SNPP-J1/VIIRS Vegetation Health 1 km (VIIRS/VH-1)

Presenter Felix Kogan

March 30, 2016

STAR/JPSS Enterprise Algorithm Workshop NCWCP College Park, MD

Outline

- Introduction
- Team Members
- Users
- Requirements
- Current Operational Product
- Capabilities Assessment
- Architecture & Algorithm
- Testing & Validation
- Lessons Learned
- Plan of Operations
- Risk

Introduction

- Vegetation health (VH) is a method derivation of global vegetation condition from VIS and IR channels of afternoon operational polarorbiting satellites;
- The method is based on three bio-physical and ecosystem laws;
- The global VH (GVH) output is produced every week;
- Briefly, algorithm includes retrieval of orbital VIS and IR, calculation of NDVI and BT, their daily and weekly mapping & development of time series, comprehensive NDVI & BT massaging and calculation of three VH indices
- The developed products include 16 & 4 km AVHRR/GVH and 4 km VIIRS/GVH;
- We also put these data on our WEB for validation purposes
 http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_browse.php
 from 2015, nearly 6,000 users entered this page every month;
- Currently, 1 km SNPP/VIIRS is developing

VH-1Team & Users

- Lead: Felix Kogan, NOAA/NESDIS/STAR
- NESDIS Team:
 - NDE/OSPO: Dylan Powell, Wei Yu, Ricky Irving
 - OSPO: Hanjun Ding
 - OSD: Tom Schott
 - JPSS: Lihang Zhou
 - STAR: Walter Wolf
 - Data Center: CPC, NCDC
 - Contractor: Wei Guo

Main Requestors & Users

- Lead at NOAA: Matthew Rosencrans, NWS/NCEP/CPC
 - Lead at USDA: Mark Linderman, **USDA/FAS**, Eric Luebehusen, **USDA/WAOB**

Requirement(s)

• Requirement(s)

- NWS/NCEP/CPC Request number 1312-0008 from Matthew Rosencrans,
 - Summary: Develop 1-km resolution Vegetation Health (VH-1) product from SNPP/VIIRS for

(a) Operational monitoring

(b) Climate services

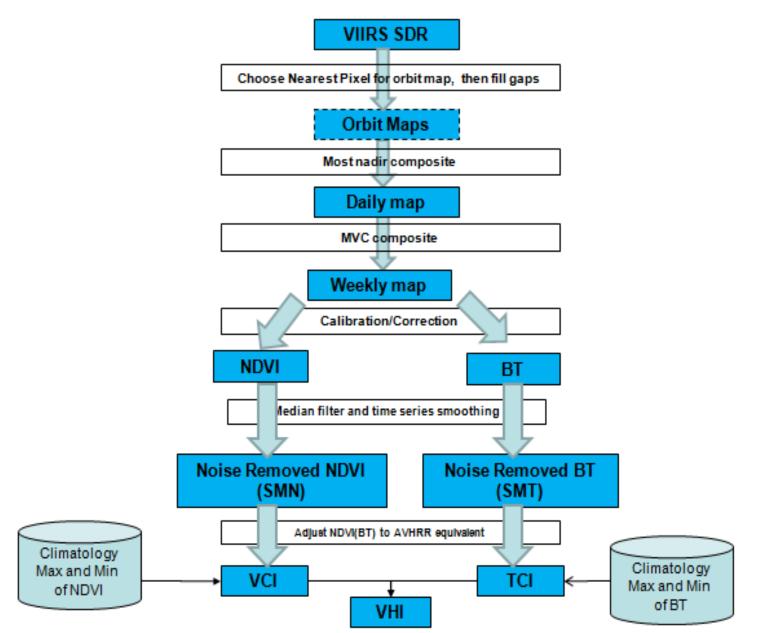
Explanation: SNPP-J1/VIIRS VH-1 product will replace SNPP/VIIRS VH-4 and NOA/AVHRR VH-4 product. It will be used in 1. NWS/CPC operational practice for (a) global and USA drought monitoring, (b) analysis of climate impacts on food security in Africa; 2. in USDA modeling global crop production and projecting the global commodity market; 3. Global community.

NOAA Mission Goal supported:

- Serve society's needs for weather and water information;
- Enhance society's ability to plan and respond;
- Support the Nation's commerce with information for safe, efficient, and environmentally sound transportation;
- Provide Climate Services.

User community

- NOAA/NWS's Climate Prediction Center needs 1 km drought information for North America Drought Monitor, Africa's food security assessment and global climate impact assessments
- NOAA/NESDIS/OSPO VH product distributor
- USDA/FAS & WAOB requested 1 km S-NPP-based VH products to predict global crop production and market performance


Benefit to user

- NOAA/NWS/CPC & OAR will predict Drought, Fire Risk, Flood/Standing water, Food security, Mosquito-born diseases;
- USDA will predict global crop/pasture production & assess commodity market;
- NOAA/NESDIS will provide Global drought watch; Biomass burning emission, Fire risk, Soil wetness.

Current & Required Capabilities: Vegetation Health Product

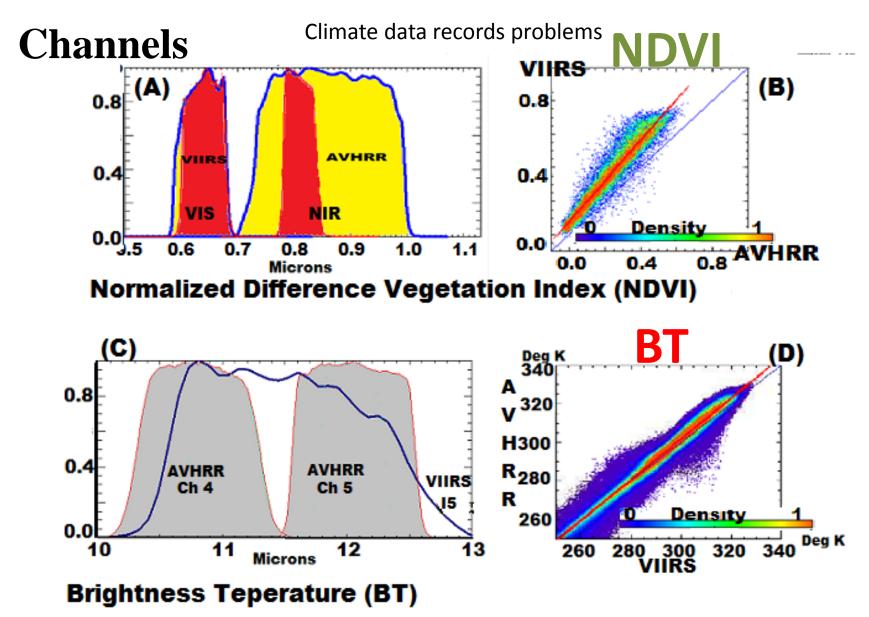
	Current Operational Capabilities	Requested Capabilities	Proposed Operational Capabilities	
Satellite Source (s)	SNPP/VIIRS-4 km NOAA/AVHRR-4 km	SNPP/VIIRS 1 km	Same as requested	
Product Name	VCI-4 TCI-4 VHI-4	VCI-1 from VIIRS TCI-1 from VIIRS VHI-1 from VIIRS	Same as requested	
Accuracy	VCI , TCI, VHI – 4%	No change	No change	
Latency	6 hours after the end of each 7-day period	4 hours after the end of each 7-day period	Same as requested	
Timeliness	Weekly	No change	No change	
Coverage	Global land surface (75degN-55degS)	No change	No change	
Resolution	0.036 degree (4 km)	0.009 degree (1 km)	Same as requested	
Other attributes	Mapped SNPP/VIIRS counts, observed angles, channels' values with calibration parameters.	VHI, VCI, TCI Formats: NetCDF/HDF & Geo- TIFF	Same as requested	

GVH Algorithm Block-Scheme

Algorithm Summary

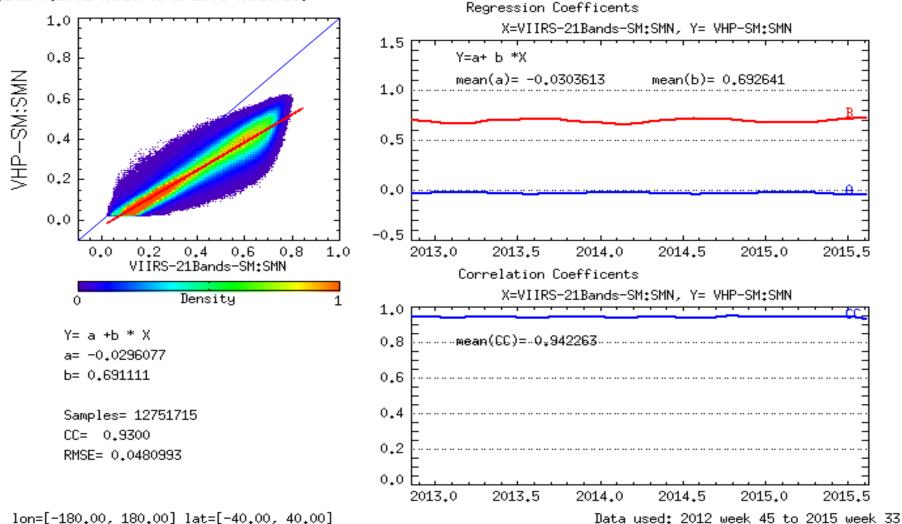
- VH algorithm requires retrieval of I1, I2 & I5 from VIIRS
- Mapping I1, I2 & I5 to a standard global grid
- Development of global daily and weekly maps
- Calculation of NDVI & BT:
 (a) Real time (from VIIRS)
 (b) Climatology (from AVHRR)
- Noise removal from SMN and SMT
- Adjustment of VIIRS SMN and SMT to standard climatology
- Checking stability of adjustments
- Calculation of VIIRS/VH (VCI, TCI, VHI)
- VIIRS/VH indices (VHI, VCI & TCI) are validated against AVHRR/VH, other satellites and in situ data
- FURTHER: New climatology from JPSS will improve the results

VH Validation Concept

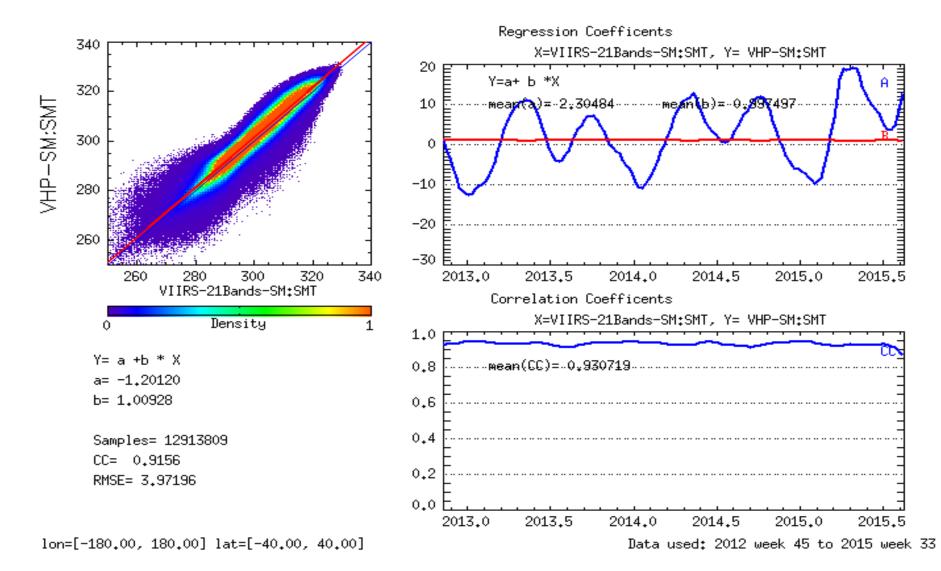

Algorithm improvement (VIIRS climatology)

Collect In situ data

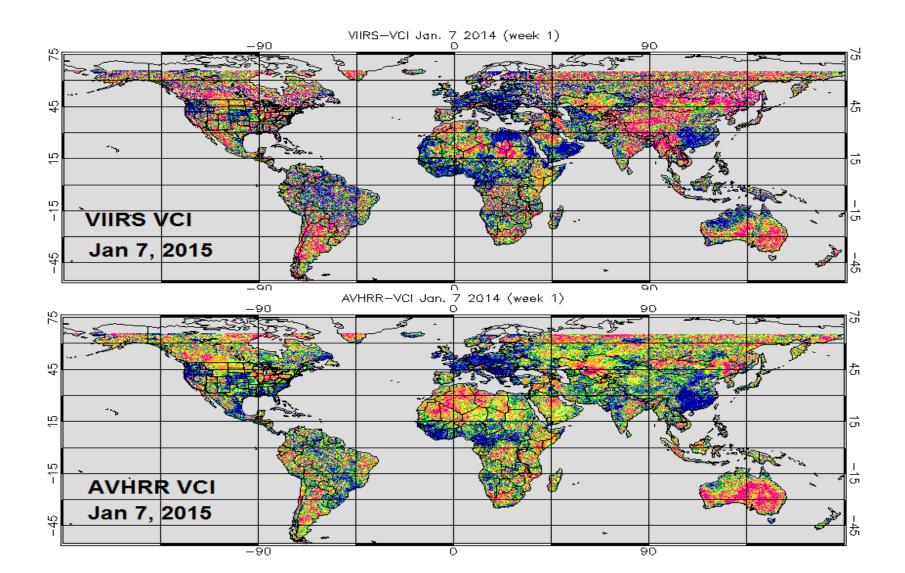
Meteo. Parameters & indices (P, T, SPI, ET, PSDI, USDM) Crop indices (USDA, FAO, Countries) Diseases indices Satellites data Economic indicators Environmental assessments


- Comparison with other satellites
- Checking stability of dynamics
- Correlation and regression analysis for data matching
- WEB usage (World, Countries, Regions)

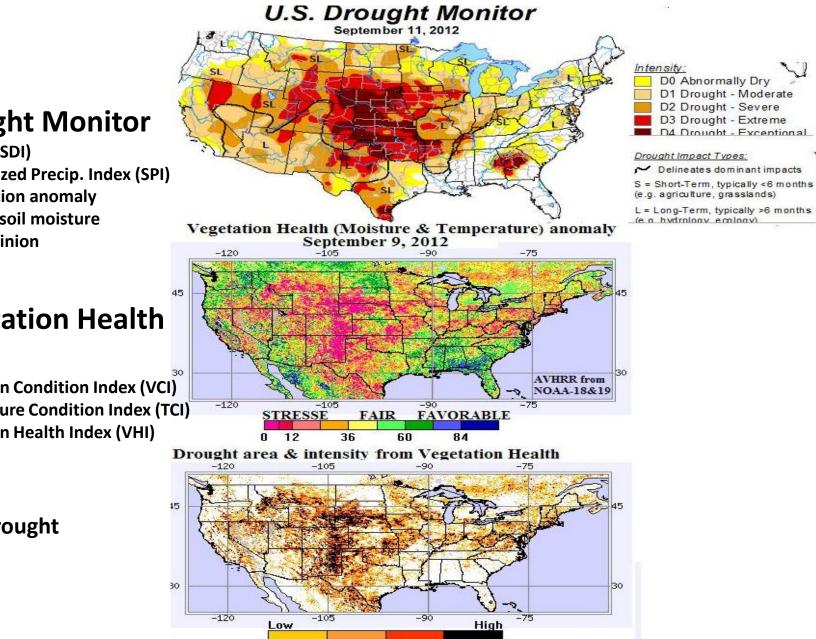
VIIRS versus AVHRR


NDVI (SMN): AVHRR-VIIRS time series 2012-2015.5

SMN: (2012 week 45 to 2015 week 33)



BT (SMT): AVHRR-VIIRS COR. and Regr. Tser 2012-2015.5


SMT: (2012 week 45 to 2015 week 33)

Comparison with Other Satellites: VALIDATION: VCI/VIIRS vs VCI/AVHRR

Comparison with Other Products USDM, VH vs GVH Drought

0

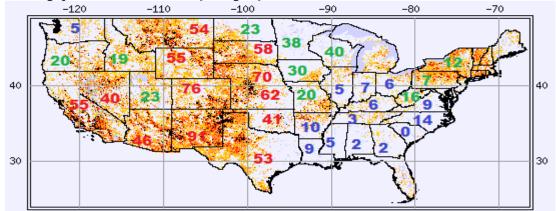
1

2

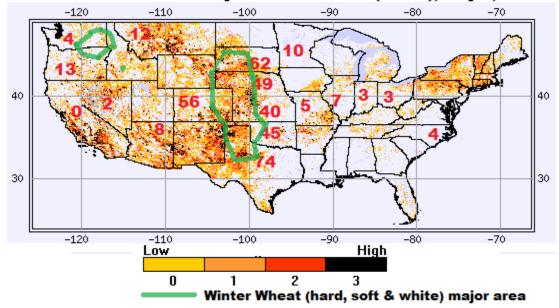
3

Drought Monitor

Palmer (PSDI) Standardized Precip. Index (SPI) **Precipitation anomaly** Modeled soil moisture **Expert opinion**


Vegetation Health Index

Vegetation Condition Index (VCI) Temperature Condition Index (TCI) **Vegetation Health Index (VHI)**

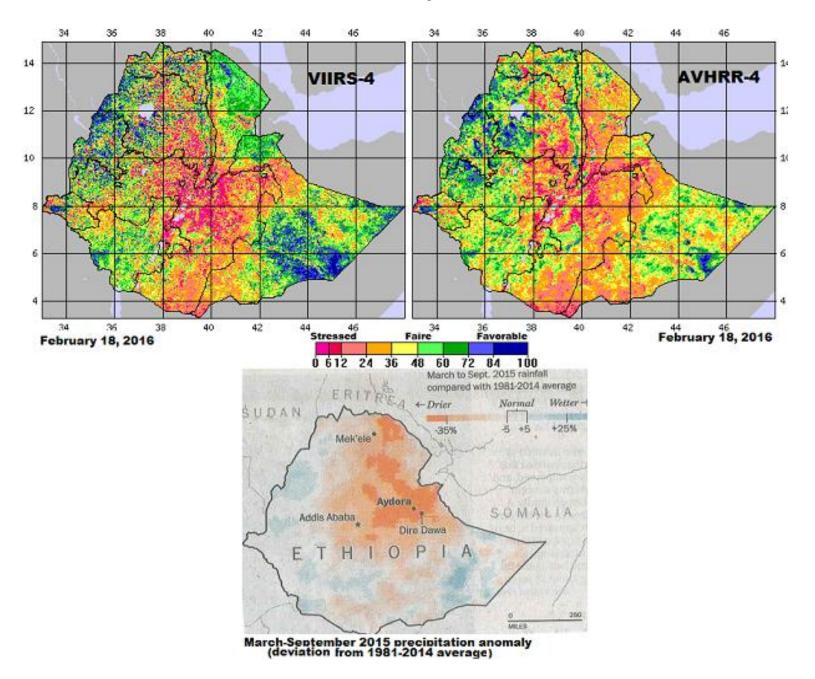

GVH-Drought

Comparison with Assessments GVH-drought stress & USDA pasture & winter wheat condition, May 6, 2013

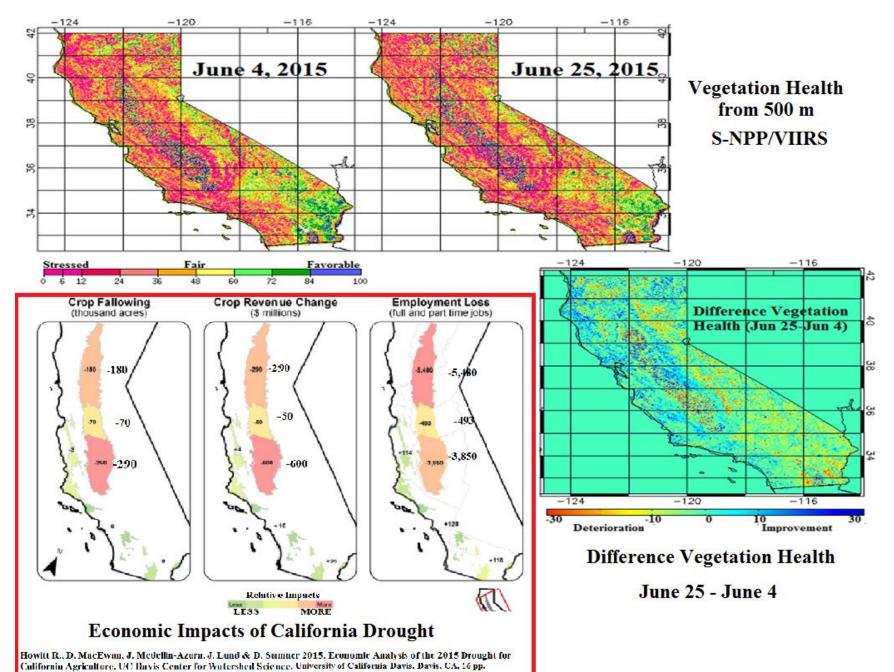
VH-based Drought Stress & % state with pasture & range land in poor & very poor coonditions, May 6, 2013

VH-based Drought Stress (NOAA), May 6, 2013 & Percent Whinter Wheat Area in Poor and Very Poor Conditions (USDA), May 5, 2013

WEB communication with USERS: 2.5-day GVH WEB view (May 4-6, 2015)


Page Views May 1-6, 2015

	Today	Yesterday	This Month
	May 6	May 5	May 1-6
STAR Vegetation Health Site	132	206	806


Countries used Vegetation Health WEB during May4-6, 2015

153 Hits 词	30.60%	United States	
81 Hits 🔌	16.20%	South Africa	
54 Hits 词	10.80%	Switzerland	•
41 Hits 词	8.20%	Australia	
17 Hits 词	3.40%	Mexico	a
16 Hits 词	3.20%	India	<u> </u>
16 Hits 词	3.20%	Armenia	
11 Hits 词	2.20%	France	
10 Hits 词	2.00%	Germany	
9 Hits 词	1.80%	Dominican Republic	
8 Hits 词	1.60%	United Kingdom	
7 Hits 词	1.40%	Myanmar	
7 Hits 词	1.40%	Korea, Republic Of	(e)
7 Hits 词	1.40%	Spain	2
6 Hits 词	1.20%	Ukraine	
6 Hits 词	1.20%	Iran, Islamic Republic	—
5 Hits 🗟	1.00%	Kenya	
5 Hits 🗟	1.00%	Japan	•
5 Hits 词	1.00%	China	
4 Hits 📄	0.80%	Romania	

VH VIIRS vs AVHRR & Precipitation ETHIOPIA 2016

California Drought Dynamics & Economic Impacts in 2015

SUMMARY

- 1. Development: VIIRS 1 km Global Vegetation health (GVH-1) for detection and monitoring disasters (a) drought, (b) moisture & thermal stress, (c) mosquitoborn diseases, (d) fire risk, (e) landslides;
- **2. Development:** SNPP-J1/VIIRS no noise NDVI and BT 1 km time series for **deriving climatology**;
- **3. Development:** 35+ years 4 km GVH climate records (combine VIIRS & AVHRR) for detection **climate and land cover trend** from 4 decades 4 km GVH records.
- 4. Validation

BACK UP

Algorithm and Operation 1 km Vegetation Health

Current status of VH product

- Vegetation Health (VH) products at 4 km resolution have been developed, produced & applied at STAR & operationally at OSPO. There is no equivalent products in the world.
- STAR place this product at the STAR's Web to receive users response.
- During 2015, nearly 6,000 world users requested the products every month.
- The result of VH application has been published in 4 papers and previously in a Book ("Use of Satellite & In situ Data to Improve Sustainability") explaining VH products and their multiple applications.

Overview of technical approach of the algorithm and its implementation

- The processing includes:
- (a) **375 m granules** data retrieval (channels I1, I2, I5);
- (b) storing 375 m granule data
- (c) processing overlapping granules;
- (d) mapping 375 m channels to1 km standard GVI map (orbit map);
- (e) development of daily map;
- (f) calculating intermediate indices (raw NVI and BT);
- (g) compositing weekly map;
- (h) Producing NVI & BT time series;
- (i) NVI & BT noise removal (SMN & SMT);
- (j) Conversion of VIIRS's SMN & SMT to AVHRR
- (k) calculating new **climatology** for SMN & SMT;
- (I) 1 km VCI, TCI and VHI;
- (m) Meeting NDE requirements. SNPP-VIIRS system will produce a weekly Vegetation Condition (VCI), Temperature Condition (TCI) & Vegetation Health (VHI). The VH will be presented on a global gridded composite map in Lat-Lon projection with 0.009 degree horizontal resolution. The system will be established on STAR Linux server using C++ & adapted to operation's IBM AIX OS with C++ compiler.
- Ancillary data requirements: Static files containing 30 arc second resolution land sea mask converted to HDF format, Land cover type from IGBP converted to HDF, Calibration parameters for visible channels

Concept of operations: The operation consists of eleven units: (1) Reading daily orbit VIIRS L1b radiances in the visible (I1), near infrared (I2) and thermal (I5) by granules; (2) Development of daily map; (3) Calibration of I bands; (4) Calculation of NVI & BT; (5) Development of NVI & BT time series; (6) Removing high frequency noise from NVI & BT & deriving SMN & SMT; (7) Development of SMN & SMT climatology; (8) Calculation of VCI, TCI & VHI products ;(9) Output of products to HDF/NetCDF & GeeoTiff formats; (10) Write meta data; (11) Real time QC

Vegetation Health (VH) Products

Vegetation condition index (VCI), values 0 - 100

VCI=(NDVI-NDVImin)/(NDVImax-NDVImin)

NDVImax, and NDVImin – climatology (1981-2000 maximum and minimum NDVI for a pixel;

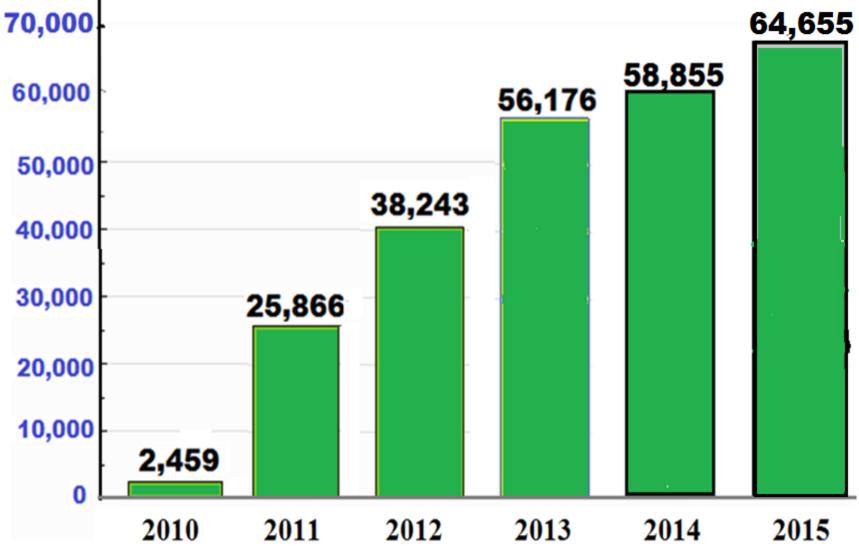
Temperature condition index (TCI), values 0 - 100

TCI=(BTmax-BTmin)/(BTmax-BTmin)

NDVImax, and NDVImin – climatology (1981-2000 maximum and minimum NDVI for a pixel

Vegetation Health Index (VHI), values 0 – 100

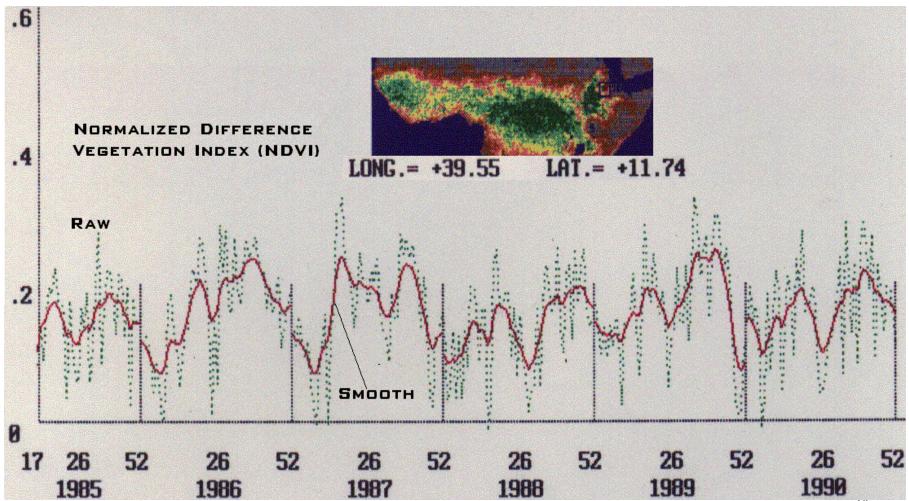
VHI=a*VCI+(1-a)*TCI


- 0 indicates extreme stress
- 100 indicates favorable conditions

MOISTURE

THERMAL

VEG. HEALTH


Users attending Vegetation Health WEB

WEB page total users from a day of calculation started in Nov 2010

http://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_browse.php

Weekly NDVI raw & smoothed Sub-Sahara AFRICA

