AC4 Program and JPSS sub-focus on FIREX

Monika Kopacz, Kenneth Mooney Climate Program Office AC4 Program

November 18, 2016

Atmospheric Chemistry, Carbon Cycle and Climate (AC4) Program

AC4 is a competitive research program which manages a portfolio of multi-year projects

AC4 Goal: Determine the processes governing atmospheric concentrations of greenhouse gases and aerosols in the context of the Earth System and climate

Where is AC4?

FY13-FY16 Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) Research Portfolio

Nitrogen Cycle

Atmospheric composition from space

Emissions and Chemistry of Wildfires

CarbonTracker

Urban Emissions

ESRL/CSD, PMEL, ARL Field Campaigns

GFDL Nitrogen Modeling

Oil & Gas Emissions

ESRL/GMD Monitoring

FIREX background: fires and climate

- Fires emit greenhouse gases and aerosols, and their precursors
- Fires are projected to increase with warming climate
- Fires are one of the largest uncertainty due to their interannual variability, complicated chemistry and physics, and unknown emissions

FIREX (2015-2019): studying western wildfires

ESRL/CSD led 5 year effort that includes instrument development, laboratory experiments, field deployment (P3, mobile labs, other aircrafts) and modeling

http://esrl.noaa.gov/csd/projects/firex/

What is AC4 FIREX? Scientific Priorities

FIREX: CSD led and designed field experiment

AC4 FIREX: AC4 supported research relevant to some of FIREX goals

FIREX science questions*

- 1. What are the **emissions** of trace gases and aerosols?
- 2. What is the chemical transformation of those emissions?
- 3. What is the local air quality and visibility **impact** of fires?
- 4. What are the regional and longterm **impacts** of fires?
- 5. What are the **climate-relevant** properties of biomass burning aerosols

*As contained in FIREX white paper

AC4 FIREX foci*

- Collect, analyze and/or model data from FIREX or related field or laboratory experiments
- Exploit multiple data sets in situ, remote, and /or satellite, especially from CrIS instrument
- 3. Focus on the effects of biomass burning on **nitrogen cycle**
- Contribute to improving the prediction of smoke from wildfires, especially in NOAA's Air Quality Forecasting system

*As contained in AC4 FY16 solicitation

AC4 contribution to FIREX

AC4 supported projects:

Missoula Fire Lab, chamber experiments, mobile/ground sites, small aircraft: NOx emissions and chemistry, nitrogen isotopes; comprehensive nighttime chemistry; BC aging and BrC chemistry; O₃ and SOA chemistry; aqueous/multiphase chemistry; speciated LVOCs; intercomparison of BC instrumentation (MFL only)

Large aircraft: emissions and chemistry of formaldehyde; HONO and formaldehyde by DOAS; nighttime chemistry of NMOC; reactive chlorine

Complementary: O_3 and PM in urban areas – AQ impacts via unique tracer (acetonitrile) **Modeling**: aerosol composition and size distribution, NMOC, WRF/FINN, GEOS-Chem **Satellite:** O_3 retrieval from CrIS/OMPS

Product needs from JPSS

Latency: near real time during summer 2018; otherwise high latency – at reprocessing time or about 6 months latency; Data time frame: all data will be useful

Special needs: Level 2 profiles + averaging kernels; ideally <=10 levels or so

Instruments and species:

- CrIS: trace gases (CO, O₃, NH₃, CH₄, CO₂, N₂O, SO₂, HNO₃, CH₃OH etc.)
- OMPS: trace gases (O₃, NO₂)
- VIIRS: AOD, burn area etc.

OAR customers: CPO/AC4, ESRL/CSD, ESRL/GMD? GFDL? ARL?

CrIS workshop recommendations (2015)

Scientific community uses TIR satellite observation, so far provided by NASA and EUMETSAT from **MOPITT**, **TES**, **AIRS and IASI**. All are past expiration and there are no plans to replace them.

Recommendation 1: Need data

• Provide calibrated radiances Level 1b data at full spectral resolution.

Recommendation 2: Special needs for atmospheric chemistry

- A. Provide reduced file size (like TES "lite) with retrievals for individual trace gases and their observation operators at a reduced vertical resolution.
- B. Provide essential information: a priori, averaging kernels, estimated retrieval error.
- C. Allow rapid multi-file download from CLASS

Recommendation 3: Validation

- A. Coordinate validation with upcoming field campaigns (e.g. FIREX)
- B. More frequent ESRL flights to validate trace gases
- C. Plan additional field campaigns with retrieval and user communities

Recommendation 4: Future

- A. Explore the possibility of new species/products
- B. Close spectral gap
- C. Reduce noise and increase resolution for future instruments

Most apply to all of JPSS!

Discussion

- What can and will JPSS do?(to address users' recommendations)
- What can and will CPO/AC4 do? (building on what's available at NESDIS)
- When?

FIREX 2016 FIRE-LAB Experiment

Species	Name	Description	PI	Affiliation	
GAS PHASE SPECIES					
CO, CO ₂ , CH ₄ , HCHO, NO, NO ₂ , NH ₃ , HCN, HONO, etc.	OP-FTIR	Open path FTIR spectrometer, situated at the top of the stack. Can also sample room burns.	B. Yokelson	U. Montana	
CO, CH ₄ , C ₂ H ₆ , HCN, HCHO, N ₂ O	TILDASs	Tunable IR laser direct absorption spectroscopy	S. Herndon, T. Yacovitch, J, Roscolli	Aerodyne	
CO ₂	LiCOR CO ₂	Non-dispersive Infrared detection T. Yacov		Aerodyne	
VOCs	PTR-MS	Proton-Transfer Reaction Mass Spectrometry	B. Knighton	Aerodyne	
Total Hydrocarbons	THC	Flame ionization detection	T. Yacovitch, B. Knighton	Aerodyne	
NO, NOy	NOx box	O ₃ Chemiluminescence, catalytic conversion	C. Daube	Aerodyne	
$HO_2 + RO_2$	ECHAMP	C_2H_6 + NO chemical amplification	E. Wood	U. Mass	
VOCs, SVOCs, HONO, PA radical	NO ₃ - CIMS	Nitrate ion chemical ionization mass spectrometry	Paola Massoli	Aerodyne	
Total Fixed Nitrogen	en N _y Catalytic conversion of all N-containing species (except N ₂ and N ₂ O)		J. Roberts/Y. Liu	NOAA/ES RL, CU Denver	

VOCs	H₃O⁺ ToF	Various VOCs using chemical ionization mass spectrometer using H ₃ O ⁺ as reagent ion	Abby Koss, Matt Coggon, Carsten Warneke	NOAA/ES RL
VOCs	GC/MS	Gas chromatograph/Mass spectrometer, direct or canister sampling	J. Gilman/ Brian Lerner	NOAA/ES RL
VOC/LVOC	Gas/Particle Sampling	GCxGC-HRTOFMS including both Electron Impact (EI) ionization and softer vacuum ultraviolet (VUV) ionization	Allen Goldstein	UC Berkeley
VOC/LVOC/ELVO C	I ⁻ ToF, w/ FIGAERO Inlet	Iodide ion CIMS especially for N- and CI- containing VOCs	Bin Yuan, Carsten Warneke, Joost de Gouw, Jose Jimenez	NOAA/ES RL, CU
LVOC/ELVOC	Various Methods	GC/MS, UPLC/DAD-ESI-QToFMS, ACSM, and FIGEARO-CIMS	Barbara Turpin Jason Surrat	UNC Chapel Hill
Gas Phase compounds	Mist Chamber	WSOC, ES-MS/MS	Barbara Turpin Jason Surrat	UNC Chapel Hill
I/SVOC	Cartridge	GCxGC/TOF-MS (EI) and LC/MC	Kelley Barsanti Lindsay Hatch	UC Riverside
Nitrogen Isotopes of Nitrite and Nitrate	MC/IC	Mist Chamber/ Ion Chromatograph with off- line isotope MS	Meredith Hastings, Jack Dibb	Brown, UNH

AEROSOL MEASURMENTS					
Fine Mode Composition	ToF AMS	Aerosol mass spectrometer with time-of-flight MS, and light-scattering module	A. Middlebrook	NOAA/ES RL	
Fine Mode Composition	LToF SP- AMS	Aerosol mass spectrometer with high resolution time-of-flight MS, with Soot particle mode	T. Onasch	Aerodyne	
Particle size and number	SMPS, OPC, CPC	Scanning mobility particle sizer, Optical particle counter, Particle number concentration.	T. Onasch	Aerodyne	
SP2	rBC	Soot photometer	A. Sedlacek	BNL	
Black Carbon/Brown Carbon	Intercompa rison,	Numerous Methods, e.g. EC/OC, light scattering and absorption, CO/CO ₂ , SP2	Gavin McMeeking Andy May	DMT	
Particle chemistry	BBOA measurem ents	2 MOUDI impactors, off site analysis by DI/MS	Alex Laskin, Sergey Nizkorodov	PNNL, UC Irvine	
Particle chemistry	BBOA measurem ents	PiLS with HPLC/UV-Vis/ESI-HRMS analysis of water soluble constituents	Alex Laskin, Sergey Nizkorodov	PNNL, UC Irvine	
Particulate light absorption	CRD-PAS	Dual-wavelength cavity ringdown + photoacoustic spectrometer	Chris Cappa	UC Davis	
Particle mobility and aerodynamic size distr.	SEM or SMPS, APS		Chris Cappa	UC Davis	
Brown Carbon Absorption	BrC-PiLS	PiLS sampler with long path liquid phase UV- vis absorption spectrometer	Rebecca Washenfelder	NOAA/ES RL	
Aerosol Absorption, UV-vis	BBCEAS	Broad-band cavity absorption spectrometer,	Rebecca Washenfelder, Carrie Womack	NOAA/ES RL	
Particle absorption/extinction	aCRD-PAS	Cavity ring-down and Photo acoustic spectrometers	Nick Wagner	NOAA/ES RL	

Imaging	Aerosol	Scattering as a function of angle	Katherine	NOAA/ES
Nephelometer	scattering		Manfred	RL
Aerosol	PiLS-ESI/MS	PiLS sampling with electrospray ionization	Chelsea	NOAA/ES
chemical		negative ion mass spectrometry	Stockwell, Jim	RL
composition			Roberts	
BC/BrC/Optical	SP-AMS CAPS-	Soot particle Aerosol Mass Spectrometer	Chris Cappa	UC Davis
Prop	SSA	Cavity Attenuated Phase-Shift, Single	Jesse Kroll	MIT
	CRD/PAS	Scattering Albedo Cavity Ring Down	Collette Heald	
		Photoacoustic Spectrometer		
Aerosol	Filter Sampler	ESI-MS/MS, Brown carbon (absorbance 200-	Barbara	UNC
Chemistry		800nm)	Turpin, Jason	Chapel Hill
			Surratt	
Particle phase	PiLS	WSOC, ES-MS/MS	Barbara	UNC
compounds			Turpin	Chapel Hill
			Jason Surrat	
Aerosol PAX Photoacoustic extinction at two wavelengt		Photoacoustic extinction at two wavelengths	Bob Yokelson	U.
Extinction	inction			Montana
		SMOKE PROCESSING		
Potential	PAM	Measure of changes in aerosol mass,	Matt Coggan,	NOAA/ES
Aerosol Mass		chemistry and other properties in a flow	Jose Jimenez	RL, CU
		reactor at high reactant (e.g. OH)		
		concentrations		
Potential	PAM	Measure of changes in aerosol mass,	Lambe, T.	Aerodyne
Aerosol Mass		chemistry and other properties in a flow	Onasch, S.	
		reactor at high reactant (e.g. OH)	Herndon	
		concentrations		
Particle Aging	SP-AMS,	Batch reactor photochemical aging of	Jesse Kroll,	MIT, UC
Reactor	CAPS-SSA	particles with chemical and optical	Chris Cappa	Davis
		measurements, opportunities for other		
		measurements.		
Photochemical	Photochemical	1 or 2 portable chambers for gas phase and	Shantanu	CSU

How FIREX will work

Time needed to: Digest previous results Develop new approaches and instruments Demonstrate effectiveness

Timetable		FY 2015	FY 2016	FY 2017	FY 2018	FY 2019
		Individual Activities			Intensive	
1	Instrument, model development initial lab and field experiments					
2	Emission data incorporation in inventories and model development					
3	Fire lab: emission factors, compound identification (typical NA fuels)					
4	Simulation chamber study for chemical transformation of new compounds					
5	Field observations with small aircraft, mobile lab and ground site					
6	Large multi-platform intensive					
7	Fire lab and simulation chamber: (2018 intensive measured fuels)					
8	Coordinating studies with other agencies, Interpretation and Analysis					
	FY with major work for activity FY with minor work for activity FY with large-scale field experiment	CSD Lea	ad Activity			

FIREX (Core) Steering Committee Carsten Warneke, Jim Roberts, Joshua Schwarz, Bob Yokelson

How did we get here: AC4 FIREX timeline

AC4 target/focus for AC4 FIREX: FY16 Program announcement

- Meeting with ARL (fall 2013)
- GFDL Nitrogen Cycle Modeling White Paper (winter 2013/2014)
- Discussion with CSD (spring 2014)
- JPSS/CrIS Satellite (workshop, fall 2014; report, summer 2015)
- Letters of Interest (51) (winter 2014/2015)
- FIREX white paper (winter 2014)
- AGU Town Hall (winter 2014)
- Interagency Field Campaign Meetings (Feb. 2015)
- Development and publication of RFP (spring 2015)
- Discussions with John Cortinas/OWAQ (spring/summer 2015)
- Submission of LOIs (74) and Proposals (64) (summer 2015)
- Virtual Town Hall (summer 2015)
- Interagency Field Campaign Meeting (Sept. 2015)
- Proposal Review and Selections 20 projects selected (winter 2015/2016)
- Interagency AQRS discussion on other agency interest (NASA, EPA, NSF)
- AC4 FIREX projects begin (summer 2016)
- NASA commits DC8 for 2018 (FIRE-Chem)
- First field phase of FIREX: Missoula Fire Lab (fall 2016) >70 investigators, ~900 compounds, \$25+ million of equipment

CSD target/focus for FIREX: FY18 field deployment

AC4 FIREX core activities Other relevant activities

2013

2014

2015

AC4 Letters of Interest (~50)

i.e. Voice of the community (as of January 2015)

Topics of interest identified in response to FIREX science questions:

- All aspects of emissions and chemistry research, measurements and modeling
- Complementary laboratory studies disconnected from FIREX effort
- Complementary measurements in other regions of US and of other types of burning, especially prescribed burning
- Optical properties of aerosols
- Application of satellite data (well beyond CrIS/SNPP)
- Cloud formation, aerosol-cloud interactions
- Flight planning
- Air quality forecasting
- Climate impacts of fires
- Health impacts of fires