



## **EPS**Aerosol Optical Depth and Aerosol Particle Size Parameter Products



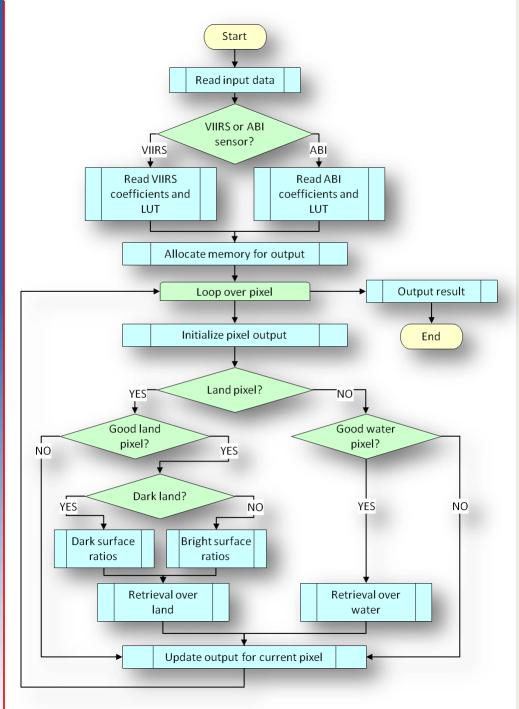
## **EPS AOD & APSP Products**



## Products:

- Aerosol optical depth (AOD) over land and ocean: optical measure of amount of aerosol in vertical column of atmosphere.
- Aerosol Particle Size Parameter (APSP) over ocean only: reported as Angstrom Exponent (proxy of APSP)

## Team members


- P. Ciren, J. Huang, S. Kondragunta, I, Laszlo, H, Liu, S. Superczynski, L. Remer, H. Zhang
- Algorithm (v1) developers: H. Liu, H. Zhang and I. Laszlo

## Users

- air quality (NWS), research, applied science, private, and governmental communities
- Downstream products (surface reflectance, NDVI)



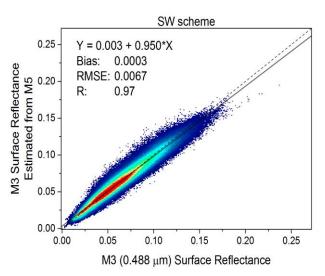


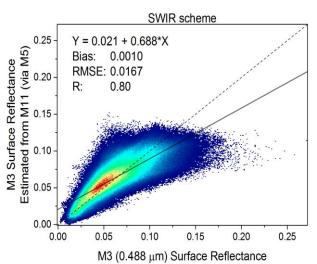


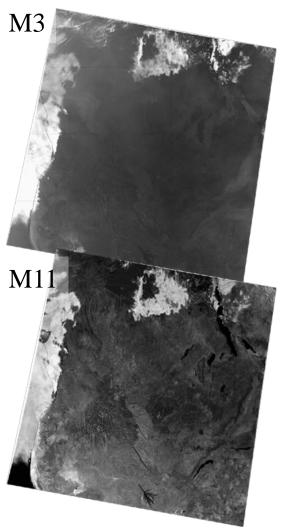
## Designed to handle VIIRS and ABI

|      | Central    |       |                     |
|------|------------|-------|---------------------|
| Band | Wavelength |       | Use in aerosol      |
| name | (µr        | n)    | algorithm           |
|      | VIIRS      | ABI   |                     |
| M1   | 0.412      |       | IL+TL               |
| M2   | 0.445      |       | IL+TL               |
| M3   | 0.488      | 0.470 | IL+TL               |
| M4   | 0.555      |       | IO+TO               |
| M5   | 0.672      | 0.640 | IL+TL+IO+TO         |
| M6   | 0.746      |       | IO (if unsaturated) |
| M7   | 0.865      | 0.865 | IO+TO+TL            |
| M8   | 1.240      |       | IO+TO+TL            |
| M9   | 1.378      | 1.378 | TL+TO               |
| M10  | 1.610      | 1.610 | IO+TO               |
| M11  | 2.250      | 2.250 | IL+IO+TO            |
| M15  | 10.763     | 11.2  | TL                  |
| M16  | 12.013     | 12.3  | TL                  |

IL: inversion over land; IO: inversion over ocean; TL: internal test over land; TO: internal test over ocean


- EPS over-ocean algorithm is almost identical to that in IDPS
- EPS over-land algorithm:
  - improved version of the dark-target one in IDPS
  - also retrieves AOD over bright surface





## **EPS AOD Algorithm – dark land**



- Combines IDPS and MODIS/GOES-R:
  - SW-scheme (IDPS): more accurate estimation of M3 surface reflectance from M5 for low AOT
  - SWIR-scheme (MODIS):
     more transparent M11
     allows more accurate
     estimation of M3 (from
     M11) surface reflectance
     for high AOT
- AOT range: -0.05 5.0
- Non-constant surface reflectance ratios
- Less reliance on VCM extensive internal tests
- Spatial variability test to better detect snow and cloud (M1 std in 3x3 pixels > threshold)

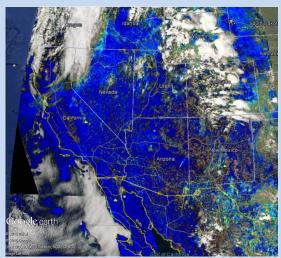








## **EPS AOD Algorithm – bright land**




- Works as IDPS but uses regional (0.1°x0.1°) database of surface reflectance ratios for bright surface (M11 ≥0.25)
  - M3/M5 for North
     Africa/Arabian Peninsula
  - M1/M5 for the other regions
- Aerosol model:
  - dust for North Africa/Arabian
     Peninsula
  - selects IDPS models for other regions

## IDPS vs. EPS AOD spatial coverage



**EPS** 





## IDPS vs. EPS Algorithm

| DO SO NATIONAL OCEAN | DO ATMOSP, DO ATMOSP, ARTMENT OF C | A SEC POMMISTRATION ALLEGO |
|----------------------|------------------------------------|----------------------------|

|                                           | IDPS                                                 | EPS                                                                                                                                    |
|-------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Algorithm (general)                                  |                                                                                                                                        |
| Data screening                            | External VCM + internal tests                        | Internal tests + external CM                                                                                                           |
| Residual calculated as                    | Absolute difference                                  | Relative difference                                                                                                                    |
|                                           | Over-land algorithm                                  |                                                                                                                                        |
| Channel used                              | 0.41, 0.44, 0.48, 0.67, 2.25 μm                      | Same                                                                                                                                   |
| Retrieve over                             | Dark surface only                                    | Dark + bright surface                                                                                                                  |
| Aerosol model                             | five models from AERONET                             | MODIS C5                                                                                                                               |
| Spectral surface reflectance relationship | Constant Ratio                                       | Dark surface: linear function of TOA SWIR-NDVI, redness and glint Bright surface: ratio as a function of location and scattering angle |
| Reference channels                        | 0.48 and 0.67μm (SW scheme)                          | Dark surface: Same + 0.48 and 2.25μm (SWIR scheme)  Bright surface: Same (Africa); 0.41 and 0.67μm (elsewhere)                         |
| Matching                                  | Surface reflectances                                 | TOA reflectances                                                                                                                       |
|                                           | Over-ocean algorithm                                 |                                                                                                                                        |
| Channel used                              | 0.67, 0.74, 0.86, 1.24, 1.61, 2.25<br>μm             | Same + 0.55 μm                                                                                                                         |
| Surface reflection                        | Non-Lambertian, function of wind speed and direction | Same + weighting with foam fraction                                                                                                    |
| Aerosol model                             | Combination of fine and coarse modes (MODIS C4)      | Same , but MODIS C5                                                                                                                    |
| Matching                                  | TOA reflectances                                     | Same                                                                                                                                   |
| Retrieval over inland water               | No                                                   | Yes                                                                                                                                    |





|                           | Inputs                   | IDPS | EPS |
|---------------------------|--------------------------|------|-----|
| Reflectance               | M1-M11                   | Χ    | X   |
|                           | M12                      | X    |     |
| Brightness<br>Temperature | M15                      | Χ    | X   |
| Temperature               | M16                      | Χ    | Χ   |
| Geolocation               | Longitude                | X    | X   |
| Geolocation               | Latitude                 | Х    | Χ   |
|                           | Solar Zenith             | X    | X   |
|                           | Solar Azimuth            | Χ    | X   |
| Geometry                  | Satellite Zenith         | Χ    | X   |
|                           | Satellite Azimuth        | Χ    | X   |
|                           | Wind Speed and Direction | Χ    | X   |
| Ancillary                 | Precipitable Water       | Χ    | X   |
| Data                      | Ozone                    | X    | X   |
|                           | Surface Pressure         | X    | Χ   |
|                           | Cloud Mask               | X    | X   |
|                           | Cloud Mask Quality       | X    |     |
|                           | Snow/Ice                 | Χ    | X   |
| VCM                       | Fire                     | Χ    | X   |
|                           | Cloud Shadow             | Χ    | X   |
|                           | Sunglint                 | Χ    | X   |
|                           | Ash                      | Χ    |     |
|                           | Heavy Aerosol            | Χ    | X   |
|                           | Land/Water               | Χ    | X   |
|                           | Cirrus                   | Χ    |     |











| Outputs                                                        | IDPS             |                           | EPS                                                    |  |
|----------------------------------------------------------------|------------------|---------------------------|--------------------------------------------------------|--|
| Outputs                                                        | EDR              | IP                        | EPS                                                    |  |
| Nominal spatial                                                | 6 km             | 0.75 km                   | 0.75 km                                                |  |
| resolution                                                     |                  |                           |                                                        |  |
| Granule size                                                   | 86 seconds       | 86 seconds                | 86 seconds                                             |  |
| AOT at 550-nm                                                  | [0, 2] range     | [0, 2] range              | [-0.05, 5] range                                       |  |
| AOT at M-bands                                                 | M1-M11 except M9 | M1 –M11 except M9         | M1 –M11                                                |  |
| Slant Path AOT at 550-nm                                       |                  | X                         |                                                        |  |
| Ångström Exponent                                              |                  | vs. 672-nm<br>vs. 1610-nm | Land: N/A<br>Ocean : 555 vs. 672-nm<br>865 vs. 1610-nm |  |
| Fine Mode Fraction                                             | Mean Value       | Χ                         | X                                                      |  |
| Ocean Fine Mode                                                | Dominant Type    | X                         | Χ                                                      |  |
| Ocean Coarse Mode                                              | Dominant Type    | X                         | Χ                                                      |  |
| Land Aerosol Model                                             | Dominant Type    | X                         | X                                                      |  |
| Surface Reflectance                                            |                  |                           | Χ                                                      |  |
| Retrieval Residual                                             |                  |                           | Χ                                                      |  |
| Spatial Variability                                            |                  |                           | Χ                                                      |  |
| AOT at 550-nm for Each<br>Candidate Land Aerosol<br>Model      |                  |                           | X                                                      |  |
| Retrieval Residual for<br>Each Candidate Land<br>Aerosol Model |                  |                           | X                                                      |  |





# IDPS vs. EPS Quality Flags

| Quality Flags                                                                 | IDF | EPS |     |
|-------------------------------------------------------------------------------|-----|-----|-----|
| Quality riags                                                                 | EDR | IP  | Ers |
| AOT Quality                                                                   | X   | X   | Χ   |
| AE Quality                                                                    | X   | X   |     |
| Land/Water Mask                                                               | X   | Χ   | X   |
| AOT Out-of-Range                                                              | X   | Χ   |     |
| AE Out-of-Range                                                               | X   | X   |     |
| Cloud Contamination                                                           | X   | X   | X   |
| Cloud Adjacency                                                               | X   | Χ   | X   |
| Cirrus Contamination                                                          | X   | X   | X   |
| Bad SDR                                                                       | X   | X   | X   |
| Sunglint                                                                      | X   | Χ   | X   |
| Cloud Shadow                                                                  | X   | Χ   | X   |
| Snow/Ice                                                                      | X   | X   | X   |
| Fire                                                                          | X   | Χ   | X   |
| Low Sun (65° <solzen≤80°)< td=""><td>X</td><td>Χ</td><td></td></solzen≤80°)<> | X   | Χ   |     |
| Low Sun (solzen>80°)                                                          | X   | X   | X   |
| Bright Land                                                                   | X   | X   | X   |
| Turbid/Shallow Water                                                          | X   | X   | Χ   |
| AE Excluded                                                                   | X   | X   |     |
| Cloud Mask Quality                                                            |     | X   |     |
| Interpolation/Climatology                                                     |     | X   |     |
| Ash                                                                           |     | X   |     |
| Residual Out-of-Range                                                         |     | Χ   | Χ   |



# IDPS vs. EPS Quality Flags (Cont.)

| Ovelity Flore                    | IDP | EDC |     |
|----------------------------------|-----|-----|-----|
| Quality Flags                    | EDR | IP  | EPS |
| Invalid Geolocation              |     |     | X   |
| Invalid Geometry                 |     |     | X   |
| Invalid Ancillary Data           |     |     | X   |
| Internal Test Cloudy             |     |     | X   |
| Internal Test Thin Cirrus        |     |     | X   |
| Internal Test Inhomogeneity      |     |     | X   |
| Heavy Aerosol                    |     |     | X   |
| SW Scheme over Land              |     |     | X   |
| SWIR Scheme over Land            |     |     | X   |
| Bright Surface Scheme over Land  |     |     | X   |
| Failed Retrieval                 |     |     | X   |
| Extrapolation                    |     |     | X   |
| NDVI Out-of-Range                |     |     | X   |
| Redness Ratio Out-of-Range       |     |     | X   |
| Snow Adjacency                   |     |     | X   |
| Barren Land Cover Type over Dark |     |     | Χ   |
| Surface                          |     |     |     |



| NO ATMOSPHERIC<br>OTHIOLOGY<br>TURN |            |
|-------------------------------------|------------|
| HITIONAL O                          | MISTRATION |
| TO THE ARTMENT OF COMME             | gy .       |
|                                     |            |

| Condition               | Quality Level   |     |        | Applies to |       | Detected by |                   |
|-------------------------|-----------------|-----|--------|------------|-------|-------------|-------------------|
|                         | No<br>Retrieval | Low | Medium | Land       | Ocean | VCM         | Internal<br>Tests |
| Invalid input data      | Χ               |     |        | Χ          | Χ     |             | X                 |
| Cloud Contamination     | X               |     |        | X          | X     | X           | X                 |
| Snow/Ice                | X               |     |        | X          | X     | X           | X                 |
| Fire                    | X               |     |        | X          |       | X           |                   |
| Ephemeral Water         | Χ               |     |        | Χ          |       |             | X                 |
| Sun Glint               | X               |     |        |            | X     | Χ           | X                 |
| Shallow Water           | X               |     |        |            | X     |             | X                 |
| AOT Out-of-Range        |                 | Χ   |        | Χ          | Χ     |             | X                 |
| Coastal                 |                 | Χ   |        | Χ          |       | Χ           |                   |
| Low Sun (solzen > 80°)  |                 | Χ   |        | Χ          | Χ     |             | X                 |
| Extrapolation           |                 | Χ   |        | Χ          | X     |             | X                 |
| High Inhomogeneity      |                 | Χ   |        | Χ          | Χ     |             | X                 |
| High Residual           |                 | Χ   |        | Χ          | Χ     |             | X                 |
| Cloud Shadow            |                 |     | Χ      | Χ          | Χ     | Χ           |                   |
| Thin Cirrus             |                 |     | Χ      | Χ          | Χ     |             | Χ                 |
| Cloud Adjacency         |                 |     | Χ      | Χ          | Χ     |             | Χ                 |
| Snow Adjacency          |                 |     | Χ      | Χ          | Χ     |             | Χ                 |
| Medium<br>Inhomogeneity |                 |     | Х      | Х          | Х     |             | Х                 |
| Medium Residual         |                 |     | Χ      | Χ          | Χ     |             | Χ                 |
| NDVI Out-of-Range       |                 |     | Χ      | Χ          |       |             | Х                 |
| Redness Out-of-Range    |                 |     | Χ      | Χ          |       |             | <b>X</b> Page     |



## **Lessons Learned**



- Careful analysis of IDPS vs. EPS inputs (SDR, masks, quality flags, ancillary data) is needed in developing the AOD algorithm.
- Coordination with upstream and downstream product teams should be done early on, but to be effective upstream algorithm should already be mature enough.
  - Provided sample data, description of new file format and content, information on aerosol models used, and new LUT to surface reflectance team.
- Users should be made aware of any changes, and science teams should be made aware of "new" user requirements. (EPS AOD product is "only" at pixel level, but some users now prefer aggregated, lower-resolution product.)
- Should maintain format and content of output file similar to IDPS output as much as possible. Reprocessing of past record of NPP data with EPS algorithm may lessen this requirement.



## **Lessons Learned (contd.)**



- Common ancillary data (e.g., surface type map) should be identified early on, and science teams should be made aware of them.
- Common procedures and/or inputs (e.g., model pressure corrected for actual surface elevation) should be identified and implemented in the framework to provide consistent inputs.
- Provide an opportunity for the science team to review code implemented in framework, especially if science code was changed in any way.
- When testing framework implementation of an algorithm that requires the framework to prepare (e.g., grid, aggregate) inputs original inputs (and perhaps code used) should also be provided to science teams so that the processed input could also be checked.



## **Path Forward**



## Anticipated developments

- Test/refine internal test implemented for detection of heavy aerosols.
- Update ATBD.
- Provide test data (of sufficient spatial and temporal coverage) to downstream algorithm teams and users.
- Consider/evaluate feedback from downstream algorithm teams and users, and make algorithm/code changes if appropriate.
- Update spectral reflectance-ratio database using actual VIIRS/J1 observations.
- Update thresholds in internal tests based on actual VIIRS/J1 AOD data.
- Generate spectral reflectance-ratio database using actual ABI observations.
- Update thresholds in internal tests based on actual ABI AOD data.
- Perform cal/val work of AOD from JPSS (repeat work done for NPP).



## **Summary**



## Reviews:

√ CDR: April, 2013

√ UTR: November, 2014√ ARR: December, 2015

Operational Readiness Review: July 2016

- EPS AOD algorithm and ATBD were delivered to ASSISTT in January 2016.
- Updates to run the algorithm with AHI data, and other small updates were delivered in mid-March.
- Not aware of any J1 product change negatively impacting EPS AOD product; no outstanding issues at this time.