

Hardcopy Uncontrolled

NOAA NESDIS

CENTER for SATELLITE APPLICATIONS
and RESEARCH

TRAINING DOCUMENT

TD-11.2
C PROGRAMMING

STANDARDS and GUIDELINES
Version 3.0

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 2 of 54

Hardcopy Uncontrolled

TITLE: TD-11.2: C PROGRAMMING STANDARDS AND GUIDELINES VERSION 3.0

AUTHORS:

Alward Siyyid (formerly Raytheon Information Solutions – version 1)
Ken Jensen (Raytheon Information Solutions)
Peter Keehn (PSGS)
Shanna Sampson (PSGS)

C PROGRAMMING STANDARDS AND GUIDELINES
VERSION HISTORY SUMMARY

Version Description Revised

Sections
Date

1.0 New Work Instruction (WI) adapted from Raytheon SOI 506
by Alward Siyyid (Raytheon Information Solutions)

New
Document 05/05/2006

1.1 Revision by Ken Jensen (Raytheon Information Solutions).
Applied STAR standard style to entire document. All 06/02/2006

2.0

Revision by Shanna Sampson (Perot), Peter Keehn (Perot),
and Ken Jensen (Raytheon Information Solutions). Changed
from WI-12.1.2 to Training Document TD-12.1.3 for version
2 of the STAR Enterprise Product Lifecycle (EPL).
Numerous revisions in response to peer review comments.

All 09/30/2007

3.0 Renamed TD-11.2 and revised by Ken Jensen (RIS) for
version 3. 1, 2 10/1/2009

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 3 of 54

Hardcopy Uncontrolled

TABLE OF CONTENTS

 Page

LIST OF ACRONYMS ... 5

1. INTRODUCTION .. 6
1.1. Objective... 6
1.2. Background .. 7
1.3. C Versions .. 8
1.4. Benefits... 8
1.5. Overview ... 8

2. REFERENCE DOCUMENTS ... 10

3. DEFINITIONS ... 11

4. PROGRAMMING STANDARDS AND GUIDELINES 13
4.1. Language Features .. 13
4.2. Readability .. 13
4.3. Naming Conventions .. 15
4.4. Compound Expressions .. 15
4.5. Organization ... 17
4.6. Size .. 18
4.7. Entry/Exit .. 18
4.8. Declarations .. 19

4.8.1. Conditional Compilation ... 19
4.8.2. Include Files ... 19
4.8.3. Function Declarations .. 21
4.8.4. Data Declarations .. 22

4.8.4.1. Constants ... 22
4.8.4.2. Variables .. 23

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 4 of 54

Hardcopy Uncontrolled

4.8.4.3. Data Types ... 24
4.8.4.4. Pointers .. 24

4.8.5. Expressions ... 25
4.8.5.1. Mixed Mode Operations 25
4.8.5.2. Byte Ordering ... 25
4.8.5.3. Byte Size .. 26
4.8.5.4. Macros ... 26

4.8.6. Control Constructs ... 28
4.8.6.1. Statements ... 28
4.8.6.2. Loop Constructs ... 32

4.9. Error Handling .. 32
4.10. Common Libraries .. 33
4.11. Use of Standard Constants ... 33
4.12. Efficient Use of Memory ... 34
4.13. Interoperability .. 34

4.13.1. C/Fortran Interoperability ... 34
4.13.2. C/++ Interoperability ... 36

4.14. Documentation ... 37
4.14.1. Headers ... 37
4.14.2. Comments ... 38

4.15. Grandfathering ... 40
4.15.1. COTS ... 40
4.15.2. Reuse ... 40

APPENDIX A. EXAMPLE COMMENTS .. 41

APPENDIX B. EXAMPLE FUNCTION DECLARATIONS AND DEFINITIONS .. 43

APPENDIX C. EXAMPLE CONTROL STRUCTURES 44

APPENDIX D. INCLUDE FILE USAGE ... 46

APPENDIX E. “C” CODING STANDARDS - QUICK REFERENCE 48

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 5 of 54

Hardcopy Uncontrolled

LIST OF ACRONYMS

ANSI American National Standards Institute
CICS Cooperative Institute for Climate Studies
CIMSS Cooperative Institute for Meteorological Satellite Studies
CIOSS Cooperative Institute for Oceanographic Satellite Studies
CIRA Cooperative Institute for Research in the Atmosphere
COTS Commercial Off-The-Shelf
CREST Cooperative Remote Sensing and Technology Center
EPL Enterprise Project Lifecycle
IEC International Engineering Consortium
ISO International Organization for Standardization
NESDIS National Environmental Satellite, Data, and Information Service
NOAA National Oceanic and Atmospheric Administration
PAL Process Asset Library
SLOC Source Lines Of Code
STAR Center for Satellite Applications and Research
TBR To Be Reviewed
TBS To Be Specified
TD Training Document

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 6 of 54

Hardcopy Uncontrolled

1. INTRODUCTION

The NOAA/NESDIS Center for Satellite Applications and Research (STAR) develops a
diverse spectrum of complex, often interrelated, environmental algorithms and software
systems. These systems are developed through extensive research programs, and
transitioned from research to operations when a sufficient level of maturity and end-user
acceptance is achieved. Progress is often iterative, with subsequent deliveries providing
additional robustness and functionality. Development and deployment is distributed,
involving STAR, multiple cooperative institutes (CICS, CIMSS, CIOSS, CIRA, CREST)
distributed throughout the US, multiple support contractors, and NESDIS operations.
NESDIS/STAR is implementing an increased level of process maturity to support the
exchange of these software systems from one location or platform to another. The purpose
of this coding standards guideline is to assist software developers reliably and repeatably
develop, port, and deliver NOAA/NESDIS environmental software systems across
platforms, locations, and organizations.

1.1. Objective

The objective of this Training Document (TD) is to provide the STAR standard for C
language code that is developed, tested, and reviewed during the STAR Enterprise Product
Lifecycle (EPL)1. The intended users of this TD are programmers of C code that will be
used to implement an algorithm that creates an operational product from remote sensing
satellite data. To achieve the objective, this TD shall:

• Establish C programming standards for STAR, drawn from international standards

• Provide C programming guidelines standards for the C language to support software

modularity, readability, reliability and maintainability.

• Provide examples of good C programming practices

• Serve as a common reference for programming practices within the STAR

Enterprise.

1 For a description of the STAR EPL, refer to the STAR EPL Process Guidelines (PG-1 and PG-1.A).

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 7 of 54

Hardcopy Uncontrolled

1.2. Background

This Training Document (TD) defines programming standards and provides implementation
guidelines for coding in the C programming language for software programs within STAR.
This TD has been adapted from Raytheon Software Operating Instruction 506 “C
Programming Standards and Guidelines” and has benefited from review and comments by
Alex Pozniak, Hongming Qi, C. Meng and Walter Wolf.
The development of code that will be used to implement an algorithm that creates an
operational product from remote sensing satellite data is part of a unified STAR EPL. As
such, it takes place in a series of defined steps:

Basic Research Code: In this step, a new or improved algorithm is being developed by a
scientist. Usually, some coding is needed to implement the Basic Research algorithm so
that the algorithm developer can do sufficient testing to determine whether the algorithm
has operational potential. At the discretion of the Basic Research organization, Basic
Research code can be prototype “throwaway” code that does not have to conform to
standards, and there will be no code review at this step. If the programmer intends to reuse
his Basic Research code in future steps, he should be aware that the reused code will be
required to conform to standards.

Research Grade Code: In this step, the algorithm has been identified as having
operational potential and additional development has been authorized to determine whether
a STAR Research Project proposal should be submitted. Research grade code is a
required artifact for the STAR review of a Research Project Proposal. STAR reviewers will
expect that this code can be re-used in the development of pre-operational code. The
conformance of the code to these standards may be a factor in STAR’s decision to approve
the project for development.

Pre-operational Code: In this step, the algorithm has been approved for development and
has passed a Critical Design Review. The code is developed from research grade to pre-
operational status. The conformance of the pre-operational code to the standards in this TD
shall be a factor in a decision to approve its installation in an operations environment.

Operational Code: In this step, the pre-operational code has been successfully integrated
into the operational environment and is ready for approval for operations. There are no
additional programming standards for operational code.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 8 of 54

Hardcopy Uncontrolled

1.3. C Versions

C89 (ANSI X3.159-1989 "Programming Language C.) was the very first version by the
ANSI standards committee and is often referred to as ANSI C, or sometimes C89. In 1990,
the ANSI C standard was adopted by the International Organization for Standardization
(ISO) as ISO/IEC 9899:1990. This version is also known as C90.

In the late 1990s, the standard underwent revision, leading to the publication of ISO
9899:1999 in 1999, also known as C99.

There are several new features in C99 such as inline functions, variable length arrays, new
data types such as complex type to represent complex numbers, etc.

This TD is tailored for STAR, based on the recognition that many C programmers and
potential reviewers in the STAR Enterprise are accustomed to the C99 version, although
that is not required, since C89 is fully compatible. Appendix A-D of this TD contains
programming examples in C99.

1.4. Benefits

Code developed in accordance with the standards in this TD assists the programmers and
testers by increasing the efficiency of code testing and debugging.

Code developed in accordance with the standards in this TD assists code reviewers by
ensuring that the code presented for review is well documented, readable, and traceable to
design.

Code developed in accordance with the standards in this TD makes it easier to perform
code maintenance during operations.

Most important to the programmer, it is a STAR requirement that C code be developed in
accordance with the standards in this TD. Failure to do so may result in disapproval and the
need to rewrite the code.

1.5. Overview

This TD contains the following sections:

Section 1.0 - Introduction

http://en.wikipedia.org/wiki/ANSI_C
http://en.wikipedia.org/wiki/International_Organization_for_Standardization

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 9 of 54

Hardcopy Uncontrolled

Section 2.0 - Reference Documents

Section 3.0 - Definitions

Section 4.0 - Programming Standards and Guidelines

Appendix A - Example Comments

Appendix B - Example Function Declarations and Definitions

Appendix C - Example Control Structures

Appendix D - Include File Usage

Appendix E - C Coding Standards Quick Reference

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 10 of 54

Hardcopy Uncontrolled

2. REFERENCE DOCUMENTS

Programming Languages - C (formerly ANSI/ISO/IEC 9899-1999) is the current
international standard for C code. It is accessible at http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1124.pdf. This is a very large document (> 3 MB) that
can be used as a reference at the programmer’s discretion.

K&R: Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second

Edition, Prentice-Hall, Inc., 1988, 1978.

Plum: Plum, Thomas. C Programming Guidelines, Second Edition, Plum Hall Inc., 1989.

Harbison III and Steele: Samuel P. Harbison III and Guy L. Steele, C: A Reference
Manual, 5th Edition, Prentice Hall, February 2002, ISBN 013089592X

The following references are STAR EPL process assets that are accessible in a STAR EPL
Process Asset Repository (PAR) on the STAR web site:

http://www.star.nesdis.noaa.gov/star/EPL_index.php.

PG-1: STAR EPL Process Guideline provides the definitive description of the standard
set of processes of the STAR EPL.

PG-1.A: STAR EPL Process Guideline Appendix, an appendix to PG-1, is a Microsoft
Excel file that contains the STAR EPL process matrix (Stakeholder/Process Step matrix),
listings of the process assets and standard artifacts, descriptions of process gates and
reviews, and descriptions of stakeholder roles and functions.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.star.nesdis.noaa.gov/star/EPL_index.php

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 11 of 54

Hardcopy Uncontrolled

3. DEFINITIONS

Compilation Unit. A compilation unit is the code file, which is submitted to the compiler to
produce an object file. A compilation unit consists of comments, preprocessor statements
(optional), declaration lists (optional), and functions. A compilation unit may also be a
complete program.

Compound Statement. A compound statement consists of a beginning left brace "{",
preprocessor statements (optional), a declaration list (optional), a statement list (optional),
and a closing right brace "}".

Function. A function consists of a function declaration (used to name the function and
declare its type), formal argument, and a compound statement.

Functional Description. A functional description is a summary of the function's purpose and
consists of information needed by the user.

Line of Code. For the purposes of counting software size, a source line of code (SLOC) is
defined as:

• A semicolon terminator outside of comments, parentheses and string/character
literals

• Compiler directives ('#')

• One of the following statements:
o if

o switch

o while

o case

o for

o default

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 12 of 54

Hardcopy Uncontrolled

Mixed Mode. This term is used in reference to variables of differing types, which are

equated, compared, or otherwise used in arithmetic expressions.

Process Description. A process description is a detailed expansion of the functional

description and consists of information needed by the maintainer.

Program. A C program is composed of functions one of which must be main. The

functions may be in one or more software units.

For additional definitions, refer to K&R

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 13 of 54

Hardcopy Uncontrolled

4. PROGRAMMING STANDARDS AND GUIDELINES

This section contains the STAR C programming standards and associated guidelines.

4.1. Language Features

Only language features and capabilities that are documented or defined in the
Programming Languages - C (formerly ANSI/ISO/IEC 9899-1999) shall be used.

One of the requirements for code to pass Gate 2 and Code Unit Test reviews is that the
code is able to compile on a standard C compiler. It is recommended that C code
developers use a STAR-approved C compiler while they are developing the code.

4.2. Readability

STANDARD: Formatting style shall be defined and used consistently to enhance readability
throughout a program (e.g., alphabetic case, blocking with blank lines, parentheses and
indentation).

JUSTIFICATION: A consistent and readable programming style will enhance the
maintainability of the software, thus driving down maintenance costs.

STANDARD: Lines within a compilation unit should fit a listing (or screen) width of 80
characters. Any expression that is too long to fit this size should be broken into multiple
lines.

JUSTIFICATION: A line of code should be able to be viewed on a single display line without
having to scroll left and right. Such scrolling is distracting when trying to read or maintain
code.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 14 of 54

Hardcopy Uncontrolled

GUIDELINE: For each level of indentation, use three spaces. The number of spaces used
should be applied to the entire program.

JUSTIFICATION: Uniform indentation gives a uniform appearance and makes levels of
nesting more obvious.

GUIDELINE: Upper case should be used for user #define'd identifiers and Macro names.

JUSTIFICATION: Such visual clues are very valuable in understanding the code, especially
where it clearly separates variables from constants and functions from macros.

GUIDELINE: Mixed case or underscores should be used for function and variable names in
one of the following forms:

i. The first character of each word in upper case with the remaining characters in lower
case.

ii. Each word separated by the underscore character.

iii. A combination of the above.

Example:

#defines
 #define END_OF_FORM 61 /* Last printable line */
 #define START_OF_FORM 5 /* First printable line */
VARIABLES AND FUNCTIONS
 get_data();
 GetData();
 Get_Data();
 FirstLine = START_OF_FORM;
 First_Line = START_OF_FORM;
 first_line = START_OF_FORM;

JUSTIFICATION: The use of a consistent style for different parts of the language will
provide instant recognition. The ability to recognize one language structure versus another
will greatly enhance the readability.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 15 of 54

Hardcopy Uncontrolled

4.3. Naming Conventions

STANDARD: Names shall be mnemonically descriptive, given limitations within any C
language implementation.

JUSTIFICATION: Using a naming convention, which describes the purpose and not the
structure, will enhance understanding. This level of understanding makes maintenance
easier.

GUIDELINE: Names should not resemble C reserved words or implementation supplied
function names.

JUSTIFICATION: Using names, which resemble reserved words, will only make the job of
understanding the software more difficult.

4.4. Compound Expressions

STANDARD: The evaluation of logical and arithmetic expressions shall be clarified through
the use of parentheses:

Example 1:

The following example shows how the use of parentheses clarifies the intent of the
code:

if (flags & BIT1 && state == PARSE) /* bad example */
 if ((flags & BIT1) && (state == PARSE)) /* use of parentheses */

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 16 of 54

Hardcopy Uncontrolled

Example 2:

The following example shows how the use of parentheses, as well as line breaks,
improves code readability.

/* bad example */
value = option_base + OPTION_OFFSET + array_value *
 ENTRY_SIZE + VALUE_OFFSET;

/* grouping by use of parentheses and line breaks */
value = (option_base + OPTION_OFFSET) +
 (array_value * ENTRY_SIZE) +
 VALUE_OFFSET;

JUSTIFICATION: The ability to understand the intent of the software will be increased with
the readability of the structure. Explicitly defining the order for evaluation will eliminate the
possibility of the programmer getting something he or she did not want. Readability of the
code is enhanced by a uniform layout of the operators.

STANDARD: Multiple line expressions should be broken in a manner that enhances the
readability of the expression.

JUSTIFICATION: Care must be taken when creating multiple line expressions to maintain
the readability.

GUIDELINE: The indentation of multiple line expressions should enhance the readability of
the expression.

Example:

if ((strcmp(Direct->Name, ".") == MATCH) ||

 (strcmp(Direct->Name, "..") == MATCH))

JUSTIFICATION: Complex expressions will become clearer when properly distributed into
multiple lines. This guideline is for enhancing the understanding, through readability, of
long complex expressions.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 17 of 54

Hardcopy Uncontrolled

4.5. Organization

STANDARD: Compilation units shall be organized as follows:

i. Compilation unit header.

iv. Include files (#include).

v. Declarations (those not in Include files or functions).

vi. Functions.

JUSTIFICATION: Properly organized software can save many hours of debug time and
make the software easier to understand.

STANDARD: Functions shall be organized as follows:

i. Function declaration.

vii. Function header (optional in single function compilation units).

viii. Compound statement.

JUSTIFICATION: Properly organized software can save many hours of debug time and
make the software easier to understand.

STANDARD: Each function shall contain a maximum of 150 lines of code.

 JUSTIFICATION: Excessively large blocks of code have been shown to be a detriment to
both the understanding and maintenance of software.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 18 of 54

Hardcopy Uncontrolled

4.6. Size

GUIDELINE: Each program unit should contain no more than 200 statements.

JUSTIFICATION: Larger functions and programs tend to loose logic procession and
become difficult to understand, maintain and are more prone to error.

4.7. Entry/Exit

STANDARD: Exit points of a function, not occurring as the last executable statement, shall
contain a comment that begins with the word: EXIT.

JUSTIFICATION: Clear commenting of the exit point will make the algorithm easier to
follow. This becomes more important for clarity when the exit point is not at the end of the
function.

GUIDELINE: Each function should contain a single exit point as the last executable
statement. If the exit point is not the last executable statement, the last line of the function
should be a comment identifying where the exit point(s) are located within the function.

JUSTIFICATION: Multiple exit points can make software hard to understand and debug.
Single exit points to functions are desirable to ease understanding of the algorithm.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 19 of 54

Hardcopy Uncontrolled

4.8. Declarations

GUIDELINE: Declaration sections should be ordered in one of two ways.

i. Creating logical groups based on usage.

ii. The following format:

- Constants (#define).

- Type definitions (typedefs, unions, structs)

- Global variable declarations of simple types (int, long, float, char, etc.).

- Global variable declarations of compound types (typedefs, structs, unions,
and arrays).

- Non-global (static) declarations

JUSTIFICATION: The declaration section is key to understanding a program. Efforts made
to make this section easy to follow will pay dividends in the maintenance stage of software
development.

4.8.1. Conditional Compilation

STANDARD: The #ifdef directive shall not be used to disable unused code. The directive is
to be used for conditional compilation (e.g., debug code, platform dependencies, compiler
dependencies).

JUSTIFICATION: The purpose of the #ifdef directive is for conditional compilation; not to
allow disabling of code for version control, CR fixes, etc. This directive when abused can
have the same effect as the comment statement.

4.8.2. Include Files

STANDARD: An include file shall contain only definitions, declarations, macros, function
prototypes, comments, and conditional compilation statements that are needed by more
than one compilation unit.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 20 of 54

Hardcopy Uncontrolled

JUSTIFICATION: The include file or "header" should be used to control declarations for the
program. The use of an include file to segregate sections of coding logic, for whatever
reason, only makes the code harder to understand.

GUIDELINE: Any file that uses definitions provided by another file should explicitly include
that file.

JUSTIFICATION: Files should not depend on "inherited" code from other files. This can
create sequential dependencies and maintenance problems.

NOTE: See Appendix D for examples of proper include file usage.

GUIDELINE: Use #ifdef statements in include files to prevent redefinition of values.

JUSTIFICATION: #ifdef statements prevent accidental redefinition of values when include
files are nested.

NOTE: See Appendix D for examples of proper include file usage.

GUIDELINE: Programs should take advantage of include files which contain program wide
standard definitions (#defines, typedefs, macros, etc.).

JUSTIFICATION: Program-wide include files will serve to enhance the use of standard data
types. Program-wide include files are also a good way to segregate machine dependent
data types, which may be changed easily during porting efforts.

GUIDELINE: Include files should not contain data storage.

JUSTIFICATION: Placing a variable in an include file can accidentally generate several
copies of the variable in memory, causing subtle debugging problems.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 21 of 54

Hardcopy Uncontrolled

GUIDELINE: A multiple include guard should be used in every #include file.

 #ifndef FILENAME_H
 #define FILENAME_H
 ….
 #endif

JUSTIFICATION: Using a multiple include guard avoids problems with multiple includes.

4.8.3. Function Declarations

STANDARD: ANSI C function definitions shall be used when supported by the compiler.

JUSTIFICATION: ANSI C style function definitions explicitly supply the type of the function
and its parameters. This allows the compiler to assist in type checking. ANSI C definitions
also encourage the use of the "VOID" type, which is used to indicate a function has no
return value and/or no parameters. This style of definition aids in code readability and
understandability.

STANDARD: Function prototypes shall be used when supported by the compiler.

Example:

First the function declaration or "prototype"
 int power(int Base, int Nth_power);
then the function definition.
 int power(int Base, int Nth_power)
 {
 int Current_power; /* Result accumulator */
 for (Current_power = 1; Nth_power > 0; --Nth_power)
 {
 Current_power = Current_power * Base;
 }
 return Current_power;
 }

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 22 of 54

Hardcopy Uncontrolled

JUSTIFICATION: The use of function prototypes will allow the compiler to detect errors that
relate to the number of arguments or their types. This will enhance the integrity of the
software at an early stage of development, thus saving software debug time.

NOTE: See Appendix B for examples of new ANSI C versus old-style function
declarations and definitions.

4.8.4. Data Declarations

4.8.4.1. Constants

GUIDELINE: Character constants should not contain more than one character.

short Crlf = '\r\n'; /* bad - uses char constant */

If the characters are simply being used as a string value, use a proper C string:

char Crlf[] = "\r\n"; /* good - uses string constant */

JUSTIFICATION: The differences in machine byte order may cause multi-character
constants to differ either in numeric value or in character sequence. The multi-character
constants are intrinsically non-portable.

GUIDELINE: Constants should be initialized with values of the same type.

JUSTIFICATION: Unexpected and unwanted type casting may occur.

GUIDELINE: Any constant, which might change during revision or modification, should be
made obvious. Specifically, it should be given an uppercase name (via #define). If it is
only used in one file, it should be #define'd at the head of that file; if used in multiple files, it
should be #define'd in an include file.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 23 of 54

Hardcopy Uncontrolled

Example from Plum:

 if (Index < 100) /* bad example - uses magic number */

 #define SIZE 100 /* good example - defines SIZE */
 if (Index < SIZE) /* then uses SIZE */

JUSTIFICATION: Constants that are hard coded (otherwise known as "magic numbers",
because they mysteriously appear with no explanation), are hard to locate when modifying
the program. Furthermore, instances of "constant minus one" or "constant plus one" are
even more elusive to the maintenance programmer. Also, the use of #define's increases
readability.

4.8.4.2. Variables

STANDARD: The programmer shall guarantee that all variables, except loop counter
variables, be explicitly set or initialized before use.

JUSTIFICATION: Relying on the compiler, operating system, or host system to preset
variable values causes code to be non-portable and can cause subtle debugging problems.

STANDARD: Initializers shall be written with only one variable per line.

int DefaultMenuSelection = EDIT; /* Defaults to edit the current */

 /* record */

int MenuMode = NOVICE; /* Initialize menu mode for */

 /* users who are not */

 /* experienced in using this */

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 24 of 54

Hardcopy Uncontrolled

 /* product */

JUSTIFICATION: Readability is greatly enhanced by limiting one variable to a line.

GUIDELINE: Type specifiers, variable names, and descriptive comments should be aligned
in a column:

 int ForkFlag; /* Flag to determine which processing path */
 /* to take (fork) */

 int MacroFlag = NO; /* Indicates when pre-processed macros exist */

JUSTIFICATION: These rules pinpoint the location of declarations, avoid conflicts of upper
and lower case names and encourage documentation of meaningful variable names.

4.8.4.3. Data Types

GUIDELINE: Typedefs should be used to isolate machine dependent data types.

JUSTIFICATION: Since it may not be possible to eliminate all machine dependency from a
program, isolating those occurrences will make changes easier. The use of well
commented conditional compilation statements can be used to isolate machine dependent
data. The use of conditional compilation will enhance the portability of the program
regardless of machine specific data.

4.8.4.4. Pointers

STANDARD: Pointer conversions shall be explicitly cast.

JUSTIFICATION: Carelessness in the use of pointer types can needlessly cause code to
be compiler dependent, machine dependent, or both. When all variables are typed and all
conversions between types are specified, program correctness is enhanced and program
verification is made easier.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 25 of 54

Hardcopy Uncontrolled

STANDARD: Pointers should be initialized to a valid value prior to use. If a valid value is
not known at the time of declaration, a NULL should be used.

JUSTIFICATION: The use of uninitialized pointers can cause unexpected results. This side
effect will be hard to find when the function is being debugged.

4.8.5. Expressions

4.8.5.1. Mixed Mode Operations

STANDARD: Mixed mode operations, when used, shall be clearly identified and described
using either type casting or comments within the source code.

JUSTIFICATION: The C language ability to enable a variable to interpret data as a different
type can make software difficult to debug if the intent is not clearly understood. The
commenting of different type conversions and evaluations will greatly enhance the
understanding of the code.

GUIDELINE: Type casting should be used to clarify mixed mode operations.

JUSTIFICATION: For the same reason that commenting is required to clarify mixed mode
operations, the use of the C language feature of casting will greatly enhance the ability to
understand data type conversions.

4.8.5.2. Byte Ordering

STANDARD: Programs shall not depend upon the order of bytes within an integer or
floating number.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 26 of 54

Hardcopy Uncontrolled

JUSTIFICATION: For example, on machines such as VAX, the low-order byte of a short
integer is stored in memory before the high-order byte; but on other machines, such as
MC68000, the high-order byte is stored first.

char *Dot; /* pointer to a byte */

short Point; /* multi-byte variable */

 /* non-portable casting: */

Dot = (char *)&Point; /* gives machine-dependent byte */

4.8.5.3. Byte Size

STANDARD: A program shall not rely on data size to truncate expressions to a specific
number of bits.

Example from Plum:

bit &= ~1; /* good, ones complement operator */
bit &= 0177776; /* bad turns off high bits */
 /* on 32 bit machine */

JUSTIFICATION: The object of this standard is portability. Characters can be 8, 9, or 10
bits. Short integers can be 16, 18, 20, or 36 bits. Long integers can be 32, 36, or 40 bits.
These depend on the hardware used.

4.8.5.4. Macros

GUIDELINE: Use subroutines/functions instead of complex user defined macros. System
defined macros (e.g. “MIN”, type definition macros) are OK.

JUSTIFICATION: Functions provide automatic type checking and scoping of local
variables, whereas macros do not.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 27 of 54

Hardcopy Uncontrolled

GUIDELINE: Macro names should be fully capitalized. When writing macros, parentheses
should be used around parameters in the replacement text to guard against precedence
surprises.

Example 1:

 #define A_BAD_MACRO 1 + 1
 Row = Current_Point * A_BAD_MACRO
maps into
 Row = Current_Point * 1 + 1

Issue: Row equals Current_Point + 1 not Current_Point * 2 as you probably wanted.
It should have been coded as:

 #define A_GOOD_MACRO (1 + 1)

Example 2:

 #define SQUARE(x) x*x

When invoked as SQUARE(z+1), the results are not what would be expected.
However, just surrounding the arguments with parentheses like the following is not
enough:

 #define SQUARE(x) (x*x)

This results in the same problem. The macro should be defined as follows to ensure
proper operation:

 #define SQUARE(x) ((x)*(x))

JUSTIFICATION: The problems with precedence and side effects cause macros to behave
differently from functions. The user must be protected when possible and otherwise
warned. Problems with lack of type safety, disappearance in the debugger, ambiguity
when the arguments are evaluated multiple times can be introduced by macro usage in
arithmetic operations and should be avoided.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 28 of 54

Hardcopy Uncontrolled

4.8.6. Control Constructs

4.8.6.1. Statements

STANDARD: Each statement shall begin on a separate line.

JUSTIFICATION: This aids in making the code readable and understandable.

STANDARD: Braces shall always be used around control statement clauses, even if the
clause is a single statement.

JUSTIFICATION: A common subtle error is a statement which is indented to the same level
as the clause of a control statement, but which is not part of the statement:

if (Requested_Value == TERMINATE)
 printf("Terminated abnormally");
 exit(ABNORMAL);

This example appears at first glance to exit abnormally only if the request is to terminate. A
closer examination shows it will exit abnormally every time regardless of the request. This
problem can be avoided with the use of braces. This can occur during maintenance when
statements are added.

GUIDELINE: The nesting of statements should be limited to five (5) levels. Level 0, or not
nested, is the topmost level under the function declaration.

Example:

The following example shows nesting levels:

void Nesting_Level_Example (int x, int y)
{
 int index; /* loop control variable */
 /* Code at this level is not nested (level 0) */

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 29 of 54

Hardcopy Uncontrolled

 if ((x > 0) && (y > x))
 { /* Level 1 */
 for (index = x; index <= y; index++)
 { /* Level 2 */
 ...
 }
 }
 else
 { /* Level 1 */
 ...
 }
}

JUSTIFICATION: Excessive levels of nesting tends to generate code which is difficult to
understand and maintain.

GUIDELINE: Each statement that is part of the body of a C control structure (if, while, do
while, for, and switch) should be indented from the margin of its controlling statement. The
same rule applies to function definitions, structure definitions, union definitions and
aggregate initializers.

JUSTIFICATION: Consistent application of indentation improves readability and
maintainability.

GUIDELINE: The layout of control structures should follow the rule above regarding
indentation, and should further contain one of the two following styles, (style one being the
preferred style).

The two styles are illustrated below.

Example: Style one

 if (Start_Point == ZERO)
 {
 ++Start_Point;
 }

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 30 of 54

Hardcopy Uncontrolled

Example: Style two

 if (Start_Point == ZERO) {
 ++Start_Point;
 }

JUSTIFICATION: The choice of a layout standard and paying attention to detail will pay off
in readability and in the ability to create automated text handling tools like editor scripts,
search commands, and "beautifiers". The job of maintenance programming will become
easier if a standard coding style is used.

NOTE: See Appendix C for examples of all control structures.

STANDARD: The goto statement shall be used only on a case-by-case basis as approved
by program management where required to meet specific execution time requirements or
memory constraints.

JUSTIFICATION: The goto statement restriction exists for the empirical reason that its use
is highly correlated with errors and hard-to-read code.

STANDARD: Each goto statement shall be accompanied by the following:

i. Comments placed near the goto statement to document the applicable constraints.

ii. Comments placed near the statement receiving control to document the origin of the
transfer of control.

JUSTIFICATION: Such comments save much time in reading and understanding the code.

STANDARD: The goto statement shall not be used to transfer control into loops.

JUSTIFICATION: Algorithms should be expressed in structures that facilitate checking the
program against the structure of the underlying process.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 31 of 54

Hardcopy Uncontrolled

STANDARD: The default label shall be used in all switch statements.

JUSTIFICATION: Providing a default label for every switch statement will ease the
maintenance stage. The default statement will ensure that all values passing through the
switch statement are processed. Possible errors will be caught in the unit test stage and not
in later stages.

STANDARD: When using the switch statement, all cases with processing should be
terminated with a break statement. When a case is not terminated with a break statement,
a comment should be added to explain the reason for "fall through".

JUSTIFICATION: Terminating a switch case with a break statement ensures a switch
statement executes as expected. "Falling through from one case to another is not robust,
being prone to disintegration when the program is modified" (K&R). However, there may
be instances where "falling through" case statements allow a more compact design. In
these instances, comments explaining which cases are to be "fallen through", and why, aid
in understanding and debugging.

GUIDELINE: In the test expression of while, for, do while, or if control structures, for non-
boolean values, the comparison should be written explicitly rather than relying upon the
default comparison to zero or non-zero. The comparison of a pointer to null should be
written as an explicit comparison.

Example:

/* bad, no explicit evaluation for the number of bytes read */
while (fgets(buffer, BUFFER_SIZE, stdin))
{
 process(buffer);
}
/* good, explicit evaluation for the number of bytes read */
while (fgets(buffer, BUFFER_SIZE, stdin) != 0)
{
 process(buffer);
}

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 32 of 54

Hardcopy Uncontrolled

JUSTIFICATION: Explicit comparisons in test expressions will enhance the readability of
software.

4.8.6.2. Loop Constructs

STANDARD: Loop variables which control the execution and exit conditions of a for loop
shall not be altered in the context of the for loop.

Example:

for (Row = 0; Row < Dot; Row++) /* Bad */
{ /* increments test */
 Dot++; /* condition in loop */
}
for (Row = 0; Row < Dot; Row++) /* Bad */
{ /* Explicit change */
 Dot = 3; /* to test condition */
}

JUSTIFICATION: Both examples above show that altering the loop variable or loop
condition variable will produce different effects than were originally intended. This greatly
increases the level of understanding required to follow the flow of the software.

4.9. Error Handling

STANDARD: The following practices shall be employed:

• Check for error return values, even from functions that "can't" fail. Consider that
close() and fclose() can and do fail, even when all prior file operations have
succeeded. Write your own functions so that they test for errors and return error
values or abort the program in a well-defined way. Include a lot of debugging and
error-checking code and leave most of it in the finished product.

• Use the assert facility to insist that each function is being passed well-defined
values, and that intermediate results are well-formed.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 33 of 54

Hardcopy Uncontrolled

• Include the system error text for every system error message.

• Check every call to malloc or realloc unless you know your versions of these calls do
the right thing. You might want to have your own wrapper for these calls, so you can
do the right thing always and developers don't have to make memory checks
everywhere.

JUSTIFICATION: Consistent error handling makes way for more robust code. Use of
asserts() is invaluable to trap software bugs in the development and unit testing phase.

4.10. Common Libraries

GUIDELINE: There's no excuse for writing code which already exists in a common library.
Not only will the standard library's code be tested, often it will be more efficient, and will
certainly be more familiar to your fellow programmers. Some notes on using particular
functions:

gets: Never use this. Use fgets instead so that you can be sure that you don't
overflow your buffer.

malloc: Don't cast the return value of calls to malloc, It has type void *, so it will be
compatible with anything.

JUSTIFICATION: Encourages code reuse and consistency.

4.11. Use of Standard Constants

STANDARD: Numerical constants shall not be coded directly. The #define feature of the C
preprocessor shall be used to give constants meaningful names. Defining the value in one
place also makes it easier to administer large programs since the constant value can be
changed uniformly by changing only the #define. The enumeration data type is a better way
to declare variables that take on only a discrete set of values, since additional type
checking is often available. At the very least, any directly-coded numerical constant must
have a comment explaining the derivation of the value. Use standard mathematical and
geophysical constants (e.g. PI).

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 34 of 54

Hardcopy Uncontrolled

JUSTIFICATION: Symbolic constants make the code easier to read. Consistent use of
standard constants benefits module interoperability.

4.12. Efficient Use of Memory

STANDARD: Use dynamic allocation of memory wherever possible. Do not allocate
memory for local variables until they are used in a subprogram, and deallocate the memory
for a local variable as soon as its use in the program is finished. This is especially important
when handling large, multi-dimensional arrays.

Example: TBS

JUSTIFICATION: Efficient use of memory as well as protection against hard to find memory
leaks and violations, leading to unexpected, and sometimes hard to reproduce results.

4.13. Interoperability

4.13.1. C/Fortran Interoperability

 When calling C from Fortran and vice versa, several issues must be addressed.
These may vary from compiler to compiler so verification with your compilers
documentation is recommended. In general follow these guidelines:

• Data types must match between languages.
o i.e. (Fortran) real*4 = (C) float
o i.e. (Fortran) integer*4 = (C) int
o Not all types have a match.

• C is case sensitive, Fortran is not (all routine names get converted to lowercase
when compiled).

o Always use lower case names for routines to avoid problems.
• Fortran appends an “_” character to all routine names after compilation.

o Add the “_” character to your called routine name in C code (see example).
o Add the “_” character to your C routine name when called from Fortran (see

example).
o NOTE: IBM needs to set compiler flag for “_”

• Fortran passes arguments by reference, C passes by value or reference.
o Use the C operators “&” and “*” accordingly when passing arguments.

• Use the “extern” command in C to declare external Fortran routines

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 35 of 54

Hardcopy Uncontrolled

• Use the “external” command in Fortran to declare external C routines.
• Avoid passing global data between languages, such as common blocks.

Example of Fortran calling C:

program f_code
 implicit none
 external c_code
 integer :: length
 integer :: width
 integer :: area
 length = 15
 width = 10
 area = 0
 call c_code(length, width, area)
 write(*,*) “Area = “,area
end

void c_code_ (int *length, int *width, int *area) {
 *area = (*length)*(*width);
}

Example of C calling Fortran:

 #include<stdio.h>
 extern void f_code_ (int *, int *, int *);

void main () {
 int length;
 int width;
 int area;
 length = 15;
 width = 10;
 area = 0;
 f_code_ (&length, &width, &area);
 printf(“Area = %d\n”,area);
 }

 subroutine f_code (length, width, area)
 integer :: length
 integer :: width
 integer :: area
 area = length*width
 end subroutine

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 36 of 54

Hardcopy Uncontrolled

4.13.2. C/++ Interoperability

In order to be backward compatible with dumb linkers C++'s link time type safety is
implemented by encoding type information in link symbols, a process called name
mangling. This creates a problem when linking to C code as C function names are not
mangled. When calling a C function from C++ the function name will be mangled unless
you turn it off. Name mangling is turned off with the extern "C" syntax. If you want to create
a C function in C++ you must wrap it with the above syntax. If you want to call a C function
in a C library from C++ you must wrap in the above syntax. Here are some examples:

Calling C Functions from C++

extern "C" int strncpy(...);

extern "C" int my_great_function();

extern "C"

{

 int strncpy(...);

 int my_great_function();

};

Creating a C Function in C++

extern "C" void

a_c_function_in_cplusplus(int a)

{

}

__cplusplus Preprocessor Directive

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 37 of 54

Hardcopy Uncontrolled

If you have code that must compile in a C and C++ environment then you must use
the __cplusplus preprocessor directive. For example:

#ifdef __cplusplus

extern "C" some_function();

#else

extern some_function();

#endif

4.14. Documentation

4.14.1. Headers

STANDARD: Compilation unit header shall contain the following information:

1. NAME
2. FUNCTION
3. DESCRIPTION
4. REFERENCE
5. CALLING SEQUENCE
6. INPUTS
7. OUTPUTS
8. DEPENDENCIES
9. RESTRICTIONS
10. HISTORY

JUSTIFICATION: Properly documented software can save many hours of debug time. This
will provide a central point for others to review the functionality of the software without
sifting through lines and lines of code. Maintenance will become cost-effective when
properly documented code exists.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 38 of 54

Hardcopy Uncontrolled

4.14.2. Comments

STANDARD: Comments shall not be used to disable executable statements.

JUSTIFICATION: Code disabled by comments will only confuse the issue of what should or
does exist in a function. The proper configuration control of software revisions will provide
the ability to quickly modify software to previous versions, thus eliminating the need to keep
commented-out code.

STANDARD: The characters /* shall introduce a comment, while the characters */ terminate
the comment.

JUSTIFICATION: Compiler dependent comment symbols are not portable.

STANDARD: Comments shall not be nested.

JUSTIFICATION: Such nesting is not necessary, and is a hazard during maintenance. Not
all compilers handle this condition in the same manner.

GUIDELINE: Each logical grouping of statements should be made more readable by a
comment prior to the block. A block comment should be indented at the same level as the
statements, or begin at the left margin.

JUSTIFICATION: Such comments prevent having to scroll back and forth to the function
block header, aid in a quicker understanding of the code, and are relatively easy to
maintain.

GUIDELINE: Block comments, which consist of several lines of text, should be consistently
formatted in a style selected for the software program. Commonly used styles include:

i. Boxed comments: Each line contains the characters /* and the characters */

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 39 of 54

Hardcopy Uncontrolled

which are all vertically aligned with the other lines of the comment.

ii. Bracketed comments: The comment is opened by a line containing only the
characters /* and closed at the end of the comment by a line containing only the
characters */ which are vertically aligned with the opening /* characters.

iii. Flagged comments: A long, distinctive, repeating character string (the flag) is
used on the first and last lines of the comment. The characters /* precede the
flag on the first line of the comment and the characters */ are appended to the
flag which ends the comment.

JUSTIFICATION: Since comments have their greatest value late in the program life cycle,
they should be organized with a view toward making comments stand out from the code
and encouraging future maintainers to keep them current.

GUIDELINE: When comments, other than block comments, exceed one line and begin on
lines with other program elements, each comment line should contain delimiters.

JUSTIFICATION: Multiple line comments not properly delimited often cause compiler
errors.

GUIDELINE: All variable declarations should have a descriptive comment following the
semicolon, with one variable per line.

JUSTIFICATION: Commenting is the only way that the author has of explicitly identifying
the intent of his code. The proper use of comments will make the code easier for others to
maintain. One practical test of the amount of commenting needed is: Can the reviewer
understand the function without detailed coaching from the author?

NOTE: See Appendix A for comment examples.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 40 of 54

Hardcopy Uncontrolled

4.15. Grandfathering

This section explains what can be excluded from these Programming Standards and
Guidelines.

4.15.1. COTS

Commercial Off The Shelf (COTS) software currently in use is grandfathered and does not
have to comply with the standards and guidelines documented in this TD. If adding
additional functionality to COTS software, consider implementing the standards and
guidelines documented in this TD wherever possible.

4.15.2. Reuse

Software reuse from a common Product Line baseline is grandfathered and does not have
to comply with the standards and guidelines documented in this TD.

STAR-unique Software Components that are developed for use with the reuse software
shall follow the standards and guidelines in this TD.

STAR-unique Software Units that are developed to integrate with reuse software shall
follow the standards and guidelines in this TD, if possible, given the reuse software
architecture and reuse software standards involved.

Newly developed STAR software that is deemed to be generic in nature and suitable for
addition to the reuse software baseline will follow the standards and guidelines established
for the reuse software.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 41 of 54

Hardcopy Uncontrolled

APPENDIX A. EXAMPLE COMMENTS

#include <xref.h> /* XREF data structures and constants */
#include <math.h> /* Standard C math functions */

/***/
/* */
/* Start of global function and an example comment. */
/* */
/***/

char get_zone (long coordinate, XREF_ZONE *zone_pointer,
 int *zone_index, char *zone)
{
 char status_flag = NO_ERRORS; /* Function return status */

 /*
 ** Check pointer before processing, NULL pointers are not an error.
 */

 if (zone_pointer != NULL)
 {
 *zone_index = (int) ceil ((coordinate - zone_pointer->offset) /
 (double) zone_pointer->width);

 if ((*zone_index < lower_limit) || (*zone_index > upper_limit))
 {
 status_flag = WARNING;
 }
 else
 {
 if (zone_pointer->format_type == ALPHA_FORMAT)
 {
 zone [0] = 'A' + (*zone_index - 1);
 zone [1] = '\0';
 }

 else
 {
 itoa (*zone_index, zone);
 }

 } /* END IF zone is out of range ELSE ... */

 } /* END IF zone pointer is not NULL ... */

 return (status_flag);

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 42 of 54

Hardcopy Uncontrolled

} /*** END GET_ZONE ***/

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 43 of 54

Hardcopy Uncontrolled

APPENDIX B. EXAMPLE FUNCTION DECLARATIONS AND DEFINITIONS

Old Style Declaration

STRING_POINTER *Insert_string();

Print_string();

ANSI C Style Declaration

STRING_POINTER *Insert_string(char *String_Address,
 unsigned int Length);

void Print_string(STRING_POINTER String);

Old Style Definition

STRING_POINTER *Insert_string(String_Address, Length)
char *String_Address;
unsigned int Length;
{
 ...
}

Print_string(String)
STRING_POINTER String;
{
 ...
}

ANSI C Style Definition

STRING_POINTER *Insert_string(char *String_Address, unsigned int Length)
{
 ...
}

void Print_string(STRING_POINTER String)
{
 ...
}

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 44 of 54

Hardcopy Uncontrolled

APPENDIX C. EXAMPLE CONTROL STRUCTURES

In each case, style 1 is preferred.

DO WHILE
Style 1 Style 2
do
{
 statement1;
 statement2;
}
while (condition);

 do {
 statement1;
 statement2;
}
while (condition);

FOR
Style 1 Style 2
for (expr1; expr2; expr3)
{
 statement1;
 statement2;
}

 for (expr1; expr2; expr3){
 statement1;
 statement2;
}

IF
Style 1 Style 2
if (condition)
{
 statement1;
 statement2;
}

 if (condition){
 statement1;
 statement2;
}

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 45 of 54

Hardcopy Uncontrolled

IF ELSE
Style 1 Style 2
if (condition)
{
 statement1;
 statement2;
}
else
{
 statement3;
 statement4;
}

if (condition){
 statement1;
 statement2;
}
else {
 statement3;
 statement4;
}

SWITCH
Style 1 Style 2
switch (variable)
{
 case condition1:
 statement1A;
 break;
 case condition2:
 statement2A;
 break;
 default:
 statement3A;
 break;
}

 switch (variable){
 case condition1:
 statement1A;
 break;
 case condition2:
 statement2A;
 break;
 default:
 statement3A;
 break;
}

WHILE
Style 1 Style 2
while (condition)
{
 statement1;
 statement2;
}

 while (condition){
 statement1;
 statement2;
}

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 46 of 54

Hardcopy Uncontrolled

APPENDIX D. INCLUDE FILE USAGE

The following example demonstrates proper usage and nesting of include files:

A program-wide header file, "global.h" is used to define globally used definitions. Note that
the entire file is protected by an #ifndef to protect against multiple includes of this file, since
it is highly likely that this file will end up being multiply included in any given 'C' source file.

global.h:

#ifndef _GLOBAL_H

#define NUMBER_OF_TARGETS 50

struct vector_type /* position vector */
{
 unsigned int x_position; /* x position from origin */
 unsigned int y_position; /* y position from origin */
 unsigned int z_position; /* z position from origin */
}

#define _GLOBAL_H
#endif

A specific header file, "position.h", defines prototypes for the source file "position.c". The
function prototypes need the vector_type structure definition, so the "global.h" header file is
included.

position.h:

#include "global.h"

struct vector_type get_target_position(unsigned int target_id);
void initialize_target_position(struct vector_type target_position);

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 47 of 54

Hardcopy Uncontrolled

The 'C' source file "position.c" requires the vector_type structure as well as the "position.h"
header file. Both these includes are used.

position.c:

#include "global.h"
#include "position.h"

struct vector_type target_table[NUMBER_OF_TARGETS];
 /* location for each target */

struct vector_type get_target_position(unsigned int target_id)
{
 .
 .
 .
}

The following implementations would be considered bad practice and should be avoided:

a) Omitting the include of "global.h" in "position.h" by assuming that all 'C' source files
would automatically include "global.h" before including "position.h".

b) Omitting the include of "global.h" in "position.c" by noting that "global.h" is already
included by virtue of being included in "position.h".

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 48 of 54

Hardcopy Uncontrolled

APPENDIX E. “C” CODING STANDARDS - QUICK REFERENCE

 The following quick reference was provided by Walter Wolf (STAR).

Compilation unit elements and order:

1. Compilation unit header.
2. Include files (#include).
3. Declarations (those not in Include files or functions).
4. Functions.

Functions shall be organized as follows:

1. Function declaration.
2. Function header (optional in single function compilation units).
3. Compound statement.

Compilation unit header shall contain the following information:

1. NAME
2. FUNCTION
3. DESCRIPTION
4. REFERENCE
5. CALLING SEQUENCE
6. INPUTS
7. OUTPUTS
8. DEPENDENCIES
9. RESTRICTIONS
10. HISTORY

Developer is responsible to keep file and function headers up-to-date.

Each statement shall begin on a separate line.

Lines within a compilation unit should fit a listing (or screen) width of 80 characters.

Variables shall be explicitly set or initialized before use.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 49 of 54

Hardcopy Uncontrolled

Initializers shall be written with only one variable per line.

Configuration parameters should be placed in a separate config. file rather than hard
coded.

Formatting style shall be defined and used consistently to enhance readability throughout
a program (e.g., alphabetic case, blocking with blank lines, parentheses and indentation).

Names shall be mnemonically descriptive, given limitations within any C language
implementation.

Multiple line expressions should be broken in a manner that enhances the readability of
the expression.

Parentheses and spaces shall be used to help clarify evaluation of logical and arithmetic
expressions.

Braces shall always be used around control statement clauses.

Include files shall contain only definitions, declarations, macros, function prototypes,
comments, and conditional compilation statements that are needed by more than one
compilation unit.

ANSI C function definitions shall be used when supported by the compiler.

Function prototypes shall be used when supported by the compiler.

Exit points of a function, not occurring as the last executable statement, shall contain a
comment that begins with the word: EXIT.

The #ifdef directive shall not be used to disable unused code. The directive is to be used
for conditional compilation (e.g., debug code, platform dependencies, compiler
dependencies).

Constant should be given an uppercase name (via #define). If it is only used in one file, it
should be #define'd at the head of that file; if used in multiple files, it should be #define'd in
an include file.

Pointers:

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 50 of 54

Hardcopy Uncontrolled

• Pointer conversions shall be explicitly cast.
• Pointers should be initialized to a valid value (or NULL) prior to use.

Mixed mode operations, when used, shall be clearly identified and described using either
type casting or comments within the source code.

STANDARD: Programs shall not depend upon the order of bytes within an integer or
floating number.

STANDARD: A program shall not rely on data size to truncate expressions to a specific
number of bits.

Comments:

• The characters /* shall introduce a comment, while the characters */ terminate
the comment.

• Comments shall not be used to disable executable statements.
• Comments shall not be nested.

Loop variables which control the execution and exit conditions of a for loop shall not be
altered in the context of the for loop.

Goto Statement:

• The goto statement shall be used only on a case-by-case basis as approved
by program management where required to meet specific execution time
requirements or memory constraints.

• The goto statement shall not be used to transfer control into loops.

• Each goto statement shall be accompanied by the following:
− Comments placed near the goto statement to document the applicable

constraints.
− Comments placed near the statement receiving control to document

the origin of the transfer of control.

Switch statements

• The default label shall be used in all switch statements.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 51 of 54

Hardcopy Uncontrolled

• All cases with processing should be terminated with a break statement.
When a case is not terminated with a break statement, a comment should be
added to explain the reason for "fall through".

Error Handling
• Check for error return values, even from functions that "can't" fail. Consider

that close() and fclose() can and do fail, even when all prior file operations
have succeeded. Write your own functions so that they test for errors and
return error values or abort the program in a well-defined way. Include a lot of
debugging and error-checking code and leave most of it in the finished
product.

• Use the assert facility to insist that each function is being passed well-defined
values, and that intermediate results are well-formed.

• Include the system error text for every system error message.

• Check every call to malloc or realloc unless you know your versions of these
calls do the right thing. You might want to have your own wrapper for these
calls, so you can do the right thing always and developers don't have to make
memory checks everywhere.

Standard Mathematical and Geophysical Constants shall be used (e.g. PI).

Dynamic allocation of memory shall be used wherever possible. Do not allocate memory
for local variables until they are used in a subprogram, and deallocate the memory for a
local variable as soon as its use in the program is finished.

STANDARD: Follow compiler documentations and options for mixed code programming.

STANDARD: All code should be subjected to a code checker, such as Lint, and the output
presented at subsequent code reviews for official acceptance after every change. Lint is
available on most operating systems.

Guidelines:

• Type casting should be used to clarify mixed mode operations.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 52 of 54

Hardcopy Uncontrolled

• The indentation of multiple line expressions should enhance the readabil-ity of
the expression.

• For each level of indentation, use three spaces. The number of spaces used
should be applied to the entire program.

• Upper case should be used for user #define'd identifiers and Macro names.

• Mixed case or underscores should be used for function and variable names.

• Names should not resemble C reserved words or implementation supplied
function names.

• Each function shall contain a maximum of 150 lines of code.
• Each program unit should contain no more than 200 executable statements.

• Each function should contain a single exit point as the last executable
statement. If the exit point is not the last executable statement, the last line of
the function should be a comment identifying where the exit point(s) are
located within the function.

• Declaration sections should be ordered

− Constants (#define).

− Type definitions (typedefs, unions, structs)

− Global variable declarations of simple types (int, long, float, char, etc.).

− Global variable declarations of compound types (typedefs, structs,
unions, and arrays).

− Non-global (static) declarations

• Any file that uses definitions provided by another file should explicitly include
that file.

• Use #ifdef statements in include files to prevent redefinition of values.

• Programs should take advantage of include files which contain program wide
standard definitions (#defines, typedefs, macros, etc.).

• Include files should not contain data storage.

• Character constants should not contain more than one character.

• Constants should be initialized with values of the same type.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 53 of 54

Hardcopy Uncontrolled

• Type specifiers, variable names, and descriptive comments should be aligned
in a column.

• Avoid the use of raw C types like int, long, float, double when using data that
might be written to disk. For example, the sizes of int and long are machine
dependent. On 32 bit machines int's and long's are 32 bits, but on 64 bit
processors an int can be either 32 or 64 bits and a long 64 bits, depending on
the processor. For portability reasons and consistent numerical results use
typedefs for the basic raw C types.

• One should write functions and not macros.

• Macro names should be fully capitalized. When writing macros, parentheses
should be used around parameters in the replacement text to guard against
precedence surprises.

• The nesting of statements should be limited to five (5) levels. Level 0, or not
nested, is the topmost level under the function declaration.

• Each statement that is part of the body of a C control structure (if, while, do
while, for, and switch) should be indented from the margin of its controlling
statement. The same rule applies to function defini-tions, structure
definitions, union definitions and aggregate initializers.

• The layout of control structures should follow the rule above regarding
indentation, and should further contain one of the two following styles, (style
one being the preferred style).

• In the test expression of while, for, do while, or if control structures, for non-
boolean values, the comparison should be written explicitly rather than relying
upon the default comparison to zero or non-zero. The comparison of a
pointer to null should be written as an explicit comparison.

• There's no excuse for writing code which already exists in a common library.
Not only will the standard library's code be tested, often it will be more
efficient, and will certainly be more familiar to your fellow programmers. Some
notes on using particular functions:

• Recursive routines should be avoided on efficiency grounds.

• Each logical grouping of statements should be made more readable by a
comment prior to the block. A block comment should be indented at the same
level as the state-ments, or begin at the left margin.

NOAA/NESDIS/STAR
 TRAINING DOCUMENT

TD-12.1.3
 Version: 2.0

 Date: September 30, 2007
TITLE: C Programming Standards and Guidelines

 Page 54 of 54

Hardcopy Uncontrolled

• Block comments, which consist of several lines of text, should be consistently
formatted in a style selected for the software program.

• When comments, other than block comments, exceed one line and begin on
lines with other program elements, each comment line should contain
delimiters.

• All variable declarations should have a descriptive comment following the
semicolon, with one variable per line.

• Include a reference to the reason for code changes.

END OF DOCUMENT

	LIST OF ACRONYMS
	 INTRODUCTION
	 Objective
	 Background
	 C Versions
	 Benefits
	 Overview

	 REFERENCE DOCUMENTS
	 DEFINITIONS
	 PROGRAMMING STANDARDS AND GUIDELINES
	 Language Features
	 Readability
	 Naming Conventions
	 Compound Expressions
	 Organization
	 Size
	 Entry/Exit
	 Declarations
	 Conditional Compilation
	 Include Files
	 Function Declarations
	 Data Declarations
	 Constants
	 Variables
	 Data Types
	 Pointers

	 Expressions
	 Mixed Mode Operations
	 Byte Ordering
	 Byte Size
	 Macros

	 Control Constructs
	 Statements
	 Loop Constructs

	 Error Handling
	 Common Libraries
	 Use of Standard Constants
	 Efficient Use of Memory
	 Interoperability
	 C/Fortran Interoperability
	 C/++ Interoperability

	 Documentation
	 Headers
	 Comments

	 Grandfathering
	 COTS
	 Reuse

	APPENDIX A. EXAMPLE COMMENTS
	APPENDIX B. EXAMPLE FUNCTION DECLARATIONS AND DEFINITIONS
	APPENDIX C. EXAMPLE CONTROL STRUCTURES
	APPENDIX D. INCLUDE FILE USAGE
	APPENDIX E. “C” CODING STANDARDS - QUICK REFERENCE

