A Trajectory Approach to Analyzing the Ingredients Associated with Heavy Winter Storms in Central North Carolina

> Chris Fuhrmann and Chip Konrad Southeast Regional Climate Center Department of Geography University of North Carolina at Chapel Hill

92nd Annual Meeting of the AMS, New Orleans, LA 25 January 2012

- Forecasting winter precipitation type is especially challenging due to variations in the vertical thermal profile
- The geography of the Southeast U.S. plays an important role in the evolution of the thermal profile
- Many winter precipitation events in the region are often near a "tipping point" with regard to temperature. Therefore, *subtle changes in the vertical profile can lead to significant changes in precipitation type.*

Snow Freezing Rain

A Trajectory Approach

- The path that an air parcel takes over space and time
- Trajectories are useful in:
	- determining the source regions of various meteorological parameters (e.g. temperature, moisture)
	- tracing the evolution of their properties back across space and time
	- relating changes in their properties to the physical processes that contribute to winter precipitation by identifying upstream conditions along the trajectory
- An underutilized method and framework for analyzing the physical processes that result in heavy winter precipitation

Objective…

- Illustrate that the fundamental ingredients and physical processes associated with heavy winter precipitation in central North Carolina can be conceptually understood through analysis of atmospheric trajectories
- This talk will focus on the **temperature** ingredient and the following research question:
	- Why are some elevated warm layers *above freezing*, resulting in *ice storms*, while others are *below freezing* (i.e. a cold layer), resulting in *snowstorms*?

Data and Methods

- 15 heavy winter storms (**8 snowstorms and 7 ice storms**) were analyzed across the study area from 2000 to 2010
- For each storm, 72-hour back trajectories were calculated from the **warm/cold layer** at the time and location of heaviest precipitation using **NOAA's HYSPLIT** tool
- The HYSPLIT tool was initialized with NCEP's Eta Data Assimilation System (**80 km and 40 km resolution**)
- Various meteorological parameters were calculated for air parcels at 1-hour intervals along each trajectory, including **temperature, moisture, potential temperature, vertical velocity, adiabatic warming/cooling, and diabatic warming/cooling**

Trajectory Classification

What is happening in the warm/cold layers?

- Parcel altitude = \sim 1 km AGL for snowstorms, <0.2 km AGL for ice storms
- Parcel temperature = net cooling (-3 degC) over Atlantic water for snowstorms, net warming (+8 degC) for ice storms
- Parcel moisture $=$ <0.5 g/kg net increase over Atlantic water for snowstorms, >4 g/kg net increase for ice storms
- Parcel potential temperature = net decrease (-2 degK) over Atlantic water for snowstorms, net increase (+16 degK) for ice storms
- **Develop a simple method to estimate the diabatic contribution (warming or cooling) to air parcel temperature:**

What would the **cold layer** temperature be *without* contributions from diabatic processes?

What would the **warm layer** temperature be *without* contributions from diabatic processes?

Net Diabatic Contribution to Air Parcel Temperature

Conclusions

- Diabatic processes contribute significantly to the vertical temperature profile during heavy winter storms, and therefore dictate the resulting precipitation type
- The main source of diabatic warming is fluxes of sensible and latent heat within the marine atmospheric boundary layer over the Gulf Stream – these fluxes contribute to a warming and moistening of air parcels associated with heavy ice storms
- Heavy snowstorms are characterized by diabatic cooling in the lower troposphere above the marine atmospheric boundary layer

