the two systems – effectively discarding the match-up pairing 
information but keeping the overall similar sampling of annual or other cycles and real variations. This is 
considered in Section 3. Appendix 2 considers comparisons of histograms. Measurement noise can also 
cause difficulties for computing percent differences in a related manner as that seen with binning 
examples (in addition to the commonly observed problems from increased nonlinearity of percent 
calculations when the size of the noise rises to an appreciable fraction of the truth values’ magnitude), so 
care should be taken in the choice of a reference variable there as well. 
     
Subsection 1.4. Caveats 
At times in this section, we have assumed that the two measurements are related to the truth with a slope 
of unity (or at least with identical slopes) and that noise in the chosen “independent” variable is 
responsible for biased results. Unfortunately, it is also common that a measurement system really does a 
less than ideal job of capturing the variability of the truth, that is, the measurements have reduced 
variance because of a lack of sensitivity and estimates of slopes from regression fits are correctly less than 
1, rather than because of noise in the independent variable choice. Data from maximum-likelihood 
retrievals are a case in point where one may not expect to retrieve the full truth variance because the 
values are biased toward an a priori. One should consider the analysis tools, for example, averaging 
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kernels and retrieval covariance versus a priori covariance (See, e.g., Rodgers, 1990), available for such 
retrievals to try to get independent estimates of the measurement-to-truth relationship. The sensitivity of 
the different physical measurement to real changes should also be considered. 
 
Subsection 1.5. Section Summary 
In standard linear regression problems, one has a set of noisy measurements related to a set of non-noisy 
independent values. If the independent values are also noisy, then there is not enough information to 
uniquely estimate the linear relation between the two sets without additional assumptions. The Pearson 
linear correlation coefficient gives one measure of the range of slopes which are consistent with such 
measurements in the absence of other information on the noise. Any external piece of information giving 
the value of one of the following six quantities: 1. or 2. the signal variability captured in a measurement 
set, μA

2VAR(Ri) or μB
2VAR(Ri); 3. or 4. the noise variability present in a measurement set, σε2 or σδ2; 5. 

the relative signal (slope), μA/μB; or 6. the relative noise variability, σε2/σδ2, allows one to determine 
estimates for the other five from the following quantities 
    

     VAR(Ai) =  μA
2 VAR(Ri) + 2*μACOV(Ri,εi) + VAR(εi)    ≈ μA

2 VAR(Ri) + σε2 
     VAR(Bi) =   μB

2 VAR(Ri) + 2*μBCOV(Ri,δi) + VAR(δi)    ≈ μB
2 VAR(Ri) + σδ2

  
     COV(Ai,Bi) =  μAμBVAR(Ri) + μBCOV(Ri,εi) + μACOV(Ri,δi) + COV(εi,δi)  ≈ μAμBVAR(Ri) 
     VAR(Ai–Bi) =  VAR(Ai)– 2 COV(Ai,Bi) + VAR(Bi)    ≈ (μA–μB)2VAR(Ri) + σε2 + σδ2 
    

These results also rely on an assumption that the noise terms in the two measurements are uncorrelated 
with each other and with the truth variability. 
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SECTION 2. A More Interesting Example 

In order to show some of the difficulties one can encounter in trying to apply the formulas in the previous 
section, we create some synthetic data sets using a random number generator. This gives us knowledge of 
the truth data and control of the noise statistics. (Appendix 3 has an IDL program using a random number 
generator to create synthetic, pseudo-normally-distributed noise values for the examples in this section.) 
    
We create a uniformly-distributed non-random data set of 401 data values in the interval [3,5]. This is the 
truth data set, {Ri}. We then use a random number routine to create pairs of 401-element sets of pseudo-
normally-distributed zero-mean noise one with a standard deviation of 1/3 and the other with a standard 
deviation of 1/4. We add these to the truth data to form the {Ai} and {Bi} measurement sets. By 
construction, the models have μA=μB=1, μB/μA=μA/μB=1, a=b=c=d=0, and σε2 =1/9 and σδ2 =1/16. Table 
2.a and Figure 2 give some statistics and a scatter plot for a single realization of this experiment. 
    
Table 2.a. Variance, Covariance, and Slope Computations. 
           Computed-Variances    Est.-Var.   Estimated-Slopes   Pearson    Interval 

 VA VB VA-B CVAB VA-CV VB-CV CV/VA CV/VB √(VB/VA) CV/√(VBVA)  
     δ=A-R ε=B-R m1 m2  ρ  

 Case              √(m1/m2) √(m1*m2)  [m1,1/m2]

Model 0.446 0.398 0.174 0.335 0.1111 0.0625 0.75 0.84 0.94 0.796 [0.75,1.19]
Single* 0.443 0.421 0.178 0.343 0.099  0.078 0.78 0.82 0.98 0.795 [0.78,1.23]
Direct*     0.1114 0.0638    
Col. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

    
The standard errors for the slope estimates are approximately 0.03. 
*Single Case with ISEED=100675 
    
Table 2.a gives information on the estimates for the slopes and related quantities. The first case gives the 
values expected from the model design and noise contributions; the second case gives the actual statistics for 
a single realization of the experiment. The last eight columns of values are computed from the first three 
columns’ quantities; VAR(Ai), VAR(Bi), and VAR(Ai–Bi). Columns 4, 5 & 6 give the Subsection 1.1 
estimates of μAμBVAR(Ri), VAR(δi), and VAR(εi), respectively, assuming that the relative slope is 1. Since 
we know {Ri}, the A–R and B–R variance values can be calculated directly. These are given in the row for 
the third case. For this particular realization, the variance of the {Bi} set is larger than expected from the 
model, leading to errors in the estimates from Subsection 1.1 calculations. (See the red entries in Table 2.) 
The direct calculations show that this is primarily caused by random correlations in terms dropped in the 
approximations in Subsection 1.1, not a real increase in the noise variability for the {Bi} measurements. 
    
Given the size of the noise in the independent variables and Subsection 1.2 analysis, we expect standard 
linear fit slopes of 0.751 for the first case and 0.843 for the second (Columns 7 and 8). Alternatively, 
adjusting the fit slopes by using the prescribed model variances and the Subsection 1.2 corrections will 
produce consistent new slope estimates of 1.032 for the first case and 0.967 for the second; both are closer to 
the 1.000 model slopes than the unadjusted fit values. Notice that the line with the true slope, μB/μA=1.000, 
lies between the two fit lines. The geometric mean of the first fit slope times the reciprocal of the second fit 
slope (Column 9) is SQRT(0.775/0.815) ≈ 0.98. This is closer to the true slope than one would expect given 
the uneven model noise. One expects to find an equal-noise slope estimate of SQRT(0.751/0.843) ≈ 0.94 
because of the actual difference in the sizes of the noise components between the two sets. The Pearson linear 
correlation coefficient (Column 10) for this sample is 0.795, and equals the geometric mean of the two slope 
estimates SQRT(0.775*0.815) = 0.795 . In the absence of any information on the noise in the measurements 
one could create an interval by using one of the slopes and the reciprocal of the other of [0.78,1.23] (Column 
11). This interval could be extended even further considering the 0.03 uncertainty in the slope estimates from 
standard residual analysis. 
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Figure 2. Sample results for the single case of synthetic data used in Table 2.a. The solid reference line is B=A. The A-
axis is horizontal and the B-axis is vertical. The dotted line is from a linear regression fit of the B values with the A 
values. It has a B/A-slope of 0.775, a B-intercept of 0.900 and passes through the point (4.006,4.006). The dashed line is 
from a linear regression fit of the A values with the B values. It has an A/B-slope of 0.815 and an A-intercept of 0.742 
and passes through the point (4.006,4.006). Figure 2 also shows the results of 10-percentile binning. The  symbols 
display the average values for the data binned by using the sum of the A and B values to determine the 10-percentile 
bins,  the Δ symbols display the average values for the data binned by using the B values, and the  symbols display the 
average values for the data binned by using the A values. (Case: ISEED=100675) 
    
The three lines on the scatter plot in Figure 2 are as in Figure 1. The solid reference line is just A=B. The 
dotted line is from a linear regression fit of the B values with the A values. It has a B/A slope of 0.775, a B-
intercept of 0.900, and passes through the (A,B) point (4.000,4.001). The dashed line is from a linear 
regression fit of the A values with the B values. It has an A/B slope of 0.815, an A-intercept of 0.742, and 
passes through the (B,A) point (4.001,4.000).  
    
Figure 2 also shows the results of 10-percentile binning. The symbols display the average values for the 
data binned by using the sum of the A and B values to determine the 10-percentile bins,  the Δ symbols 
display the average values for the data binned by using the B values, and the  symbols display the average 
values for the data binned by using the A values. Notice that the symbols are much closer to the B=A line 
for the extreme bins than the points for the other two binning alternatives. Taken alone, either the Δ or  
symbols would lead one to believe, incorrectly, that there was a problem with the ability of one of the 
measurement sets to estimate extreme values. Consider the dramatic difference in the presentation if only the 
dotted fit line and the  symbols were shown on Figure 2. 
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The simulation code was used to generate a Monte-Carlo experiment with 5000 repetitions of this simple 
experiment. The first case in Table 2.b gives the values expected from the model design and noise 
contributions,  the second case uses the estimates from the 5000 repetitions from Subsection 1.1 results, with 
an assumption that μC=μA/μB=1. The 5000 repetitions gave Subsection 1.1 overall average estimates of the 
truth and noise variances with little bias (0.3357, 0.1112, and 0.06249 versus the corresponding model 
parameter values of 0.3350, 0.1111, and 0.0625) and reasonable standard deviations (0.0128, 0.0150, and 
0.01327) for the truth and A and B noise components, respectively. The particular case presented in Table 2.a 
was typical of the Monte Carlo results in the magnitude of its differences from the model predictions. 
    
Table 2.b. Section 1.1 Estimates from Monte Carlo Study. 
   R δ=A-R ε=B-R 
  Model Variance 0.3350 0.1111 0.06250
   Avg. VarianceMC 0.3357 0.1112 0.06249
S.D. of VarianceMC 0.0128 0.0150 0.0133 

    
MCResults for 5000 Monte Carlo repetitions 
    
Even though the data in this section are less contrived than that in the previous section, it is still an ideal case 
because of the perfect match-up between the two sets of measurements and because the two sets of 
measurements completely capture the truth variability before the addition of independent measurement noise. 
In general, there will be differences between the match-up measurements because they are not measuring at 
the same place or time. This will create variability between the two measurements. It is optimistic to think 
that this variability may be simply included in the noise. Given a match-up between a ground-based 
measurement and a satellite-based measurement, for example, one could argue that the satellite should see 
larger truth variability because it samples in many different places, or one could argue that it should see less 
variability because its measurements average the conditions over larger regions. The method in Subsection 
1.1 will interpret increased variability in the underlying truth data sampled by one system relative to another 
as measurement noise in the more variable truth system (assuming that the increased variability is not 
correlated with the truth variability). As we will see again in the next section, the assumption that both 
measurements have the same slope versus the truth (the same sensitivity to variations in the truth) is a key 
condition. 
 
SECTION 3. Practical Examples of Match-up Data Sets 
This section presents some results for a real-world example. The data come from comparisons between 
total column atmospheric ozone measurements derived from ground-based and satellite-based 
instruments. We use an overpass data set of retrieved ozone estimates from the NOAA-16 SBUV/2 (Solar 
Backscatter UltraViolet instrument, http://www2.ncdc.noaa.gov/docs/klm/html/c3/sec3-8.htm) 
measurements for the last five years compared to the estimates from the Mauna Loa Dobson station 
measurements. (http://www.mlo.noaa.gov/programs/esrl/dobsonws/dobsonws.html) There are a total of 
968 days where measurements were taken by both systems, satisfying the match-up criteria. (The 
SBUV/2 data values are inverse-distance-weighted averages of all Version 8 retrievals within 2° of 
latitude and 20° of longitude of the Mauna Loa Observatory, made within 12 hours of the Dobson 
measurements.)  
    
There are actually two different total column ozone estimates computed by the Version 8 SBUV/2 
retrieval algorithm. One, best total ozone (http://toms.gsfc.nasa.gov/version8/v8toms_atbd.pdf), uses 
ratios of measurements at pairs of wavelengths and a look-up table with a range of standard profiles and 
climatological adjustments. The other, profile total ozone, creates ozone profile estimates by using a range 
(See ftp://www.orbit.nesdis.noaa.gov/pub/smcd/spb/ozone/dvd_v8/DVDhtml/V8_Algorithm_Description.html.)  
of ozone sensitive wavelengths and seasonally varying a priori ozone profiles in a maximum-likelihood 
retrieval. The match-up SBUV/2 data were screened against each other to identify unrealistic outliers, and 

http://www2.ncdc.noaa.gov/docs/klm/html/c3/sec3-8.htm
http://www.mlo.noaa.gov/programs/esrl/dobsonws/dobsonws.html
http://toms.gsfc.nasa.gov/version8/v8toms_atbd.pdf
ftp://www.orbit.nesdis.noaa.gov/pub/smcd/spb/ozone/dvd_v8/DVDhtml/V8_Algorithm_Description.html
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one value was removed from each set. The Mauna Loa Dobson station is located far above the 
surrounding Pacific Ocean (3.4 KM altitude). The large field-of-view (approximately 200 KM by 200 
KM) of the SBUV/2 and the low likelihood of a perfect match-up mean that the satellite measurement 
usually includes a column to sea level contribution not seen by the Dobson instrument. To lessen the 
impact of this effect, the satellite data were initially adjusted by subtracting 12 DU from each value before 
comparisons with the Dobson data. 
    
Table 3 gives some statistics on four different match-ups between the three data sets. Scatter plots 
comparing the match-up data sets appear in Figure 3. Each scatter plot also has a reference line with a 
slope of 1 and the two linear regression fit lines.  
    
Table 3. Statistics, Variances and Slopes for Match-Up Data.       
Key: G≡Ground-based, Sp≡SBUV/2 Profile Total, Sb≡SBUV/2 Best Total, Spa≡Adjusted Sp     
Mean 257.9           262.6                    260.1                 259.2 
      
Case     Computed Variances    Est. Var.    Estimated Slopes    Pearson    Interval   

 VA VB VA-B CVAB VA-CV VB-CV CV/VA CV/VB √(VB/VA) CV/√(VBVA)  
     δ ε m1 m2  ρ  

C1 Sp   G Sp-G COV Sp-R G-R G/Sp Sp/G √(m1/m2) √(m1*m2) [m1,1/m2] 
 351.7 331.0 57.9 312.4 39.3 18.6 0.89 0.94 0.97 0.916 [0.89,1.06]
            
C2 Sb   G Sb-G COV Sb-R G-R G/Sb Sb/G    
 304.6 331.0 63.4 286.1 18.5 44.9 0.94 0.86 1.04 0.901 [0.94,1.16]
            
C3 Spa  G Spa-G COV Spa-R G-R G/Spa Spa/G    
 331.7 331.0 50.2 306.3 25.5 24.7 0.92 0.93 1.00 0.924 [0.92,1.08]
        
C4 Sb   Sp Sb-Sp COV Sb-R Sp-R Sp/Sb Sb/Sp    
 304.6 351.7 10.5 322.9 -18.3 28.8 1.06 0.92 1.08 0.987 [1.06,1.09]
Col. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
 
Means are in DU with Sp, Sb and Spa adjusted as described in the text. 
Variances and covariances are in DU2. Slopes are non-dimensional – in DU/DU. 
The standard errors for the slope estimates are approximately 0.013 for the cases 
involving G and approximately 0.005 for the fourth case.  
     
The four match-up cases are as follows: the first case, C1, is for the SBUV/2 profile total (Sp) versus the 
Dobson total (G); the second, C2, is for the SBUV/2 best total (Sb) versus Dobson total (G); the third, C3, 
is for the SBUV/2 profile total with an additional adjustment (Spa) versus the Dobson total (G); and the 
fourth, C4, is for the SBUV/2 best total (Sb) versus profile total (Sp). The first four columns in Table 3 
give the computed values for the variances used in Subsection 1.1, namely, the variances of both of the 
sets and their differences and their covariances. Notice that the SBUV/2 best total (Sb) is much less 
variable than the SBUV/2 profile total (Sp) and that the Dobson total (G) result is in between. Also notice 
that the two SBUV/2 sets have very little variance in their differences (fourth case, third column in red). 
The covariances (fourth column, first three cases) of the ground-based measurement with the satellite-
based ones range from 286.1 to 312.4. The next two columns present the estimates of the noise variances 
computed by using the Subsection 1.1 formulas with μA/μB = 1, that is, assuming that the slopes versus the 
truth are equal. Notice that the Dobson noise estimates (sixth column, first three cases) range from 18.6 to 
44.9. The fourth case gives a non-physical result: a negative variance for the SBUV/2 Sb noise of -18.3. 
    
The seventh and eighth columns give the slope results of standard regression fits of one set to the other. 
The seventh uses the first column variable as the independent variable and the eighth uses the second 
column variable as the independent variable. The ninth column gives the geometric mean of the first slope 
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and the reciprocal of the second slope (equal to the square root of the ratio of the second variance to the 
first), and the tenth column gives the Pearson linear correlation coefficient (equal to the square root of the 
product of the slope estimates). The eleventh column gives the slope interval using the first slope estimate 
and the reciprocal of the second one as the endpoints. The standard errors are given in the note below the 
table. Notice for the fourth case that the first slope is greater than 1, and that the slope interval (Column 
11) does not contain 1. 
    
Figures 3, 4, & 5 appear here and on the next two pages each, with four plots corresponding to the four 
cases in Table 3 with C1 top/left, C2 top/right, C3 bottom/left, and C4 bottom/right. Differences in the 
results for the three binning options are displayed in Figure 4, and differences using the sorted data 
distributions are in Figure 5. 
    

    
Figure 3. Scatter plots for the four cases along with the two standard fit lines – the dotted lines use the horizontal data 
as the independent variable, and the dashed lines use the vertical data as the independent variable. Slopes are given in 
the eighth and ninth columns in Table 3. The solid line is a line with slope 1 passing through the centroid of the data; 
(average of horizontal,average of vertical). The Pearson linear correlation coefficients are: 0.916 for Sp with G, 0.901 
for Sb with G, 0.924 for Spa with G, and 0.987 for Sb with Sp. One can show algebraically that this correlation 
coefficient is equivalent to the square root of the product of two least-squares-fit slope estimates. Notice on the plot in 
the lower right, that both fit lines go from below the solid reference line for low values to above it for high values, unlike 
the other cases. For consistency of presentation, the Sp and Sb values in the fourth case have had 12 DU subtracted 
from each value as was done for the comparisons in the first and second cases. 
     
Figure 4 shows the differences between binned-averages for each pair of vertical and horizontal values 
from Figure 3. The eleven points are each averages of 88 binned values for the Figure 3 data binned by 
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using the vertical (Δ), the horizontal ( ), or the sum of both ( ) values as the binning determinant. 
Figure 5 shows the differences of the distributions for each pair of data in Figure 3. The data sets are 
sorted independently from smallest to largest and the difference in the corresponding ordered values are 
plotted. The overall mean differences are adjusted to zero in Figures 4 & 5. 
    

 
Figure 4. Differences of binned data values for the four match-up cases in Figure 3. The eleven points are each averages 
of 88 binned values for the Figure 3 data. The data set match-up pairs are sorted into these bins by using the vertical 
(Δ), the horizontal ( ), or the sum of both ( ) values as the binning determinant. Regardless of how the points are 
sorted into bins to create the bin-averages, the differences for the vertical axis variable are computed with the same 
choices for which one is the minuend and which one is the subtrahend.  
       
We begin with a discussion of the SBUV/2 best ozone (Sb) versus SBUV/2 profile total (Sp). This case is 
the last one in Table 3 and the plots appear in the lower right panels of Figures 3, 4, & 5. The data for 
these two sets are from very good match-ups (in terms of location and time) as they are usually for 
retrievals of the same set of radiance measurements. (The SBUV/2 makes a sequence of measurements at 
12 wavelengths over 24 seconds. The profile retrievals for this latitude come from information in the 
measurements at the shortest eight wavelengths and the best total comes from information in the longest 
four wavelengths.) While the difference in the variances is large (304.6 DU2 versus 351.7 DU2) the 
variance of the differences is small (10.5 DU2).  This means that the standard deviation of the match-up 
differences is less than 3.3 DU. (Remember the variance of the differences is an upper bound on the sum 
of the noise variances of the two measurements.) It also means that much of the additional variability in 
the Sp data must be correlated with the variability in the Sb data.  
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The Subsection 1.1 equal-slope estimate of the truth variance is greater than the best variance, leading to 
an impossible negative value for the estimate of the Sb noise variance. The slope of the fit using the best 
ozone (Sb) as the independent variable is greater than 1 (specifically 1.060) and the reciprocal of the slope 
for the profile ozone (Sp) as the independent variable is 1.089. We expect the first one to be less than the 
true slope and the second one to be greater than the true slope because of noise in the independent 
variables. So the problem is that the two sets have different slopes compared to the truth, that is, that μA is 
not equal to μB as assumed in Subsection 1.1 or, equivalently, that μA/μB is not equal to 1 as assumed in 
Subsection 1.2, but that μA/μB probably lies somewhere in the interval [1.060,1.089]. This means that the 
profile ozone total has a larger slope relative to the truth than the best total ozone. (It does not tell us 
which one has a slope closer to unity relative to the truth.) This is confirmed in the plots in the lower right 
panels of Figures 4 & 5, where the results for binning by all three choices and the differences of the sorted 
data show the Sp with lower lows and higher highs than Sb. By examining the retrieval algorithms, one 
finds that the best ozone has more sensitivity to real variations in tropospheric ozone, while the profile 
ozone uses a set of seasonally-varying climatological a priori profiles that have considerable variability in 
the lower two layers, and that this imposed variability is correlated with the real total ozone variability. 
For this particular region, one can estimate a profile total result from the best total result by multiplying it 
by 1.075 and subtracting 17 DU, and this approximation is very good. 
       

 
Figure 5. Differences of sorted data values for the four match-up cases in Figure 3. The data sets are sorted 
independently from smallest to largest and the differences (vertical values minus horizontal values)  in the 
corresponding ordered values are plotted. The overall mean differences are adjusted to zero, that is, the biases between 
sets are removed. Each plot has 968 points. The patterned appearance and spread in the top two plots is related to the 
Dobson station discrete reporting precision of 1 DU. 
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Repeat of Table 3. Statistics for Match-Up Data. 
Case    Computed Variances     Est. Var.    Estimated Slopes    Pearson   Interval   

 VA VB VA-B CVAB VA-CV VB-CV CV/VA CV/VB √(VB/VA) CV/√(VBVA)  
     δ ε m1 m2  ρ  

C1 Sp   G Sp-G COV Sp-R G-R G/Sp Sp/G √(m1/m2) √(m1*m2) [m1,1/m2] 
 351.7 331.0 57.9 312.4 39.3 18.6 0.888 0.94 0.970 0.916 [0.89,1.06]
C2 Sb   G Sb-G COV Sb-R G-R G/Sb Sb/G    
 304.6 331.0 63.4 286.1 18.5 44.9 0.939 0.86 1.042 0.901 [0.94,1.16]
C3 Spa  G Spa-G COV Spa-R G-R G/Spa Spa/G    
 331.7 331.0 50.2 306.3 25.5 24.7 0.923 0.93 0.999 0.924 [0.92,1.08]
C4 Sb   Sp Sb-Sp COV Sb-R Sp-R Sp/Sb Sb/Sp    
 304.6 351.7 10.5 322.9 -18.3 28.8 1.060 0.92 1.075 0.987 [1.06,1.09]

     
Variances are in DU2 and Slopes are non-dimensional. 
    
We now consider the results for the first and second cases. Taken individually without the fourth case 
information, one might make the following conjectures: 
1. For the first case, C1: either the slope of the Dobson total to the profile total is in the interval 
[0.888,1.059], or the SBUV/2 profile total (Sp) is more noisy than the Dobson station total data and the 
slope is 1.00, or the SBUV/2 profile total and Dobson total are equally noisy and the slope is 
approximately 0.970 (< 1). The s in the plot for this case (upper left of Figure 4) show that the Dobson 
values are smaller than the profile total values for high totals, that is, the profile totals have a larger range. 
This is also observed in the plot of the differences in the distributions for this case (upper left of Figure 5). 
2. For the second case, C2: either the slope of the Dobson total to the best total is in the interval 
[0.939,1.157], or the SBUV/2 best total (Sb) is less noisy than the Dobson total data and the slope is 1.00, 
or the SBUV/2 best total and Dobson total are equally noisy and the slope is approximately 1.042 (> 1). 
The s in the plot for this case (upper right of Figure 4) show that Dobson values are smaller than the 
best total values for low totals, that is, the best totals have a smaller range. This is also observed in the 
plot of the differences in the distributions for this case (upper right of Figure 5).  
     
Notice that the equal-noise assumptions would lead to slopes for these two cases differing by an amount 
consistent with the fourth case’s slope results (1.042/0.970 ≈ 1.075). While this is required algebraically, 
the small variance of Sb–Sp gives confidence that the slope estimates for the fourth case are accurate and 
leads one to expect that the noise estimates for Sp–R, Sb–R and G–R for the first and second cases should 
be more consistent. Remember, the 1.06 slope value is expected to underestimate (be a lower bound on) 
the true slope of Sp fit with Sb if Sb has any measurement noise at all. 
     
The SBUV/2 profile totals (Sp) were adjusted by subtracting 12 DU from them to account for the ozone 
below the altitude of the Mauna Loa Observatory. The Version 8 ozone profile retrieval algorithm uses a 
seasonally (and latitudinally) varying a priori, which does not have a constant amount in the lowest layer 
(1013 hPa to 507 hPa, called Layer 0) for Mauna Loa’s latitude. The optimal estimation profile retrieval 
has little measurement information in this layer and relies mainly upon the a priori values there. It turns 
out, for this location, that the fixed seasonal a priori ozone variations in this lowest layer are correlated 
with the total ozone amount. Adjusting the SBUV/2 profile totals (Sp) by subtracting the varying layer 0 a 
priori amounts from them, instead of a constant 12 DU, gives a set of values (Spa) which should be more 
representative of the column measured by the Dobson station. The third case presents the results for this 
adjusted set versus the Dobson values. The conjectures for these results are:  
(3) For the third case, C3: either the slope of the Dobson total to the profile total is in the interval 
[0.923,1.081], or if the SBUV/2 adjusted profile total and Dobson total are equally noisy then the slope is 
0.999 (~1). The symbols in the plot for this case (lower left plot of Figure 4) show a fairly flat set of 
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differences as do the distribution comparisons (lower/left plot of Figure 5). Notice the relationship 
between the ratio of the variance of the differences to the truth variance (From Table 3, Case 3, 
50.2/306.3≈0.16) and the width of the slope interval, 1.081–0.923≈0.16. When comparing two 
measurement systems, there may be a trade-off between using locations with low match-up or 
measurement noise versus those with large variability in the truth values. The Pearson linear correlation 
coefficient can be used to quantify this trade-off in constraints on the slope estimates. 
    
In summary: for the first case, Sb versus G, it is likely that the Dobson values are capturing more real 
variability than the SBUV/2 best total values; for the second and third cases, Sp(a) versus G, after proper 
adjustment for the lower tropospheric column, the two systems are providing very consistent estimates; 
and for the fourth case, the profile retrieval a priori is introducing additional variability in the lower layers 
into the retrievals that is not present in the best total ozone standard profiles and  the profile retrievals 
sense real variations in this region with lower efficiency than stratospheric ozone variations. The SBUV/2 
data was not screened for clouds which further obscure tropospheric ozone variations from the satellite 
measurements. 
    
SECTION 4. Practical Examples of Match-up Data Sets Continued: Temporal Aggregation 
For time series of match-up data, we may have another option – temporal averaging. For example, if there is a 
seasonal variability of the signal, then we may be able to greatly reduce the noise component of the 
measurements by creating monthly or other time-interval averages of the data without causing the same 
reduction in the measurement variance contribution from real changes. Recall that the errors in the slope 
estimates were of the form: 
        
  mAB = COV(Ai,Bi)/VAR(Bi) ≈ μA/μB [1 – VAR(δi)/VAR(Bi)] 
      
 If we can average the data in such a way that the VAR(δi) is reduced by a larger fraction than the 
VAR(Bi), then we will obtain a less biased estimate of the slope. 
      
The data for the four cases were grouped by taking eight sequential values at a time and the resulting 121 
average match-up points were re-analyzed as in Section 3. Figure 6 shows the time series for the four data 
sets. The small dots are the individual values and the  symbols are the aggregated values. If the noise 
and match-up error terms are independent and are not serially correlated, then one expects the variance 
from these sources to be reduced to 1/8 the original values. While the averaged values have less range 
than the individual values, the reduction is a small fraction of the original range.  
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Figure 6. Plot of match-up time series with and without 8-point temporal aggregation. Small dots are 968 individual 
values used in the Section 3 analysis. The  symbols are the 121 values for 8-point sequential averages. 
      
The aggregated data were used to calculate the quantities in Table 3, and the results are given in Table 4 
in the rows labeled “D8”. The variances for the two sets of match-up data for each case, VAR(Ai) and 
VAR(Bi) (values in the first two rows), for the D8 cases are smaller than those for the non-aggregated, but 
are always over 0.8 times the original ones. On the other hand, recall that 
      

VAR(Ai–Bi) ≈ (μA–μB)2VAR(Ri) + σε2 + σδ2 

      
so VAR(Ai–Bi) is an approximate upper bound on the total noise and match-up variance. Row three shows 
that this quantity is less than 0.4 of the original for the first three cases, and 0.6 for the fourth case. For the 
fourth case, there should be a significant contribution from the (μA–μB)2VAR(Ri) term of approximately 2.5 
DU2. This means that the noise variance reduction is really from 8 DU2 to 3 DU2 which is similar to the other 
cases. Even for the third case where the two slopes are close in value, the reduction is not to 1/8 of the 
original covariance. One possible cause for this could be that there is a temporal drift in the calibration of one 
of the measurement systems which does not average out in the temporal aggregation. Even a 1% slowly-time-
varying error would be large enough to produce these smaller reductions in the covariances ratios relative to 
the original ones. Another possible cause would be the imprecision of the linear model in representing the 
actual retrieval properties. 
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Table 4. Statistics for Match-Up Data and Temporal Averages of 8 Values. 
Case    Computed Variances     Est. Var.    Estimated Slopes    Pearson    Interval   

 VA VB VA-B CVAB VA-CV VB-CV CV/VA CV/VB √(VB/VA) CV/√(VBVA)  
     Δ ε m1 m2  ρ  

C1 Sp   G Sp-G COV Sp-R G-R G/Sp Sp/G √(m1/m2) √(m1*m2) [m1,1/m2] 
 351.7 331.0 57.9 312.4 39.3 18.6 0.89 0.94 0.97 0.916 [0.89,1.06]
 D8 313.6 279.2 21.3 285.8 27.8 -6.6 0.91 1.02 0.94 0.966 [0.91,0.98]
            
C2 Sb   G Sb-G COV Sb-R G-R G/Sb Sb/G    
 304.6 331.0 63.4 286.1 18.5 44.9 0.94 0.86 1.04 0.901 [0.94,1.16]
 D8 262.9 279.2 21.8 260.1 2.7 19.1 0.99 0.93 1.03 0.960 [0.99,1.08]
            
C3 Spa  G Spa-G COV Spa-R G-R G/Spa Spa/G    
 331.7 331.0 50.2 306.3 25.5 24.7 0.92 0.93 1.00 0.924 [0.92,1.08]
 D8 293.7 279.2 13.4 279.8 13.9 -0.5 0.95 1.00 0.98  0.977 [0.95,1.00]
        
C4 Sb   Sp Sb-Sp COV Sb-R Sp-R Sp/Sb Sb/Sp    
 304.6 351.7 10.5 322.9 -18.3 28.8 1.06 0.92 1.08 0.987 [1.06,1.09]
 D8 262.9 313.6 5.5 285.5 -22.6 28.1 1.09 0.91 1.09 0.994 [1.09,1.10]
Col. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

     
Key: G Ground-based, Sp SBUV/2 Profile Total, Sb SBUV/2 Best Total, Spa Adjusted Sp     
Variances are in DU2 and Slopes are non-dimensional – in DU/DU. 
The standard errors for the slope estimates for 8-point-averaged data are approximately 
0.023 for the cases involving G and approximately 0.010 for the fourth case. 
     

The Pearson correlation coefficients in the tenth column are closer to 1 for all four cases, and the slope 
intervals in the eleventh column are narrower even allowing for increases in the standard errors on the 
slopes. The new slope intervals all strengthen the arguments for the four cases in the previous section, 
namely, an ordering of Sp, G and Sb for response to signal variability, improved agreement for Spa with 
G, and a very accurate estimate of the linear relationship between Sp and Sb. 
     

The relative decrease in the Dobson station data (G) variance from before to after aggregation was greater 
than for the other three sets. This could either be because it was noisier to begin with or because there 
were larger time-dependent changes (more drift) in the satellite data. Figure 7 shows the time series of 
differences between a data set and the fit using the slope in the ninth column for the four cases. The fourth 
case (lower right) shows a drift between the two SBUV/2 data sets of approximately 2 DU over the four 
years. There is also an increased variability in the middle of the record during a period with a known 
SBUV/2 instrument noise anomaly in Gain Range 3.  
     

In addition to revealing (and responding to) possible time dependent drifts, the data aggregation may also 
change the emphasis of a comparison from short-term to long-term. That is, a measurement system may 
have different slopes or responses to (capabilities to resolve) short-term variability (e.g., day-to-day) 
compared to longer term changes (e.g., seasonal). For the current examples, one could fit each sets 
seasonal cycle with a functional form and use them to compare the original data indirectly. If the noise 
effects for the two sets on the seasonal cycle estimates were similar, then comparing these terms will 
avoid some of our current difficulties with an emphasis on the long-term variability reproduction. 
Additional time series and component analysis is beyond the scope of this report. 
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Figure 7. Time series of differences between 8-point aggregated data sets using linear fits. For each set, the difference is 
between the first value and a linear fit using the second value with the slope from an equal noise assumption for the 
independent and dependent variables, that is, slopes equal to the reciprocal of the estimates in Column 9 of Table 4 for 
the appropriate D8 row.  
 
SECTION 5. Summary and Conclusions 
This report has presented some simple analysis tools both to explain the failure of some common 
approaches used in the presentation of comparisons between noisy match-up data sets and to provide 
improved information on the true underlying behavior. A series of increasingly realistic examples has 
been explored to demonstrate some of the difficulties one can encounter even when well prepared. The 
key results can be summarized as follows: 1. The slope from a linear least squares regression fit of a 
dependent variable using a noisy independent variable will tend to be smaller in absolute value than the 
true slope between the two real non-noisy signals, and the magnitude of this decrease can be estimated 
given knowledge of the size of the noise in the independent variable; 2. The true linear relationship 
between a pair of noisy measurement data sets probably lies between the two standard fit lines (with each 
set taking on the independent variable role for one of the fit estimates); 3. Binning noisy data pairs by 
sorting based on the sums of the two match-up values may lessen false bias results in the extreme bins; 
and 4. Temporal aggregation can improve estimates when noise contributions are reduced much more 
than signal variations. Even with a combination of these tools, one needs to be aware of the limitations 
and physical expectations of the measurement systems. 
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SECTION 6. Analysis Outline 
When faced with a pair of match-up data sets, {Ai} and {Bi}, how should one proceed? Here is an outline 
for a basic set of calculations, analysis, questions and plots: 

1. Compute the averages, 
_
Ai and 

_
Bi, center of mass, (

_
Ai,
_
Bi), and relative bias, [2*(

_
Ai – 

_
Bi)/(

_
Ai + 

_
Bi)] for 

the two sets. 
Is the relative bias between the two sets within expectations?  

If the data are expected to agree for zero truth, then this can be a first indication of non-unit slope between 
the two measurements. Are errors in the measurements expected to produce relative errors or offsets? 
     

2. Compute variances and covariances including: VAR(Ai), VAR(Bi), VAR(Ai–Bi) and COV(Ai,Bi).  
Is the VAR(Ai–Bi) small relative to the other quantities? 

  VAR(Ai–Bi) ≈ (μA–μB)2VAR(Ri) + σε2 + σδ2 
This quantity is an approximate upper bound on sum of measurement and match-up noise variabilities. 

Are the VAR(Ai) and the VAR(Bi) similar in size? 
If not, are there expectations that the larger one is more responsive to real variations? 

Is the COV(Ai,Bi) larger than either VAR(Ai) or VAR(Bi)? 
If it is, then whichever one is smaller has less response to real variability. 

If it is smaller than both, then compute the differences. 
Do these differences coincide with noise size expectations for the two sets? 
     

3. Compute the Pearson linear correlation coefficient and the slope estimates: 
    ρ(Ai,Bi) = COV(Ai,Bi)/SQRT[VAR(Bi)*VAR(Ai)]  
    mAB = COV(Ai,Bi)/VAR(Bi) 
    mBA = COV(Ai,Bi)/VAR(Ai) 
 Is ρ(Ai,Bi) close to 1? 
The difference between 1 and the absolute value of this quantity tells us how much relative noise is in the 
measurements. (If ρ is negative, then you are having a problem with anticorrelation – negative slopes – 
and there is a fundamental disconnect in your model assumptions.) 

Do you believe that one measurement is much less noisy than the other? 
If so, then slope estimates using it as the independent variable should be closer to the correct answers. 

Do you have a good estimate of the noise in one of the measurements? 
Consider correcting the slope estimate obtained with that measurement as the independent variable. 
Recall that μA/μB ≈ mAB / [1 – σδ2 / VAR(Bi) ] and μB/μA ≈ mBA / [1 – σε2 / VAR(Ai) ]. 

Is the SQRT(mBA/mAB) close to 1?  
If you believe that the noise is creating similar problems for both measurements, then this quantity is a 
reasonable value for the slope of B versus A. 

Does the interval [mBA,1/mAB] contain a reasonable value for the slope? 
This may be the best you can do, and even then you should extend this interval with the standard errors 
for the two slope estimates. 
     

4. Create a scatter plot of {Bi} versus {Ai}.  
Overplot three straight lines through the center of mass, one with a slope of mBA, one with a slope of 
1/mAB, and one with either a slope of 1 or a slope of sqrt(mBA/mAB). 
     

5. Create a plot of differences in binned values using each of the individual measurements and the sums of 
the measurements divided by two as three different binning variables. 
 Does the binning using the sums show any systematic deviations from B-A=0? 
     

6. Sort each data set from smallest to largest and plot the differences as a function of this order. 
 Does this plot show any systematic deviations from a horizontal line? 
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7. Consider temporal aggregation to reduce the noise while maintaining the truth variability and repeat the 
above exercises noting the changes. 
Examine time series of the differences between the match-up slope-adjusted data for trends. 
     

8. Collect the above results and consider them together with information on the measurements, retrieval 
algorithms, match-up process and real world variability. 
     

9. Consider using more advanced analysis techniques for time series regression or retrieval algorithms. 
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WEB RESOURCESES 
 Version 8 SBUV/2 ozone retrieval algorithm documents, calibration and validation information, 
and data are available through links at  
http://www.orbit.nesdis.noaa.gov/smcd/spb/ozone/pubs_docs.html
http://www.orbit.nesdis.noaa.gov/smcd/spb/calibration/icvs/sbuvdoc.html
http://www2.ncdc.noaa.gov/docs/klm/
http://www.orbit.nesdis.noaa.gov/pub/smcd/spb/ozone/dvd_v8/DVDhtml/V8_Algorithm_Description.html
http://toms.gsfc.nasa.gov/version8/v8toms_atbd.pdf  
 and 
http://disc.sci.gsfc.nasa.gov/data/datapool/TOMS/DVD-ROMs/

The Dobson Instrument and algorithm are described at 
http://www.mlo.noaa.gov/programs/esrl/dobson/dobson.html
 and 
http://www.srrb.noaa.gov/research/umkehr/

http://www.orbit.nesdis.noaa.gov/smcd/spb/ozone/pubs_docs.html
http://www.orbit.nesdis.noaa.gov/smcd/spb/calibration/icvs/sbuvdoc.html
http://www2.ncdc.noaa.gov/docs/klm/
ftp://www.orbit.nesdis.noaa.gov/pub/smcd/spb/ozone/dvd_v8/DVDhtml/V8_Algorithm_Description.html
http://toms.gsfc.nasa.gov/version8/v8toms_atbd.pdf
http://disc.sci.gsfc.nasa.gov/data/datapool/TOMS/DVD-ROMs/
http://www.mlo.noaa.gov/programs/esrl/dobson/dobson.html
http://www.srrb.noaa.gov/research/umkehr/
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APPENDIX 1. Rotated Coordinates 
One approach to the intercomparison problem is to work in a transformed coordinate system. If we choose 
a coordinate system rotated 45º with respect to the original A/B system, then the line A=B becomes one 
of the axes. Specifically, define  
     

Ui = Ai + Bi = (μA + μB) Ri + a + b + εi + δi    and   U = A + B = (μA + μB) R + a + b 
 

and  
Vi = Ai – Bi = (μA – μB) Ri + a – b + εi – δi   and V =A – B = (μA – μB) R + a – b 

     V = (μA – μB)/(μA + μB) U + e  

     V = μVU U + e 

Vi = (μA – μB)/(μA+μB) (Ui – εi – δi)+e+εi – δi     V = (μA/μB – 1)/(μA/μB + 1) U + e 
     
If μA–μB is close to zero, then the Vi values should be small. If we fit {Vi} with {Ui}, then we find 
     

VAR(Ui) = VAR(Ai) + 2 COV(Ai,Bi) + VAR(Bi)  
    = (μA + μB) 2 VAR(Ri) + (μA + μB)COV(Ri,εi+δi) + VAR(εi+δi)  
    ≈ (μA + μB) 2 VAR(Ri) + VAR(εi) + VAR(δi) 

and  
COV(Vi,Ui) = VAR(Ai) – VAR(Bi) 
          = (μA

2–μB
2)VAR(Ri) + 2μACOV(Ri,εi) – 2μBCOV(Ri,δi) + VAR(εi) – VAR(δi) 

          ≈ (μA
2–μB

2)VAR(Ri) + VAR(εi) – VAR(δi)     
So  

mVU = COV(Vi,Ui)/VAR(Ui)  
     
and substituting for Vi in terms of Ui gives 
     

mVU = (μA – μB)/(μA + μB) [1 – COV(εi+δi,Ui)/VAR(Ui)] + COV(εi–δi,Ui)/VAR(Ui) 
         ≈ (μA – μB)/(μA + μB) {1 – [VAR(εi)+VAR(δi)]/VAR(Ui)} + [VAR(εi) – VAR(δi)]/VAR(Ui) 
     
Notice the following: 1) The slope estimate mVU equals 0 if the VAR(Ai) equals the VAR(Bi) [that is, if 
the VAR(Ai)/VAR(Bi) equals 1]; 2)The bias in the first term involves the sum of the variances of the 
noise terms; and 3) The second term in the approximation for mVU is small if σε2 and σδ2 are similar in 
size. The good news is that the bias in absolute value for the estimate introduced by the noise variance 
term is to a quantity we expect to be small, namely, (μA – μB)/(μA + μB). The neutral news is that the 
accuracy of this estimate also relies on a second term which is only small for similar size noise as seen in 
the earlier analysis. If we ignore the second term and convert this estimate to one for μA/μB≈(1+mVU)/(1–
mVU), then the estimate is close to the SQRT[VAR(Ai)/VAR(Bi)] result. For small mVU, we have  
     

 (1+mVU)/(1–mVU)≈1+2*mVU  
     
Notice that 
     
 2*[VAR(εi)+VAR(δi)]/VAR(Ui) ≈ [VAR(εi)/VAR(Ai) + VAR(δi)/VAR(Bi)]/2 
     
for A and B of similar size variances. So our slope error is approximately the same proportion as the error 
average for the non-rotated case but multiplied by (μA–μB)/(μA+μB). This good result only takes place if 
the quantity given by COV(εi–δi,Ui)/VAR(Ui) is small.
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APPENDIX 2. Histograms. 
Not one of my favorites but for completeness, Figure 8 gives the histograms for the four cases with 3-DU 
wide intervals to get the counts. The intervals began and ended at ½ DU values to avoid problems from 
the unit precision of the Dobson station values. The data were not adjusted for the biases between the sets. 
Such adjustments would improve the appearance of the results for the first and fourth cases. 
 

 
Figure 8. Histograms of data values for the four cases with 3-DU intervals.  Cases are arranged as in earlier Figures. 
The dotted lines are for Dobson (G), Dobson (G), Dobson (G) and Profile (Sp). The solid lines are for Profile (Sp), Best 
(Sb), Profile Adjusted (Spa) and Best (Sb). 
 
Sometimes representing the data by using histograms such as these can show evidence of differences in 
the two systems from a new point of view. Fitting with a distribution, e.g., the normal distribution, often 
just recovers the mean and variance information. These plots can be more helpful if one has lots and lots 
of data or can stratify the results. If one knows the truth values, then a histogram of the differences can aid 
in investigating the retrieval or measurement errors. It is interesting to see how the adjustment between 
the top left and bottom left for the Sp data produces much better agreement in the distributions with G, 
and how even though the variance of the differences is small for Sb versus Sp, the histogram for the 
fourth case (lower right) does not look that impressive. One could compare the histograms for two data 
sets with each set normalized by its mean and variance. 
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APPENDIX 3. Interactive Data Language (IDL) Code to Generate Synthetic Data Sets 
        ; INITIALIZE RANDOM NUMBER SEED 
ISEED=100675 
N=401 
        ; CREATE TRUTH SET 
R=3+2*DINDGEN(N)/(N-1.) 
SAVD=FLTARR(3,5000) 
;;;; II=0 REMOVE LOOP FOR SAMPLE CASE 
;;;; 500 REPETITIONS OF THE EXPERIMENT 
FOR II=0,499 DO BEGIN 
        ; CREATE NOISY A AND B SETS  
  A=R+RANDOMN(ISEED,N)/3. 
  TEMP=RANDOMN(ISEED,5001) 
  B=R+RANDOMN(ISEED,N)/4. 
        ; COMPUTE MEANS AND STANDARD DEVIATIONS 
  AM=TOTAL(A)/N & BM=TOTAL(B)/N & RM=TOTAL(R)/N 
  ASD=SQRT(TOTAL((A-AM)^2)/(N-1.)) 
  BSD=SQRT(TOTAL((B-BM)^2)/(N-1.)) 
  RSD=SQRT(TOTAL((R-RM)^2)/N) 
  COVAB=TOTAL((A-AM)*(B-BM)^2) 
  RHO=CORRELATE(A,B) 
  AMBSD=SQRT(TOTAL((A-AM-B+BM)^2)/(N-1.)) 
  APBSD=SQRT(TOTAL((A-AM+B-BM)^2)/(N-1.)) 
  AMRSD=SQRT(TOTAL((A-R)^2)/N) 
  BMRSD=SQRT(TOTAL((B-R)^2)/N) 
        ; COMPUTE SUBSECTION 1.1 ESTIMATES 
  RESD=SQRT(APBSD2-AMBSD2)/2. 
  AMRESD=SQRT(ASD2-RESD2) 
  BMRESD=SQRT(BSD2-RESD2) 
  SAVD(0,II)=RESD2 
  SAVD(1,II)=AMRESD2 
  SAVD(2,II)=BMRESD2 
ENDFOR 
AS=FLTARR(3) 
FOR I=0,2 DO AS(I)=TOTAL(SAVD(I,*))/5000. 
SS=AS 
FOR I=0,2 DO SS(I)=SQRT(TOTAL((SAVD(I,*)-AS(I))^2)/4999.) 
PRINT, RM,AM,BM, AM-RM,BM-RM 
PRINT, RSD2,RESD2, RSD,RESD 
PRINT, ASD2,RSD2+1./9.,ASD,SQRT(RSD2+1./9.) 
PRINT, BSD2,RSD2+1./16.,BSD,SQRT(BSD2+1/16.) 
PRINT, AMRSD2,AMRESD2, 1./9., AMRSD,AMRESD,1./3. 
PRINT, BMRSD2,BMRESD2, 1./16., BMRSD,BMRESD,1./4. 
         ; SAMPLE CASE SECTION 
         ; SORT DATA 
SA=SORT(A) & SB=SORT(B) & SAB=SORT(A+B) & SR=SORT(R) 
NS=40 
         ; BIN DATA IN 10-PERCENTILES 
BA=FLTARR(3,10) & BB=BA & BAB=BA & BR=BA 
FOR I=0,9 DO BEGIN 
  IA=SA(I*NS:I*NS+NS-1) 
  BA(0,I)=TOTAL(A(IA)) & BA(1,I)=TOTAL(B(IA)) & BA(2,I)=TOTAL(R(IA)) 
  IB=SB(I*NS:I*NS+NS-1) 
  BB(0,I)=TOTAL(A(IB)) & BB(1,I)=TOTAL(B(IB)) & BB(2,I)=TOTAL(R(IB)) 
  IAB=SAB(I*NS:I*NS+NS-1) 
  BAB(0,I)=TOTAL(A(IAB)) & BAB(1,I)=TOTAL(B(IAB)) &  
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  BAB(2,I)=TOTAL(R(IAB)) 
  IR=INDGEN(NS)+NS*I 
  BR(0,I)=TOTAL(A(IR)) & BR(1,I)=TOTAL(B(IR)) & BR(2,I)=TOTAL(R(IR)) 
ENDFOR 
BA=BA/NS & BB=BB/NS & BAB=BAB/NS & BR=BR/NS 
         ; PLOT RESULTS 
RAN=[-1,3]+3. 
!P.TITLE='NOISY DATA EXPERIEMENTS WITH RANDOM NUMBER DATA 
!X.TITLE='DATA WITHOUT NOISE' 
!Y.TITLE='DATA WITH N(0,1/3) NOISE' 
PLOT, R,A,PSYM=2,XRANGE=RAN,YRANGE=RAN 
         ; COMPUTE LINEAR FITS 
CCRA=POLY_FIT(R,A,1,RAFIT) 
CCAR=POLY_FIT(A,R,1,ARFIT) 
CCRB=POLY_FIT(R,B,1,RBFIT) 
CCBR=POLY_FIT(B,R,1,BRFIT) 
CCAB=POLY_FIT(A,B,1,ABFIT) 
CCBA=POLY_FIT(B,A,1,BAFIT) 
OPLOT, RAN,RAN 
OPLOT, RAN,CCRA(0)+CCRA(1)*RAN,LINESTYLE=1 
OPLOT, CCAR(0)+CCAR(1)*RAN,RAN,LINESTYLE=2 
PRINT, CCRA,CCAR,CCRA(1),1./CCAR(1),CCRB(1),1/CCBR(1) 
READ,ABC ; PAUSE TO LOOK AT THE RESULTS 
!P.TITLE='NOISY DATA EXPERIMENTS WITH RANDOM NUMBER DATA 
!X.TITLE='DATA WITH N(0,1/3) NOISE' 
!Y.TITLE='DATA WITH N(0,1/4) NOISE' 
PLOT,A,B,PSYM=1,XRANGE=RAN,YRANGE=RAN,SYMSIZE=.5 
OPLOT, RAN,RAN 
OPLOT, RAN,CCAB(0)+CCAB(1)*RAN,LINESTYLE=1 
OPLOT, CCBA(0)+CCBA(1)*RAN,RAN,LINESTYLE=2 
OPLOT, BA(0,*),BA(1,*),PSYM=2,SYMSIZE=2 
OPLOT, BAB(0,*),BAB(1,*),PSYM=4,SYMSIZE=2 
OPLOT, BB(0,*),BB(1,*),PSYM=5,SYMSIZE=2 
PRINT, CCAB(1),1./CCBA(1) 
PRINT,(1.+BMRESD2/RESD2),CCAB(1)*(1.+AMRESD2/RESD2) 
PRINT,(1.+AMRSD2/RSD2)*CCAB(1),CCBA(1)*(1.+BMRSD2/RSD2) 
STOP 
END 
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PROFESSIONAL PAPERS – Important 
definitive research results, major 
techniques, and special investigations. 
 
CONTRACT AND GRANT REPORTS – 
Reports prepared by contractors or 
grantees under NOAA sponsorship. 
 
ATLAS – Presentation of analyzed data 
generally in the form of maps showing 
distribution of rainfall, chemical and 
physical conditions of oceans and 
atmosphere, distribution of fishes and 
marine mammals, ionospheric conditions, 
etc. 
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– Reports containing data, observations, 
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data serials; prediction and outlook 
periodicals; technical manuals, training 
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with extensive details, mathematical 
developments, or data listings. 
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