

Developing Enterprise Algorithm for Land Surface Temperature Product

Presenter Yunyue Yu, STAR

Contributors: Yuling Liu, Peng Yu, Heshun Wang, UMD/CICS

- Introduction
 - Team Members/Users
 - Requirements Summary
- Background
 - Algorithms Products
 - Challenges
- Enterprise Algorithm Development
 - Current Operational Product:
 - Enterprise Algorithm science
 - Development Strategy
 - Candidate Algorithms
 - Design/ High level process flow
 - Testing and Validation: what we have and going to do
 - Schedules and Milestones
- Risks
 - Impact of transition on users
- Summary and Recommendations

Team Members /Users

-	Name	Institute	Function
JPSS-STAR	Ivan Csiszar	NOAA/NESDIS/SATR	Land Lead, Project Management
	Yunyue YU	NOAA/NESDIS/SATR	TEDR Lead, algorithm development, validation, team management
	Yuling Liu	NOAA Affiliate, UMD/ESSIC	product monitoring and validation ; algorithm development
	Heshun Wang	NOAA Affiliate, UMD/ESSIC	algorithm improvement
	Peng Yu	NOAA Affiliate, UMD/ESSIC	product validation tool
	Marina Tsidulko	NOAA Affiliate, SciTech/IMSG	System Framework Design/Development
	Jerry Zhan	NOAA/NESDIS/SATR	Surface Type, Soil Moisture application
NCEP-EMC			
	Michael EK	NOAA/EMC/NCEP	user readiness
	Jesse Meng	NOAA Affiliate	user readiness
	Weizhong Zheng	NOAA Affiliate	user readiness
	Yihua Wu	NOAA Affiliate	user readiness

External Users of LST product (Point of Contact)

- USDA Agricultural Research Services(Martha Anderson)
- USDA Forest Service (Brad Quayle)
- Academy Univ. of Maryland (Konstantin Vinnikov, Shunlin Liang, Cezar Kongoli)
- Army Research Lab (Kurt Preston)
- EUMETSAT LSA SAF LST group (Isabel Trigo, Project Manager)
- ESA/ESRIN, Italy (Simon Pinnock & Olivier Arino)
- Univ. Of Edinburgh, UK (Chris Merchant)
- OBSPM, and LSCE, France (Catherine Prigent & Carlos Jimenez, and Catherine Ottlé)
- Universitat de les Illes Balears, Spain (Maria Antonia Jimenez Cortes)
- eLEAF, The Netherlands (Henk Pelgrum & Wim Bastiaanssen)
- Centre for Ecology and Hydrology, UK (Rich Ellis)
- Institute of Geodesy and Cartography, Poland (Katarzyna Dabrowska-Zielinska)

Product Requirements from JPSS L1RD and GOES-R L1RD

	GOES	-R	JPSS
Products	Full Disc	CONUS	Swath
Accuracy	2.5 K	2.5 K	1.4 K
Precision	2.3 K	2.3 K	2.4 K
Range	213 – 330 K	213 – 330 K	213 – 343 K
Refresh Rate	60 mins	60 mins	Daily
Horizontal Resolution	10 km	2 km	1 km

<u>**Definition</u>**: Land Surface Temperature (LST) is the mean radiative skin temperature derived from thermal radiation of all objects comprising the surface, as measured by remote sensing ground-viewing or satellite instruments.</u>

Benefits:

- plays a key role in describing the physics of land-surface processes on regional and global scales
- provides a globally consistent record from satellite of clear-sky, radiative temperatures of the Earth's surface
- provides a crucial constraint on surface energy balances, particularly in moisture-limited states
- provides a metric of surface state when combined with vegetation parameters and soil moisture, and is related to the driving of vegetation phenology
- an important source of information for deriving surface temperature in regions with sparse measurement stations

<u>VIIRS LST EDR</u>: Granule Product, moderate resolution, Split-window/Surface-type (17 IGBP) Dependent Regression Algorithm; <u>GOES-R LST</u>: Full Disk, CONUS, MESO, Split-window/Emissivity Explicit Regression Algorithm.

Background: Challenges

- Algorithm/product Challenge
 - consistency between the satellite missions
 - Characterization of uncertainties associated with retrieved LSTs. Practical uncertain is significantly larger than the theoretical analysis.
 - High accurate dynamic emissivity dataset
 - Water vapor data resolution and forecast accuracy
- Validation Challenge
 - Quantitative and qualitative limitations of validation dataset. The CalVal performed only with limited data, mostly with SURFRAD data. Global and seasonal representativeness of the validation are needed.
 - High quality spot measurements
 - Surface heterogeneity
 - Cloud contamination impact is significant

Current Operational Product (L2)

	VIIRS (IDPS)	MODIS	GOES	SEVIR	ABI
Product	Granule , 1.5 min, 4x1.5 mins	Granule, 5 mins	Disk, 3 hour	Disk, 15 mins	Disk, 1 hr
Methodology	TIR Split-window	TIR Split- window	IR dual window	TIR Split-window	TIR Split-window
Algorithm	Regression, Surface Type Dependent coeffs	Regression, emissivity explicit	Decision Tree Regression, emissivity explicit	Regression, emissivity explicit	Regression, emissivity explicit

Temperature (K)

28"N 26"N 24"N 22"N 20"N 18"N

16°N

14°N

Development Strategy

A unified LST retrieval algorithm is necessary for consistent LST production with different satellite missions

- Better Cross-satellite evaluation
- Better global validation effort
- Engineering and maintenance easiness
- Consideration of enterprise algorithm development
 - Simplify
 - Robustness
 - Applicable to both GEO and LEO satellite missions
 - Consistent quality flags for users and for evaluation analysis
 - Rely on thermal split window for best accuracy

Enterprise LST Algorithm

Sensor	LST Retrieval Algorithm
VIIRS	$LST_{i} = a_{0}(i) + a_{1}(i)T_{15} + a_{2}(i)(T_{15} - T_{16}) + a_{3}(i)(\sec\theta - 1) + a_{4}(i)(T_{15} - T_{16})^{2}$
MODIS	$LST = A_0 + (A_1 + A_2 \frac{1 - \varepsilon}{\varepsilon} + A_3 \frac{\Delta \varepsilon}{\varepsilon^2}) \frac{(T_{11} + T_{12})}{2} + (A_4 + A_5 \frac{1 - \varepsilon}{\varepsilon} + A_6 \frac{\Delta \varepsilon}{\varepsilon^2}) \frac{(T_{11} - T_{12})}{2}$
ABI	$LST = C + A_1T_{11} + A_2(T_{11} - T_{12}) + A_3\varepsilon + D(T_{11} - T_{12})(\sec\theta - 1)$
GOES	Daytime: $LST = a_0 + a_1T_{11} + a_2(T_{11} - T_{3,9}) + a_3(T_{11} - T_{3,9})^2 + a_4(\sec\theta - 1) + a_5T_{3,9}\cos\theta_s + a_6(1 - \varepsilon)$
	Nighttime: $LST = a_0 + a_1T_{11} + a_2(T_{11} - T_{3,9}) + a_3(T_{11} - T_{3,9})^2 + a_4(\sec\theta - 1) + a_5(1 - \varepsilon)$
SEVIRI	$LST = A_0 + (A_1 + A_2 \frac{1 - \varepsilon}{\varepsilon} + A_3 \frac{\Delta \varepsilon}{\varepsilon^2}) \frac{(T_{11} + T_{12})}{2} + (A_4 + A_5 \frac{1 - \varepsilon}{\varepsilon} + A_6 \frac{\Delta \varepsilon}{\varepsilon^2}) \frac{(T_{11} - T_{12})}{2}$

The determined Algorithm

 $T_{\rm S} = C_0 + C_1 T_{11} + C_2 (T_{11} - T_{12}) + C_3 \varepsilon + C_4 \varepsilon (T_{11} - T_{12}) + C_5 \varDelta \varepsilon$

 T_{11} and T_{12} : the TIR split-window channel BTs ϵ and $\Delta\epsilon$: mean emissivity at the TIR spectrum, and the emissivity difference LUT {C} dimension: Day/night, View Zenith Angle, Total Column Water Vapor

High Level Data Flow

This algorithm can potentially support all available instruments such as VIIRS, GOES-R , SEVIRI, AHI etc. However, only VIIRS and GOES-R will be considered in the current frame.

Table of Input List

Name	Туре	Description	Dimension	Unit
Primary Sensor Data(SDR)				
Brightness temperature 11µm	input	brightness temperature at 11µm	grid (xsize, ysize)	К
Brightness temperature 12µm	input	brightness temperature at 12µm	grid (xsize, ysize)	К
Latitude	input	Pixel latitude	grid (xsize, ysize)	Degree
Longitude	input	Pixel longitude	grid (xsize, ysize)	Degree
Solar zenith	input	solar zenith angles	grid (xsize, ysize)	Degree
View Zenith	input	Satellite view zenith angle	grid (xsize, ysize)	Degree
SDR QC flags	Input	Level 1b data quality	grid (xsize, ysize)	unitless
Derived Sensor Data				
Cloud mask	Input	Cloud mask data	grid (xsize, ysize)	unitless
Snow/ice mask	Input	Level 2 snow/ice mask data	grid (xsize, ysize)	unitless
Land/sea mask	Input	Level 2 land/sea mask data	grid (xsize, ysize)	unitless
water vapor	Input	For ABI: ABI baseline TPW;For VIIRS: NCEP tpw data	grid (xsize, ysize)	mm(cm)
Emissivity	Input	Land surface emissivity	grid (xsize, ysize)	unitless
AOT	Input	Level2 AOT data	grid (xsize, ysize)	unitless
LUT and Configuration File	-			
Coefficients LUT	Input	Algorithm coefficient file	2(day/night)*3(wv)*5(stz)* 7(coef items)	Unitless
Configuration file	Input	Configuration values		Unitless

Enterprise LST Kernel Module Flow Chart

LST QF

Flag	JPSS	GOES-R	Descriptions
LST quality	х		High, medium, low, no retrieval
Algorithm	х		Split; dual split
Day/night	х	x	0-night;1-day
SWIR availability	х		M12 amd M13 in range or not
LWIR availability	х		M15 and M16 in range or not
Active fire	х		0-no fire; 1-fire
Thin cirrus	х		0-no thin cirrus; 1-thin cirrus
Degradation	х	x	0-no degradation; 1-degradation(VIIRS: STZ > 40; ABI: STZ > 55)
LST out of range	x	x	VIIRS:0-within range(213-343); 1-out of rangeABI:00-normal, 01-cold surface(213-250),10-out of range(213-330)
Cloud property	х	x	0-confidently clear; 1-probabaly clear; 2-pro cloudy; 3-confi cloudy
AOT condition	х		0-within range(aot <1); 1- out of range
НОІ	х		Horizontal reporting interval. 0-within range (stz<53); 1-out of range
Sun glint	х		0-no sun glint; 1-sun glint
Terminator	х		0-beyond; 1-inside terminator(85 < soz <= 100)
Land water	х	х	VIIRS: 000-land and desert; 001-land no desert; 010-inland water;011-sea water;101-coastal ABI: 00-land,01-snow/ice;10-in land water,11-sea water
Surface type	x	x	VIIRS: 17 IGBP type including snow/ice surface ABI: included in the land water flag
TPW condition		x	(00=dry atmosphere (wv<=1.5g/cm2); 01=moist atmosphere(wv>2.0g/cm2); 10= very moist(wv>5.0/cm2
SDR Quality		x	00-normal;01-out of space;10-bad data;11-missing data
Emissivity quality		х	0-normal ; 1-historical emissivity

Quality Flag list

byte	bit	Flag	Source	description
1	0-1	LST quality	LST	00=high, 01=medium, 10=low, 11=no retrieval
	2-3	Cloud condition	Cloud mask	00=confidently clear, 01=probably clear,10=probably cloudy,11=confidently cloudy
	4	SDR quality SDR		0=normal, 1=bad data VIIRS: (bad , missing , not calibrated) GOES-R: (bad , missing , not calibrated, out of space)
	5 Aerosol Optical Thickness AOT at 550 nm (slant path)			0=within range(AOT<=1.0);1=outside range (AOT >1)
	6-7	Land surface cover	land/sea mask snow/ice mask	00=land;01=snow/ice;10=in land water;11=coastal
2	0-1	Water vapor condition	Tpw input	00=very dry atmosphere(wv<1.5g/cm ²) ; 01= dry [1.5,3); 10=moist atmosphere(3,4.5]; 11= very moist[4.5+)
	2	Emissivity availability	Emissivity	0=normal, 1=historical emissivity
	3	Degradation by large viewing angle	SDR	0=no degradation, 1=large view degradation (VIIRS: 40 degree, GOES-R: 55 degree)
	4	Day/night flag	SDR	0=night(solar zenith angle > 85degree), 1=day
	5	Thin cirrus*	Cloud Mask	0= no thin cirrus, 1= thin cirrus
	6	Active fire*	Cloud mask	0= no active fire, 1= active fire
	7	Reserved		Reserved for future use

Note: * Definition clarification or available of nighttime thin cirrus and active fire are to be requested.

QF set module flow chart: pixel level QF

Threshold used in quality flag are configurable. Some thresholds are same but some are different among the missions.

LST Calculation module flow chart: pixel level

Propose a new emissivity algorithm

- Using historical emissivity products to generate background emissivity climatology.
- Employing the relationship between emissivity and GVF & Snow fraction to account for the dynamic change.
- Produce high resolution (0.009 degree) daily emissivity product for JPSS and GOES-R missions.

> Advantages

- Satellite emissivity products could provide more accurate soil emissivity than empirical method
- High resolution GVF & Snow product could well reflect the emissivity change.

Limitations

• The new emissivity product only include thermal infrared channels

High Level Process Flow

VIIRS and ABI Emissivity Product

ABI Ch15 Band Monthly Emissivity 201507

21

How will product be tested/validated

- Ground data evaluation
 - Enterprise VIIRS LST
 - SURFRAD
 - BSRN
 - GMD
 - Enterprise SEVIRI LST
 - Ground data in Gobabeb, Namibia
 - o Enterprise AHI LST
 - Ground data in Australia
- Cross satellite comparison
 - Enterprise VIIRS LST vs SEVIRI LST
 - Enterprise VIIRS LST vs AQUA LST
 - Enterprise VIIRS LST vs Enterprise AHI LST

Schedules and Milestones

Enterprise LST Algorithm		2016 (0	Calenc	der Ye	ar)	2017				2018			
	Development		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Dev P	Primary strategy, prototype, task plan		1										
/elo ent has	Initial Algorithm descriptive docs												
pm e	Critical Design Review (CDR)												
	Science code development and test												
Pr	Framework Integration												
re-opera Phas	Unit Test Readiness Review (UTRR)					1							
	Initial DAP												
e	Initial ATBD, Software Review				ATBI	D VO							
a	Algorithm Readiness Review (ARR)												
	Final DAP delivery												
Ope n Pha	Operational Readiness Review												
ratio al ase	Operational Phase Begins in NDE								1				
Cal/V Phas	Validation and LM monitoring												
	ATBD Update									ATBD	V1		
e e	Maintenance and further improvement												

Potential risks

- 1. Algorithm in common vs mission specific features may introduce additional work in design and implementation.
- 2. Separated system maintenance may still needed for different satellite missions.
- 3. Quality of the product may be different between the missions, particularly between LEO and GEO missions (due to differences of resolution, sensor spec., angular effect etc.)
- 4. Limited high quality ground in-situ data is critical for enterprise algorithm validation.
- 5. It is not straight forward for users to switch from the current existing baseline LST product to the enterprise product due to the format change, QF logic update etc.

Summary

- A new emissivity explicit, TIR split-window regression approach is adapted as an enterprise algorithm for JPSS VIIRS LST production, which later can be applied for GOES-R ABI LST production as well.
- A consistent QF set is defined
- Emissivity production needed is in development
- Preliminary test demonstrates that it is feasible to implement the enterprise algorithm in multiple sensors.

Recommendations

- The object-oriented programming in scheme for enterprise system design and development
- Maintenance separation for different missions
- Improvement of global representativeness of the validation data collection

• Back-ups

Ground data evaluation

Enterprise SEVIRI LST against ground data in Gobabeb and Heimat, Namibia for the time period in March, 2012

Quality analysis/validation (Cross satellite comparison)

Cross comparison between VIIRS and AQUA LST

260

270

280

290

300

310

240

250

320

330

340

340 SAMPLES: 247335 STD(K): 1.44 BAS(K): -0.14 RMSE(K): 1.44

AQUA LST(K)

AQUA LST vs VIIRS LST at 2016003.1950(247335)

VIIRS_LST(K)

Cross comparison between VIIRS and AHI LST AHI LST vs VIIRS LST at 02/11/2016 05:30(115705)

