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ABSTRACT

A monthly reconstruction of precipitation beginning in 1900 is presented. The reconstruction resolves

interannual and longer time scales and spatial scales larger than 58 over both land and oceans. Because of

different land and ocean data availability, the reconstruction combines two separate historical reconstruc-

tions. One analyzes interannual variations directly by fitting gauge-based anomalies to large-scale spatial

modes. This direct reconstruction is used for land anomalies and interannual oceanic anomalies. The other

analyzes annual and longer variations indirectly from correlations with analyzed sea surface temperature and

sea level pressure. This indirect reconstruction is used for oceanic variations with time scales longer than

interannual. In addition, a method of estimating reconstruction errors is also presented.

Over land the reconstruction is a filtered representation of the gauge data with data gaps filled. Over oceans

the reconstruction gives an estimate of the atmospheric response to changing temperature and pressure,

combined with interannual variations. The reconstruction makes it possible to evaluate global precipitation

variations for periods much longer than the satellite period, which begins in 1979. Evaluations show some

large-scale similarities with coupled model precipitation variations over the twentieth century, including an

increasing tendency over the century. The reconstructed land and sea trends tend to be out of phase at low

latitudes, similar to the out-of-phase relationship for interannual variations. This reconstruction may be used

for climate monitoring, for statistical climate studies of the twentieth century, and for helping to evaluate

dynamic climate models. In the future the possibility of improving the reconstruction will be explored by

further improving the analysis methods and including additional data.

1. Introduction

Observations from a number of earth-orbiting satel-

lites combined with rain gauge measurements make it

possible to analyze global precipitation for the satellite

era. Monthly precipitation analyses beginning in 1979

have been produced by the Global Precipitation Cli-

matology Project (GPCP) (Huffman et al. 1997; Adler

et al. 2003; Huffman et al. 2009) and Climate Prediction

Center Merged Analysis of Precipitation (CMAP) (Xie

and Arkin 1996, 1997). These land–ocean analyses are

valuable for assessing global and regional climate vari-

ability in the satellite era. For climate change studies it is

desirable to have longer records. Here we discuss im-

proved methods for using the available historical ob-

servations with statistics obtained from satellite-based

data to extend the global precipitation record back to

1900. This includes ocean-area precipitation, an impor-

tant component of the global hydrologic cycle that could

be affected by climate change.
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Over the oceans both sea surface temperature (SST)

and sea level pressure (SLP) have been reconstructed

through the twentieth century (e.g., see Smith and

Reynolds 2005; Smith et al. 2008a; Allan and Ansell

2006). Oceanic monthly reconstructions of SST and SLP

anomalies are possible because they were regularly mea-

sured by ships over the twentieth century (e.g., Woodruff

et al. 1998) and because of their relatively large time and

space scales. The longer climate records allow SST and

SLP reconstructions to be used to better understand

climate variations and to validate climate models. His-

torical precipitation beginning in 1900 is available for

many land regions from rain gauge measurements (e.g.,

Vose et al. 1998). However, there are many land re-

gions where gauges are sparse, and over oceans there are

no systematic gauge observations for the presatellite

period.

Reconstructions of historical precipitation that includes

oceanic regions have been developed in an attempt to

fill in these missing regions for the presatellite era. Xie

et al. (2001) fit gauge data to a set of empirical orthog-

onal functions (EOFs) to reconstruct precipitation for

the second half of the twentieth century. Their recon-

struction yielded good skill in the tropical Pacific be-

cause of its ability to reconstruct variations associated

with ENSO. In most other regions their reconstruction

had little skill. A similar reconstruction by Efthymiadis

et al. (2005) gave similar results, with little skill outside

the tropics except near gauge locations. Smith et al.

(2008b) produced a similar reconstruction for monthly

precipitation beginning in 1900. This reconstruction,

computed by fitting Global Historical Climatology Net-

work (GHCN) (Vose et al. 1998) gauge data to a set of

EOFs, will be referred to as REOF. The REOF was

based on an improved satellite base analysis and carefully

tuned. Besides having high skill in the tropics, consistent

with earlier studies, the REOF was found to have im-

proved skill over Northern Hemisphere extratropical

oceans. The REOF skill is lowest in the extratropical

Southern Ocean. Another deficiency with the REOF is

its multidecadal component, which was found to be sen-

sitive to the gauge dataset used for the reconstruction.

Evaluation of multidecadal variations is important for

understanding twentieth-century climate variations, so

something more than the REOF was needed.

In an attempt to better resolve multidecadal variations,

we developed a canonical correlation analysis (CCA)

relating fields of SST and SLP anomalies to precipitation

anomalies [Smith et al. (2009a); also see Barnett and

Preisendorfer (1987) for a description of CCA]. The SST

and SLP anomalies have been reconstructed over oceanic

regions and are historically better sampled than precipi-

tation. Relationships for the CCA are developed using

a satellite-based precipitation analysis over the satellite

era. Since this reconstruction was intended to resolve

large-scale multidecadal variations, annual precipitation

anomalies were analyzed using their relationships to

annual SST and SLP anomalies. We will refer to this

reconstruction as RCCA.

Large-scale averages of the RCCA were found to

compare well with the available data. The near-global

average at gauge locations is consistent with averages of

independent gauges. Over oceans both the RCCA and

an ensemble of Fourth Assessment Report (AR4) cou-

pled models (Randall et al. 2007) indicate increasing

average precipitation on multidecadal time scales, al-

though the RCCA increase is stronger than that from

the AR4 ensemble (see Smith et al. 2009a for details).

However, smaller-scale variations in the RCCA are

much weaker than in the REOF.

Clearly, it is desirable to blend these two analyses,

retaining the best features of each. The REOF has more

reliable month-to-month variations and better spatial

resolution, so its high-frequency variations should be

part of the blended analysis. The RCCA has more reli-

able multidecadal variations, so its low-frequency vari-

ations should be part of the blended analysis.

Our previous studies show that many aspects of large-

scale precipitation anomalies can be resolved using

monthly or annual modes. This is particularly useful for

oceanic anomalies, which are important for understand-

ing climate variations but not well described for most of

the twentieth century. Because of a lack of direct oceanic

data for most of that time, it is difficult to evaluate the

climate-scale anomalies and to know the accuracy of

those evaluations. But there are some data available,

so reconstructions are possible. We present the present

reconstruction as a useful step toward a better under-

standing of historical precipitation, with the understand-

ing that there may be many future improvements in data,

analyses, and models that could increase our future un-

derstanding of oceanic precipitation variations.

In the following sections, the input data and individual

reconstructions to be blended are described in greater

detail. Blending methods are then presented, followed by

discussions of results and a summary. A method for esti-

mating reconstruction error is presented in the appendix.

2. Input data and reconstructions

Here we describe the different datasets needed to

compute the reconstructions. Data used for comparisons

with the reconstruction are also described. A description

of the reconstruction based on fitting gauge data to

EOFS (REOF) and the reconstruction based on a CCA

(RCCA) is provided. For both REOF and RCCA the
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cross-validation tests used to tune the EOF and CCA

reconstructions and the skill of the individual analyses

are discussed.

a. Input data

Satellite-based datasets are used for development of

the reconstructions and to help validate the analyses.

These base datasets are needed to compute the large-

scale spatial covariance used in the reconstructions.

Therefore, it is critical that they be as accurate and un-

biased as possible to avoid introducing false signals to

the historical reconstruction.

One satellite-based analysis used is the GPCP, men-

tioned above (Huffman et al. 1997; Adler et al. 2003).

The current version of the GPCP is version 2.1 (GPCP.v2.1)

(Huffman et al. 2009). The GPCP combines different

infrared- and microwave-based satellite analyses after

adjusting them to remove intersatellite biases. The com-

bined satellite product is merged with a gauge product.

The result is a global monthly precipitation analysis on

a 2.58 latitude–longitude grid beginning January 1979.

Changes incorporated into GPCP.v2.1 include the use of

improved gauge data from the Global Precipitation Cli-

matology Centre (GPCC) and improved adjustments for

the satellite inputs. Here the GPCP.v2.1 monthly data are

used from 1979 to 2008 for reconstruction model de-

velopment and evaluation.

The statistical reconstruction models used here will

use covariance computed from the satellite base period

data, beginning in 1979, to reconstruct the presatellite

period, beginning in 1900. It is important that the satellite-

period analysis be as free as possible from nonphysical

variations to keep spurious variations out of the recon-

struction. One potential problem is inhomogeneities

from using satellites with different sampling times and

different instruments. Problems may be especially se-

vere at high latitudes where satellite data are less reli-

able. The GPCP data have been carefully constructed

for climate studies, including adjustments to minimize

intersatellite biases. Testing on an earlier version of the

GPCP showed no apparent biases from using multiple

satellite inputs (Smith et al. 2006). However, the need

for a mix of different inputs over time makes it possible

that there may still be some subtle biases in GPCP that

could contaminate reconstruction statistics. Therefore,

as the satellite base period is extended and analyses of

the satellite data improve, it is possible that historical

reconstructions may also be improved by the use of these

improved base data.

Gauge-based precipitation analyses are used for the

REOF, and several gauge analyses are tested here. One

gauge analysis is the GHCN (Vose et al. 1998), produced

by the National Climatic Data Center. The GHCN is

a monthly analysis on a 58 spatial grid, from 1900 to 2008.

The GPCC full data reanalysis product version 4 gauge

data are also used to test our reconstructions. The monthly

GPCC data are available from 1901 to 2007. Descriptions

of the GPCC are given by Schneider et al. (2008) and

Rudolf (2005). Here we average their 2.58 data to the

58 grid. In addition we also use the University of East

Anglia Climatic Research Unit (CRU) 58 monthly gauge

analysis (Hulme et al. 1998). The monthly CRU analysis is

available from 1900 to 1998.

All three gauge-based datasets are tested in the REOF

analysis. Differences can occur because of different data

included in the gauge analyses, differences in gauge ad-

justments and quality control, filling to replace missing

stations, and differences in averaging from individual

stations to 58 regions. Gauge analysis differences in

areal coverage are illustrated by Fig. 1. For most of the

historical period the CRU analysis shows better cov-

erage of 58 areas than either of the others, while GHCN

has the least. This figure illustrates regional coverage of

filled 58 areas but not the total number of gauges. Both

the GHCN and GPCC incorporate the CRU stations

and use more individual station observations. Differences

in the coverage are due to interpolation to fill missing

data before averaging to spatial regions. The GPCC is

interpolated to a regular grid before spatial averaging.

There is more extensive interpolation of CRU stations

before averaging, yielding greater product coverage in

most years. Interpolation to fill gaps in the CRU station

records will likely increase the random error for indi-

vidual 58 values. However, as we discuss below, the anal-

ysis involves fitting data using spatial modes that filter out

nearly all random errors, and for our analysis the spatial

coverage is more critical. We test these different gauge-

based datasets to evaluate each for use with our analysis

method, with the understanding that the dataset that is

best for our application may not be best for others.

FIG. 1. Percent of global 58 areas filled by each of the gauge

analyses used. Annual averages of the monthly percentage of

global area filled are shown.
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Both SST and SLP historical analyses are used in the

RCCA. The SSTs are from the analysis of Smith et al.

(2008a), and the SLPs are from the analysis of Allan and

Ansell (2006). The RCCA is performed on an annual 58

latitude–longitude grid and those input analyses are av-

eraged to match that grid.

b. REOF

The method used for producing the reconstruction

based on EOFs was described by Smith et al. (2008b).

Here we summarize the method and note differences in

the present REOF compared to Smith et al. (2008b), which

should be consulted for more details of the method.

The REOF analysis uses a set of large-scale co-

variance EOFs of precipitation anomalies. The EOFs

need to represent spatial scales that extend from regions

where data are available to other regions. For analyses

the REOF uses gauge data from over land and islands.

The REOF analysis is performed separately in three

regions: 808–208S, 308S–308N, and 208–808N. This separa-

tion is done to enhance the sensitivity of the reconstruction

to extratropical variability, which is generally smaller than

tropical variability. After the REOFs are computed for

each region, they are merged with smoothing across the

overlap regions.

For each region, a set of EOFs is computed using the

GPCP.v2.1 monthly anomalies, 1979–2008. A maximum

number of EOFs for each region is assigned and used for

the reconstruction. The reconstruction finds weights for

each of the EOFs for each month that minimize the mean-

squared error between the reconstructed and gauge

anomaly. Weights are determined by fitting the available

gauge data to the set of EOFs.

The maximum number of EOFs to use for each region

is determined by cross-validation testing. In addition,

each EOF from that maximum set must pass a screening

test using the gauge sampling for each month or it will be

excluded for that month’s analysis. Cross-validation test-

ing is also used to determine the screening level to use for

the REOF in each region. The screening parameter for

each EOF mode is the fraction of EOF variance sampled

by the available data.

Cross-validation testing uses the GPCP.v2.1 data and

historical sampling to simulate reconstruction conditions

for three 30-yr periods: 1900–29, 1930–59, and 1960–89. In

Smith et al. (2008b), the maximum number of modes

was found to be 6 for the southern extratropics, 12 for

the tropics, and 11 for the northern extratropics. These

settings are chosen to give low rms error in the cross-

validation tests conducted using the historical sampling

grids. Here the values for these three regions were found

to be 5, 15, and 10, respectively. Thus, there was little

change in the tuning of the maximum number of modes in

each region. For all of these regions there was little

change in the mean-squared error when the screening

parameter was set between 0.05 and 0.15, compared to

changes outside that range. In Smith et al. (2008b), the

sampling fraction was set to 0.05. However, here we

find that for some regions and historical grids, the error

was reduced using a slightly higher screening parame-

ter value; therefore, we use 0.15 in the REOFs. This

slightly higher value requires slightly more sampling

for each mode compared to the earlier REOF.

In Smith et al. (2008b) a REOF was evaluated by re-

gressing it against climate modes. The resulting regression

maps were used to show the spatial reconstruction pat-

terns associated with each mode. Here that is repeated for

two important modes—the Southern Oscillation index

(SOI) and the North Atlantic Oscillation (NAO)—using

the same SOI and NAO index values. These regressions

were used to evaluate the GHCN-based REOF, here

called REOF(GHCN); the GPCC-based REOF, called

REOF(GPCC); and the CRU-based REOF, called

REOF(CRU). All three exhibit similar ENSO and NAO

regression patterns, indicating that they all resolve these

important climate modes.

The global spatial standard deviation for each his-

torical REOF (Fig. 2) indicates their relative consistency

of each over time. Here the monthly global spatial var-

iance is computed and then averaged annually before

taking the square root to define the spatial standard de-

viation of each. REOF(GHCN) has lower values before

1950, when its sampling tends to be low (Fig. 1). After

about 1990, sampling for both GHCN and CRU decreases.

There is a corresponding decrease in its REOF(GHCN)

standard deviation in that period (Fig. 2), while the CRU

ends after 1998. Compared to REOF(GHCN), both

REOF(GPCC) and REOF(CRU) have more consis-

tent standard deviation values over most of the period.

FIG. 2. Global spatial standard deviation for each of the three

REOFs and for the GPCP data filtered using the REOF modes.

For plotting clarity the monthly spatial variance are averaged to

annual values, and the square root of that is taken for the standard

deviation.
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REOF(GPCC) has lower standard deviations before

1910, when it has less coverage (Fig. 1), but it also de-

creases in both sampling and standard deviation in the

most recent years (Fig. 2). The REOF(GPCC) also in-

dicates strong positive values associated with the 1997/98

ENSO, which the other gauge-based REOFs only partly

resolve.

The GPCC monitoring product is incorporated into

the GPCP satellite–gauge analysis, which is used to

compute reconstruction statistics. Although the moni-

toring product is not identical to the GPCC full data

reanalysis product used here, it could give the GPCC an

advantage over gauge datasets not used in the GPCP.

However, even more important is the strong GPCC sam-

pling in more recent years, which allows the REOF(GPCC)

standard deviation to be similar to the standard deviation of

the GPCP-based REOF, referred to as the REOF(GPCP).

The REOF(GPCC) standard deviation in 1997/98 is

slightly higher than the REOF(GPCP) standard devia-

tion for that time. Since the GPCP includes much more

data than the GPCC, the slightly higher variance for

1997/98 may indicate errors in the REOF(GPCC). Since

the REOF analysis is tuned to avoid overfitting errors

when data are sparse and because that is not a sparse-

sampling time for the GPCC, the higher standard de-

viation is likely caused by GPCC errors. In any case the

differences between the two are small.

Overall, the REOF(CRU) has the most consistent

standard deviation values over most of its record and for

the overlap period before 1990 it yields values similar to

the REOF(GPCP). This is likely due to the CRU product

filling of more 58 grid squares over most of its record.

For their common analysis period (1901–98) global

spatial correlations between pairs of REOFs are computed

to better indicate when they are most similar (Fig. 3).

Correlations against the REOF(GHCN) tend to be lowest

early in the reconstruction period when GHCN coverage

is lowest. REOF(GPCC) and REOF(CRU) have roughly

consistent correlations for their entire overlap period,

and after 1950 the REOF(GHCN) and REOF(GPCC)

correlations have similar values. The strongest correla-

tions are between the REOF(GHCN) and REOF(CRU)

in 1950–90. This strong correlation indicates that the

two gauge analyses yield similar variations when gauge-

product coverage is sufficient in both.

These intercomparisons between the three REOFs

indicate that since about 1950 REOF(CRU) and

REOF(GHCN) are similar, but early in the twentieth

century REOF(CRU) may be more reliable owing to its

better gauge-product coverage. The spatial standard

deviations and correlations both indicate that the lower

GHCN product coverage leads to filtering out variations

in the early twentieth century. The GPCC has better

coverage than either of the others in recent years; how-

ever, it may artificially inflate variations, as discussed

above. Even in 1950–90 when sampling is best for all

gauge analyses, REOF(GPCC) typically has higher stan-

dard deviations than either of the other two.

Because the REOF(CRU) has the most consistent

variance over its entire reconstruction period, and also

because of its consistency with REOF(GHCN) since

1950, we use the REOF(CRU) for 1900–78. Since the

CRU gauge analysis is not updated throughout the en-

tire period and sampling becomes sparse near the end

of the twentieth century, a different REOF is required

for the end of the period. Therefore, after 1988 we will

use the REOF(GPCP). From 1979 to 1988 we smoothly

merge the two, using linear weights so that in 1978 the

blended REOF is all REOF(CRU) and in 1989 it is all

REOF(GPCP). Since the two have similar variance in the

overlap period, this blending should not cause a shift in the

overall variance of the analysis. Because of filtering by

the EOF modes, there are no apparent jumps induced by

changing the GPCP inputs over the REOF(GPCP) record.

We refer to this blended analysis as the REOF(Blend). The

common overlap period, 1979–88, is also used as a recen-

tering period. The averages of anomalies are all forced to

equal zero over this period in the comparisons that follow.

In Smith et al. (2008b), it was shown that the REOF

method realistically reconstructs interannual variations,

but it may be less reliable for representing multidecadal

variations. Here the reconstructions are compared for

global averages over both land and ocean separately.

The annual and global averages are first computed and

then filtered using a 7-yr low-pass filter to more clearly

show the multidecadal variations. The low-pass weights

for the annual average are (0.032, 0.110, 0.220, 0.276,

0.220, 0.110, 0.032), which are close to binomial weights

for a 9-yr filter with the end years eliminated.

FIG. 3. Global spatial correlations between pairs of REOFs.

Each REOF is based on a gauge analysis, and the pairs correlated

are indicated on the figure. For plotting clarity monthly correla-

tions are averaged to annual values.
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The land-average multidecadal variations are similar

for all three (Fig. 4), although REOF(GHCN) is more

damped than the others before 1950. The REOF(GPCP)

is similar to the others for most of the overlap period, but

it shows a sharp increase in the last several years when

the REOF(GHCN) is damped due to a dropoff in

sampling. The recent increase is partly reflected in the

REOF(GPCC).

Over oceans (Fig. 5) there are greater differences in

the first half of the twentieth century. Differences may

be increased by the fact that most ocean locations are

remote from gauge sampling, making the oceanic com-

ponent of the historical REOFs depend on large-scale

teleconnections from the leading modes. Over land this

is less critical because there are many local data to

adjust the analysis. Without similar local oceanic data,

the oceanic REOF multidecadal variations are less reli-

able, especially in the early twentieth century when

sampling was sparser. In the second half of the twen-

tieth century the ocean-area reconstruction averages

are more consistent.

Differences in the oceanic multidecadal signals from

earlier REOF analyses were discussed by Smith et al.

(2008b), and they inspired Smith et al. (2009a) to de-

velop an indirect reconstruction method for resolving

oceanic multidecadal variations. That method reconstructs

precipitation anomalies using both local and remote oce-

anic variables related to precipitation.

c. RCCA

The reconstruction using canonical correlation anal-

ysis was discussed in detail by Smith et al. (2009a). CCA

was used by Barnett and Preisendorfer (1987) to fore-

cast North American temperatures using SST and SLP

predictors. The CCA finds correlations between fields of

predictors and a predictand field, which can then be used

to estimate the predictand field at some other time when

only the predictors are available. Historical monthly

reconstructions of SST and SLP are available for the

twentieth century, based mostly on ship observations

of these variables. On long time scales there tend to

be relationships between the SST and SLP anomalies

and precipitation anomalies. This allows us to use data

from the GPCP period to define the relationships and

then use those relationships to reconstruct precipitation

anomalies at times before the satellite period. Smith

et al. (2009a) found that most relationships reflected

in the RCCA have seasonal time scales or longer and,

therefore, produced their RCCA for annual average

anomalies. Here we do the same except that we use the

updated GPCP.v2.1 data. The RCCA training period is

1979–2004, from the first year of the satellite period to

the last year of the historical SLP analysis.

The number of RCCA modes is tuned to ensure that

the optimal amount of variance is reconstructed. Here

cross-validation tests are performed that compute the

RCCA for each year using training data that excludes

the analysis year. For each of the cross-validation years

the RCCA used 9 or 10 modes, although 9 were used

more often than 10 and the tenth mode never added

more than a small fraction of the variance. Usually the

tenth and higher modes were truncated since they

accounted for less than 1% of the first mode’s variance.

Thus, we perform our RCCA using 9 modes. However,

testing using fewer modes showed that most multidecadal

variations were retained using as few as 3 modes.

In our earlier studies we found that the annual average

fields of precipitation anomalies are related to annual

average fields of both SST and SLP. Comparing annual

RCCA results against the annual GPCP for the depen-

dant period shows that the best correlations occur in the

tropics where precipitation anomalies are also strongest.

Tropical values are roughly 0.6–0.9, with the highest

values in the tropical Pacific associated with ENSO.

Lowest correlations, typically less than 0.5, occur at high

latitudes where the anomalies also tend to be weak. The

global average correlation is about 0.6. If the RCCA is

FIG. 4. Low-pass filtered annual global averages over land areas

for each of the indicated REOFs. The REOF(GPCP) is the GPCP

data filtered using the reconstruction modes.

FIG. 5. As in Fig. 4, but over ocean areas.
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performed using only SST or only SLP, the correlations

are lower, with global averages of roughly 0.5 for each

used individually.

d. Comparing REOF and RCCA

Next we compare the REOF and RCCA estimates

over both land and ocean areas. The REOF discussed

here is the blend of REOF (CRU) and REOF (GPCP),

REOF(Blend).

Over land the different estimates are all correlated in

their interannual variations (Fig. 6). The larger varia-

tions in the CRU gauge data are more closely matched

by the REOF(Blend) when it is subsampled at gauge

locations (shown by the thin dotted black line). Both the

REOF(Blend) and the CRU gauges indicate a positive

trend over the period, but the RCCA indicates a nega-

tive trend over the period (see Table 1). All, including

the CRU data, show decreased land precipitation in the

1970s. That 1970s land decrease could be associated with

the oceanic 1970s increase, due to a shift of precipitation

from one region to another. Because local gauge data

anchor the land area REOF(Blend), it should be better

able to better represent variations over land compared

to its oceanic variations. By comparison, the RCCA land

analysis does not use gauges and depends heavily on

teleconnections from ocean areas driven by the SSTs. In

regions near gauge data, direct reconstructions using

those data should be superior to indirect reconstruc-

tions. Therefore, the REOF(Blend) should be used over

land regions.

Averages over ocean areas are similar for the

REOF(Blend) and RCCA for most of the satellite period

(Fig. 7). Before 1980 they diverge, with the REOF(Blend)

indicating a negative trend and the RCCA a positive trend.

In addition, the REOF(Blend) does not resolve the 1970s

climate shift, which is associated with a rapid change in

Pacific SSTs (Trenberth and Hurrell 1994; Zhang et al.

1997). The RCCA increasing precipitation and 1970s cli-

mate shift are modeled from correlations with the SST

variations. The ocean-area average AR4 indicates a

weaker but consistent positive trend, which is the theo-

retical response to a warming earth (Held and Soden 2006;

Allan and Soden 2008). There is some observational evi-

dence from satellites for overall increasing precipitation

(Wentz et al. 2007; Adler et al. 2008). The ability of the

RCCA to resolve these oceanic variations, consistent with

known and theoretical climate variations, suggests that its

multidecadal signal is superior to the REOF(Blend) mul-

tidecadal signal over oceans. The local SST data appear

to be most important for the RCCA resolution of those

oceanic variations.

For the satellite period, the REOF(GPCP) gives a fil-

tered version of the satellite-based GPCP, and the in-

creasing tendency in that period is similar in both during

that relatively brief period. Note that if only the tropics

are considered, then the variations are stronger; however,

they are qualitatively the same since most of the global

precipitation variations occur in the tropics.

Although the multidecadal variations are not linear

trends, examination of trends is useful for evaluating

overall changes of different estimates. Table 1 shows

trends from several reconstructions, the AR4 model

FIG. 6. Low-pass filtered annual global averages over land areas

for each of the indicated estimates. For the REOF(Blend), the

solid line is averages over all land area and the dotted line is av-

erages only over areas with CRU gauge sampling.

TABLE 1. Trends of low-pass filtered annual global averages of

the indicated estimate, averaged over land areas, ocean areas, and

all areas. The REOF analysis is the blended REOF(CRU) and

REOF(GPCP); REOF(G) indicates using only sampling at CRU

gauge locations. All trends are over 1900–98, and units are

mm month21 (100 yr)21.

Estimate Land Ocean All areas

RCCA 20.5 1.6 0.7

AR4 20.1 0.7 0.4

REOF 0.4 20.4 20.1

REOF(G) 0.4 — —

CRU gauges 1.2 — —

FIG. 7. Low-pass filtered annual global averages over ocean areas

for each of the indicated estimates.
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ensemble, and gauges. The AR4 interannual signal is

damped because the models used in the ensemble do not

have phase-locked interannual variations, but they do

have consistent greenhouse gas and aerosol forcing. The

RCCA has a strong positive ocean-area trend, but its

land-area trend is negative. The RCCA difference in

sign between ocean and land trends may be due to the

generally opposite tendency in precipitation anomalies

associated with ENSO episodes (Adler et al. 2008). The

RCCA ENSO modes are developed from interannual

variations, but those ENSO modes are used for model-

ing variations on longer time scales that can include

ENSO-like variations (Zhang et al. 1997). Because the

GPCP record is relatively brief, its modes may not fully

span multidecadal variations in the full analysis period.

If the ENSO-like low-frequency variations have oppo-

site land–sea precipitation tendencies, similar to inter-

annual ENSO variations, then the opposite tendency in

the RCCA may be correct. A similar but weaker ocean–

land difference is evident for the AR4 ensemble trends.

The CRU gauge data and the land REOF(Blend)

both suggest that this tendency for opposite ocean–land

precipitation trends may be overestimated by the RCCA.

Both of those gauge-based estimates show positive trends

over land areas, demonstrating the importance of local

data.

3. Merging REOF(Blend) and RCCA

The REOF(Blend) uses the REOF(CRU) through

1978, REOF(GPCP) after 1988, and a smooth blend of

the two in between. This step merges the REOF(Blend)

with the RCCA by bias adjusting the REOF(Blend)

using the RCCA multidecadal signal.

As discussed above, the multidecadal component is

approximated by filtering annual averages to remove

most interannual variations. In the sections above and

here, we filtered over seven years using the near-binomial

weights defined in section 2b. The figures in section 2

illustrate the effect of this filter. This filter was chosen

for adjusting the REOF(Blend) after performing a num-

ber of tests on an earlier REOF analysis using GPCP base

data and GHCN gauge data.

In section 2 we show that over the oceans the

REOF(Blend) multidecadal signal is less consistent

between analyses early in the twentieth century, owing

to sparse data. Therefore, oceanic regions are bias ad-

justed so that their multidecadal variations match the

RCCA multidecadal variations. The REOF(Blend) is

annually averaged and filtered using the seven annual

weights, while the annual RCCA analysis is similarly

filtered to define its multidecadal signal. Both multidecadal

signals are interpolated to monthly values, and over oceans

the REOF(Blend) multidecadal signal is removed and the

RCCA multidecadal signal is inserted.

Land regions do not require bias adjustment since they

are sampled by the gauges, which are assumed here to

be unbiased. Biases in the gauge data can occur, espe-

cially in cold regions because of blowing snow. How-

ever, these biases are better understood than potential

biases in oceanic analyses, and therefore we concen-

trate on adjusting the oceanic analysis. Since land re-

gions are not adjusted, the adjustment weight for 58

regions that are all land is zero. The adjustment weight

for regions that are all ocean is one, and for coastal and

island regions the weight is between 0 and 1, depending on

the fraction of land area. Because the land REOF(Blend)

multidecadal signal is similar to the land RCCA multi-

decadal signal, coastal discontinuities in the multide-

cadal signal are minimal. The REOF(Blend) uses the

REOF(GPCP) data after 1988, which gives it good oce-

anic sampling for the recent period. Thus, it should not be

necessary to bias adjust it for the most recent years and

for any updates to the analysis that we may wish to pro-

duce. Therefore, the bias adjustment is allowed to decay

linearly from full strength in 1989 to zero in 1999. Because

the REOF(GPCP) heavily filters the GPCP, we should be

able to use future updated versions of the GPCP to up-

date the analysis without introducing inhomogeneities.

We tested an analysis in which the RCCA annual

anomalies are statistically reinjected into the bias-adjusted

REOF(Blend). This could possibly improve skill if

the annual RCCA contains interannual variations that

are not well represented in the annual bias-adjusted

REOF(Blend), which could occur in parts of the southern

oceans where the REOF signal is weakest. We found that

the analysis with reinjected RCCA had lower variance

than the bias-adjusted REOF(Blend) almost everywhere,

including in the Southern Ocean. Since variance damping

is undesirable, we do not use the analysis with the rein-

jected RCCA.

Where there are gauges, reinjecting the gauge data

will enhance the accuracy of the analysis, particularly for

smaller spatial scales. A user of this reanalysis particu-

larly interested in land values may wish to reinject a

gauge analysis, such as one of those tested here. Our

major goal here is to reconstruct oceanic variations, so

gauge reinjection is not performed for this version of the

reconstruction.

4. Merged precipitation anomalies

Here the blended bias-adjusted reconstruction is dis-

cussed and compared with other analyses. First, the

overall variations are examined to see how they may

change in time. An overall measure of analysis strength
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is provided by the spatial standard deviation. The global

spatial variance is computed monthly and then annually

averaged for plotting clarity before the square root is

taken. We show spatial standard deviation time series

for the bias-adjusted REOF(Blend), the RCCA, the

REOF(GPCP), and the GPCP (Fig. 8). For consistency,

the RCCA values were interpolated to monthly values

before computing spatial statistics.

The adjusted REOF(Blend) has systematically higher

standard deviation than the RCCA, although both in-

dicate ENSO variations over the analysis period. Both

adjusted REOF(Blend) and RCCA have consistent

standard deviations, with slight negative trends in each.

Thus, the sparse sampling early in the twentieth century

is not causing the analyses to be damped in that period.

For REOF(GPCP) the standard deviation is consistent

with values for the adjusted REOF(Blend). Both have

similar averages and magnitudes of changes with ENSO

episodes. This indicates that blending with the adjusted

REOF(GPCP) should not cause variance jumps relative

to the earlier period. The GPCP standard deviation is

largest of all because those data are not filtered with

spatial modes and they represent all satellite and gauge

spatial variations. In addition, the GPCP standard de-

viation has a trend from before 1990, when infrared-

based satellite estimates dominate the analysis, to the

later years when microwave-based satellite estimates

are used. The microwave-based satellite estimates have

higher spatial resolution, and this trend in the GPCP

standard deviation reflects the change in instruments

used rather than changes in precipitation. Filtering in

the REOF(GPCP) removes this trend from the data

used in the blend.

The bias-adjusted REOF(Blend) with the 7-yr low-

pass filter applied is shown for averages over the global

oceans (Fig. 9) and averages over all ocean and land

areas (Fig. 10). Over the oceans, this is the same as the

RCCA low-pass average. The uncertainty estimates over

oceans, computed using methods described in the ap-

pendix, are about 0.5 mm month21 early in the period,

shrinking to less than half that by the end of the period.

Much of this error is due to bias error from the RCCA,

but the sampling error component also contributes to

errors early in the analysis period. Near the end of the

analysis period most of the error is from bias errors.

Bias errors are largest before 1940 when the SST bias

uncertainty is largest, which causes uncertainty in the

RCCA. Note that the 1970s increase in oceanic precipi-

tation occurs before the beginning of the GPCP period.

Testing the RCCA analysis showed that it is caused by

changes in SSTs in that period. The rapid increase in

the oceanic RCCA is associated mostly with the main

ENSO mode, caused by the ENSO-like shift in SSTs

(Trenberth and Hurrell 1994; Zhang et al. 1997; Smith

et al. 2009b).

Combined ocean and land averages (Fig. 10) have an

increase over the twentieth century similar to the ocean

averages, but the increase is not as strong when land

areas are included. In addition, for the total area the

FIG. 8. Global spatial standard deviations for the indicated

analyses. The REOF(Blend) is bias adjusted over oceans using the

multidecadal RCCA. For plotting clarity the monthly spatial var-

iance is averaged to annual values, and the square root of that is

taken for the standard deviation.

FIG. 9. Global ocean-area-average bias-adjusted REOF(Blend)

with the 7-yr low-pass filter applied, with 95% confidence interval

estimates.

FIG. 10. As in Fig. 9, but for ocean and land.
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1970s climate shift is not apparent, and there are fewer

variations with time scales shorter than 10 years. Thus,

there is a tendency for land variations to counteract

oceanic variations, likely from land-to-ocean shifts of

precipitation associated with the variations. In the com-

bined average there is more year-to-year variation in the

satellite period, which could be influenced by satellite

sampling in the REOF(GPCP) part of the reconstruction.

However, Fig. 8 shows that the REOF filtering removes

most or all additional variance from satellites, while Fig. 5

indicates that the REOF(GPCC) roughly matches the

REOF(GPCP) over the common record. In addition,

Fig. 10 indicates greater year-to-year variation before

1920 than over much of the period, so the more frequent

variations at the end of the period may represent natural

variations unrelated to sampling.

The error estimates in Fig. 10 are also smaller for the

all-area average, with largest values between about 1940

and 1990 due to an increase in the sampling error esti-

mate over that period. After 1990 errors are smaller.

Note that the sampling error estimate used here is com-

puted from the difference in variance between the base

period and the historical reconstruction. It uses the as-

sumption that the variance is roughly stationary, and it

does not directly measure the sampling. Thus, it should

be considered a crude estimate of the sampling error.

The midcentury inflation in global all-area sampling

error is likely influenced by changes in SST and SLP

sampling, which affects the RCCA variance. But, the

reduced variance may also represent natural reductions

in the variation of important climate modes, such as the

ENSO and NAO.

Next, the tendency and strength of the analysis are

evaluated using the linear trend and the standard de-

viation over the analysis period (Fig. 11). Here trends are

used as a diagnostic tool to evaluate the reconstruction.

FIG. 11. (top) Linear trend and (bottom) standard deviation of bias-adjusted REOF(Blend)

monthly anomalies, 1900–2008.

5764 J O U R N A L O F C L I M A T E VOLUME 23



Trends may not be fully resolved by the reconstruction

because the base period is not long enough to span all

multidecadal variations. However, the results indicate

that many multidecadal variations are resolved by our

reconstruction, making this a meaningful diagnostic. For

both monthly anomalies are used. The trend is scaled so

that it may be plotted using the same shading as the

standard deviation. The trends are clearly strongest over

the oceans where the RCCA multidecadal component

defines them. However, there are trends over land, in-

cluding a positive trend over the eastern United States.

There is also consistency between ocean and land trends

in several places, including parts of South America, the

west coast of North America, and northern Australia.

The standard deviation shows that strongest variations

are over the tropics, but there are secondary maxima over

the northern midlatitudes associated with extratropical

storm tracks. There is much less variation in the Southern

Ocean, where the REOF analysis has only five modes

owing to the lack of gauge sampling in that region.

Much of the variation in the Southern Ocean comes

from the RCCA component of the analysis, as indicated

by the standard deviation ratio of low-pass filtered data

to the unfiltered standard deviation (Fig. 12, top). The

low-pass standard deviation is also a large fraction of the

whole in the southeast Pacific and Atlantic, which are

normally dry, and in the Arabian Sea and off the west

coast of North America and North Africa. Over regions

dominated by extratropical cyclones the low-pass stan-

dard deviation is a small fraction of the total. The frac-

tion of the trend standard deviation to the low-pass data

standard deviation is high in many of the same places

where the low-pass data accounts for much of the var-

iation (Fig. 12, bottom). This indicates that where the

low-pass standard deviation is relatively strong, much

of its variation is explained by a linear trend. Trends

FIG. 12. Ratio of (top) low-pass filtered standard deviation to unfiltered standard deviation

and (bottom) trend standard deviation to low-pass filtered standard deviation, all from bias-

adjusted REOF(Blend) monthly anomalies, 1900–2008.
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account for much of the variation over the Southern

Ocean, where the trend itself is positive and relatively

weak (Fig. 11, top). A positive trend is also important

over the eastern tropical Pacific, which influences

ENSO-like variations. Off the southwest coast of North

America a negative trend is important, in the midlatitude

subsidence zone. The trends are strongest over the oceans

but they can influence adjacent land regions.

The differences in overall land and ocean trends are

a bit clearer when zonal averages of each are compared

(Fig. 13). The ocean-area trends are stronger, especially

in the tropics. Over the oceans there is a positive trend in

the tropics and a negative trend in each hemisphere in

the subtropics. In the Northern Hemisphere there is

a negative ocean trend in the extra tropics, while in the

Southern Hemisphere the ocean trend becomes positive

south of about 408S. The land-area trends are weaker

and generally negatively correlated with the ocean-area

trends. In the tropics the land trend is negative, with

more positive trends in the subtropics at latitudes where

the ocean trends are negative. Just south of 308N there is

a weak negative land trend, with a weak positive land

trend just north of 308N. This is consistent with slight

drying in the Northern Hemisphere desert zones and

increasing precipitation in eastern North America. The

all-area trends are similar to the ocean trends in shape,

but their magnitude is damped due to averaging with the

land areas.

To help compare the reconstruction multidecadal ten-

dency with that from the AR4 model ensemble, a joint

EOF (JEOF) analysis is done of the two fields. Both

fields are low-pass filtered and normalized to concen-

trate on similarities in their multidecadal variations.

About 30% of the variance is accounted for by the first

JEOF mode, which shows a clear trendlike tendency with

some similarities in the patterns of both fields (Fig. 14). In

particular, they both indicate increasing precipitation

over the Southern Ocean and in parts of the tropical

Pacific. The reconstruction Southern Ocean tendency is

less uniform than in AR4, and the reconstruction tropical

Pacific increase is shifted east relative to AR4, but the

similarity of these two signals suggests that AR4 broadly

represents multidecadal variations in those regions.

Both fields also show decreases in the tropical At-

lantic and in some midlatitude zones, but the similarities

are not as strong in those regions. In particular, both

show decreases in southern Europe, but the decrease is

larger in AR4, and the reconstruction shows increases in

the Eastern Mediterranean. Both show decreases in the

Pacific near and extending into the southwest United

States and Mexico area, but the AR4 decrease is more

extensive over land and less extensive over the North

Pacific. Both show an increase over eastern North

America, but the AR4 increase is farther north. In

addition, at high northern latitudes the AR4 suggests

more systematic increases than the reconstruction.

Here we only perform a JEOF analysis using the en-

semble of models, and we do not evaluate individual

models. It is possible that some models may compare

better with the reconstruction than others. Modeling

groups may be able to use the reconstruction to evaluate

their output over the twentieth century, which could aid

the development of improved coupled models.

5. Summary

Historical global precipitation has been reconstructed

on a 58 monthly grid beginning in 1900. Both land and

ocean areas are analyzed. The land-area analysis is based

on fitting the available gauge data to a set of large-scale

spatial EOF modes. That analysis, referred to as REOF,

was found to be able to represent large-scale monthly

variations over land. Over the oceans the REOF rep-

resents most interannual and shorter-scale variations;

however, because of the scarcity of gauges, the multide-

cadal variations over oceans appear to be less reliable.

Therefore, the ocean-area analysis used is a combination

of REOF with an analysis that uses a canonical correla-

tion analysis to obtain precipitation anomalies from SST

and SLP anomalies, referred to as RCCA. In combining

them, the low-pass filtered RCCA is used to bias adjust

the ocean-area low-pass REOF. Both REOF and RCCA

are developed using the GPCP data, beginning in 1979.

Statistics from that period are used to reconstruct precipi-

tation over 1900–2008. The REOF and RCCA methods

were developed and described in earlier papers. Here

we show how to best combine them and also develop

uncertainty estimates for the combined reconstruction.

FIG. 13. Zonal averages of the bias-adjusted REOF(Blend) trend

averaged over land, ocean, and all areas separately.
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Evaluations of the reconstruction suggest that it could

be of use for climate studies and model evaluation. For

example, an earlier version of the reconstruction was

used by Mariotti (2010) to help analyze long-term changes

in the Mediterranean region. This improved version may

be used to assist near-global analyses. The reconstruction

shows trendlike variations over both oceans and land, with

the greatest changes over tropical oceans. Trends over

land are weaker than over oceans, and in the tropics

and subtropics they tend to be opposite to the ocean

trends. This land–sea difference is similar to the land–sea

precipitation differences associated with ENSO over the

satellite period (Adler et al. 2008).

The reconstruction cannot resolve finescale variations

because of the filtering using spatial modes, although it

should represent most large-scale variations. Because

much of the reconstruction is based on a gauge dataset,

any systematic errors in that dataset will influence the

reconstruction. Most random error in the gauge data

should be eliminated by filtering using a set of modes,

with screening to remove poorly sampled modes. In ad-

dition, the RCCA component of the analysis assumes that

FIG. 14. Joint EOF of (top) annual low-pass filtered and normalized adjusted REOF(Blend)

and (middle) AR4 model ensembles, and (bottom) the associated time series for JEOF 1.
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the relationships between precipitation and the combined

SST and SLP are stationary over the reconstruction

period.

Error estimates are based on changes in variance over

time, and on error estimates for the SST and SLP that

cause errors in the RCCA. Possible errors in the gauge

dataset are not considered in the estimate, nor are possible

errors in GPCP, or in our assumption that the relation-

ships are stationary over the reconstruction period. In

addition, errors caused by filtering the full data using the

set of EOFs are also not considered here. The error esti-

mate is a measure of how well historical data may be

reconstructed relative to EOF-filtered satellite-era data.

In the future we will consider including other data in

our analyses as well as evaluating other reconstruction

methods. Possible additional data uses include the rein-

jection of the gauge data themselves and data from ex-

tended model-based reanalyses (Compo et al. 2006). The

present reconstruction is available online to users (at

http://cics.umd.edu/;tsmith/PR/PR.html).
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APPENDIX

Error Estimates

A method for estimating the reconstruction error is

outlined here. The error estimate is divided into two

parts: a sampling error and a bias error. The sampling

error variance is computed by finding the fraction of the

variance resolved by the analysis and subtracting that

from an estimate of the total variance. Here we use the

REOF(GPCP) variance as the total variance since that

filtered data represent the climate-scale precipitation

variations that this analysis attempts to resolve using

historical data.

To see how this works, consider the error variance, or

mean-squared error, which is defined as

E2 5 h(R� P)2i. (1)

Here R is the reconstruction and P is the true precipi-

tation anomaly; the angle brackets denote averaging. By

expanding Eq. (1) we can obtain

E2 5 s2
R 1 s2� 2s

R
sr 1 (hRi� hPi)2. (2)

Here sR
2 is the reconstruction variance, s2 is the true

precipitation variance, and r is the correlation between

the reconstruction and the true precipitation. The first

three terms on the rhs of Eq. (2) account for the sam-

pling and random error variance, ES
2 5 sR

2 1 s2 2 2sRsr.

The last term on the rhs of Eq. (2) accounts for the mean

bias error variance, EB
2 5 (hRi 2hPi)2.

The random error, due to noise in the analysis, should

be a small fraction of the total error. That is because the

reconstructions are produced by filtering data using

spatial modes that filter out most noise. Here we will

assume that the reconstruction noise is negligible.

The correlation squared, r2, defines the fraction of the

variance accounted for by the reconstruction. By ig-

noring random noise we can estimate this as r2 ’ sR
2 /s2,

which makes it possible to estimate the sampling error

variance as

E2
S 5 s2

R 1 s2� 2s
R

sr ’ s2�s2
R. (3)

The reconstruction anomaly variance can be estimated

directly from the analysis. The sampling error variance is

simply the variance not accounted for by the reconstruction.

For the sampling error variance, we are most in-

terested in how well the climate-scale features of pre-

cipitation anomalies are resolved. Thus, for our estimate

of the true variance we do not use the full GPCP.v2.1

variance, but rather the variance of the REOF(GPCP).

The filtering removes small-scale variations; however,

because of satellite sampling in the data, it retains sam-

pling of all climate-scale variations. This gives a measure

of relative error from one time to another that can help

guide users of the reconstruction.

Over land the gauges that anchor the land REOF(Blend)

are assumed to be unbiased, suggesting that the land bias

error should be low. Here we simplify the land bias estimate

by ignoring systematic differences that may be caused by

systematic under representation by the available REOF

modes. Thus, if all of the available REOF modes are

used, then there will be no land REOF(Blend) bias er-

ror in this analysis since the gauges are assumed to be
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unbiased. If fewer REOF modes are used, then errors

will be represented in the sampling error component

discussed above. Making this assumption allows the er-

rors to be estimated using the available data.

Over oceans the multidecadal signal of both recon-

structions is forced to match the RCCA multidecadal

signal. The RCCA bias error variance is estimated using

the bias errors likely to contaminate the SST and SLP

forcing data in the RCCA. Bias errors for these forcing

fields are discussed by Smith et al. (2008a) and Rayner

et al. (2006) for SST and by Allan and Ansell (2006) for

SLP. Because these biases are only approximately known,

they are roughly estimated to evaluate their approxi-

mate influence on the RCCA bias estimates. Here the

SST bias uncertainty standard error is set to its global

value, which is about 0.068C or less before 1939 (Rayner

et al. 2006). From 1939 to 1941 it is damped linearly each

year down to 0.0158C in 1941. It is held at that level for the

remaining years of the analysis. The larger values earlier

in the period are due to the need for a large historical bias

adjustment in that period when different types of buckets

were typically used to measure SSTs. In more recent

years the sampling is more consistent and SSTs have

smaller biases, accounted for by the smaller estimate

for the most recent period. The SLP bias standard error

has not been studied as extensively. Therefore, we here

estimate it to be 0.25 times the SLP anomaly standard

deviation and hold it constant in time so as to compute

bias error estimates. The actual bias uncertainty should

be much less than the standard deviation. We use these

uncertainty estimates in RCCA tests to compute how

much they influence the results.

Three RCCA tests are used to evaluate bias uncertainty:

the first is forced with SSTs equal to their bias standard

error and SLPs set to zero, the second with SSTs set to

zero and SLPs set to their bias standard error, and the

third with both SSTs and SLPs set to their bias standard

errors. In these tests the SST bias standard error domi-

nates the resulting bias uncertainty estimates. The stan-

dard errors from all three RCCA tests are averaged to

estimate the RCCA standard errors. Typical values for

58 annual estimates are 66 mm month21. Averaging re-

duces the magnitude of the bias error since the modes

force both positive and negative values. Averaging over

all (land and ocean RCCA areas) reduces the bias errors

for the global average to 0.05 mm month21 for 1900–38.

After 1941 it is reduced to less than 0.01 mm month21.
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